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Abstract— Currently, three-dimensional (3D) video is gaining 
increasing popularity by providing immersive user experience. 
Compared against conventional 2D video, 3D video excels at 
bringing a “live” scene closer to the users, and/or trying to place 
the users in the environment of the displayed content. However, 
streaming 3D video sequences over the IP networks is challenging 
due to the impact of dynamic network conditions on user quality. 
Accurate objective 3D video quality assessment is critical for 
advanced real-time video streaming adaptation solutions. Most 
state-of-the-art objective 3D video quality metrics are 
reference-based and require access to the original 3D video 
sequences, which is not possible for the real-time applications. 
This paper proposes the extended No-reference objective 3D 
Video Quality Metric (eNVQM) for real time 3D video quality 
assessment. eNVQM establishes a correlation between network 
packet loss and stereoscopic 3D video quality and was tuned 
according to extensive subjective testing results. Performance of 
eNVQM is studied in comparison with two state-of-the-art 
objective video quality metrics: structural similarity index (SSIM) 
and video quality metric (VQM).  

Index Terms—3D video; objective quality assessment; non- 
reference; stereoscopic 
 

I. INTRODUCTION 

PART from the classic 2D video content, the 3D video 
also supports dissemination of the sense of depth, 

significantly enhancing the user viewing experience. Due to the 
advanced development of image processing, display 
technologies, and digital video coding approaches (e.g. 
H.264/AVC, H.264/SVC and Multiview Video Coding 
(MVC)), 3D video techniques have been widely deployed in 
various application areas, including 3D movies, 3DTV, 3D 
gaming, etc. On the other hand, the increasing capacity and 
speed of both core and access networks support the delivery of 
highly popular 3D video to a large user base, including mobile, 
and opening new opportunities for diverse applications beyond 
the traditional theatre-based 3D movie shows, such as mobile 
3D video streaming, 3D video chat, and 3D conferencing.  
 The 3D video has brought a revolutionary enhanced viewing 
experience closer to the video users; however in addition to the 
challenges that already exist in relation to 2D video, there are 
challenges specific to 3D video for providing users good 
quality levels. This is also because the depth sense associated 
with 3D video may enhance or decrease the overall 3D viewing 
experience depending on the effect of the image compression 
and delivery. The 3D video content consists of separate video 
frames for the left and right eyes, which form separate left and 
right video streams/layers, respectively, which often have 

redundant information that is reduced during compression by 
various algorithms. Thus diverse network impairments that 
affect either layer (left or right) of the 3D video content may 
result in different levels of degradation of the 3D video quality.  
Additionally, the impact of encoding at different bitrates and 
frame rates on the 3D video varies from that on the 2D video.   
 Network delivery of 3D video at good quality level is 
challenging mostly due to the network dynamic conditions. 
Despite the development of various network solutions, often 
the performance of the video delivery is affected, especially for 
mobile and interactive applications. 2D video delivery research 
showed that there is a need for more advanced solutions, 
including adaptive delivery schemes [21][27][28], which are 
aware of the network conditions and adjust dynamically the 
video delivery process in order to maintain good user perceived 
quality levels. These solutions require accurate real-time 
estimation of the user perceived Quality of Experience (QoE).  

Some research has been conducted to estimate or measure 
the QoE levels of the 3D video. Subjective methods involving 
people evaluating the 3D video quality provide highly accurate 
results as they directly reflect human quality perception levels. 
However, these methods require carefully controlled 
environments, cannot be done online during transmission, 
require important human resources and are time consuming. 
Objective quality assessment methods can be performed in 
real-time and are therefore preferred, but are less accurate. 
Recently, several objective quality metrics for 3D video have 
been proposed [1] – [6], but they lack accuracy, mainly due to 
the fact that the human visual system (HVS) is difficult to 
model in pixels and depth, and is also affected by other factors 
such as human eye comfort level, viewing distance, etc. 
Furthermore, the existing objective 3D video quality 
assessment methods are highly dependent on the video content 
and do not consider network impairments. The quality metrics 
widely used for 3D video quality assessment employ 2D video 
quality metrics, including PSNR [7], SSIM [8], and VQM [9]. 
These 2D video quality metrics can be used to measure the 
video quality for the left and right views separately and the 3D 
video quality can be derived by considering different weights 
for the two views [2][11]. However, the above approaches 
require the usage of both decoded and original video sequence 
in order to analyse the blockiness, blurring, and depth 
information in the decoded video content [12]. Such quality 
assessment can only be done off-line when the transmission is 
over, and thus is not suitable for real-time assessment. The no 
reference PSNR [10] can be used online, but it is based on 
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Figure 1. Experiment Framework 

assumptions related to the manner bitrate and loss affects 
encoded 2D video and therefore its accuracy in a 3D context 
will be very limited.  

