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Abstract— The era of petabyte data has arrived as the digit
big data universe continues its expansion towardsxascale with
massive volumes of data generated by diverse didirited
sources. The size of big data makes it very diffitl gaining
insight into the data meaning. In industrial applications, in order
to explore both data meaning and the complex relathship
between data components, big data needs to be presed and
reduced enabling further deeper analysis in a timgl manner. In
this paper an integrated data analytics framework $ presented
designed to extract the set of instances exhibitingtatistical
dependency from massive volume of data in a pre-deéd quasi
real-time manner. The parallel computing model of MipReduce
is enhanced to realiseMagnet. The solution presented in this
paper is applicable to the telecommunications markewhere it
optimises next-generation network management systemfor
heterogeneous radio access technologies.

Index Terms—Operations Support System, Big Data, 5G,
Real-time, MapReduce, Stream Analytics, Pattern Mathing,
Data Mining

|I. INTRODUCTION
HE continuous increase in the number of mobile cki

use. However such exploration poses significantlehges,
mostly as this massive volume of data, represeriigd
heterogeneous and diverse dimensionality data coens, is
too big for the processing capacity of the tradigibanalytical
tools. So far, in order to be able to cope witls ihflux of big
data business enterprises constantly scale-up tiadyta
performance by employing incremental upgrades te th
existing solutions. However, these solutions haesese
limitations, especially in terms of handling stresaof big data
transferred over large bandwidth networks and oatjng
from multiple sources and therefore proposal of ehov
approaches is required.

Such big data is usually bursty in nature and @ahadndled
by spreading the incoming data into multiple windowhis
will also facilitate distributing the data processi
Alternatively, based on the data incoming ratepueses can
be allocated dynamically [1]. Variability in the tdais also
caused by larger proportion of irrelevant, redutdard noisy
information coming from various sources. This imtimakes
very difficult the extraction of meaningful knowligel from the
data within a limited time. Simple light weight dagtrojection

and users on one hand and advent of ubiquitotischniques can serve the purpose of reducing the da
communication technologies, development of innaeati dimension, but is capable of handling limited vokswof data

networking applications and user demand for higalitpurich
media content on the other hand are behind thetlatassive

only. Parallelizing the projection can solve thelgem, but
there is a possibility of higher approximation err&vent-

amounts of data generated and exchanged, whoseneolubased Stream Processing (ESP) is advantageousdacing

continues to grow at an exponential pace. The asiog
increase in the volume of data generated is showm$tance
by the fact that the amount of information createxnn the
dawn of human civilization to 2003 (i.e., 5 exalsytés now
generated in just a couple of days. Additionally tfata digital
universe is experiencing a two-fold expansion evexy years
since 2012 so that the annual global IP traffiexpected to
exceed the zettabyte (1000 exabytes) thresholddyehd of
2016, and reach 1.6 zettabytes per year by 201&aiog to
forecasts by leading industry forums. This huge @mhaf
information (lately labelled as “data explosion&rived from
“big data”) leverages myriad opportunities for atsalysis and
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the number of events (which are distinct data mmta
labelled as such by the operators of ESP) with idensble
low latency, but the scalability is constrained [2]

This paper addresses these challenges by propisigget,
an integrated scalable data analytics frameworkgded to
extract the set of instances exhibiting statistidapendency
from large amounts of data in a given time peribhgnet
consists of two major components: a load balanndraadata
reducer. The load balancer dynamically balancedahé of
the incoming data via an arrival rate-based adeptiindow
solution. Once the data is loaded, the data reducer
approximates the data by applying an on-the-flyalbar
random projection technique and finding correlatedfances.
Correlated instances do not necessarily imply depatof
instances, but make the task of pattern discovememrecise.
The data reducer is designed to work in conjunctidth
MapReduce (MR) [3] a ubiquitous parallel computing
paradigm to process large data. Basically MR perfoits
tasks in batches with high latency, whilagnet'slow latency
is the result of using micro-batches of the inpatadand
pipelining the projection and correlation computatjobs.
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Our research is focused specifically on the telecom Conventional data approximation techniques incur
industry as it has dealt with large amounts netwaeta for significant number of distortions while projectidgta points
decades and is preparing to cope with big datatlyndese to  onto lower dimensions. IMagnetthe Data Approximation
the unprecedented rise in network control inforomti (DA) was realised using MapReduce where data fmariitg
generated by the next generation mobile networkse Tand re-processing of each partition has been optithias
purpose oMagnetis to serve specific business needs, makingescribed with further details in [5]. This optimiton
the big telecom network data a “service” ratherntha INvolves an extension of the approximation procéss
“technique” by integrating the analytical results pattern Processing each partition multiple times accorditgy
discovery to enable predictions of the network sces and statistical theory. Conseque_ntly, the approximatesilts will
respective solutions.Magnet performance is tested on be more accurate. This is why the chosen MapReduce

e . approach can be described as enhanced.
artificially generated telecoms network trace datae input . .
X . . In Magnet DA approximates a micro-batch of streams
consists of an online stream generated by the uséo

developed emulator OpenM&Orhe contribution of this work and star_t§ carrelation finding on that micro-batalther
. i than waiting for the whole stream-batch to be pssed.
can be summarized as follows:

