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Abstract—With the technological evolution in telecommunica-

tion networks, performance requirements such as better coverage,
higher bandwidth, and lower latency have been pushed to new
horizons. However, as a direct result network complexity has
increased dramatically over the recent years, and with this
complexity manageability has suffered. This paper presents the
architecture of the E-Stream project which aims to support
Next Generation Operations Support Systems. E-Stream applies
dimension reduction, data mining, and recommender system
techniques in order to handle very high volumes of management
events, identify and predict network incidents, and recommend
candidate corrective actions to domain experts in Network
Operations Centres.

I. INTRODUCTION

Over the recent years the amount of data traffic generated
by users accessing the Internet via carrier-grade Radio Access
Technologies (RATs), e.g., GSM, UMTS or LTE, has increased
exponentially [1]. Not only does every individual customer
consume more bandwidth, but also the number of active mobile
subscribers has increased world-wide reaching 6.2 billion
mobile broadband subscribers [1]. This significant increase in
demand is addressed by more advanced network architectures
like LTE and LTE-advanced, which aims to deliver services
according to the subscriber requirements. However, with an
increase in more advanced functionalities, which must still co-
exist with current network technologies, e.g., 2G, 3G or Wi-Fi,
complexity is also increasing significantly [2]. Consequently,
the required maintenance of such networks becomes more
and more a challenge for the operators, both technically and
financially.

Current Operations Support Systems (OSSs) are capable
of detecting pre-defined network incidents, e.g., cell conges-
tions, by monitoring certain thresholds in various Network
Elements (NEs). Eventually, warnings and alarms are triggered
to domain experts in the Network Operations Centre (NOC)
in order to indicate an incident in the network. The domain
experts then manually investigate the reports starting with
the most critical ones. The process of resolving even non-
trivial network incidents requires significant comprehensive
knowledge about the network architecture, its elements and

their capabilities. Additionally, when it comes to more complex
scenarios in which the root-cause relationship of a network
incident is spread over gigabytes of traces, in different formats,
from different sources, the time to resolve the incident by
the domain experts increases disproportionally. As this type of
scenario is not an exception, only network incidents of very
high importance can be resolved. Therefore, as networks scale
and become more complicated and current manual approaches
prevail, it will be necessary to increase staffing for network
management and operation; however, this is not feasible and
such increased operational cost will not be tolerated. It is clear
that the OSSs that monitor and manage these networks need
to be increasingly automated [3].

In order to address this challenge, this paper proposes a
framework which is capable of investigating trace information
of a mobile network in a streaming fashion following an
unsupervised data mining approach in order to discover any
network abnormality. As studied in [4], there is a signifi-
cant difference between offline processing of trace data with
persistent relations, and online processing of streamed data
which is continuous but varies in time and space. Thus, instead
of performing a bounded one-time batch process, as it is
implemented in current OSSs, a framework taking stream data
as an input must work in a continuous and unbounded fashion.
Such a system is much more time-critical due to a constant
stream of incoming data which is continuous and not bounded.
Real-time stream processing capabilities1 are considered in this
paper.

The remainder of this paper is structured as follows: section
II describes the information flow within the E-Stream system
and how it provides valuable information to the domain experts
to significantly improve their time to resolve network incidents.
Section III then presents the overall architecture of the E-
Stream system including its modules and a description of their
responsibilities; implementation challenges are also discussed.
The paper is concluded in Section IV.

1The term real-time describes the guaranteed completion of a process under
a pre-defined time. The term does not imply the completion of a process with
zero latency.



Fig. 1. Information Flow in the E-Stream Framework.

II. SYSTEM WORK-FLOW AND INFORMATION

PROCESSING CYCLES

The next generation of OSSs require a more comprehensive
multi-domain trace data analysis approach to allow operators a)
to process and resolve network incidents more efficiently and
in a more timely manner and b) to have the ability to predict
future network incidents based upon prior network incidents
and trends, and then recommend Candidate Corrective Actions
(CCAs) indicating how the network incidents could be possibly
resolved or mitigated.

The approach to perform such a task is to autonomously
analyse trace files in the OSS regarding events that precede
network incidents, which can be then used to try to evaluate a
root-cause for the incident. Afterwards, a ranked list of CCAs
should be presented to a domain expert in the NOC indicating
possible solutions to a proactively detected incident. E-Stream
utilises pattern discovery data-mining techniques to identify
trends in the network trace stream, i.e., investigating sequences
of events that preceded network incidents. Eventually, E-
Stream should be capable of recommending CCAs to domain
experts in the NOC by providing a list of suggested CCA,
while continuously learning the most suitable CCAs for given
patterns based on expert selections.

