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Streaming over Vehicular Ad Hoc Networks
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Abstract—Leveraging the development of mobile communica-
tion technologies and increased capabilities of mobile devices,
mobile multimedia services have set new trends. In order to
support high-quality Video-on-Demand (VoD) in mobile wireless
networks, using virtual communities-based approaches to balance
the efficiency of content sharing and maintenance cost of the
performance-aware solutions has attracted increasing research
interests. In this paper, we propose a novel Performance-aware
Mobile Community-based VoD streaming solution over vehicular
ad hoc networks (PMCV). PMCV relies on a newly designed mo-
bile community detection scheme and an innovative community
member management mechanism. The former employs a novel
fuzzy ant-inspired clustering algorithm and an innovative mobili-
ty similarity estimation model to group together the mobile users
with similar behavior in terms of playback and movement into
mobile communities. The latter introduces the role and task of
members, member join and leave, collaborative store and search
for resources and replacement of broker member. Simulations-
based testing shows how PMCV outperforms another state of the
art solution in terms of performance.

Index Terms—VoD streaming, mobile community, vehicular ad
hoc networks.

I. INTRODUCTION

THE latest advancements in vehicular wireless technolo-
gies foster a number of new applications in vehicular ad-

hoc networks (VANETs) [1]-[3], including rich media-based
[4]-[8]. The extended features of the new protocols such as
the IEEE 802.11p and development of mobile multimedia
technologies enable provision of the high-bandwidth required
by these multimedia services for drivers and passengers in
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various complex road scenarios [9]. In particular, Video-on-
Demand (VoD) services also require support for interactivity in
order to enhance viewer quality of experience levels [10]-[15].
Yet, the provision of high-quality VoD services in VANETs is
very challenging. The dynamic pseudo-random user behavior
when interacting with the content leads to fragmentation,
high maintenance cost and low sharing efficiency of video
resources. Moreover, the variation of the geographical dis-
tance between vehicular nodes caused by their high mobility
severely affects the delivery efficiency of video data [16].
Therefore, a hybrid solution based on the playback behavior
of users, which integrates distributed video resources, supports
high efficiency search for video content and addresses the high
mobility of vehicular nodes should be considered for VoD in
VANETs.

Recently, numerous researchers have shown great interest
in making use of virtual communities for management of
resources [17]-[27] in order to improve content sharing per-
formance and reduce the unnecessary energy consumption by
gathering users with common characteristics. For instance,
SPOON [22], a community-based peer-to-peer (P2P) content
file sharing solution in disconnected mobile ad-hoc networks,
groups the users which have common interest in shared files
and frequent interactions as a community. SPOON achieves
fast location of available resources and reduces the search
for resources effort. In C5 [24], the mobile users which are
geographically close for a period of time and require the same
resources are clustered as a group and collaboratively fetch the
content, enhancing the efficiency of resource searching and
reducing the number of search messages.

The traditional community identification approaches are
classified in graph partitioning, hierarchical clustering and
partitional clustering [28]. However, their inherent drawbacks
lead to fragile and imprecise community structures. For in-
stance, graph partitioning relies on preliminary knowledge
about the size of community so that the rough partition
component size negatively influences the partitioning accuracy
level. Hierarchical clustering cannot accurately describe the
difference level between communities due to its reliance on
the measurement method of similarity between objects, so
it introduces numerous errors related to classifying objects.
Partitional clustering has the advantage that it does not need
to provide any community size or similarity measurement
method, but the predefined number and centers of communities
also affect clustering accuracy. Constructing a VoD-oriented
mobile community needs not only to describe accurately the
dynamic playback behavior of users to meet the demand of
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Fig. 1. Overall System Architecture

smooth playback and streaming interactivity, but also address
the mobility problem of mobile users, enhancing the video
delivery efficiency.

In this paper, we propose a novel Performance-Aware
Mobile Community-based VoD streaming solution over
vehicular ad hoc networks (PMCV). PMCV employs a
newly designed mobile community detection scheme to group
together the mobile users with similar behavior in terms of
playback and movement. The mobile community detection
scheme includes a newly designed Fuzzy Ant Clustering al-
gorithm (FAC) and a mobility similarity measurement model
(MSMM). FAC makes use of a novel ant colony clustering
algorithm and a fuzzy C-Means to refine the popular patterns
for finding the mobile users with similar playback behavior.
By making use of a Markov process to analyze the trajectory
and state of movement of mobile users, MSMM finds the
mobile users with similar mobility. As Fig. 1 shows, the ve-
hicles which have similar playback behavior and mobility are
grouped into a mobile community, enhancing the transmission
efficiency of video data.

Furthermore, a mobile community management mechanism
(MCMM) which introduces the role and tasks of members,
member joining and moving between communities, collabo-
rative storage and search for resources and replacement of
broker members is proposed. Extensive tests show how PMCV
achieves better results in comparison with other state of the art
solutions in terms of seek latency, packet loss rate, throughput,
video quality, server stress, overhead and lookup success rate.

II. RELATED WORK

Recently, there has been increasing research interest in
proposing community-based P2P resource sharing solutions,
which can balance the maintenance costs and resource sharing
efficiency. For instance, Wang et al. [18] have examined the
performance of P2P file sharing in Twitter communities. The
results show that the online patterns of users with common
interest are very similar so that there is a great opportunity
for improving the file sharing capacity by using innovative
solutions. Iamnitchi et al. [19] have proposed an interest-
sharing graph structure which captures common user interests

in accessed data and have designed an information dissemina-
tion system based on the small-world interest-sharing graphs.
However, the structure depends on predefined threshold to
define edge weight in graphs, which leads to inaccurate
estimation of user interest and reduction of the file sharing
performance. The authors of SPOON [22] have designed
a community detection algorithm which measures interest
similarity in terms of file content stored by mobile nodes
and interaction frequency. This algorithm is used to group the
mobile nodes in a community and results in high file sharing
efficiency in intra-community and inter-community. However,
because the community detection performance depends on
the similarity between the stored file content and interaction
frequency, SPOON cannot accurately estimate the similarity
level of the node interest and does not clearly define the
community boundary, negatively influencing the file search
efficiency. Also, as SPOON does not consider the mobility of
mobile nodes, the increasing geographical distance between
community members in case of high mobility situations such
is the case in VANETs leads to low-efficiency file delivery.

Doulkeridis et al. [25] have proposed a self-organizing P2P
system using hierarchical clustering to identify peers with
similar content and deliberately assign them to the same super-
peer. The resources are indexed by few super-peers only to
improve the performance of query processing. However, the
proposed hierarchical clustering algorithm also uses the simi-
larity between stored content as a metric for clustering users
and so the accuracy of the clustering cannot be ensured. Datta
et al. [26] have proposed two algorithms: centralized and de-
centralized K-means clustering approaches in order to ensure
communication efficiency by uniformly distribing the data and
computing resources in a P2P overlay and by considering peer
costs. However, the local centralized K-means clustering faces
the local optimal solution problem, the difference between
sample nodes also reduces the uniform distribution effect, and
making use of threshold to formulate the boundary of clusters
can reduce the accuracy of clustering results. Moreover, the
decentralized K-means clustering depends on the assumption
that the network is static. HP2PC [27] introduces a hierarchy
of P2P neighborhoods by partitioning the clustering problem
across neighborhoods and by making use of distributed K-
means. However, the hierarchical clustering depends on the
measurement method of similarity between objects in terms of
the interaction between peers in P2P networks. The boundary
between clusters cannot clearly be explained so this reduces
the clustering accuracy.

