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Performance Evaluation of MADM-based 
Methods for Network Selection in a 
Multimedia Wireless Environment 

Abstract— As mobile devices have become more affordable, easy to use and powerful, the 

number of mobile users and their bandwidth demands have experienced a significant 

growth. Considering the rising popularity of power hungry applications (e.g. multimedia), 

battery power capacity is an important concern - as upgrades are not keeping up with the 

advances in other technologies (e.g., Central Processing Unit (CPU) and memory). Mobile 

users now demand better power and battery management techniques to prolong their 

mobile battery performance. This, together with the need for green Information 

Communications Technology (ICT), provides motivation for researchers to develop energy 

efficient techniques to reduce the power consumption in next-generation wireless networks 

while meeting user’s quality expectations. This paper conducts a realistic performance 

evaluation of a number of widely used Multi Attribute Decision Making (MADM)-based 

methods for network selection that aim at keeping the mobile users Always Best Connected 

anywhere and anytime. The main trade-off parameters considered include energy efficiency 

and user perceived quality levels for multimedia streaming. The energy consumption is 

modeled using real experimental results for an Android Mobile device. Similarly, the 

multimedia quality function was modeled using real user data, combined with a qualitative 

study to determine the resulting mean opinion scores. The performance analysis shows that 

the Weighted Multiplicative Method (MEW) finds a better energy-quality trade-off for 

users in a heterogeneous wireless environment in comparison with three other MADM 

solutions. 

Index Terms—network selection, heterogeneous wireless networks, energy conservation.  
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Due to the mass-market adoption of the new multi-mode high-end devices (e.g., smartphones, tab-

lets, etc.) together with the growing popularity of video-sharing websites, like: YouTube, mobile TV, 

and gaming, mobile operators are being confronted with a massive traffic growth. According to Cisco 

[1] the global IP traffic has increased eight fold in the past 5 years and will further increase fourfold by 

2016. It is estimated that more than 110 Exabytes of data per month will be transferred in 2016; out of 

which 61% will be exchanged by wireless devices [2], and 55% of the data will be generated by rich 

media-based services [3]. Some of these services (e.g. High Definition TV, 3D TV) put important pres-

sure on both content processing and delivery. Moreover, it is estimated that network-delivered digital 

media, especially over a heterogeneous wireless environment to mobile customers will become one of 

the main economic driving forces in the coming years. However, this will only be possible by having 

the necessary infrastructure to accommodate the increasing number of mobile users and accommodat-

ing their expected high Quality of Experience (QoE) levels. In order to deal with this explosion of mo-

bile broadband data, network operators have tried to supplement their bandwidth capabilities by de-

ploying alternative radio access technologies in areas of high user traffic (e.g., in the city-center, shop-

ping malls, sport stadiums and business parks). Wireless-Fidelity (Wi-Fi) offload solutions have already 

been adopted by many service providers, (e.g., Deutsche Telekom offer WiFi Mobilize1). This solution 

enables the transfer of some traffic from the core cellular network to WiFi hotspots at peak times. In 

this way users can avail from wider service offerings. However, the overall experience is still far from 

optimal as providing high quality mobile video services with high Quality of Service (QoS) over re-

source-constrained wireless networks remains a challenge. In this context, the problem faced by net-

work operators is ensuring seamless multimedia experience at reasonable quality levels to the end-user. 

An important user concern is the battery life of their mobile device which has not evolved in-line 

with processor and memory advances, becoming a limiting factor. This deficiency in battery power and 

the need for reduced energy consumption provides motivation for developing more energy efficient 

solutions while enabling always best connectivity to the mobile users. 

The ‘Always Best Connected’ vision emphasizes the scenario of a mobile user seamlessly roaming 

in a heterogeneous wireless environment as illustrated in Fig. 1. Mobile users face a complex decision 

when selecting the best network to connect to (one that will satisfy their needs) because of the hetero-

geneity of the criteria: the applications requirements (e.g., voice, video, data, etc.); multiple device 

types (e.g., smartphones, netbooks, laptops, etc.) with different capabilities; multiple overlapping net- 
1 WiFi Mobilize - http://www.telekom-icss.com/wifimobilize 
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work technologies (e.g., Wireless Local Area Networks (WLAN), Universal Mobile Telecommunica-

tions System (UMTS), Long Term Evolution (LTE)); and different user preferences (e.g., for personal 

or business use or location-dependent - crowded train vs. quiet office). In this context, the main chal-

lenge for the users is to have their device select the best available network considering their prefer-

ences, application requirements, and network conditions. 

This paper provides a comprehensive study on the performance evaluation of a number of widely 

used MADM-based methods in the context of network selection. The performance evaluation is done in 

terms of energy efficiency and user perceived quality levels for multimedia streaming over a heteroge-

neous wireless environment. This paper reports the results of a realistic study which uses real user data 

to model the user perceived quality, and real energy consumption measurements taken from our test-

bed. Additionally, a mathematical energy consumption equation is designed to model an Android mo-

bile device’s energy consumption, based on real energy measurements.  

 

2 RELATED WORKS 

MADM methods are widely used for solving multi-criteria decision problems including the net-

work selection problem in the research literature. One of the most popular MADM methods used, is the 

Simple Additive Weighting Method (SAW) method [4]. The basic logic of SAW is to obtain a weighted 

sum of the normalized form of each parameter over all candidate networks. Depending on the formula-

tion of the problem, the network which has the highest/lowest score is selected as the target network. 

Wang et al. in [5] were the first researchers to apply the SAW method in the area of network selection 

strategy back in 1999. The authors propose a policy-enabled handover system that selects the “best” 

wireless network at any moment. A score function is defined and used to translate the serviceability of 

each network to a score value for comparison of the possible candidate networks. The score value is 

 
Fig. 1. Heterogeneous Wireless Networks Environment – Example Scenario. 
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computed based on several network parameters, like: the available network bandwidth, the network 

power consumption profile, and the monetary cost charged for the specific network. The score function 

is the sum of a weighted normalized form of these three parameters. The weights may be modified by 

the user or the system at run-time. The monetary cost is limited by the maximum sum of money a user 

is willing to spend for a period of time and the power consumption is limited by the battery lifetime. 