The process of finding patterns, providing a ranked list of
CCAs and collecting the feedback from the domain expert can
be divided into a discovery phase and a recommendation phase,
as depicted in Figure 1. While both phases run completely
independent from each other, they still share the same input
data, i.e., a continuously incoming stream of trace data. How-
ever, both phases provide results in orthogonal time domains.
While the recommendation phase acts on the same time-scale
as the incoming data stream, the discovery phase requires
some more in depth analysis of the data in order to find new
patterns which can be provided to the recommendation phase.
More real-time discovery can be applied cognisant of the need
to trade-off resource usage and accuracy against timeliness.
Scalability concerns can be addressed by the availability of
High Performance Computing (HPC) infrastructures in OSSs.

III. E-STREAM SYSTEM ARCHITECTURE

The system architecture in Figure 2 depicts the E-Stream
framework required to support the processing of a continuous
stream of trace data from a mobile network. As the E-Stream
work-flow is pattern discovery and recommendation centric,
the identified architectural modules for realising this approach
are as follows:

• Dimension Reduction Module

• Episode Discovery Module

• Episode Classification Module

• Pattern Matching Module and

• Recommender System Module

A. Architecture Description

In Figure 2 all defined E-Stream modules are drawn in
orange. The data plane and control plane are coloured with
solid blue lines and black dotted lines, respectively. Both data
and control planes using arrows to indicate the direction of the
information flow.

While streamed trace data from thousands or millions of
NEs arrive at the framework, the Dimension Reduction Module
(DRM) needs to create a one-dimensional representation of
the trace stream, referred to as data stream. The data stream
consists solely of numeric values due to the requirement of
off-the-shelf pattern discovery algorithm working with number
values only. In addition to discovering and merging the impor-
tant fields in each event to generate a numeric value for each
distinct event type, the DRM module is also responsible for
detecting and removing events that can be considered purely
periodic or noise, and so contribute little to the information
content in the stream.

The single dimensional data stream is then analysed by
the Episode Discovery Module (EDM) to find frequent closed
sequences of events (episodes) E, e.g., {e1, e2, e3}. Note, at
the time when E was discovered, its meaning and mapping
to further actions in later modules is still unknown, as E is
just a sequence of numbers. Hence, E-Stream denotes those
sequences as episodes instead of patterns. An episode is the
frequent closed sequential set of events which need to be
analysed further in order to become a pattern. A pattern can
be divided into a predictive head and predicted tail, which
can be defined as a sequence of one or more antecedents
(head) followed by a consequent (tail) perhaps caused by the
antecedents. The time to analyse a chunk of events from the
data stream is denoted as ted.

To convert an episode to a pattern, E-Stream defines
an Episode Classification Module (ECM) which classifies
episodes and forms clusters of patterns into a relational pattern
tree. Additionally, the ECM maintains the Pattern Model Li-
brary (PML) which holds all patterns. As depicted in Figure 2,
the ECM has various control plane communication interfaces
to other modules in order to receive module-specific pattern
information which is used to classify the episodes and to
provide related information to fine-tune other module’s internal
algorithms.

Once the PML is successfully populated with patterns, the
Pattern Matching Module (PMM) searches the incoming data
stream for known patterns. The key feature of the PMM is
its ability to predict a full pattern based on a matched subset
(head) of the predicted pattern, which then allows the E-Stream
system to proactively indicate the likelihood of incidents prior
to their occurrence, and preemptively recommend avoiding
remedies. For the PMM to find match patterns in the data
stream the pattern itself must have been discovered beforehand
by the EDM and classified by the ECM. Since pattern matching
can be efficiently implemented in Complex Event Processing



Fig. 2. Overall E-Stream Architecture Including Conceptual Flow of Trace Data and Control Messages.

(CEP) and Stream Processing (SP) systems, the time required
by PMM to match and predict patterns in the stream, tpm,
is always significantly smaller than the time EDM requires:
ted ≫ tpm. This is why the information cycle shown in
Figure 1 depicts two completely distinct and independent
processes.

Finally, the Recommender System Module (RSM) receives
the matched and predicted patterns from PMM and recom-
mends CCAs to the domain experts in the NOC. Those
recommendations are learnt over time from previous recom-
mendations. Not only does RSM learn possible CCAs for
incoming patterns, it also reports back patterns that were used
to resolve a problem which essentially helps ECM to further
classify discovered episodes and to provide feedback about this
to DRM, EDM and PMM.

B. Detailed Module Description

This section focuses on a more detailed description of
approaches and algorithms within each module in order to
achieve a module’s task described in Section III-A.