These community-based P2P file sharing solutions cannot
handle the dynamic playback behavior of users, so they are un-
suitable for VoD services. Inspired by the community concept,
some P2P-VoD solutions make use of clustering the nodes
which store similar video resources in order to improve the
resource sharing efficiency and reduce the maintenance costs.
For instance, SURFNet [15] groups some nodes which store
the same superchunk data into a holder-chain and attaches
the chain to a stable node with long online time in an AVL
tree. This solution supports streaming interactivity and obtain
a logarithmic search time for seeking within a video stream.
However, the maintenance cost of the AVL tree highly depends
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TABLE I
DIFFERENCE BETWEEN EXISTING SOLUTIONS AND PMCV

VoD Mobile
Networks

Community
Detection Scalability

“The Small World ”
[18] No No Graph

Partitioning High

SPOON [21] No Yes Partitional
Clustering High

“Content Similarity”
[24] No No Hierarchical

Clustering High

“K-Means
Clustering ” [25] No No Partitional

Clustering High

HP2PC [26] No No Hierarchical
Clustering High

SURFNet [15] Yes No No Low

SocialTube [19] No No Hierarchical
Clustering High

QUVoD [4] Yes Yes Partitional
Clustering Low

PMCV Yes Yes Partitional
Clustering High

on the number and state stability of the members in the tree.
Additionally, with the increase in scale, the tree and chain
have become larger, so the scalability of SURFNet is limited.
SocialTube [20] investigates the social relationship and interest
similarity between users to construct group-based P2P overlays
by analyzing playback trace of users. However, SocialTube
makes use of the video categories to partition user interest
groups so that the accuracy of the partitioned results cannot
be ensured, namely there is high interest difference level
between in-group members. Our previous work QUVoD [4]
constructs a group-based P2P overlay over 4G networks. The
nodes having similar video resources form a group in order to
distribute uniformly the video chunks along the P2P overlay,
reducing chunk seeking traffic. However, the maintenance
overhead of the Chord overlay limits the scalability of QUVoD.
As QUVoD does not consider the mobility of vehicles, the
increasing geographical distance between vehicles reduces
the transmission efficiency in vehicle-to-vehicle (V2V) mode.
Additionally, the increasing traffic results in higher costs for
users as a higher traffic share is offloaded from V2V to 4G.

Table I lists the major differences between existing solutions
and the PMCV, proposed in this paper. The solutions in
[19], [22], [25], [26] and [27] employ community detection
algorithms to cluster the nodes in P2P networks and design
community-based file sharing schemes. These solutions do
not support VoD services, but their community structures
enable high system scalability. Moreover, SPOON [22] al-
so supports file sharing in a mobile network environment.
SURFNet [15] provides streaming interactivity service, but
it does not include a community detection algorithm and its
tree-based P2P overlay has low scalability. SocialTube [20] is
oriented to the video content sharing and has high scalability,
but it does not include an approach related to streaming
interactivity. SURFNet and SocialTube cannot be deployed in
mobile networks. QUVoD [4] clusters nodes in terms of the
similarity of caching video content, but its Chord structure
limits system scalability. It supports streaming interactivity and
can be deployed in VANETs.

III. PERFORMANCE-AWARE MOBILE COMMUNITY-BASED
VOD STREAMING OVER VEHICULAR AD HOC NETWORKS

(PMCV) OVERVIEW

For convenience, Table II defines several notations which
are used in this paper. PMCV focuses on constructing a
community-based P2P VoD solution in VANETs, which sup-
ports efficient distribution, management and search for video
content. The performance of the community-based P2P VoD
solution in VANETs depends on the accuracy of clustering
nodes and efficiency of managing video resources. The in-
community members which have common characteristics can
cooperatively store and distribute video resources, improving
sharing efficiency of video content. Therefore, PMCV relies
on FAC to accurately find common behavior patterns between
nodes, reducing the negative effects caused by random access
of video content such as frequent replacement of stored video
content, high start-up delay and low resource search success
rate. The vehicular nodes’ mobility also affects negatively
the video content delivery. Therefore, PMCV makes use of
MSMM to address the performance problem introduced by the
mobility of the vehicular nodes by estimating the similarity of
node mobility in the future. Further, PMCV employs MCMM
to balance the management cost and search efficiency for
resources. This supports large-scale VoD services and results
in high quality of experience (QoE) levels for the users in
VANETs.

As Fig. 1 shows, the media server, which originally stores
all video resources, provides support for the streaming service
to all vehicular nodes. We assume that all vehicular nodes
request the same video content V ideo (note the proposed solu-
tion is applied similarly to any number of video streams). The
vehicular nodes which join the PMCV system find partners
for video content sharing from the system members, namely
those which have similar playback behavior and mobility;
these members build and maintain logical links between them
to form mobile communities.

The PMCV community members can have one of three
roles: broker, ordinary member and associate member, re-
spectively, in order to achieve autonomous community man-
agement and distribute local video resources. PMCV makes

TABLE II
NOTATIONS USED BY PMCV

Notations Descriptions
ca video chunk a

Str historical playback trace library stored in media server

tri playback trace i in Str

n total number of video chunks

Vi vehicular node i in VANETs

APa access point a visited by Vi

sa state of Vi which enters the coverage area of APa

mti movement trajectory of Vi

THm threshold of mobility similarity

Ca mobile community

nk broker member in Ca

nj member in Ca
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Fig. 2. PMCV Components

use of mobile community structure to integrate the distributed
video data carried by vehicular nodes in terms of their common
characteristics, support high-efficiency resource sharing and
enhance system scalability.

As Fig. 2 shows, PMCV relies on newly designed mo-
bile community detection and management mechanisms. The
mobile community detection scheme includes a novel FAC
and a MSMM which supports vehicular nodes in finding
the community members with similar behavior in terms of
playback and mobility. MCMM formulates the role and task of
community members based on FAC and MSMM to support the
community self-management and high-efficiency distribution
of video content.

(1) FAC employs newly designed ant colony clustering
algorithm to pre-cluster the historical playback trace library for
further refining the popular playback patterns. FAC makes use
of fuzzy C-Means to partition and reconstruct the pre-clustered
results into multiple clusters based on similar playback con-
tent. The playback patterns are extracted from these clusters
and are used to recognize the nodes with similar playback
behavior.

(2) MSMM makes use of a Markov process to predict the
movement behavior of vehicular nodes in terms of movement
trajectory. The predicted results and movement trajectory are
used to estimate the similarity of mobility of vehicular nodes.
The nodes with similar behavior of mobility and playback
form the mobile communities.

(3) MCMM manages the process of members joining and
leaving communities, the role assignment of members and

switchover between roles. Moreover, it includes the collab-
orative storage strategy of video resources in the communities
and search strategy of video resources in order to optimize the
resource distribution and smooth the playback experience.

IV. VOD-ORIENTED MOBILE COMMUNITY DETECTION

A. User Playback Pattern

Information from the playback traces is considered for
assessment of user experience and to provide semantic de-
scription for the video content. By clustering the similar items
in historical playback trace library, we extract the popular
user playback behavior, which is considered as user playback
pattern. The user playback pattern plays an important role
in the VoD community detection, which is responsible for
recognizing users with similar playback behavior. As users
with similar playback behavior may need similar or the same
video content in the future, they are grouped into a community
whose members can collaboratively fetch the video content
and efficiently share local resources. An effective and robust
clustering method can accurately describe the playback char-
acteristics, so as to find the available user playback patterns.

The discrete items in the playback trace library stored in the
media server are grouped in terms of the ant colony clustering
algorithm in FAC. Different from traditional ant clustering
algorithms, FAC considers two interest factors reflected by
traces: playback time and continuity to construct the initial
trace heaps and select the heap centers. The traces are pre-
processed to determine several raw trace heaps whose items
have close interest levels. The traces in different interest-based
heaps have different playback content. However, the traces in
the same interest-based heap may include different viewing
content. Further, FAC makes use of a fuzzy C-Means solution
to partition the interest-based heaps and refine the new heap
centers into user playback patterns.