The network that has the lowest value for the score function is chosen as the target network.  

Since 1999 a number of other papers offering variations of this SAW method, have been produced, 

e.g., Adamopoulou et al. [6]. Tawil et al. in [7] make use of SAW to propose a distributed vertical 

handoff decision scheme. The calculation of the targeted network is moved from the mobile user side to 

the network side to conserve the battery lifetime of the mobile device. The network quality is computed 

among the networks based on the bandwidth, the call dropping probability and the cost parameter.   

In order to scale different characteristics of different units to a comparable numerical representation, 

different normalized functions have been used, such as: exponential, logarithmic and linear piecewise 

functions [8]. One of the main drawbacks of SAW is that a poor value for one parameter can be heavily 

outweighed by a very good value for another parameter. For example, if a network has a low through-

put, but a very good price, it may be selected over a slightly more expensive network with a much bet-

ter throughput rate. 

Another popular MADM method is the Technique for Order Preference by Similarity to Ideal Solu-

tion (TOPSIS) method [4] which is based on the idea that the selected candidate network is the closest 

to the ideal possible solution and the farthest from the worst possible solution. The ideal and worst so-

lutions are calculated with the best and worst possible values of each parameter, respectively. TOPSIS 

method was used in [9] and [10] in order to rank the candidate networks based on the closeness to the 

ideal solution. The parameters considered in the decision matrix are: available bandwidth, QoS level, 

security level, and cost in [9] and cost per byte, total bandwidth, available bandwidth, utilization, delay, 

jitter and loss in [10]. The results show that TOPSIS is sensitive to user preference and the parameter 

values. In order to compensate for the ranking abnormally introduced by TOPSIS, Bari et al. in [11] 

propose the use of an Iterative TOPSIS. The authors argue that the new approach can improve the re-

sults obtained by considering only the more likely network candidates in the decision process.  

In [8] Nguyen-Vuong et al. examine the disadvantages of previously proposed SAW algorithms and 

instead they propose the use of a Multiplicative Exponential Weighted (MEW) method in the decision 
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making mechanism. In general, MEW [6] is a MADM method that uses multiplication for connecting 

network parameter ratings.  The authors conducted a numerical analysis and the results show the inac-

curacy of the SAW method and the benefits of using their proposed utility function together with a 

weighted multiplicative method. MEW was also used in [12] in order to propose a power-friendly ac-

cess network selection mechanism in a multimedia-based heterogeneous wireless environment.  

The Elimination and Choice Expressing Reality (ELECTRE) [13] is another MADM method which 

is based on a pair-wise comparison among the parameters of the candidate networks. The concepts of 

concordance and discordance are used to measure the satisfaction and dissatisfaction of the decision 

maker when comparing the candidate networks. Bari et al. propose in [14] a modified version of 

ELECTRE in order to solve the network selection problem. They compute a concordance set (CSet) 

which consists of a list of parameters indicating that the current network is better than the other candi-

date networks. On the other hand a discordance set (DSet) is defined which provides a list of parame-

ters for which the current network is worse than the other candidate networks. Two corresponding ma-

trices are constructed using CSet and DSet. In order to indicate the preferred network, the elements of 

each matrix are compared against two thresholds: Cthreshold and Dthreshold. 

Other two popular MADM methods are the Analytic Hierarchy Process (AHP) and Grey Relational 

Analysis (GRA). The idea behind AHP is to decompose a complicated problem into a hierarchy of sim-

ple and easy to solve sub-problems. Whereas, the GRA method ranks the candidate networks and se-

lects the one with the highest rank. Cui et al. in [15] propose a Hierarchy Multiple Attribute Decision 

with Possibilities, referred to as HMADP. The authors use AHP to determine the weights for each crite-

rion: bandwidth, delay, response time, jitter, Bit Error Rate (BER), packet loss rate, security and cost. 

After the weight for each criterion is computed, a SAW function is used to score the networks. The 

network with the highest score is selected as the target network. The AHP method in combination with 

an utility function is used by Pervaiz in [16]. AHP and GRA are used in [17], [18] and [19]. The AHP 

method computes the relative weights of the various parameters used in the decision model whereas 

GRA prioritizes the networks. The network with the largest Grey Relational Coefficient is considered 

to have the highest similarity to the ideal solution and is selected as the target network. 

The authors in [20] and [21] propose the use of a combination of two MADM methods, namely AHP 

and TOPSIS. The AHP method is used to compute the weights for different criteria, such as: through-

put, delay, jitter, packet loss, cost and security in [20] and cost per byte, total bandwidth, allowed 
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bandwidth, utilization, packet delay, packet jitter, and packet loss in [21]. TOPSIS is then used to rank 

the candidate networks. The network with the highest score is selected as the target network. Several 

extensions of the AHP solutions have been proposed such as: the analytic network process (ANP) [22] 

and fuzzy analytical hierarchy process (FAHP) [23]. The authors use the extensions to compute the 

weights for each criteria and the TOPSIS method is then used to rank the candidate networks. However 

along with the classic criteria such as: cost, security, bandwidth, jitter, packet loss and delay, the au-

thors consider the handover history as a prime factor in the decision making process. Even though this 

method reduces the number of handovers, the mobile station is forced to stay connected to the same 

network even though the current QoS dropped below a predefined user threshold, which might cause 

the decrease in the user satisfaction and increase in the churning rate.           

Bari et al. in [24] propose the use of GRA with a non-monotonic utility and argue that this solution 

is more efficient than the other MADM methods which assume monolithic increasing and decreasing 

utilities for the attributes. 

Several studies have proposed solutions that combine fuzzy logic with other approaches such as 

MADM, genetic algorithms, utility functions, etc. [25], [26], [27], [28]. Fuzzy logic is used when some 

of the criteria cannot be precisely obtained due to the complexity of the heterogeneous environment. In 

this context, the imprecise data is mapped to crisp numbers followed by the MADM method for net-

work selection. The authors in [25] argue that TOPSIS is more sensitive to user preferences while SAW 

provides more conservative ranking results. 

Comparison studies of the MADM methods for network selection under various network conditions 

and for different service classes have been conducted in [29], [30], [31], [32], [33]. The findings of 

these studies are listed in Table I. 

