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Abstract—Currently the volume of telecom network manage-
ment data is expanding exponentially, mainly due to the explosive
growth in the number of communicating devices along with the
increase in heterogeneity of the networks. Such scale of data
obsoletes the traditional approach of extracting offline analytics
from the network traces governed by some pre-defined schemes.
In order to increase the efficiency of the Operations Support
System (OSS) and gain in-depth understanding of the generic
relationship between network entities, the monitoring data needs
to undergo large-scale deep analytics processing. In this paper we
present :--MAGNET, an integrated analytics framework developed
with the popular real-time stream processing paradigm Storm.
The components of ;-MAGNET intelligently micro-batch segments
of incoming streams to enable high-throughput online analytics of
management trace streams. Inter-dependence metrics (temporal
and statistical) are exploited to extract contiguous event sub-
sequences, which can then be independently examined as part of
a network incident analysis system.

I. INTRODUCTION

Telecom operators are currently facing the dilemma of
controlling the spiralling cost of managing the ever-increasing
network complexity due to the deployment of more and
more Network Elements (NEs) for maintaining high quality
communication. Trace streams emanating from these NEs are
embedded with event-patterns indicative to network operation
and performance status. However, in addition to the granular
events making up the interesting patterns, huge volumes of silo
and uninteresting events form the main bulk of the data in such
streams. This noise and irrelevant data obfuscate the important
events (defined as “needles” in this paper) and their patterns
to the extent that OSSs and analytics systems struggle to find
useful information about network behaviour in these streams.
For example Fault Management (FM) data contains many more
events and event-patterns that can realistically be classified as
“noisy” than interesting events and patterns, i.e. event-patterns
capturing anomaly behaviour. In addition to the lack of event
veracity, the volume of the trace traffic generated by each NE,
variety of the sources of each event and velocity of the trace
streams make trace analytics extremely difficult. A pro-active
prescriptive analytics system based on event-stream analytics
should be able to provide solutions to a particular network
incident in-time.

For event-stream analytics Event-based Stream Processing
(ESP) is a de-facto technique which reduces events through
event abstraction, but lacks in scalability [1]. StreamMapRe-
duce tackled the problem of throughput by combining ESP
with MapReduce and incrementally processes event-streams

[2]. Scalable Advanced Massive Online Analysis (SAMOA)
is a stream mining platform to deploy off-the-shelf machine
learning algorithms on streaming data [3]. Continuous Stream
Mining Engine (CSM Engine) is a Java based Complex Event
Processing (CEP) Engine for real-time event correlation find-
ing across multiple events based on pre-defined rules (abstrac-
tion), but lacks support for modelling event-patterns. A step-
wise heuristic algorithm was employed to detect and remove
noise events based on computing co-occurrence statistics of
each pair of events to measure the inter-relationship between
the events and infer whether events should be included or
not [4]. In this context, the goal of the proposed i-MAGNET
is to analyze the input event-stream in near real-time with
minimal loss of pattern-related information so that online and
offline pattern discovery and matching are simplified and more
effective.

The proposed framework ¢-MAGNET is designed to in-
tegrate event filtering with Storm! (a real-time stream pro-
cessing paradigm) to extract individual event sub-sequences
from large volumes of event traces. Such individual self-
contained event sub-sequences which must have statistical
and temporal commonalities are more effective for Network
Management Systems (NMSs) if extracted in real-time. From
functional point of view :-MAGNET is composed of two main
components, (i) a load balancer, and (ii) a data reducer. The
load balancer dynamically balances the load of the incoming
data via an arrival-rate based data distribution solution known
as Kafka [5]. Once the data is loaded, the data reducer
abstracts the trace stream by applying a metrics-based relation
finder and reduces the size of the stream.

The remainder of this paper paper is structured as follows:
i-MAGNET is described in detail in Section II, while also
presenting -MAGNET as a parallel algorithm for reducing
data by abstracting trace data. Integration of i-MAGNET
into an intelligent network management system E-Stream [6]
is discussed in Section III. The evaluation of -MAGNET
using artificially generated event sequences is discussed in
Section IV. The paper is concluded in Section V.