1) Dimension Reduction Module (DRM): DRM provides
the necessary mechanism to reduce the dimensionality of the
incoming trace stream from NEs in real-time by dynamic
windowing, minimal-loss information reduction and online
filtering. In order to achieve this goal, DRM uses the Pearson
correlation coefficient to detect noise events in the stream
in order to remove them so that the dimensionality of the
stream is reduced, as published in [5]. In order to remove
as little useful information as possible from the trace stream
but decreasing the amount of data being produced, DRM
receives feedback from ECM to learn about the importance
of individual events and the context in which they are used.
Therefore, DRM is capable of distinguishing between noise
and important information to decrease the overall density in
the data stream. Due to the requirement of real-time event
processing, HPC environments such as Storm or S4 are most
suitable to implement DRM.

2) Episode Discovery Module (EDM): While offline data
mining is usually performed over static input data of known
length, EDM requires more advanced techniques to investigate
the correlation between multiple events in order to report
episodes [6]. However, many off-the-shelf data mining al-
gorithms [7] [8] [9] to discover only frequent or infrequent
patterns, for very high volume event streams, most frequent
episodes, and their variations, denote normal behaviour, while
most very infrequent episodes can be dismissed as noise
episodes, derivative of frequent episodes, or artefacts of sam-
pling. The EDM performs historical-oriented mining over
multiple sampled windows in order to allow to detect inter-
esting episodes. Additionally, E-Stream follows the approach
of learning deviations from normal behaviour, where normal
behaviour in a telecommunication network usually follows a
network protocol pattern and interesting patterns are mostly
derivatives from frequent patterns.

3) Episode Classification Module (ECM): The classifi-
cation of episodes into patterns is performed by the ECM
and follows existing pattern classification techniques [10]. In
addition to maintaining the PML, the ECM receives feedback
information from the RSM about the popularity of patterns
in order to train the DRM, the EDM and the PMM about
the context the patterns have been discovered, matched and
used. While the DRM is using this information to perform a
more accurate spectral filtering, the episodes reported by the
EDM can be further evaluated regarding their practicability.
The PMM uses this information to fine tune its prediction
mechanism. For instance, if a subset of a full pattern has
been detected which is also a subset of another full pattern,
the popularity ranking of predicted pattern is an important
metric to decide on a more suitable candidate. This selection
information can be gathered by the RSM to learn which
patterns resulted in CCAs.

4) Pattern Matching Module (PMM): In the recommenda-
tion phase the PMM acts as the pattern search engine which
operates on the data stream. The main responsibility of PMM
is to match patterns stored in the PML with the exact same



sequences of events in the trace. Second, it predicts future
events using a pattern similarity criterion, i.e., predict the
occurrence of the events which usually follow the matched
sequence of events. The task of predicting an event based
upon a known subset can be achieved by a tree-representation
of inter-pattern correlations, [11], or similarity ranking [12].
The inter-pattern correlation calculation is accomplished by
the ECM.

5) Recommender System Module (RSM): The application
of recommender systems is usually within the field of e-
commerce or social media, e.g., Amazon, Facebook, Twitter or
Spotify, where items get recommended to users based on vari-
ous recommender system metrics. However, for recommending
CCAs to domain experts with a high level of accuracy, RSM
requires to identify how existing approaches can be mapped
to E-Stream [13]. Instead of having an item-to-item, item-
to-user or user-to-user relationship the RSM instead works
on a pattern-to-pattern, pattern-to-domain expert and domain
expert-to-domain expert relationship in order to achieve this
goal. The RSM requires a hybrid recommendation approach
(content-based and collaborative filtering) to accommodate all
three categories into a single module [14] [15]. For instance,
the RSM creates pattern and domain expert profiles to learn
over time what domain expert has expertise in what area based
on pattern categories he/she has solved before; calculating
Term Frequency-Inverse Document Frequencys (TF-IDFs) for
finding similar patterns is also an effective way to increase
the reliability of the system. However, as outlined in various
articles, collaborative approaches have shown significant lower
performance benchmarks in terms of system response time.
This can be expressed by Singular Value Decomposition
(SVD) and matrix factorisation [16].

IV. CONCLUSION

In this paper presented E-Stream, a system to support
next generation OSS architectures. E-Stream’s goal is to find
network trends in the trace streams from telecommunication
networks to identify and predict network incidents. The in-
cident report, predictions and trends are provided to domain
experts in NOCs together with CCAs to prevent, fix or mitigate
the incidents. As trace streams can vary significantly in space
and time, the presented architecture was designed in such a
way so that HPC frameworks can be utilised when imple-
menting the concept. E-Stream defines five modules DRM,
EDM, ECM, PMM and RSM which were described in further
detail regarding potential algorithms and concepts that can be
applied in order to meet each module’s functional expectations.
Although not discussed in this paper, the E-Stream approach,
and its sub-modules are being tested in both test-bed [17] and
emulated [18] environments.
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