1) Construction of the initial trace heaps:
The purpose of this stage is to initially cluster the traces

in order to ensure high cluster result accuracy and reduce the
“noise” in clustering results (i.e. traces which have not been
clustered). FAC makes use of the playback time and continuity
to describe the traces and map them into a closed space on a
plane. Each ant in FAC searches an unknown region based on
a Hilbert curve and intelligently carries the data in terms of
exploratory results.

Any video resource V ideo saved in the media serv-
er is normally divided into n chunks with equal length:
V ideo ⇔ (c1, c2, ..., cn). Each trace is defined as tri =
(ca, cb, ..., cv), tri ∈ Str, v ≤ n where Str denotes the
historical playback trace library, a, b, v denote the ID of
chunks watched by user i and n is the total length of the
video.

The number of items in tri indicates the playback time of
user i, which is defined as |tri| (tri’s length). The chunks
which are sequentially included in tri form a substring. For
instance, c1, c2 and c3 form sequentially occurred video chunk
subset in trj= (c1, c2, c3, c5, . . . cn) and are considered as a
substring. The longer the length of a substring in tri is, the
higher the interest level of user i for the current content is. tri’s
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Fig. 3. Data in two-dimensional coordinate system

playback continuity can be defined in terms of the substring
lengths as in eq. (1):

utri =

h∑
c=1

|strc|, strc ∈ tri (1)

where strc denotes a substring in tri, |strc| is the length
of strc and h is the number of substrings in tri, respectively.
For convenience, |tri| and utri are normalized according to
eq. (2).

Ltri =

{
|tri|
n , 0 ≤ |tri|n ≤ 1

1 , |tri|n > 1
, utri =

{ utri

n , 0 ≤ utri

n ≤ 1
1 ,

utri

n > 1

(2)
As Fig. 3 (a) shows, all items in Str can be mapped into a

two-dimensional coordinate system according to the values of
Ltri and utri . Any 1 × 1 region can be divided into m ×m
cells for the purpose of ant clustering as illustrated in Fig. 3
(b) where m can be set to 2

√
|Str| (|Str| is the number of

items in Str). If the data in the region divided is located at
cell edges, it needs to be placed in the adjacent cells. The
data on an edge is preferentially placed into the adjacent cell
which already has data in order to form heaps or merged into
existing heaps. If more of the adjacent cells include data, the
data located on an edge should be placed in the cell which
has most data. If all these adjacent cells are empty, the data is
moved to a random adjacent cell. This preprocessing achieves
the construction of a mapping relationship between data and
cells and makes the required preparations for ant clustering.

The ants in FAC have a specified search behavior which
is different from the random movement in a traditional ant
clustering algorithm. As Fig. 4 shows, they consider their
origin as a starting point and explore the unknown cells in
terms of a 22×22 Hilbert curve, where each 22×22 cell region
is considered as a subdomain. In the process of searching
the unknown cells in the region, the ant picks up the data
in the current cell and records the number of cells visited
so that the ant possibly carries multiple data. When an ant

 
Fig. 4. 22 × 22 Hilbert curve

has searched in an unknown subdomain, it calculates the data
density according to eq. (3).

den =
Ndata

Ncell
(3)

In eq. (3) Ndata denotes the number of data items carried
by an ant and Ncell is the number of cells searched by the ant.
After the ant has searched in an entire unknown subdomain,
it evaluates the variation of data density in the subdomains
searched. The criterion of stopping the search process and
dropping the data gathered by the ant is defined as den(k) >
den(k+1), namely the data density in the k + 1th subdomain
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Algorithm 1 Ant Ai search process
1: Ai picks up and carries data in two subdomains;
2: k = 1;
3: q = k + 1;
4: calculates data density den(k) and den(q) by eq. (3);
5: while (den(k) < den(q))
6: k = q;
7: q ++;
8: Ai picks up and carries data in qth subdomain;
9: Ai updates the data amount collected Ndata;

10: Ai records the number of cells searched Ncell;
11: calculates data density den(q) by eq. (3);
12: end while

searched is less than that in the kth. The convergence condition
for the search indicates that the ant goes from a subdomain
with dense data to one with sparse data. The ant marks the
cells searched, indicating that the data in these cells has been
processed. When an ant drops the data carried, it leaves the
region. Any subsequent ant neglects the labeled cells and
continues to search in new cells. The pseudo-code of the above
process is detailed in Algorithm 1.

After the above-described initial clustering, the region con-
tains several small and large data heaps and single data cells.
In order to clear up these single data cells and merge the
small-scale heaps into larger ones, there is a need for further
processing. Each heap needs to have a heap center which has
the smallest difference to the other in-heap members. The
interest distance between heap member di and dj indicates
their difference level and is obtained according to eq. (4).

Dij =

√
(Ltri − Ltrj )

2
+ (utri − utrj )

2 (4)

The lower the difference level between di and dj is,
the more similar their interest-related characteristics are. We
calculate the interest distance between di and other in-heap
members according to eq. (4) and further obtain the mean
value of these interest distances, according to eq. (5).

Di =

|HPk|∑
c=1

Dic

|HPk|
(5)

where |HPk| is the amount of data in the heap HPk. If Di

is less than the mean value of interest distance of other in-heap
members, di is considered as heap center. The merge process
between two heaps relies on the interest distance between their
centers and centers’ mean value, as follows.

Rule 1: if the interest distance Dij between centers di and
dj of two heaps HPk and HPh is less than either Di or Dj ,
HPk and HPh will form a new heap and the merged heap
will select a new heap center.

After the merging process according to Rule 1, the small-
scale heaps which have short interest distances between them
in the same region form large-scale heaps. The method of
handling single data is similar to the heap merge, as follows.

Rule 2: if the interest distance Dab between a single data
item da and center db of a heap HPp is less than that to other
heap centers, da becomes a new member of HPp.

Ant clustering makes use of interest-based characteristics
to group the traces into several large-scale heaps in which
the in-heap traces have low interest distance and high in-
terest distance with the traces in other heaps. Let SHP

denote a heap set to store these existing heaps, namely
SHP ⇔ (HP1, HP2, ...,HPv). The number of items in the
trace library Str determines the search range of ants, namely
the convergence rate of construction algorithm of the initial
interest heaps relies on the number of cells searched by the
ants. Therefore, the computational complexity of the algorithm
is O(|Str|2).

2) Generation of playback patterns:
As we know, the larger the interest distance between two

traces is, the higher the difference level of their playback
pattern is. However, shorter interest distance cannot ensure that
the playback patterns of traces are similar. In order to enhance
the clustering accuracy, we measure the pattern similarity
between traces.

Two traces tri and trj are converted to binary string BSi

and BSj with length n, where each bit corresponds to a video
chunk in proper sequence. The values of the corresponding
bits for the chunks included in the trace are set to 1 and the
remaining bits are set to 0. In terms of the Hamming Distance
[29], the pattern distance between tri and trj is defined as in
eq. (6):

Dplayij
= DHamming(BSi, BSj) (6)

We reselect the heap center for each interest-based heap
clustered. Similar to the selection method of interest-based
heap center, the pattern-based center should have the minimum
mean value of the pattern distance to other in-heap data. The
mean value is defined as in eq. (7):

Dplayi
=

|HPk|∑
c=1

Dplayic

|HPk|
(7)

Based on the heaps resulted from the clustering process and
their pattern-based centers, we make use of Fuzzy C-Means
[30] to refine all items in SHP and create the new pattern-
based heaps, as follows.

Step 1 The first step calculates the objective function value
JT
m(W,V ) according to eq. (8).

JT
m(W,V ) =

|Str|∑
i=1

c∑
j=1

wm
ijDplayij

,

c∑
j=1

wij = 1, wij ≥ 0 (8)

where m is the degree of fuzziness, Dplayij denotes the
pattern distance between any in-heap member tri and pattern-
based center trj , c is the number of existing heaps and T is
the number of iterations. wij is the membership of the ith data
item in the jth heap. Let Lremove denote a list which is used
to store the removed members from the heap.