II. 7-MAGNET : A REAL TIME INTELLIGENT ANALYTICS
FRAMEWORK

In -MAGNET the incoming stream is first split into
transactions (micro-batches or tuple-batches) based on the
event burst-rate, and each tuple-batch is then distributed to

Thttps://storm.incubator.apache.org/
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parallel processors to compute the event inter-relationship
metrics incrementally. In this way the framework can scale-
up for processing large volumes of continuous data in a timely
manner. The success of i-MAGNET is underpinned by reliably
distributing the stream tuples and accurately identifying the
relations between the event instances in each batch. Replicating
the distribution and relation-metric computation increases the
reliability and fault tolerance of the approach. The i-MAGNET
workflow is presented in Figure 1 and consists of three stages:
load balancing, reliable data processing, and relation finding.
These three stages ensure low latency and higher accuracy,
which are the pivotal features of a stream processing model [7].
In summary as a stream processing framework, i-MAGNET is
capable of :

e Rate-based diffusion of streams: the stream is sliced
into tuple-batches and the number of partitions are
based on the stream burst rate

o  Fault tolerant processing: each tuple-batch is repli-
cated to maintain lossless processing of the streams

e Incremental processing: the distributed processing of
each tuple-batch is pipelined with the relation finding
process in order to maintain lower latency of the
complete framework

i-MAGNET is implemented with two components: (a) the
load balancer, and (b) the data reducer. Kafka generates data
processing “spouts” based on the load and distributes the
processing to each spout. The abstracted instances make the
later task of pattern discovery more precise. The data reducer
is designed to work in conjunction with Trident?, which splits
the incoming stream into micro-batches (also defined as tuple-

Zhttps://storm.incubator.apache.org/documentation/Trident-tutorial.html
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batches) and incrementally executes the relation finder on each
distributed micro-batch.

A. Load Balancer

Communication traces are bursty in nature and can exhaust
the ingesting capability of the system by straining the I/O and
computational resources. Also, in order to reduce the response
period to resolve network incidents, trace analytics should be
provided to the network manager with minimal delay. The load
balancer operates to mitigate these challenges by combining
rate based micro-batching and reliable pipeline parallelism
criteria.

1) Rate Based Micro-batching: The underlying concept of
rate-based micro-batching is to control the processing load
of event-storms by distributing the stream-tuples (events) into
micro-batches (or tuple-batches) based on the stream burst rate.
It should be noted that the number of micro-batches needs to
be increased in case of acute stream bursts (event storms). With
this technique, rather than directly using individual stream
events, each tuple-batches can contain a large volume of data,
which improves throughput through Storm [8] in the next step.
In :-MAGNET the stream burst-rate computation and micro-
batching is executed by Trident. The advantage of the Trident
is that, each tuple-batch is tagged with a separate ID and the
operations on each tuple-batch is stateful.

2) Reliable Pipeline Parallelism: To achieve scalability in
i-MAGNET each tuple-batch is incrementally distributed and
replicated for data reduction. In this way each tuple-batch is
replicated several times resulting in greater accuracy in the data
reduction process. --MAGNET uses Kafka to achieve this by
distributing the tuple-batches into multiple spouts. To optimize
reliability and scalability, the number of the spouts generated
should be equal to or larger than the number of tuple-batches
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[9]. The other advantage of combining Kafka and Trident
is that, increasing the number of tuple-batches increases the
consuming rate of each Kafka spout, thus maintaining low
latency even in the case of event storms.

B. Data Reducer

Network incidents are usually preceded by sequences
of concomitant symptomatic events. The temporal inter-
relationships of these events (symptoms, incidents and effects)
in different sequences is approximately similar in terms of
intra-temporal distance. Therefore statistically, if the similar
events appear together in similar temporal sequences, then
they should exhibit significantly higher inter-dependence or
correlation. On the other hand, other events, such as periodic
reporting events or configuration events appear in a standalone
manner and are unrelated to other network events, and so
show low correlations with other events around them. The task
of the data reducer is to analyze the events traces to “find”
and “define” the inter-relationships between events in order to
detect noisy events of limited value, and then remove these
events from the trace stream.

A trace consists of time-stamped sequential events, and an
efficient way to leverage off-the shelf analytical techniques is
to transform events from the time domain to the frequency
domain by examining the frequency of occurrence of each
different event type during a time window. The window in this
context is the size of the tuple-batch received by a single Kafka
spout. The reducer then continues by analysing the dependency
between the events. In the current implementation events are
filtered out based on the degree of inter-dependence, which
is computed using an automated threshold-based correlation
algorithm. A preliminary version of the algorithm can be found
in [4]. Steps of the algorithm are implemented in the following
bolts:

e TransactionSplitFunction: Split the received
events into equal sized transactions

e OccurrenceCountAggregator: Count the oc-
currences of each event within each transaction

e EventFrequencyAggregator: Aggregates the
frequency of each event over all the transactions

e CorrelationCalculationFunction: Calcu-
lates the correlation between each pair of events

e MaxCorrelationCalculationAggregator:
Finds the maximum correlation of each event using

Equation 1. 77, V77, scans through all the pairwise
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correlation values 7, m, and checks each event pair
< a,b > for the maximum correlation coefficient 77,
for each event when all correlations with all other
events are considered.