Despite the amount of research done in the area of network selection especially on the performance 

evaluation of the MADM methods, not much focus has been placed on the impact of the MADM meth-

ods on the energy efficiency and user perceived quality level. Moreover, most of the existing works 

based their performance evaluation on simulation data, and they do not consider real user data. To this 

extent, this paper brings the following contributions: 

• a comprehensive performance evaluation study on the impact of four widely used MADM methods 

based on real user and network data; 

• the results from a real experimental test-bed are used to model the energy consumption utility 
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equation for multimedia streaming over a heterogeneous wireless environment; 

• energy consumption measurements and subjective video quality assessment test results are used to 

study the impact of four MADM methods on the energy vs. quality trade-off;  

TABLE I.  PERFORMANCE STUDIES - SUMMARY  

Ref 
MADM 
methods 

Weighting Criteria Traffic Classes Networks Findings 

[29] 

SAW, MEW, 

TOPSIS, 

ELECTRE, 

GRA 

Predefined 

values 

available band-

width, total band-

width, packet delay, 

packet jitter, packet 

loss, and monetary 

cost per byte 

Baseline class, 

Voice connection-

based class, 

Data connection-

based class 

WLAN, 

UMTS, 

WiMAX 

SAW and TOPSIS are suita-

ble for voice connections 

resulting in low jitter and 

packet delay, while GRA, 

MEW, and ELECTRE are 

suitable for data connections 

obtaining high throughput 

[30] 

SAW, MEW, 

TOPSIS, 

GRA 

AHP 

monetary cost, 

bandwidth, power 

consumption, secu-

rity level, traffic 

load, signal 

strength, bit error 

rate, jitter 

Conversational, 

Streaming, Inter-

active, Back-

ground 

WPAN, 

WLAN, 

WMAN, 

WWAN 

All MADM algorithms can 

select reasonable networks 

under various scenarios. 

MEW offers a higher selec-

tion probability for WPAN. 

[31] 

SAW, MEW, 

TOPSIS, 

GRA 

AHP 
BER, Delay, Jitter, 

Bandwidth 

Conversational, 

Streaming, Inter-

active, Back-

ground 

UMTS, 

GPRS, 

WLAN 

All MADM algorithms have 

similar performance for 

conventional and streaming 

classes. SAW, MEW and 

TOPSIS perform similar for 

all the traffic classes. A 

slightly higher bandwidth and 

lower delay for the interac-

tive and background traffic is 

achieved by GRA. 

[32] 
TOPSIS, 

GRA 
AHP 

cost per byte, avail-

able bandwidth, 

security, packet 

delay, packet jitter, 

packet loss 

Conversational, 

Streaming, Inter-

active, Back-

ground 

UMTS, 

WLAN, 

WiMAX 

When compared with 

TOPSIS, GRA has the high-

est criticality index for all the 

traffic classes. 

[33] 

SAW, MEW, 

TOPSIS, 

GRA 

AHP 
Loss Rate, Delay, 

Jitter, Bandwidth 

Conversational, 

Streaming, Inter-

active, Back-

ground 

UMTS, 

GPRS, 

WLAN 

TOPSIS, GRA, and SAW 

perform better than MEW for 

the best effort and streaming 

classes. MEW outperforms 

the other MADM solutions 

for the conversational class. 

GRA, SAW and TOPSIS 

have similar performance. 

3 NETWORK SELECTION MECHANISM 

3.1 Network Selection Concept  

Today’s multi-user multi-technology multi-application multi-provider environment requires the de-

velopment of new technologies and standards that seek to provide dynamic automatic network selec-

tion decisions through seamless global roaming within this heterogeneous wireless environment. The 

network selection process is part of the Handover Management which consists of three major sub-
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services, as illustrated in Fig. 2: (1) Network Monitoring – monitors the current network conditions 

(network availability, signal strength, current call connection etc.) and provides the data gathered to-

gether with information related to the user preferences, current running applications on the user’s mo-

bile device and their QoS requirements to the Handover Decision Module; (2) Handover Decision - 

handles the Network Selection process (which ranks the candidate networks and selects the best target) 

and is initiated either by an automatic trigger for a handover for an existing call connection or by a re-

quest for a new connection on the mobile device; and (3) Handover/Connection Execution - once a new 

target network is selected, the connection is set up on the target candidate network (and the old connec-

tion torn-down). 

 

Fig. 2. Handover Process – Block Diagram 
 
Traditionally, the network selection decision was made by the network operators for mobility or load 

balancing reasons, and was mainly based on assessing the values of a single parameter: Received Sig-

nal Strength (RSS). However, the network selection problem has become a more complex problem, and 

many static and dynamic, and sometimes conflicting, parameters influence the decision-making pro-

cess. As all of these parameters present different ranges and units of measurements, they need to be 

normalized in order to make them comparable. Utility functions are used for normalization to map all 

the parameters into dimensionless units within the range [0,1]. This normalized information is then 

used in the decision-making process in order to compute (through the use of score functions) a ranked 

list of the best available network choices (e.g., best value networks in terms of quality-price trade-off). 

Different score function methods have been proposed for network selection: using different MADM 

methods including Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA) 

[17][18][19], or using Game Theory [34]. User or network operator preferences for the main trade-off 

criteria can be represented by the use of different weights in weighted score functions. Different meth-
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ods have been suggested for determining or gathering the weights combination to reflect the prefer-

ences (which could for example be high quality for a business call with reasonable power savings, or 

reasonable cost-quality trade-off for a fully charged smartphone). The candidate network with the high-

est score is selected as the target network if that differs from the current network connection (or it is for 

a new connection) it prompts a handover execution (or new network connection setup).      

3.2 Utility Functions  

As previously mentioned, the utility functions are part of the overall score function of the decision-

making process and they are used to normalize the decision criteria/parameters into dimensionless units 

(e.g., within [0,1]) in order to make them comparable. The shape of the utility function describes the 

user’s perception of performance and satisfaction and expresses the trade-off the user is willing to ac-

cept between acquiring more resources (e.g., bandwidth) and saving resources (e.g., money, energy, 

etc.). Previous studies have shown that in case of rate-adaptive real-time applications, sigmoid shape 

utility function can be used to describe the user satisfaction as a function of bandwidth [35][36]. 