Step 2 If SHP is a nonempty set, any heap HPk ∈ SHP

is selected as the refinement object and SHP removes HPk.
Otherwise, if SHP is an empty set, all items in SHP are refined
into pattern-based heaps and this iteration ends.

Step 3 HPk removes a member du which has the maximum
pattern distance with the center of HPk. HPk reselects a new
pattern-based center and obtains JT+1

m (W,V ).
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Step 4 If JT+1
m (W,V ) < JT

m(W,V ), du is a noise member
and pushed into Lremove and the algorithm returns to Step 3.

Step 5 If JT+1
m (W,V ) ≥ JT

m(W,V ), all members in the
current HPk form a pattern-based heap. If Lremove is a
nonempty set, all items in Lremove form a new interest-based
heap HPh. HPh is pushed into SHP and the algorithm returns
to Step 2.

After the above algorithm has ended, all interest-based
heaps become pattern-based heaps. The heap centers in the
pattern-based heaps are considered as user playback patterns,
namely Spattern ⇔ (p1, p2, ..., pk), Spattern ∈ Str. The
convergence rate of the construction algorithm of pattern heaps
relies on the number of removed noise members from the
initial interest heaps, so the computational complexity of the
algorithm is O(|Str|).

B. User Mobility Similarity Estimation

Vehicle movements determine dynamic transmission dis-
tances between the communication parties, which results in
negative effects in terms of the delivery quality of video data,
mostly due to long delays and high packet loss rates. Sharing
video resources between vehicles which have similar move-
ment trajectories are beneficial for the quality of delivery. This
is as similar mobility of vehicles ensures maintaining relative
close inter-vehicle transmission distances. In the process of
movement of vehicles, they go through multiple access points
(AP). Each vehicle Vi can record the list of encountered APs
and residence time in each AP range (i.e. time difference
between time of entering an AP range and time of leaving the
AP range). Let mti = (APa, APb, . . . , APv) be the movement
trajectory of Vi, where each item is an AP beside which Vi has
passed. Estimating the mobility between vehicles by making
use of current vehicle movement trajectory cannot ensure the
similarity of their movement trajectory in the future. Therefore,
the proposed MSMM employs a Markov process to consider
the similarity of future mobility of vehicular nodes and also
includes vehicle residence time in each AP range to weight
the estimation of mobility similarity.

Each vehicular node Vi uses a 4-tuple Vi =
(IDi, STi, RTi, Ai) to store the mobility information,
where IDi and Ai are the ID of the node and the AP,
respectively and STi and RTi are the residence time in
Ai range and timestamp associated with the of recording,
respectively. All items in mti are ranked in terms of their
timestamp. The movement from an AP to another AP in
VANETs is considered as a transition of vehicle state. For
instance, let sa denote a state of Vi entering in the coverage
area of APa. The movement from APa to APb is equivalent
with Vi’s state transfer from sa to sb, which can be described
as a Markov process [31] {Xn, n > 0}, Xn ∈ S. Xn denotes
the nth transition state and S = {s1, s2, ..., sv} denotes a
state set whose members are corresponding to all items in
mti. Let Tn (T0 = 0) be nth state transition time and t(e)sa be
an event - the duration time of sa is t (the residence time of
Vi in APa). The occurrence probability of t(e)sa in the state

transition process sa → sb at Tn can be defined as in eq. (9):

Tab = Pr {Xn+1 = b, Tn+1 − Tn ≤ t|Xn = a}
= Pr {Xn+1 = b|Xn = a}×

Pr {Tn+1 − Tn ≤ t|Xn+1 = b,Xn = a}
= pabHab

(9)

where Hab = Pr {Tn+1 − Tn ≤ t|Xn+1 = b,Xn = a} de-
notes the occurrence probability of t(e)sa before sa → sb is
triggered and pab is the probability of state transition sa → sb
at Tn. Let tsa be the duration time of sa based on the condition
of ignoring the next transition state. According to eq. (1), the
occurrence probability of tsa can be defined as:

Da(ti) =

v∑
c=1

Tac (10)

Da(t) is considered as the occurrence probability of event
- the residence time of Vi in the coverage area of APa is t.
If another vehicular node Vj goes through the coverage area
of APa, Da(tj) can be obtained according to eq. (10). We
calculate the similarity value of residence time of Vi and Vj
in APa according to eq. (11) in order to estimate the similarity
level of movement speed.

RSij = arc cot(
∣∣∣E(Da (t))i − E(Da (t))j

∣∣∣)× 2

π
(11)

where E(Da(ti)) and E(Da(tj)) are the expectation val-
ue of Da(ti) and Da(tj), respectively. The smaller the d-
ifference between E(Da(ti)) and E(Da(tj)) is, the more
similar the movement speeds of Vi and Vj when passing
the coverage area of APa are. In terms of the Markov
process, we construct the v × v transition probability matrix

P =


p11 p12 ... p1v
p21 p22 ... p2v
... ... ... ...
pv1 pv2 ... pvv

 where pab is the transition

probability of sa → sb and v is the length of the state set S.
The measurement of movement trajectory similarity relies on
two factors: the historical movement trajectory and movement
state predicted by the matrix P for the future. The movement
trajectory similarity between Vi and Vj is defined as in eq.
(12):

sim(Vi, Vj) =

v∑
c=1

piac.p
j
ac√

v∑
c=1

(piac)
2
.

√
v∑

c=1

(
pjac
)2 (12)

We make use of the similarity of residence time from eq.(11)
to weight the movement trajectory similarity, so as to obtain
the mobility similarity between Vi and Vj according to eq.(13).

MSij = sim(Vi, Vj)×
|mti∩mtj |∑

c=1

RSc(Vi, Vj) (13)

Where |mti ∩ mtj | returns the number of items of the
intersection of mti and mtj and MSij denotes the mobility
similarity between Vi and Vj . Let THm be the threshold to
evaluate the mobility similarity between vehicular nodes. If
MSij is greater than a threshold THm, the mobility pattern



8

of the two nodes Vi and Vj is similar. The measurement of
mobility similarity not only considers the static character -
resident state similarity, but also investigates the historical
movement trajectory and future movement state, ensuring the
accuracy of measured results. The number of states in the
transition probability matrix and the number of access points
encountered by the vehicular nodes determine the computa-
tional complexity of MSMM, which is O(v2).

V. MOBILE COMMUNITY MANAGEMENT MECHANISM

The media server provides original video content to all
vehicular nodes and does not interfere with the autonomous
management of mobile communities. However, the server
needs to make use of FAC to calculate popular playback
patterns used to construct mobile communities. Moreover, it
maintains a local community list by periodically receiving
information about the community members from the broker
members of all communities and returns the updated list
to each broker member, supporting in this way member
movement between communities. The nodes make use of the
received playback patterns from the media server to find the
nodes with similar playback behavior by exchanging messages
containing playback traces. If the nodes which belong to
the same playback pattern have similar mobility (i.e. their
mobility similarity values are greater than the threshold THm),
they form a mobile community. Because the members in the
same community have the same playback pattern, they can
collaboratively obtain and store certain video chunks in order
to meet the demand of chunk search of in-community members
and reduce the number of inter-community requests.

The members in a mobile community are assigned one of
three possible roles: broker, associate or ordinary member;
any community has one broker member and multiple ordinary
and associate members. The broker member is a particular
member responsible for maintaining the contact with broker
members in other geographically adjacent communities and
for distributing resources to and from the ordinary members
of its community. The ordinary members in a community
have the same playback pattern and have similar mobility
patterns. The nodes which join a community but do not meet
the requirements of mobility similarity with all members in
current community are considered as associate members.