This paper investigates the impact of variable network 
conditions on the perceived quality of 3D video content. The 
proposed extended No-reference 3D Video Quality Metric 
(eNVQM) extends the previously described NVQM [14] by 
considering not only network-related parameters (e.g. loss), but 
also the video characteristics such as bitrate and frame rate [13]. 
eNVQM employs the principle of ITU-T G.1070 model 
proposed for 2D video quality assessment [15], butis designed 
for 3D video quality estimation. eNVQM is derived based on 
real subjective testing results and can be used for proactive 
adaptive 3D video transmissions.  
 The rest of this paper is organized as follows. Section II 
presents the current subjective and objective 3D video quality 
metrics and Section III introduces the eNVQM model. Section 
IV describes the experimental setup and the experimental 
results are analysed in Section V. In the end, Section VI 
concludes the paper.  

 

II. RELATED WORK &  TECHNICAL BACKGROUND  

Measuring 3D video quality has already been investigated 
using 2D objective video quality metrics such as PSNR, SSIM 
and VQM. Authors of [1] have shown that, by averaging the 
separate results of left and right views, VQM can predict the 
overall image quality, while PSNR and SSIM results have 
better correlation with the 3D video depth perception than those 
of VQM. Study of the quality evaluation of colour plus depth 
map-based 3D video using these 2D video quality metrics is 
described in [2], in which the 3D video quality is an average 
score of the rendered left and right video using an innovative 
Depth-Image-Based Rendering (DIBR) technique. Rather than 
using the same weight for left and right views, the authors of [4] 
assign weights of 1/3 and 2/3 of the PSNR score to the left and 
right views respectively.  

A new perceptual quality metric (PQM) was proposed in [6]. 
Being more sensitive to image degradation and error 
quantification that happen at pixel level than at sequence level, 
PQM shows better results for 3D video quality in comparison 
with VQM. The impact of eye dominance on the perceived 3D 
video quality is modelled in [3], which is based on spatial 
frequency by chopping the images into small 4*4 blocks. The 
edge distortion in depth and colour 3D videos also has a 
significant impact on the 3D video quality and this has been 
modelled in the colour and sharpness of edge distortion 
measure (CSED) proposed in [5]. An objective model in [25] 
predicts the quality of lost frames in 3D video streams based 
only on the estimated lost frame size. The authors in [26] also 
evaluated stereoscopic 3D video quality using 2D  objective 
metrics, including PSNR, SSIM and VIFP. Their results show 
that the colour perception is a dominant in the overall 3D video 
quality while the depth has less impact. 

These 3D video quality metrics have different accuracy 
levels and advantages. However they all require full reference 
of the original video source and differ from our proposed non 

reference network-based metric, which does not require the 
presence of either the original or degraded 3D video.  

Stereoscopic 3D video contains left and right view video for 
left and right eyes, respectively. The two views can either be 
stored in a single video file or two separated video files. These 
two views are synchronized and played by a 3D supported 
player simultaneously, providing human viewer two 
perspectives of the same scene with a minor deviation. This 
deviation gives the perception of 3D depth while it is processed 
by human brain. When stereoscopic 3D video is transmitted 
over the network, the two views are combined into a frame 
sequential stream. The video frames are stacked one by one 
from left and right views in a frame sequential manner [17]. 

 

III.  PROPOSED EXTENDED 3D V IDEO QUALITY MODEL 

The idea behind eNVQM is to investigate properly the 
relationship between network packet loss, and the 3D video 
bitrate and frame rate and model it. The model has three input 
variables, and thus it requires accurate mapping at each of these 
three dimensions of the model. ITU-T G.1070 [15] has defined 
a similar model for 2D video. eNVQM employs the idea and 
major coefficients of the ITU-T G.1070 model, and proposes a 
new model for 3D video considering both colour and depth 
information. 

A. ITU-T G.1070 2D Video Quality Metric  
The ITU-T has standardized a user opinion model for 2D 

video-telephony applications in G.1070. It estimates the 2D 
video quality in telephony applications by considering the 
network impairment parameters (i.e. packet loss in video) and 
encoding parameters, including codec type, video format, key 
frame interval, and video display size.  