Whereas for other parameters such as cost or energy, linear functions were used to map them to the user 

preferences [37][38]. A common goal of all the approaches defined in the literature is to optimize the 

network performance by maximizing the utility function. In this work, there are three criteria consid-

ered: energy consumption, quality of the multimedia stream, and the monetary cost. A utility function is 

defined for each of the criteria, such as: energy utility, quality utility and cost utility as in our previous 

work in [39]. All the utility functions defined, follow the principle ‘the larger the utility value the bet-

ter’. In order to analyze the performance of the MADM-based methods fairly, the same utility functions 

are used for each of the four MADM methods. Table II presents a summary of the parameters used 

throughout the paper.  

TABLE II.  PARAMETERS SUMMARY  
Symbol Meaning 

ue Energy Utility [no unit] 
uq Quality Utility [no unit] 
uc Cost Utility [no unit] 
we Energy Weight [no unit] 
wq Quality Weight [no unit] 
wc Cost Utility [no unit] 
E Energy Consumption [Joule]  

Emin Minimum Energy Consumption [Joule] 
Emax Maximum Energy Consumption [Joule] 
Th Average Throughput [Mbps]  
C Monetary Cost [Euro] 

Cmin Minimum Cost [Euro] 
Cmax Maximum Cost [Euro] 
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α and β  positive parameters which determine the shape of the 
quality utility function 

[no unit] 
t Transaction time [seconds] 
rt energy consumption per unit of time [W] 
rd Energy consumption rate for data/received stream 

[Joule/Kbyte] 
Dw Euclidian Distance from the worst reference network 
Db Euclidian Distance from the best reference network 

 

a) Energy Utility - ue 

The energy utility is defined in eq. (1) and is computed based on the estimated energy consumption 

of the mobile device. The energy utility has values in the [0,1] interval, and no unit. 
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where Emin is the minimum energy consumption (Joule), Emax - the maximum energy consumption 

(Joule), and E – the energy consumption for the current network (Joule). Emin and Emax are calculated 

for throughputs Thmin and Thmax respectively. The energy E is modeled using the real experimental test-

bed results and will be introduced in a later Section.  

b) Quality Utility – uq  

A zone-based sigmoid quality utility function is used to map the throughput to user satisfaction for 

multimedia streaming applications as defined in eq. (2). Our previous studies in [40] have shown that in 

the case of real-time multimedia streaming applications, the zone-based sigmoid shape function best 

maps the throughput levels to the user satisfaction with the streamed video. Below a certain throughput 

value the quality of the streamed video is just unacceptable (Zone1). On the opposite end of the scale, 

once the throughput exceeds a certain level the user will not perceive any increased quality level on 

their handset screen with further increases in throughput (Zone3). Between Zone1 and Zone3 the quali-

ty experienced by the user increases with increase in throughput (Zone2). 

The utility is computed based on: minimum throughput (Thmin) needed to maintain the multimedia 

service at a minimum acceptable quality (values below this threshold result in unacceptable quality 

levels i.e., zero utility) and maximum throughput (Thmax), that maps high user satisfaction with quality 

to the highest utility; values above Thmax result in quality levels which are higher than most human 

viewers can distinguish between and so anything above this maximum threshold is a waste. The quality 

utility has values in the [0,1] interval and no unit. 
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where α and β are two positive parameters which determine the shape of the utility function with no 

unit, and Th is the predicted average throughput for each of the candidate networks (Mbps). The values 

for α and β used in this study are 5.72 and 2.66 [40], respectively. 

c) Cost Utility - uc 

As there is a natural human tendency to want to reduce the monetary cost, the cost utility is very 

important and it is defined in eq. (3):  
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where C is the monetary cost for the current network (euro), Cmin - minimum cost that the user is will-

ing to pay (euro) and Cmax – the maximum possible cost that the user can afford to pay (euro). The cost 

utility has values in the [0,1] interval, no unit and is considered to be a flat rate cost expressed in Eu-

ro/Kbyte. It is assumed that the flat rate charged will not change during a user-network session.  

4 EXPERIMENTAL TEST-BED ENVIRONMENT AND RESULTS 

This section presents the energy consumption measurements conducted for an Android mobile de-

vice in several scenarios while performing video delivery over an IEEE 802.11g network and UMTS 

cellular network as illustrated in Fig 3. In our previous work [41] we presented an in-depth study on 

how the wireless link quality and the network load impact the energy consumption of an Android de-

vice while performing on-demand streaming over WLAN. In this paper, the results from the test-bed 

are used to validate the mathematical model of the energy consumption equation and to analyze the 

performance of various MADM-based methods under realistic conditions.  

4.1 Experimental Setup and Test Case Scenarios  

The energy consumption measurements were collected for and Google Nexus One Android Device 

when performing Video on Demand (VoD) over two types of radio access networks: WLAN and 

UMTS as illustrated in Fig. 3. The Multimedia Server consists of Adobe Flash Media Server 42 which 

uses the proprietary application level streaming protocol, referred to as Real Time Messaging Flow 

 
2Adobe Flash Media Server - http://www.adobe.com /products/flashmediaserver/ 
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Protocol (RTMFP) running over User Datagram Protocol (UDP).  

The Blender Foundation’s 10 minute long Big Buck Bunny3 animated clip was used for testing. The 

video clip was encoded at five different quality levels, following recommendations for encoding clips 

for multi-bitrate adaptive streaming4 as illustrated in Table III. The video play-out is scaled to the de-

vice screen resolution. The Power Consumption Monitor integrates an Arduino Duemilanove5 board 

connected to the Android mobile device and a laptop that stores the energy measurements. More details 

about the WLAN test-bed can be found in [41]. For the cellular network, the power measurements were 

run over UMTS provided by the eMobile6 service provider in Ireland. Relevant information about the 

cellular network (e.g., network type, maximum downlink rate, cell id (CID), location area code (LAC), 

mobile country code (MCC), mobile network code (MNC), signal strength (SS)) is listed in Table IV. 