Each member nj stores a local member list Smembernj
⇔

(n1, n2, ..., nh) whose items are community members nc
which are represented via a 3-tuple as follows: nc =
(ct, T

P
c , Fc). ct is the video chunk stored in nc’s static buffer,

TP
c denotes the nc’s current playback point within the video

and Fc is a flag bit to mark the member role. Fc = 1 denotes
that nc is the broker, Fc = 0 indicates that nc is an ordinary
member and Fc = 2 indicates that nc is an associate member.

Each community member nj has both a static storage buffer
and a dynamic playback buffer. nj collaboratively stores video
chunks in the static buffer, trying to reduce the communication
with other communities or server and ensure high lookup
success rate for chunk search. The replacement strategy of
content in the static buffer of the members is based on
the distribution of resources in the community, which will

be detailed next. nj maintains the state of other members
by periodical exchanging state information with them. The
dynamic buffer is used for the current video playback purposes
only. Next the major operations involving community will be
detailed.

A. Member Join A Community

When a vehicle Vi joins the system, it broadcasts a request
message containing the required chunk ID in the coverage
area of the local AP. The nodes which have the requested
chunk or find members storing the requested chunk in their
maintained member list return a response message containing
their member list and a movement trajectory to Vi. These
response nodes may belong to different communities. Upon
receiving these messages, Vi calculates the mobility similarity
with the response nodes and then joins the community Ca

corresponding to the response node with the highest mobility
similarity with Vi, also higher than THm. If joining the
community Ca, Vi becomes an ordinary member. Otherwise,
if the mobility similarity between Vi and the response nodes
are less than THm, Vi joins the community whose number of
node members in the response is the largest in comparison with
other communities. As Vi and the response nodes are located
in the same AP, the selected community can provide more
resources to Vi. In this situation Vi is an associate member
in Ca. After Vi updates and stores the member list, it sends a
request message to the members carrying the desired resource.
If Vi receives the chunk from the static buffer of a supplier,
it needs to re-search for supplier node with the next chunk in
playback order before it consumes the whole current chunk.
It is preferred that Vi selects the members which have the
playback point synchronized with Vi as suppliers, and fetches
the content from their dynamic buffer as the playback is
performed, reducing therefore the number of request messages.

Assume Vi is a new member in Ca and needs to store a
chunk in its static buffer. Let nk be the broker in Ca. nk will
not distribute the stored chunk to all the members due to the
high message overhead. PMCV employs a popularity-based
balanced chunk distribution algorithm to achieve the collab-
orative storage of video chunks for in-community members.
The broker nk periodically collects the information and access
frequency of the chunks stored in static buffers at all members
and calculates the popularity of each chunk ci according to eq.
(14).

Pci =
Hci + fci

Htotal + ftotal
(14)

where fci is the access frequency of ci in the current period
and Hci is the total access frequency of ci. Htotal is the total
access frequency of all n chunks in Ca during the whole
period and ftotal is the total access frequency of the n chunks
in Ca during the current period. Pci × NCa

is the number
of members which need to store ci where NCa

is the total
number of members in Ca, which can achieve load balance.
Moreover, we define a storage priority for each member based
on the Hamming distance, defined in eq. (6): the lower the
distance between the traces of members and playback pattern
corresponding to Ca is, the higher the popularity of the chunks
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stored is. This is because the members with high Hamming
distance have an unstable state so that they may very likely
move from Ca to other communities. The important resource
carried by the stable members can ensure the resource security
within the community.

In order to reduce nk’s load, we propose a “reporter”-
based collection and dissemination strategy. Each member nj
in Ca periodically exchanges TP

j , mtj and the information
on access frequency of the chunks in its static buffer with
nj’s supplier ns, which provides the video data to nj . In turn,
ns interacts with its own supplier and exchanges messages
including information about ns and its receiver nodes (e.g.
nj), etc. If ns finds that its own supplier is the media
server or a member in other communities, ns is considered
a “reporter” and sends the received information to nk. After
nk receives the information from all the members, it updates
the information about the items in the member list, calculates
the popularity of chunks and disseminates the updated list
and chunk popularity to the reporters. In turn, these reporters
will distribute this information to their receivers. When all
members receive the information, they update the local mem-
ber list and regulate the content in their static buffer. The
period time of collecting member information can be defined
as Tc = λ× len, λ = 1, 2, ..., n, where len is the chunk size.
In order to reduce the replacement frequency of content in
the static buffer, the replacement period of time can be set to
Tr = θ × Tc, θ ∈ (0, n). After Vi joins Ca, it can receive the
popularity from its supplier and download the corresponding
chunk from other members into the static buffer. The associate
members store the chunks with the lowest popularity only.

If Vi cannot obtain a response message from the current
AP, it sends a request message to the server. After the server
receives the message from Vi, it returns a response message
containing the community subset whose items include the
requested resource to Vi. Vi preferentially joins the community
whose items have the highest mobility similarity, higher than
THm. If these communities cannot meet the demand of Vi’s
mobility, Vi joins the community which has the highest num-
ber of chunks in the corresponding playback pattern among
all the communities. In this way Vi obtains a more stable
source of resources and reduces the supplier churn. If no
community has Vi’s requested resource, the server directly
transmits the video data to Vi. Vi makes use of the member list
to search for a desired resource when it changes the current
playback point location. When Vi cannot obtain the available
supplier from the members, Vi sends a request message to the
broker member in the current community. The broker member
searches the supplier candidates with the required resource
in the local communities list and returns these candidates
to Vi. Vi exchanges location information with the candidates
and selects the candidate which has the closest geographical
distance with Vi as the supplier.

B. Member Movement Between Communities

With increasing number of items in the playback trace trVi

of Vi, Vi calculates the Hamming distance between trVi
and

all items in Spattern. Vi joins the community which has the

minimum Hamming distance with trVi . As we know, the
members in the same community have very similar playback
behavior. However, the movements between communities en-
sure stability of the logical link between Vi and its suppliers
and availability of reliable resources. When Vi needs to move
from the current community to another community, it sends
a request message containing the corresponding playback
pattern to the broker member nk. nk returns a node list whose
items belong to the requested playback pattern and have the
resource corresponding to current playback point of Vi. nk
removes Vi from the local member list. After Vi receives
the response message, by exchanging the message containing
movement trajectory with the items in this list, Vi calculates
the mobility similarity with these items. If the requirement
of mobility similarity still cannot be met, Vi selects the node
with the closer geographical distance with Vi as its supplier
and joins its community.

Additionally, when the mobility similarity between associate
members in the same community is greater than THm, these
associate members leave the current community and form a
new community. Moreover, in the process of resource search,
if an associate member finds a supplier whose mobility similar-
ity with the associate member meets the requirement in terms
of movement trajectory, it joins the community corresponding
to the supplier.

C. Broker Node Replacement

When a broker member nk in the community Ca finishes
the playback or moves to another community, it selects another
member as the new broker member. In order to avoid frequent
replacements of the broker member, nk needs to estimate
the broker suitability for all members (not including the
associate members) in terms of their online time and Hamming
distance between trace and pattern. The estimate value of the
normalized online time of any member nj can be obtained
according to eq. (15).

tj =
|trj |
pCa

(15)

where |trj | returns the number of chunks in nj’s playback
trace trj and pCa

is the playback pattern corresponding to
Ca. tj is denoted as the online time ratio and estimates the
time before nj leaves the system. The lower the value of tj
is, the longer the time of nj serving other members is. The
normalized Hamming distance between trj and sCa

is defined
as in eq. (16):

Dj =
DHamming(trj , sCa

)

n
(16)

Dj is the similarity level between playback trace of nj and
playback pattern of Ca and alongside with tj are the-smaller-
the-better parameters. We use tj and Dj as estimate values of
stability for broker member candidates according to eq. (17).

swj =
1

αDj + (1− α) tj + 1
, α ∈ (0, 1) (17)

where α is a weight factor. nk makes use of the above
approach to obtain the estimate stability values of other
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(b)

Fig. 5. VANET and 4G simulation scenarios. (a) VANET architecture and mobility model of vehicular nodes. (b) 4G WiMAX network architecture.

members, namely (sw1, sw2, . . . , swk). The broker member
selects as the new broker, the member whose estimate stability
value is the highest in comparison with the other members.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We compare the performance of the proposed solution
PMCV with that of QUVoD [4], both deployed in a VANET-
based environment by making use of the Network Simulator
(NS2).