The 2D video quality is modeled by equation (1): 
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where PplV  represents packet loss rate, DPplV expresses the 
degree of video quality robustness due to packet loss, and Icoding 

calculates the basic video quality affected the coding 
impairment that is influenced by video bitrate (BrV is expressed 
in kbps) and video frame rate (FrV is measured in fps). Note (1+ 
Icoding) represents the video quality when the packet loss is 0%.  
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 In the G.1070 model there are twelve coefficients which are 
derived from subjective 2D video tests and are dependent on 
the video coding, and display size. The methodology for 
deriving the coefficients in the model is given in [15]. The 
recommendation gives five sets of coefficients for different 
display sizes for MPEG-4 and ITU-T H.264, respectively. In 
the standard, the related accuracy of the predicted video quality 
was evaluated by the Pearson product-moment correlation [22]. 
 The derivation of the proposed eNVQM for 3D is shown in 
the next sub section. 

B. Extended No Reference 3D Video Quality Metric (eNVQM) 

The proposed eNVQM is designed to estimate 3D video 
quality based on packet loss rate, 3D video bitrate and 3D video 
frame rate in a no reference manner.  

The stereoscopic 3D video consist of left and right views, 
each similar to a 2D video. The left and right views in 
stereoscopic 3D video are directed to left and right eyes of the 
human observers with various display technologies. The 
differences in the two views produce illusion in human 
perception and this provides the observer the sense of depth in a 
3D space. During network transmission of a 3D content, any 
information loss affects the video quality. If information is lost 
in either left or right view for the same video frame, it might be 
compensated from the other view, reducing the quality loss. 
When the information cannot be compensated from the other 
view, it may affect the display of the other view, resulting in an 
impaired 3D displayed frame and thus decreasing the 3D video 
quality. These are the reasons for which we believe that the 
network impairment has different impact on 3D video than that 
of 2D video.  

The 2D video quality metric described in G.1070 provides a 
good methodology of mapping bitrate, frame rate and packet 
loss to the 2D video quality MOS. Based on this, we propose 
for eNVQM the formula from equation (2), where I3D

coding is 
composed of two additive natural logarithms for both frame 
rate and bitrate, reflecting the video quality when packet loss 
(PplV) is 0%. The remaining part of eNVQM formula 
represents the effect of packet loss on the video quality when 
considering 3D video frame rate and bitrate. The equations are 
presented below: 
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Equations (2)-(4) are used to estimate the quality of both 

colour and depth components of the 3D video: color
DV 3  and

depth
DV 3 . Two sets of coefficients A = {a1, a2,…, a12} are 

derived from subjective 3D video tests of colour (colorA ) and 

depth perception ( depthA ), respectively. a1 and a2 reflect the 
effect of frame rate and bitrate respectively when there is no 
packet loss. a3 and a4 quantifies the contribution of bitrate so 
that both frame rate and bitrate can be represented in a balanced 
manner in the overall formula. There is no need for frame rate 
to have similar coefficients to bitrate because the frame rate (10 
~ 60 fps) scales faster than bitrate (1~10 Mbps) and thus it is 
well enough represented by the natural logarithm. The 
coefficients a5 to a9 are used to map different scales of frame 
rate and bitrate on the scale of packet loss rate, respectively. 
Coefficients a1, a2, …, and a9 are dependent on the codec type, 
video format, and display size.  
 Furthermore, the overall 3D video quality needs to combine 
colour and depth qualities. It is assumed that there is an additive 
effect of depth perception on the colour perception in terms of 
the 3D video quality, so equation (5) is employed: 
 

depth
D

color
D

q
D yVxVV 333 += ,        x + y = 1       (5) 

 
where x and y give different weights to colour and depth 
perception, respectively. The values of x and y are derived from 
three other perceptual factors considered in the subjective 
testing, reflecting eye comfort level, whether the 3D video is 
enjoyable, whether the 3D effect enhances the experience. 
 

IV.  EXPERIMENTAL SETUP 

An extensive set of experiments are designed to study the 
relationship between the network characteristics (i.e. packet 
loss), 3D video encoding settings (i.e. framerate, bitrate) and 
the perceived 3D video quality, independent from the video 
content. Different network scenarios with varying network 
packet loss ratios were generated. The independence of the 
video content is ensured by making use of high number of 3D 
video samples with different contents, each encoded with a set 
of encoding settings. 

Five 3D video clips with content belonging to different 
scenarios with diverse motion complexity levels are selected 
from the database in [23], as shown in Table I. The duration of 
the selected video clips varies from 6 to 14 seconds, according 
to [16]. These video clips are MPEG-4 SVC encoded with high 
(4 Mbps), medium (3 Mbps), and low (2 Mbps) average bitrates 
following the IPPP sequence format and have frame rates of 18 
fps and 11 fps, targeting mobile applications. The clip scene 
scenarios include running, driving, swimming, etc. as indicated 
in Table I. 