Ty V Ty = MAX (T, ) (1)
Vma,mp

e CorrelationFilter: Calculates the correlation

threshold and filters out events with maximum cor-

relation lower than the threshold.

III. INTEGRATING :-MAGNET IN E-STREAM

E-Stream [6] aims to build a modular system capable
of discovering network incidents (patterns) by analysing the
telecom network trace data and then using these patterns to
predict future network incidents so that corrective actions can
be recommended before or as the incident occurs. For accurate
discovery of event patterns and associations it is necessary to
design a more intelligent data collection mechanism to extract
useful information. -MAGNET forms this part of the tool-
chain, so the timeliness of each system is of key importance
for the end-to-end approach as a whole.

i-MAGNET provides the functionality of intelligent and
scalable data reduction through filtering out redundant events
from the trace while preserving the data-information. Remov-
ing noise from the raw data stream significantly increases the
probability of accurately finding relevant patterns of events in
the reduced stream. Also sequential pattern discovery tech-
niques which are inherently resource-intensive can run on
the reduced event stream with significantly lesser complexity.
Figure 2 illustrates how i-MAGNET is integrated in the E-
Stream system to reduce the incoming trace stream and assist
in event pattern discovery and recognition.

IV. EVALUATION OF i-MAGNET

This section presents the evaluation of :-MAGNET. The
objective is to select potential events by measuring the degree
of inter-dependence (correlation) between events. In the current
settings, events with lower correlation are considered as ‘noise’
and filtered out from the stream. The system is evaluated using
traces of events drawn from an emulation of mobile telecom
control plane communication.

A. Data Preparation

As generic dimensionality reduction techniques generally
work on numeric values, it is necessary to translate the
information contained in the simulated control plane events
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into a number format. For this purpose, the open source
OpenMSC real-time emulator [10] is used to generate a stream
of simulated LTE call set-up and call release control plane
event sequences. These simulated sequences include events
from various User Equipment (UE), Evolved NodeB (eNB),
Mobile Management Entity (MME), Packet Data Network
(PDN) Gateway (P-GW), Serving Gateway (S-GW) and Home
Subscriber Server (HSS) nodes. OpenMSC was configured to
emulate sequences for 10 UEs connected to 5 eNBs, while at
the same time generating uncorrelated noise events following
a uniform distribution. This results in an Event Identifier
(EventID) rate of 206 EventIDs per second on average with a
signal to noise ration of 1:6.

B. Experiment Details

In the experiments the correlation algorithm is computed
on 100,000 events per window and transactions of different
lengths (see Section II-B describing the terms window and
transaction). Transactions lengths are varied to check the
sensitivity of the noise reduction. The transaction lengths
are derived from the frequency distribution of the events to
maintain a balanced spectrum of events in each transaction. As
can be seen from Figure 3, for small and medium transactions
i-MAGNET successfully removed all noisy events, however,
for larger transactions it incorrectly removes a higher portion of
interesting correlated events. It should be noted that the trade-
off with smaller transactions, that is with smaller transactions
the correlation matrix needs to be calculated over higher
number of samples causing higher computational complexity.

In smaller transactions the spiky occurrences of correlated
events (co-occurring in large numbers) can be well separated
from the unimportant noisy events. With larger transactions the
record of the noisy events increases, causing to score higher
correlation.

V. CONCLUSION

This paper introduces an intelligent scalable dimension
reduction framework :-MAGNET for identifying and extracting
interesting sequences of frequent concomitant events from
high-volume event streams. One of the key features of the
framework is its reliable and scalable distributed approach
to accurately detect isolated unimportant events and remove
them from the event stream. The framework implemented in

Storm first partitions the event stream into tuple-batches and
then enables multiple copies of the tuples to be processed
in parallely in order to maintain scalability and reliability
of the data analysis process. To achieve even lower latency
the sharing process of the tuple-batches is pipelined with the
computation of the relation finding process. A brief evaluation
of --MAGNET was conducted to demonstrate the accurate
detection of unimportant events, leaving only important moni-
toring events which impact network performance. Experimen-
tal results show that the framework is capable of reducing
significant portions of the event stream and at the same time
keeping the events with potential correlative structure.

From operational point of view a dynamic resource sharing
program can increase the capacity of i-MAGNET significantly.
Functionally, periodic event (silo) filtering and temporally
homogeneous distanced event clustering should increase the
accuracy of faulty event-pattern finding as the output of -
MAGNEt is utilised by sequential pattern finding algorithms.
Moreover, adaptive learning (concept drift) capability from
evolving network scenarios shall increase the reliability of -
MAGNET further.
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