(1) Testing Topology and Scenarios:
Table III lists some important NS2 simulation parameters

of the VANET and 4G WiMAX networks, respectively. There
are 1000 mobile nodes in VANET. The nodes are deployed
in a square area of x = 2000 m by y = 2000 m. An urban
topology, which consists of five horizontal and five vertical
streets is considered, as illustrated in Fig. 5 (a). Every street
has two lanes in each direction. The vehicular movement
behavior follows the Manhattan mobility model [32]. When
a vehicle reaches the specified destination, it is assigned a
random residence time and restarts its movement with a new
assigned speed and destination. Thirty-three APs equipped
with IEEE 802.11p WAVE interfaces are distributed in VANET
as illustrated. Fig. 5 (b) shows the 4G WiMAX architecture of
QUVoD, which is composed of 8 hexagonal cells, each with
a 578 m cell radius.

PMCV uses the IEEE 802.11p WAVE network interface
only to support wireless communications between the vehicle
nodes for the exchange of control and state and transmission
of video data. QUVoD uses two wireless communication
interfaces for each of the vehicle nodes: the IEEE 802.11p
WAVE network interface and the 4G WiMAX interface. The
vehicular nodes in QUVoD dynamically regulate the usage of
network interfaces (switchover between G-path and V-path)
in terms of communication quality of transmission path. For
QUVoD, the value of ABthres is set to 128 kb/s, which is
equal to the streaming rate. ABvalue is 24 kb/s, 48 kb/s and
96 kb/s, respectively. For example, if the value of V-Path’s
detection bandwidth is less than ABthres - ABvalue = 104

TABLE III
SIMULATOR PARAMETER SETTING

Parameters Values

VANET

Area 2000× 2000(m2)
Channel Channel/Wireless Channel
Network Interface Phy/WirelessPhyExt
MAC Interface Mac/802 11Ext
Bandwidth 27 Mbps
Frequency 5.9 GHz
Multiple Access OFDM
Transmission Power 33 dBm
Wireless Transmission Range 250 m
Interface Queue Type Queue/DropTail/PriQueue
Interface Queue Length 50 packets
Antenna Type Antenna/OmniAntenna
Routing Protocol DSR
Peak Mobility Speed 30 m/s
Transport-Layer Protocol UDP

AP
AP Bandwidth 625 kb/s
AP Transmission Range 250 m/s
AP Number 33

4G WiMAX

Operating Frequency 2.5 GHz
Channel Bandwidth 10 MHz
Channel Capacity 40 Mbps
Radio Propagation Model MPropagation/MFreeSpace
Frame Duration 5 ms
Multiple Access OFDM
Duplexing Mode TDD
Interface Queue Length 50 packets
Cell Layout (BS Number) 8 hexagonal cells
Cell Radius (Transmission Range) 578 m
Transport-Layer Protocol UDP

kb/s and G-Path’s detection bandwidth is greater than 128
kb/s, the packets will transfer over the G-Path. Otherwise,
the V-Path is used to deliver the video chunks. Video content
is being exchanged by the vehicular nodes with an average
video streaming rate of 128 kb/s. The simulations consider
a 3600 s-long video that is divided into n = 90 chunks.
Each chunk is 40 second long and about 640 KB in size. The
simulation time is set to 2400 s. The movement trajectories of
mobile nodes are generated from 0 s to 600 s and the nodes
start to join the system starting from 600 s to the end. We
created 20,200 synthetic user viewing log entries based on
the interactive actions, measurements and statistics from [33]
where 20,000 log entries are considered as historical playback
trace library. 200 mobile nodes join the system in terms of a
Poisson distribution before 1500 s and follow the remaining
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Fig. 6. Average seeking latency versus the number of system members
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Fig. 7. Average seeking latency versus mobility speed of mobile nodes

200 viewing log entries to play video content. The mobile
nodes which finish the playback of the whole video quit the
system. The bandwidth at the media server side is set to 10
Mb/s.

(2) Parameter Settings:
The value of the threshold THm is set to 0.5 following

repeated testing results. λ is the impact factor of the period of
time for collecting member information. The larger the value
of λ is, the longer the period of time is. If the load of members
in the community is kept at low level, the member state cannot
be updated in real time. In order to balance the load and
timeliness, the value of λ is set to 60. θ determines the period
of time for the replacement of content in the static buffer. The
larger the value of θ is, the lower the frequency of replacement
is. The period time for replacement is normally one or multiple
video lengths. The variation of access frequency of a chunk
in a community during short periods of time is very low.
The frequent update of chunk access frequency wastes large
amounts of storage and bandwidth resources. The period of
time of exchanging information between server and broker
members is set to Ts = µ×Tc, µ ∈ (0, n) where µ determines
the frequency of interaction between broker members and
server. In order to balance the real-time community state and
load of broker members and server, µ is set to 1. m is the
degree of fuzziness and is set to 2 [34]. In order to balance
the online time ratio and membership level of community, α
is set to 0.5.

PMCV and QUVoD are deployed in the same VANET.
However, as the mobile nodes in QUVoD are equipped with
two network interfaces: the IEEE 802.11p WAVE network
interface and the 4G WiMAX interface, the simulation archi-
tecture of QUVoD includes an additional 4G WiMAX network
for communication (G-path). The parameter settings of the
VANET and 4G WiMAX network are described in Table III.
Moreover, the mobile nodes in two solutions have the same
behaviors when viewing video and join/leave the system.

B. Performance Evaluation

Average seek latency (ASL): The difference between the
time when the node has received the video data and the
time when the node has sent the request message is denoted

as the seek latency. ASL is the average value of the seek
latency readings. ASL mainly includes the latency of requested
resource locating and the response latency of supplier. The
smaller the value of ASL is, the higher the user QoE level is.

Fig. 6 plots the comparison results when PMCV and
QUVoD-24, QUVoD-48 and QUVoD-96 are used in turn
with increasing number of system members (mobile nodes in
the system), when the mobility speed varied in the [0, 30]
m/s range. QUVoD-24, QUVoD-48 and QUVoD-96 represent
various QUVoD versions with different values of ABvalue,
respectively. The curve corresponding to QUVoD-24 has a
decreasing trend with some fluctuations, but the QUVoD-
24 results are better than those of QUVoD-48, QUVoD-96
and PMCV. PMCV’s ASL curve has a decreasing trend with
increasing the number of nodes and reaches a minimum value
of 0.624 s for 160 system members, 50% and 80% lower
than that of QUVoD-48 and QUVoD-96. Further increasing
the number of nodes, PMCV’s ASL increases to 1.146 s.

Fig. 7 illustrates ASL comparison results for different
ranges of mobility speeds. As the figure illustrates, QUVoD-24
outperforms QUVoD-48, QUVoD-96 and PMCV. However the
blue histograms corresponding to PMCV’s results are better
than both QUVoD-48 and QUVoD-96 for a wide range of
speeds. For instance for speeds in the [10-15] m/s range,
PMCV’s ASL is 35% and 40% lower than ASL of QUVoD-
48 and QUVoD-96, respectively. However, at very high mobile
speeds, the ASL of PMCV also increases.