TABLE III.  ENCODING SETTINGS FOR THE MULTIMEDIA LEVELS 

 Encoding Parameters 
Quality 
Level 

Video 
Codec 

Overall Bitrate 
[Kbps] 

Resolution 
[pixels] 

Frame Rate 
[fps] 

Audio 
Codec 

QL1 H.264/ 
MPEG-

4 
AVC 

Baseline 
Profile 

1920 800x448 30 

AAC 
25 Kbps 
8 KHz 

QL2 960 512x288 25 
QL3 480 320x176 20 
QL4 240 320x176 15 

QL5 120 320x176 10 

TABLE IV.  CELLULAR NETWORK CHARACTERISTICS  

Operator 
Network 

Type 
Downlink 

Rate 
CID LAC MCC+MNC SS 

eMobile UMTS 384kbps 60902 3006 27203 -73dBm 

The experimental test-bed measurements were collected under five test-case scenarios as illustrated 

in Fig. 4 and described below. The Multimedia Server stores the five ten-minute clips corresponding to 

 
3 Big Buck Bunny - http://www.bigbuckbunny.org/ 
4Smooth Streaming Multi-Bitrate Calculator - http://alexzambelli.com/WMV/MBRCalc.html 
5Arduino Duemilanove  - http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove 
6 eMobile Ireland - http://www.emobile.ie/  

 

Fig. 3. Experimental Test-Bed Setup 
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different quality levels and streams them sequentially to the Android mobile device over UDP. 

Scenario 1 – No Load, Near AP: the mobile user is located near the AP (~ 1m away), with no extra 

background traffic in the network, and the mobile device SS varies between -48dBm and -52dBm. 

Scenario 2 – No Load, Far AP: the mobile user is located in an area with poor SS, varying between -

78dBm and -82dBm. There is no extra background traffic in the network.  

Scenario 3 – Load, Near AP: similar to Scenario 1, except that background traffic is added to load the 

network. A Candela LANforge traffic generator was used to create between 25 and 28 virtual wireless 

stations, each of them generating traffic. The size and choice of the background traffic type is based on 

the traffic forecast provided by Cisco [1]: 66% video traffic with 98% downlink traffic and 2% uplink 

traffic; and 34% other traffic type (e.g., web-browsing/e-mail, file sharing, etc) with 76% downlink 

traffic and 24% uplink traffic. The overall network traffic load was selected in the range of 20-21Mbps, 

so that the network is maintained at high load without being overloaded or used at its maximum capaci-

ty. The stations generating background traffic were located near the AP with the signal strength varying 

between -28dBm and -32dBm and generating a mix of UDP traffic with data rates between 0.25Mbps 

and 2Mbps and packet sixe of 1514bytes, and Transport Control Protocol (TCP) traffic with data rates 

between 0.250Mbps and 1Mbps and packet size in the range of 300-1514bytes. The overall video traf-

fic load was maintained at 66% of the total background traffic for all scenarios. 

Scenario 4 – Load, Far AP: similar to Scenario 2, except that background traffic was added as in Sce-

nario 3 (Load, Near AP).  

Scenario 5 – Cellular: the mobile user is performing VoD over the cellular network. The UMTS net-

 
Fig. 4. Considered Scenarios. 
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work provided by the eMobile cellular network operator was used. 

4.2 Experimental Results  

An in-depth study and a more detailed view of the results within the WLAN environment (Scenario 

1 to Scenario 4) are presented in [41]. A summary of the results is presented in Table V. The average 

energy consumption (Avg. Energy) of the mobile device was measured while performing VoD Stream-

ing over UDP for the five quality levels. The actual average throughput (Avg. Th.) received by the mo-

bile device on the wireless network, was captured with Wireshark. The results obtained over UMTS 

from eMobile are detailed in [41] and summarized in Table VI. Because cellular networks have lower 

transmission rates than WLAN (e.g., UMTS has a maximum theoretical data rate of 384kbps, whereas 

IEEE 802.11g has a maximum theoretical data rate of 54Mbps), a subset of three out of the five quality 

levels were considered for streaming over UMTS. 

These results were further used to validate the energy consumption equation and to analyze the 

performance of various MADM-based methods in the network selection context.   

TABLE V.  RESULTS SUMMARY FOR UDP VOD STREAMING IN THE WIRELESS ENVIRONMENT   

 WLAN 

 
Scenario1 
No Load,  
Near AP 

Scenario 2 
No Load,  
Far AP 

Scenario 3 
Load,  

Near AP 

Scenario 4 
Load,  

Far AP 

 
Avg. Energy 

[J] 
Avg. Th. 
[Mbps] 

Avg. Energy 
[J] 

Avg. Th. 
[Mbps] 

Avg. Energy 
[J] 

Avg. Th. 
[Mbps] 

Avg. Energy 
[J] 

Avg. Th. 
[Mbps] 

QL1 862 2.07 875 3.32 897 2.27 1300 1.32 
QL2 610 1.05 628 1.57 657 1.18 826 1.02 
QL3 503 0.52 512 0.59 536 0.65 667 0.45 
QL4 459 0.26 463 0.26 466 0.36 512 0.30 
QL5 413 0.14 420 0.13 438 0.18 468 0.14 

 
TABLE VI.  SCENARIO 5 – UDP VOD STREAMING IN THE CELLULAR ENVIRONMENT 

 
Quality 
Level 

Avg. Energy 
[J] 

Avg. Power 
[mW] 

Discharge 
[mAh] 

Battery Life 
[hrs] 

Playout 
[s] 

eMobile 
(UMTS) U

D
P

 QL3 747 1254 56 3.92 600 
QL4 693 1160 52 4.24 600 
QL5 663 1110 50 4.43 600 

4.3 Subjective Video Quality Assessment Results  

The quality of the choice of the five quality levels for the multimedia streams was validated using 

two methods: an objective method in terms of Peak Signal-to-Noise Ratio (PSNR) and a subjective 

method based on a study conducted where the subjects had to individually rate the quality of each 

sequence on a 5-point scale (e.g., 1-Bad, 2-Poor, 3-Fair, 4-Good, 5-Excellent) [40]. For each sequence, 

the mean value represented by the Mean Opinion Score (MOS) was computed. The results of both 
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assessment methods are listed in Table VII along with the perceived quality and impairment mapping.    