Figure 1 shows the test topology of the experiment. Each 3D 
video clip is encoded and transmitted using RTP over the 
network separately from Sender to Receiver using the VLC 
media player. Dummynet is used to control the desired packet 
loss in the network. The Receiver receives the stream sent over 
the impaired network, and decodes the stream to video files for 
left and right video, creating a video clip pair, separately. 
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Wireshark is used at the receiver side in order to capture the 

transmitted stream and calculate the packet loss. 11 network 
loss scenarios are created: 0%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 
5%, 6%, 8% and 10%. More scenarios were considered and 
studied in lower packet loss range (less than 5%) to allow for 
better accuracy. Overall there are 11 * 3 * 2 * 5 = 330 video clip 
left-right pairs transmitted using the experiment.  

Subjective testing is conducted with 40 volunteers. 330 
videos are divided into 10 groups, each containing 33 videos 
randomly selected from different video contents, packet loss, 
bitrate and framerate. Thus each individual clip has at least 4 
results from 4 different observers. The clips are displayed on a 
27 inches 3D Asus VG278 monitor with resolution 1920x1080 
pixels, and the 3D vision2 support enabled from Nvidia. The 
participants are required to wear a pair of 3D vision2 wireless 
active shutter glasses. As suggested by the monitor 
manufacturer, the viewing distance is set to 1 m. The tests are 
conducted in a 5m x 5m quiet room, having the monitor away 
from window to avoid additional unnecessary light for 
optimum viewing experience. Each participant is asked to 
grade their overall 3D experience, 3D depth experience, eye 
comfort, 3D enjoyable level, 3D effect enhancement level 
(whether 3D effect enhance the overall viewing experience). 
The grading uses the 1 (bad) to 5 (excellent) MOS scale. 

 

V. RESULT ANALYSIS 

The results collected from the subjective tests consist of 
grading marks for the 330 video clips, each having a particular 
combination of bitrate, frame rate, video content, and packet 
loss rate. 

The goal is to derive a mapping from packet loss, bitrate, and 
frame rate values to an estimation of user perceptual 3D video 
quality. 

75% of the subjective results are used for the model 
derivation and 25% of the test results are reserved to allow for 
the verification of the derived model. A fitting curve is derived 
as shown in Figure 2 and Figure 3 for colour and depth 

parameters, respectively. The coefficients a1, to a5 are 

calculated for colorA  and depthA , following by the steps 
described in ITU-T G.1070, respectively. The method involves 
calculating some of coefficients by having only one of them 
variable and keeping the other ones fixed. The coefficients are 
computed using the Least Square Approximation (LSA) [24]. 

The raw subjective results are processed in order to eliminate 
outliers. For each clip, an outlier result is considered if the score 
is more than 2 grades adrift from the median MOS of all the 
values recorded from all this clip’s viewers. However, when 
considering packet loss scenarios, for each case there are 22 
clips (75% of 30 clips) with different content, bitrates and 
frame rates (with packet loss rate fixed). Among these 22 
results, the highest and lowest 10% of them are considered 
outliers and are removed. The same process is performed for 
both overall colour and depth perception, respectively. The 
mappings between packet loss and the two types of perception 
are shown in Figure 2 and Figure 3, respectively. The 
corresponding coefficients for colour and depth models 
instantiated from equations (2)-(4) are listed in Table II.  

In order to verify the correctness of the model, the remaining 
25% of the subjective results are used to compute Pearson 
correlation with the eNVQM results. The model uses inputs 

 
Figure 2.  Mapping colour quality perception vs. network packet loss rate 

  

 
Figure 3.  Mapping depth perception vs. network packet loss rate 

 

TABLE I 
VIDEO SAMPLES 

 

Clip 
No. 

Motion 
complexity 

level 

Scene 
scenarios 

Duration 
(seconds) 

Scene 

1 High Running 9 
 

2 High Driving 14 
 

3 Medium Swimming 13 
 

4 Medium Dancing 6 
 

5 Low Kissing 8 
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Figure 4. eNVQM 3D video Quality with 0% packet loss 

 

Figure 5. eNVQM 3D video Quality with bitrate 4 Mbps 

 

with the same frame rate, bitrate and packet loss rate as in the 
clip presented to the observer. The comparison is shown in 
Table III. The slightly lower correlation when 25% of the 
results are considered is caused by the low number of results 
available and higher variations. The relative high level of 
correlation indicates that our derived model coefficients are 
valid and reliable.  