The mobile nodes in QUVoD make use of a path over the 4G
network to search for video chunks, so the high efficiency and
reliability of the 4G network and excellent search performance
of the Chord structure ensures fast location of the requested
chunks. As QUVoD does not consider the mobility of the
nodes, the close geographical distance between the requesting
sender and supplier cannot be ensured in case of mobility,
so often a multi-hop delivery of video data results in high
response latency. ABvalue determines the switchover between
the VANET path and the 4G path. For low ABvalue , the data
transmission path switches sooner from the VANET path to the
4G path. This reduces the response latency, but the increased
usage of the 4G network path results in higher user costs,
4G network load and energy consumption. When the value of
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ABvalue is high, the VANET path is mostly used and there is a
resulting increase in latency with a negative influence on user
QoE. The same increase in the number of system members
results in network congestion and QUVoD switches to the 4G
path. This increases the performance, but affects user costs, 4G
network load and node energy consumption. Further, after the
mobile nodes in QUVoD have acquired and played a chunk,
they need to search again for a new supplier with the requested
resources and this leads to high message overhead and large
start delays.

The nodes in PMCV make use of the extracted popular
playback patterns to form multiple communities. The members
in the same community use a member list to maintain the
state and resources stored by other members. The increasing
number of mobile nodes, results in increasing resources in
the community and this reduces the cross-community resource
search. PMCV ensures increased efficiency of resource search,
and the logical one hop relationship between community
members reduces the latency of resource location. Moreover,
in PMCV, when the logical link between the supplier and
receiver of video data is disconnected, the receiver seeks a
new supplier in the same community, reducing the overhead.
The synchronization of playback point between supplier and
receiver also reduces the number of messages for resource
search. The network congestion caused by the increase in the
number of system members and the increasing mobility of
nodes leads to some growth of the PMCV’s ASL, but ASL
values are still maintained at a low level.

Packet loss rate (PLR): The ratio between the number of
packets lost in the process of video data transmission and the
total number of packets of video data sent is referred to as
PLR.

As Fig. 8 shows, the curves corresponding to QUVoD-24,
QUVoD-48 and QUVoD-96 exhibit a decreasing trend with the
increasing number of system nodes. The QUVoD-24 results
are lower than those of PMCV, QUVoD-48 and QUVoD-96.
PMCV PLR has very low values, close to those of QUVoD-24
and roughly 110% and 200% better than the values associated
with QUVoD-48, and QUVoD-96. PLR increases when the
system node number grows above 160, indicating increased
network load.

Fig. 9 shows how PLR varies with the variation in mobility
speed in VANETs. The red histograms corresponding to the
QUVoD-24 results have both low values and slight decrease
from [0, 5] to [25, 30] (the values are between 0.02 and 0.07),
lower than those of PMCV, QUVoD-48 and QUVoD-96. The
PMCV results, illustrated with blue bars, have values between
0.17 and 0.23, lower than the results of both QUVoD-48 and
QUVoD-96.

The mobile nodes in QUVoD make use of the 4G network
path to compensate for the decreased performance of the
transmission of the VANET path. The lower the value of
ABvalue is, the higher the utilization frequency of the 4G
path is. The increasing number of nodes and mobility speed
do not have a negative influence on the QUVoD-24’s PLR due
to the high performance of the 4G network, but this comes at
a price in terms of additional cost, cellular network load and
energy consumption. PMCV outperforms both QUVoD-48 and
QUVoD-96 which cannot easily switch to the 4G network to
deliver the video data due to the high value of ABvalue.

PMCV instead makes use of the mobile communities to
enhance the efficiency of resource sharing and reduce the
unsupervised search. This is as the members of each commu-
nity have similar movement trajectory so that they maintain
close geographical distance between them. This ensures high
transmission performance - low delay and reduced PLR of
PMCV. When the number of nodes is 160, the PLR of
PMCV reaches the minimum value of 0.031. However, further
increase in the number of system members results in more
resource requests and many video transmissions lead to overall
network traffic increase and certain degree of the network
congestion due to limited VANET bandwidth. This affects
PLR of PMCV as this uses a single network approach.

Throughput: The ratio between the total number of packets
received in the overlay during a certain period of time and
the length of this period of time is defined as the average
throughput.

Fig. 10 shows the total system throughput variation of
PMCV, QUVoD-24, QUVoD-48 and QUVoD-96 during the
simulation time. The curves corresponding to the four solu-
tions considered have similar shapes, experiencing a fast rise
from the start at t = 600 s until simulation time 1500 s, then
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Fig. 10. Total system throughput versus simulation time
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Fig. 11. Average throughput versus the number of system members

a stable period with slight fluctuations to the end. QUVoD-24
throughput reaches a peak value higher than those of PMCV,
QUVoD-48 and QUVoD-96 due to its 4G network use, but
PMCV outperforms both QUVoD-48 and QUVoD-96.

We compute the average throughput per video streaming
session (each system member streams video content from its
supplier) to show the video quality experienced by users.
Fig. 11 presents the average throughput variation per video
streaming session with the increasing number of system mem-
bers. QUVoD-24’s red throughput bars vary between 119 kb/s
and 126 kb/s and are the highest among the four solutions,
but PCMV’s blue bars have very high levels only roughly
3% adrift for regular system load, too. The PMCV values
are between 30% and 120% better than those of QUVoD-
48 and QUVoD-96, respectively, clearly indicating PMCV’s
performance-related benefits. In highly loaded conditions, PM-
CV’s throughput decreases, but still outperforms QUVoD-48
and QUVoD-96.

In these tests, the mobile nodes join the system following
a Poisson distribution after 600 s. Transmission of numerous
video data packets leads to data traffic increase with increasing
number of system members. The use of the 4G network path
by QUVoD ensures high transmission performance, including
throughput, but also high monetary costs and higher energy
consumption. In PMCV, the mobile communities group the
mobile nodes with similar behavior of playback and movement
to enhance the video content sharing efficiency. With increas-
ing number of system members, the mobile communities are
continually generated to enable fast search and video data
transmission within close geographical distance. Therefore,
the throughput of PMCV has relatively high increment and
keeps the rise trend corresponding to decreasing packet loss
rate with increasing number of system members from 80 to
160. However, due to the limited VANET bandwidth, when the
number of nodes continues to increase from 180 to 200, the
increase in the video data transmission results in the network
congestion so that the throughput of PMCV decreases. This
is as PMCV uses VANET only to transmit the video data.
However the values of PMCV throughput are better than those
of QUVoD-48 and QUVoD-96.

Average video quality: In order to assess the user perceived
quality, we use Peak Signal-to-Noise Ratio (PSNR) metric,
which measures video quality in decibels (dB), and estimate
it according to eq. (18) [35].

PSNR = 20 · log10(
MAX Bitrate√

(EXP Thr − CRT Thr)
2
) (18)

where MAX Bitrate is the average bitrate of the video
stream as resulted from the encoding process, EXP Thr
is the average throughput expected from the delivery of the
video stream over the network and CRT Thr denotes the
actual throughput measured during delivery. MAX Bitrate
and EXP Thr are both 128 kb/s in terms of simulation
settings.

We investigate the average PSNR of the video stream
received by each node with increasing number of system mem-
bers. As Fig. 12 shows, the QUVoD-24’s results, illustrated
by hashed red histograms, are higher than those of the other
three solutions. However the PMCV’s PSNR results, which
correspond to the dark blue bars, have average values at good
quality level for remotely delivered wireless mobile video [36]
of roughly 16.4 dB for low number of system users (80)
and 23.2 dB when the number of system members reaches
160. PMCV’s PSNR values are 120% and 300% higher
than those of QUVoD-48 and QUVoD-96, respectively. With
increasing number of nodes, the system becomes increasingly
congested and PMCV’s PSNR decreases. However, the PMCV
performance is still better than those QUVoD-48 and QUVoD-
96.