TABLE VII.  OBJECTIVE AND SUBJECTIVE RESULTS 

Quality  
Level 

PSNR 
[dB] 

Subjective 
MOS 

Perceived 
Quality 

Impairment 

QL1 - 4.84 Excellent Imperceptible 
QL2 47 4.63 Excellent Imperceptible 
QL3 41 4.33 Good Perceptible but not annoying 
QL4 36 3.70 Good Perceptible but not annoying 
QL5 31 3.38 Fair Slightly annoying 

 
The test sequences were played locally in full screen on the Android device and displayed in a ran-

dom order (to minimize the order effect), maintaining similar testing conditions for all the participants. 

In the case of the five considered scenarios, the wireless link was good quality and had enough availa-

ble bandwidth to support VoD, allowing smooth and un-interrupted playback which maintained the 

same user perceived quality and thus the same subjective MOS values as for local playback. The only 

difference in MOS appears in Scenario 4, where the background traffic and the distance from the AP 

affect the MOS for QL1 – QL3. In this case the estimated MOS would be less than 3 for QL1, 3.58 for 

QL2, and 3.43 for QL3, with QL4 and QL5 maintaining the same MOS as for local playback [39].  

 

4.4 Modeling the Energy Consumption Pattern  

This section provides the model for the energy consumption pattern of an Android mobile device 

using real experimental energy measurements. The rt (the mobile device’s energy consumption per unit 

of time), and rd (energy consumption rate for data/received stream) parameters are computed using the 

energy measurement results from the experimental test-bed, for all test-case scenarios: (1) WLAN – No 

load, near AP; (2) WLAN – No load, far AP; (3) WLAN – Load, near AP; (4) WLAN – Load, far AP; 

(5) UMTS and presented in Table VIII. By using these results the energy consumption pattern of the 

Google Nexus One can be modeled as a mathematical eq. (4) given below: 

)( diti rThrtE ⋅+=   (4) 

where: Ei is the estimated energy consumption (Joule) for Radio Access Network (RAN) i; t represents 

the transaction time (seconds) taken from the experimental measurements for each of the test scenarios; 

rt is the mobile device’s energy consumption per unit of time (W); Thi is the throughput (kbps) provided 

by RAN i; and rd is the energy consumption rate for data/received stream (Joule/Kbyte). The two pa-

rameters, rt and rd, are device specific and differ for each network interface (WLAN, UMTS, etc.). In 

this study, they were determined by running different simulations for various amounts of multimedia 
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data (i.e., quality levels) while measuring the corresponding energy levels and then used to define the 

energy consumption pattern for each interface/scenario. Similar studies could be run on other mobile 

devices, however, these parameters could also be provided in the future by the device manufacturer in 

their device specifications and by making use of them, the solution could be generalized across a wide 

range of devices.   

TABLE VIII.  RT AND RD COMPUTED VALUES 
 WLAN UMTS 

 
No Load, 

Near AP 
No Load, Far 

AP 
Load, Near 

AP 
Load, Far 

AP 
e-Mobile Network 

rt 0.6341570 0.6690961 0.6641148 0.7115433 1.058 
rd 0.0003869 0.0002377 0.0003660 0.0004889 0.000388 

To validate the energy equation, the Wireshark trace files, captured from the experimental test-bed, 

were used to extract the received throughput of the Google Nexus One during the video delivery of 

each multimedia quality level in each considered scenario. Wireshark captured the network conditions 

every 10 seconds. The extracted throughput was then used in eq. (4) to compute the energy consump-

tion. During the experimental test-bed the energy consumption of the Google Nexus One was measured 

with the Arduino board. The Arduino board measures the energy consumption of the device every 1 

second. The computed energy was then compared against the measured energy. Fig. 5 and Fig. 6 illus-

trate the received Throughput (Wireshark), Measured Energy (Arduino board), and Computed Energy 

(eq. (4)) for QL1 and QL5, respectively in each considered scenario. Note that the throughput and the 

computed energy are represented by 60 points, while the measured energy by 600 points. This repre-

sents a reason, together with the possible synchronization issues between the trace files generated by 

different tools (Wireshark and Arduino), for which the plots might present slight variations. However, 

despite these issues, the energy equation provides a good approximation of the average energy con-

sumption of the mobile device. The average values in all considered scenarios and for all the quality 

levels are presented in Table IX. By performing t-tests on the Measured Energy and Computed Energy 

results for each multimedia quality level and for each considered scenario, it is shown that there is no statisti-

cal difference between the average values of the two sets of results. The t-tests compare the two sets of data 

assuming equal variances. The results listed in Table X show that in all cases the test statistic (t Stat) < criti-

cal value (t Critical) and the p value > significant level (α). This accepts the null hypothesis and demon-

strates that there is no statistical difference between the average results provided by the energy equation 

(Computed Energy) and the average values from the real test measurements (Measured Energy). This find-
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ing is stated with a very high level of confidence of 95% (the significant level, α = 0.05). 

 

 

 

a) No Load, Near AP 

 

b) No Load, Far AP 

 

c) Load, Near AP 

 

d) Load, Far AP 

Fig. 6. Throughput vs. Measured Energy vs. Computed Energy for QL5 for each of the four scenarios 

 

a) No Load, Near AP 

 

b) No Load, Far AP 

 

c) Load, Near AP 

 

d) Load, Far AP 

Fig. 5. Throughput vs. Measured Energy vs. Computed Energy for QL1 for each of the four scenarios 
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TABLE IX.  MEASURED ENERGY VS. COMPUTED ENERGY [JOULE] 

 WLAN UMTS 
 No Load, Near AP No Load, Far AP Load, Near AP Load, Far AP e-Mobile Network 

 Measured 
Energy 

Computed 
Energy 

Measured 
Energy 

Computed 
Energy 

Measured 
Energy 

Computed 
Energy 

Measured 
Energy 

Computed 
Energy 

Measured 
Energy 

Computed 
Energy 

QL1 862 861.1 875 875 897 897 1300 1300 N/A N/A 
QL2 610 624.2 628 625 657 658 826 841 N/A N/A 
QL3 503 501.2 512 486 536 541 667 614 747 747 
QL4 459 440.8 463 439 466 478 512 515 693 691 
QL5 413 412.9 420 420 438 438 468 468 663 663 

 

TABLE X.  T-TEST RESULTS: TWO-SAMPLE ASSUMING EQUAL VARIANCES  

 WLAN UMTS 

 No Load, Near AP No Load, Far AP Load, Near AP Load, Far AP e-Mobile Network 

α 0.05 0.05 0.05 0.05 0.05 

t Stat 0.011706 0.090233 -0.03065 0.032723 0.019135 

P(T<=t) 0.990947 0.930321 0.976299 0.974697 0.985649 

t critical 2.306004 2.306004 2.306004 2.306004 2.776445 

 
The results show that the proposed energy equation provides a good approximation of the average 

energy consumption of the Google Nexus One device. The rt and rd values have been mapped to the 

corresponding quality levels and used in the comparison. 