Next, weights for colour and depth for 3D video are 
determined by making use of three additional factors: eye 
comfort, 3D enjoyment level, and 3D effect enhancement level. 
The same process of removing outliers in each clip is followed, 
but outliers when considering a particular packet loss rate are 
retained, as no fitting curve is required in this step. Giving 
different weights to colour and depth, the overall scores are 
compared against the results of the above three factors. Each 
result set organizes data for a particular packet loss rate in each 
row with a combination of bitrate and frame values in each 
column. Correlations are computed for each column pairs 
containing subjective results and grading marks for the above 
factors. Finally the average correlations over all packet loss 
rates are calculated. This is done for each of the three subjective 
factors considered. The highest average correlation of these 
factors is considered to determine the weights of x, y for colour 
and depth perception. The trend follows a 2nd order polynomial 
function, in which y is replaced by (1-x): 

8644.00046.020026.0 ++−= xxnCorrelatio        (6) 
 

The function of the correlation trend is a parabola of x (since 
y = (1-x) and its vertex is at x=0.885, giving the highest 
correlation of 0.866434615. Thus equation (6) can be expressed 
as in equation (7): 

depthcolourqD VVV *115.0*885.03 +=                (7) 

 
where Vcolour and Vdepth are calculated using equations (2) - (4) 
and the coefficients in Table II.  

The eNVQM model takes three input variables: frame rate, 

bitrate and packet loss rate. The output of eNVQM is expressed 
in terms of MOS and refers to the human perception of 3D 
video quality. Fig. 4 illustrates eNVQM variation against 
bitrate and framerate when the packet loss is 0%, 1% and 3%. It 
can be noted how MOS increases as bitrate and frame rate 
become larger and how the effect of bitrate growth is larger in 
terms of MOS than a frame rate increase. And the effect of 
bitrate and frame rate differs for different packet loss rates. Fig. 
5 shows specifically eNVQM variation against loss rate and 
frame rate at a fixed bitrate of 4 Mbps. It is also interesting to 
see that for lower range frame rates, MOS drops more rapidly 
relative to packet loss growth, while MOS drops smoothly for 
higher range frame rates.  

Other research works from the literature employ SSIM and 
VQM for objective 3D video quality assessment. Despite our 
reluctance regarding the use of 2D metrics to assess 3D video 
quality, in order to compare the performance of the proposed 
eNVQM to other models, SSIM and VQM results applied to the 
3D video are shown next. The same weights for both left and 
right views [1] [2] were applied in order to compute the 
objective 3D video quality. MSU VQMT [18] was used as 
computational tool. Since SSIM and VQM use different scales 

TABLE II 
COEFFICIENTS COMPUTED FOR ENVQM 

 colour depth 
a1 0.09136 0.08751 
a2 1.11132 1.05853 
a3 0.93128 0.93067 
a4 1.79391 1.7921 
a5 -1.24607 -0.46754 
a6 0.01436 1.67570 
a7 33.775 33.03 
a8 2.17023 0.39725 
a9 5.37876 4.45855 

 
 

TABLE III 
VERIFICATION OF ENVQM COEFFICIENTS - PEARSON CORRELATION OF 

ENVQM AND SUBJECTIVE RESULTS 

 25% 
subjective results 

75% 
subjective results 

100% 
subjective results 

 colour depth colour depth colour depth 
Correlation 0.873 0.785 0.916 0.903 0.942 0.935 
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from MOS, normalization methods described in [19] and [20] 
were employed, respectively. The original and degraded 
sample pairs were compared by VQMT for the left and right 
views, and the average scores of both views converted to MOS 
scale were compared with the results of eNVQM. Considering 
100% of the subjective results, the Pearson correlations with 
the subjective test results are listed in Table IV. This 
correlations show that by using eNVQM higher accuracy in 
predicting the perceived 3D video quality can be obtained in 
comparison when using other reference methods.  

VI.  CONCLUSION 

This paper proposes the extended no reference objective 
video quality metric (eNVQM) for the online assessment of 
stereoscopic 3D video quality. eNVQM estimates the 3D video 
quality using frame rate, bitrate and network packet loss rate. 
Pearson correlation shows that eNVQM has better accuracy in 
terms of human perception in 3D video, comparing against two 
current common assessment methods SSIM and VQM. 
eNVQM is perfect for adaptive 3D video transmissions as it can 
quickly estimate the current video quality so that delivery 
adjustment actions can be taken at the earliest possible point, 
increasing user perceived quality levels.  
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