QUVoD does not consider the mobility of nodes, so the
variation of geographical distance between communication
parties leads to a decrease in the performance of data transmis-
sion. The increasing number of requests for video content and
the mobility of nodes negatively influences the performance
of data transmission. However QUVoD employs 4G network
communications (e.g. roughly 86% of QUVoD-24’s nodes use
the 4G path) to compensate for the reduced performance. The
high dependency level on the 4G network increases the load
on the 4G network and adds high monetary costs and increases
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Fig. 13. Server stress versus the number of system members

the energy consumption in order to ensure high QoE.
In PMCV, the members in the mobile communities have

close geographical distance and similar playback behavior.
With the generation of mobile communities, the increasing
efficiency of data transmission makes sure that the system
members experience high video quality. However, the increase
in the number of system members results in higher network
traffic. The increasing number of requests for video resources
results in higher PLR and larger delays due to limited network
bandwidth. Therefore, when increasing the number of users
from 180 to 200, PMCV’s PSNR decreases. If the network
bandwidth is sufficient, the PSNR of PMCV is good based on
the very good performance of FAC and MSMM.

Media Server Stress: The ratio between the current number
of streams serving mobile nodes at the media server side and
the maximum number of streams supported by the server is
defined as the server stress. The server stress is an important
metric for the scalability of the system (low server stress
indicates that the system has high scalability).

Fig. 13 illustrates the average server stress with increasing
number of system members. Because QUVoD-24, QUVoD-
48 and QUVoD-96 employ the same system architecture and
the playback behaviors of mobile nodes are uniform, the
curves of their media server stress are superimposed. We can
see in the figure how the media server stress in QUVoD-
24, QUVoD-48 and QUVoD-96 increases with the increase
in the number of system nodes. However, the PMCV’s server
stress curve experiences a fast decrease with the generation
of communities. It can be clearly seen how PMCV’s server
stress values are roughly 10% better than those of QUVoD
with increasing number of system members from 130 to 200,
clearly indicating its superior scalability.

The mobile nodes in QUVoD contribute with their static
buffers to caching all video resources in terms of resource
storage strategy and form a Chord structure where the nodes
with similar resources are clustered into a group. Therefore,
the server stress in QUVoD keeps at the high level before the
number of nodes reaches 90 and fast decreases with increasing
number of nodes. In PMCV, the members in the community
can cache and regulate the chunks in the static buffer in

terms of the interest level of members and chunk popularity
(resource requirement of nodes). PMCV not only optimizes
the distribution of resources, but also ensures the presence of
video resources in the community, reducing significantly the
number of streams served by the media server.

Overlay maintenance overhead: The average bandwidth
used per second for exchanging overlay maintenance messages
is considered as the overlay maintenance overhead.

Fig. 14 shows the overlay maintenance overhead with
increasing number of system members. QUVoD-24, QUVoD-
48 and QUVoD-96 have the same results for overlay main-
tenance overhead due to the same system architecture and
uniform playback behaviors of the mobile nodes. The curve
corresponding to these solutions maintains a fast increasing
trend with increasing number of system members. The curve
associated with the PMCV results shows a fast rise before the
number of system members reaches at 120. With the increase
in the number of system members from 140 to 200, the PMCV
results are maintained at relatively low level, roughly 12%
lower than those of QUVoD. Fig. 14 clearly shows how PMCV
outperforms QUVoD in terms of overhead.

The nodes in PMCV are grouped into multiple communities
in terms of playback behavior and mobility. The generation
of mobile communities needs to perform message exchange
between community members. PMCV’s maintenance overhead
fast increases before the number of system members reaches
120. With the slow increase in the number of mobile commu-
nities, the number of messages used to construct the mobile
communities decreases. The members in these communities
only periodically maintain the contact with other members
in the same community. These members have similar play-
back behavior, so the mobile community structure is stable,
reducing the number of messages used to maintain the mobile
community. Therefore, PMCV’s maintenance overhead in-
creases slower than that of QUVoD. QUVoD needs to regularly
maintain the Chord structure and the lists of peer pointers
and therefore cannot reduce its maintenance overhead with
increasing number of mobile nodes. Moreover, in QUVoD,
the exchange of messages to balance the load between group
members and the seeking messages to locate new supplier
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when the sequential segments in one node can not supply the
requested video chunks further increase the control overhead.
Consequently, the overlay maintenance overhead of PMCV is
lower than any QUVoD versions, with increasing number of
system members.

Inner-community lookup success rate (ILSR): We com-
pare the clustering accuracy of FAC in PMCV with two classi-
cal algorithms: Fuzzy J-means [34] and K-means [27] in term
of inner-community lookup success rate. The ratio between
the number of successful inner-community chunk lookups
and the total number of inner-community chunk lookups is
considered as the inner-community lookup success rate. We
employ Fuzzy J-means and K-means to generate the playback
patterns by mining the historical playback traces. In PMCV,
the members preferentially search the inner-community re-
sources. The higher the clustering accuracy is, the more similar
the playback behavior between members is, namely the higher
the similarity between sample (playback pattern) and members
in the corresponding community is.

Fig. 15 shows the ILSR of PMCV, Fuzzy J-means and K-
means with increasing the number of mobile nodes. The bars
corresponding to the K-means results maintain a relatively
slow increasing trend. The Fuzzy J-means bars have a fast
rise from 80 to 120 and a stable increase from 140 to end.
The bars corresponding to the PMCV results also show a fast
increase from 80 to 120 and then a slight rise, with values
roughly 15% and 25% higher than those of Fuzzy J-means
and K-means, respectively.

The clustering accuracy determines the difference level of
playback behavior between members. The members which
have similar playback behavior request similar chunks. The
members in the community collaboratively store the chunks in
terms of chunk popularity and membership level to optimize
the resource distribution, ensuring the resource security of
the community and reducing the cross-community resource
search. The higher the clustering accuracy for historical play-
back trace is, the lower the number of cross-community
resource searches, namely the larger the inner-community
lookup success rate is. The initial sample selection is very
important for the clustering accuracy of K-means and Fuzzy

J-means. However, K-means and Fuzzy J-means employ a ran-
dom selection strategy to generate the initial sample, reducing
the clustering accuracy. Moreover, the Fuzzy J-means makes
use of a fuzzy membership parameter to iteratively regulate the
cluster center, so Fuzzy J-means can obtain relatively accurate
clustering results and its ILSR are greater than those of K-
means. For PMCV, FAC makes use of the ant-colony clustering
algorithm to determine the initial heap center (sample) in terms
of viewing interest variation. FAC employs the fuzzy C-means
to refine the heap centers to further enhance the clustering
accuracy. Therefore, FAC obtains higher ILSR than both K-
means and Fuzzy J-means.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a novel Performance-Aware Mobile
Community-based VoD streaming solution over vehicular
ad hoc networks (PMCV). PMCV bases its efficiency on a
newly designed mobile community detection scheme - which
employs a novel Fuzzy Ant Clustering algorithm (FAC) to
extract and refine playback patterns (samples) from historical
playback traces for supporting high accuracy clustering of
mobile nodes and makes use of a mobility similarity measure-
ment model to estimate the similarity of mobility of mobile
nodes for reducing the transmission cost of video data. Fur-
thermore, PMCV design includes a novel mobile community
management mechanism which performs the following steps:
1) assigns roles and tasks to members; 2) enables members
joining the community; 3) supports members move between
communities; 4) enables collaborative store and search for
resources; 5) supports replacement of broker members. PM-
CV’s performance was assessed in comparison with that of
three versions of a state of the art alternative solution QUVoD
via simulations. The results show that PMCV is an effective
and low cost single network-based VoD streaming solution,
which achieves low average seeking latency, low packet loss
rate, high throughput, high video quality, low server stress,
low overlay maintenance overhead and high average lookup
success rate in pure vehicular ad hoc network environments.
PMCV’s system performance is very close to that of other
state of the art solutions which avail from extensive use of
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4G networks, while improving system scalability and reduc-
ing the overhead. Our future work will consider integrating
novel intelligent strategies into PMCV in order to enable its
deployment to both single and multi-network environments,
while considering different network usage factors.
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