5 EVALUATION OF THE RANKING METHODS 

This section evaluates four of the MADM methods: GRA, MEW, SAW, and TOPSIS, in order to 

analyze if they produce similar results under different conditions. All the methods are analyzed in terms 

of energy-quality trade-off. In order to accomplish this, the candidate networks considered are the net-

works from the experimental test-bed. The candidate networks list is as follows: WLAN1 – No Load, 

Near AP; WLAN2 – No Load, Far AP; WLAN3 – Load, Near AP; WLAN4 – Load, Far AP; UMTS – 

eMobile network. Because each network can deliver the video at five quality levels (except three quali-

ty levels for UMTS), it is assumed that the network selection is performed between the quality levels 

and the five networks. A total number of 23 options are considered. The outcome will be the best value 

network that provides the best quality-energy trade-off.  Each ranking method will assign a score to 

each network and for each quality level. The network that has the highest score for a certain quality 

level will be selected as the target network. In SAW (eq. (5)) and MEW (eq. (6)) the score for a given 

network i is calculated using additive and multiplicative operations. Whereas GRA (eq. (7)) uses the 

best reference network in order to describe the similarity between each of the candidate networks, and 

TOPSIS (eq. (8)) scores the networks based on the distance from the best and worst reference net-

works. Here, the best and worst reference networks are defined with the best and worst values of each 
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parameter. To analyze the efficiency of each ranking method, the parameter utility functions were kept 

the same between them.       
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where we, wq, and wc  represent the weights of energy, quality, and cost; ue, uq, uc are the energy utility, 

quality utility, and cost utility; ue
b, uq

b, and uc
b are the utility values for the best reference network. Dw,i 

and Db,i represent the Euclidian distance of a network i from the worst and the best reference network 

and their values are given by eq. (9) and (10), respectively: 
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where ue
w, uq

w, and uc
w are the utility values for the worst reference network. 

TABLE XI.  RANKING METHOD RESULTS: GRA VS. MEW VS. SAW VS. TOPSIS 

 WLAN1 WLAN2 WLAN3 
 No Load, Near AP No Load, Far AP Load, Near AP 
 GRA MEW SAW TOPSIS GRA MEW SAW TOPSIS GRA MEW SAW TOPSIS 

QL1 0.7198 0.4706 0.6107 0.5612 0.7137 0.4445 0.5988 0.5525 0.7036 0.3968 0.5787 0.5386 
QL2 0.7766 0.7103 0.7124 0.7048 0.7712 0.7005 0.7034 0.6948 0.7606 0.6804 0.6853 0.6746 
QL3 0.7191 0.5480 0.6094 0.5818 0.7153 0.5433 0.6019 0.5770 0.7066 0.5323 0.5848 0.5654 
QL4 0.6879 0.3253 0.5462 0.5254 0.6847 0.3230 0.5395 0.5219 0.6770 0.3174 0.5228 0.5127 
QL5 0.6732 0.1709 0.5146 0.5074 0.6732 0.1709 0.5146 0.5074 0.6719 0.1704 0.5116 0.5059 

 WLAN4 UMTS 
 Load, Far AP e-Mobile Network 
 GRA MEW SAW TOPSIS GRA MEW SAW TOPSIS 

QL1 0.6667 0 0.5000 0.4926 N/A N/A N/A N/A 
QL2 0.7221 0.5960 0.6151 0.5982 N/A N/A N/A N/A 
QL3 0.6802 0.4957 0.5298 0.5223 0.6201 0.3847 0.3872 0.3805 
QL4 0.6677 0.3104 0.5024 0.5006 0.5954 0.2394 0.3205 0.3487 
QL5 0.6598 0.1656 0.4843 0.4913 0.5906 0.1306 0.3068 0.3563 

The quality utility, cost utility, and energy utility were previously described. Emax and Emin are 

computed as the average of the energy measurements presented in Table XI for QL1 and QL5 in each 

considered scenario, respectively. Thus their values are Emax = 983.4 Joule and Emin = 434.75 Joule. In 

terms of user preferences, represented by the weights’ values, there are many ways of collecting data 

from the users. As previously mentioned, some of the existing weighted solutions obtain the weights 
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through questionnaires on users and service requirements. Other solutions integrate a GUI in the user’s 

mobile terminal in order to collect the user preferences and some other solutions look into using AHP 

or ANP as methods to determine the weight values. An important aspect is to find a trade-off between 

the cost of involving the user and the decision mechanism. One solution for minimizing the user inter-

action may be by implementing an intelligent learning mechanism that could predict the user prefer-

ences over time. We will consider this for future work. In this work, to analyze the energy-quality 

trade-off of each ranking method, the weight for the cost was considered to be zero whereas the 

weights for energy and quality are considered to be equal: we = 0.5, wq = 0.5, and wc = 0. 

The best reference network is built from the best values of each parameter while the worst refer-

ence network, considers the worst value of each parameter. In this context, from the five networks, the 

best reference network is considered to be the one that provides the highest quality level QL1 (uq
b = 1), 

with the lowest energy consumption of 413 Joule (ue
b = 1), whereas the worst reference network is con-

sidered to provide the lowest quality level QL5 (uq
w = 0.0292) with the highest energy consumption of 

1300 Joule (ue
w = 0). The results of each ranking method (e.g., GRA, MEW, SAW, and TOPSIS) for 

each quality level and for each network are given in Table XI. The first three choices of each ranking 

method within each network are indicated by colors, such that: the first choice is represented in green, 

the second choice is marked by blue, and the third place is marked by orange.  Looking at the results 

from a global point of view, all the methods select QL2 WLAN1 as their first choice. When looking at 

the results within one network only (e.g., WLAN1) it can be noticed that GRA and SAW provide simi-

lar results, as they rank the quality levels as follows: QL2, QL1, and then QL3, demonstrating that they 

are more quality-oriented methods. An aspect to note is that both of them provide very small differ-

ences between the scores. For example, between QL1 and QL3 for WLAN1, GRA score difference is 

0.0007 only whereas SAW score difference is 0.0013. This makes them very sensitive to the changing 

conditions. For example, looking at WLAN2, WLAN3, and WLAN4, their quality levels order is QL2, 

QL3, and then QL1, but again the difference between scores is very small. 

On the other hand, looking at the results provided by TOPSIS, the method provides a clear distance 

between the best solution and the rest for each individual RAN, but the differences between the scores 

of the remaining solutions are small for TOPSIS as well. The only method that provides a clear distance 

between all the quality levels is MEW. Also looking at the results provided for WLAN4, which can be 

considered the worst case scenario for WLAN choice, as the mobile user will be located in a poor 
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signal area and a loaded network, GRA, SAW, and TOPSIS provide the same score order (QL2, QL3, 

QL4, QL1, QL5) whereas MEW totally eliminates the choice of QL1 (QL2, QL3, QL4, QL5). This is 

because QL1 has the highest energy consumption, and in extreme situations the user will be better off 

with a Fair quality (QL5) and moderate energy consumption than with high quality (QL1) and risk 

reaching the mobile device battery lifetime. 

Fig. 7 illustrates a comparison of the four ranking methods with varying quality weight (wq) within 

the same network (WLAN1). For each method the total rank score vs. quality level vs. quality weight is 

illustrated in a colored 3D graph. The dark red color is associated with high score values while the dark 

blue color is associated with low score values. The quality weight (wq) is varied between 0 and 1 

(quality-oriented) meaning that the energy weight will vary between 1 (energy-oriented) and 0. For 

example, we = 0 when wq=1, which means that the user is quality-oriented, and does not care about the 

energy conservation at all. This is visible in Fig. 7, as when wq = 1, all the ranking methods will have 

the highest score (dark red color) for QL1. Whereas we = 1 when wq=0, meaning that the user is highly 

energy-oriented, and wants to conserve the energy of the mobile device, no matter the quality level is. 

In this situation the methods provide the highest score for QL5 (dark red color – see Fig. 7). QL2 

keeps, more or less, the same rank score (same range of color) for all quality weights and therefore in-

dicates a more stable choice overall. It can be seen that MEW provides a more distinct difference be-

 
Fig. 7. Ranking Methods Comparison with varying Quality Weight for QL within WLAN1 (No Load, Near 

AP), QL1 – highest quality level, QL5 – lowest quality level 
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tween the choices of quality levels for the same value of the quality weight. 

Considering a varying quality weight (wq) but for a choice of different networks (e.g., WLAN1, 

WLAN2, WLAN3, and WLAN4) at the same quality level (QL1), the score results of each ranking 

method are illustrated in Fig. 8. As it has been seen in the experimental part the impact of the network 

conditions (WLAN4 - loaded network and far from the AP) is more visible on QL1 than other QL. This 

causes increase in the playout duration of the multimedia stream (because of re-buffering) and leads to 

an extreme increase in energy consumption and decrease in MOS. The increase in energy makes QL1 

(WLAN4) the worst option among the 23 possible ones. This is translated in ue being zero. However, 

with all the presented disadvantages GRA, SAW, and TOPSIS all end-up selecting QL1 on WLAN4 as 

seen in Fig. 8. MEW will select QL1 but only in the case that wq = 1.  

The analysis of the main ranking methods, presented in this section, have shown that MEW models 

the network selection in the best way, in comparison with other well-known ranking methods: GRA, 

SAW, and TOPSIS. The main advantages of MEW over the other methods, is that it provides a clear 

difference between the score results of each option, and that MEW penalizes alternatives with poor 

criteria values more heavily.  

Fig. 8. Ranking Methods Comparison with varying Quality Weight within WLANs for QL1 
WLAN1 (No Load, Near AP), WLAN2 (No Load, Far AP), WLAN3 (Load, Near AP), WLAN4 (Load, 

Far AP) 
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6 CONCLUSIONS 

This paper conducts a performance evaluation analysis of the widely used MADM methods for network 

selection using real user data. The performance evaluation is done in terms of energy efficiency and user 

perceived quality levels for multimedia streaming over a heterogeneous wireless environment. Real 

energy measurements were conducted on a Google Nexus One Android mobile device for various amounts 

of multimedia data (quality levels) received streams. A mathematical model of the energy consumption pat-

tern for each of the available interfaces (e.g., WLAN and UMTS) was then built based on the real energy 

consumption measurements. Similarly, measurements could be taken for other smartphones for each of the 

wireless interface technologies supported (e.g., 802.11n, LTE, etc.). This energy-related information could, in 

future, be provided by energy conscious device manufacturer in their device specifications. In this study, the 

experimental results were used here to validate the choice of the energy equation, for a multimedia-based 

wireless environment.   

The well-known MADM ranking methods (e.g., GRA, MEW, SAW, and TOPSIS) are evaluated 

through mathematical performance analysis in order to examine if they produce similar results under differ-

ent conditions. The results analysis shows that MEW finds a better quality-energy trade-off and its main ad-

vantage is that provides distinct differences between the score results for each multimedia quality level. It 

also penalizes alternatives/options with poor parameters/criteria values more heavily than the other tested 

MADM schemes. 

Nowadays the network operators consider that if they provide individual high throughput this is trans-

lated into satisfied users. However, as this paper shows, the excellent perceived quality of service does not 

always result from providing highest throughput and a good trade-off between quality-energy is needed in 

order to keep today’s battery conscious user satisfied. Thus, network operators need to integrate adaptive 

mechanisms in order to cater for the user preferences and enable a good balance between energy and quality. 
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