. _ Sequential processing is at the core of this hydatthn of
' Develo.ped.a parallel algorithm for scaled and edin batch processing and real-time processing. Thisguales
approximation of datg fully serves our objective of maintaining low latgnand
DeveI.oped an analytical framewokkagnetcapable of high throughput processing. Spark-based streamegsing
handling streams of data ) . is similar to the proposed approach where the rstisaplit
*  Evaluated Magnet on abstracting the symptomatiCinig discretised small batches but processed inongm
events leading to cell congestion from an artifigia \hich allows a more interactive and faster procepsif
simulated trace file. _ batches by design; however, at the time E-Streamest
The principle of howMagnetworks and where the MP des'gnMapReduce still provided a much more stable enviremt
has been improved are described in Section II. This compared to Spark which was key towards a future

followed by describing the realization dagnetin the E- integration into Ericsson’s xStream system [6]. §hu
Stream architecture in Section lll. The evaluatioh the MapReduce was favoured over Spark.

integratedMlagnetsolution is presented in Section 1V followed
by a discussion on hoviMagnet fits in the context next

generation Operations Support Systems (OSSs). Tk is Unprocessed
concluded in Section VI.

Jumping window S|FC9 3
of size N sec =V b/ toSIlce 2
[I. THE MAGNETALGORITHM sec I Slice 1 Dynamic Load
——— t Balancer
The success oMagnet relies on its ability to scale the Stream rate =V b/

sec

processing of massive data volumes, approximatedtia
with high accuracy and introduce a limited timeagelIn
Magnet parallelizing the process of approximation anc
correlation computation is the source of scalghihiéplicating

the parallelization process incurs minimal appration error

and adaptive slicing of the stream integrated wigtelining = =
the processes facilitate stream processing. Refined Data
The workflow ofMagnetis presented in Figure 1 and consist: Approximator
of three stages: dynamic load balancing, refineda da Gl !F!?I‘Tm'\ [ETBI<TH EEFE

approximation, and correlation finding. These thstages
ensure low latency and low error, which are theofal

DA 1 DA 2 DA 3 DA k

features of a stream processing model [4]. In sumidagnet
is capable of: JL v vy
e Rate-based diffusion of streanMagnet splits the CF1 CF2 CF3 CFK

) Correlation
stream based on the arrival rate and spreads the s

Finder
stream among smaller slices.
e Fault tolerant processinglagnetreplicates each slice
of the split stream to maintain better approximatio

accuracy. correlated events
e Incremental processingMagnet supports pipeline
parallelism of the tasks.

(@ |Tfo|™
—|o [o [
fol B i [oX

Figure 1: Internal workflow of Magnet

* OpenMSC is available at www.github.com/seronlime@MSC
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Figure 2: System design of the E-Stream project

A. Dynamic Load Balancing

The concept of dynamic load balancing is basedomtralled
processing of the incoming data stream. This enfaitding
the processors with a manageable data volume, wheld/O
is confronted with the event storm. In this meckanithe
incoming data volume is controlled adaptively witle data

product’ the events with poor spectral condition be filtered
out. These events can be ignored, as noisy evditis.
technique is more data intensive in a sense tlaatalyses the
eigen-space (spectrum) of the covariance matrix thaf
observed event set and identifies eigen-states ngpritom
random noise using the known eigenvalue distrilutaf

arrival rate. InMagnetthe data arrival rate (also defined agandom matrices. This results in a decompositionthaf

stream burst rate) is estimated first and basedhah the
window length is derived (which is the volume otdaming

covariance matrix: a part containing useful infotima from
events with potential correlative structure and theo part

data stream), leading to seamless interaction feetweCapturing the random noise. We designed the coiosla

streaming rate and the capacity of the processers lpuffer
size).

B. Refined Data Approximation

The purpose of Refined Data Approximation (RDA)ts
increase the efficiency of load balancing by furtheducing
the events, while maintaining lower estimation esrdRDA
proceeds on-the-fly and therefore has no storaggnements.
The theoretical basis of RDA is underpinned by skeninal
Johnson-Lindenstrauss (JL) lemma [7].

In event-based streams distinct events exist agtsnmather
than continuous values and this requires a careul
configuration of the approximator.
indexing is utilised to project events to lower dimsions. To
maintain the on-the-fly processing of the input ragewe
simply recompute the entries by Gaussian randonhimgs
Following the JL lemma and the law of large numbees

finder to work with RDA in a pipeline parallel fraawork. In
this framework the correlation finder starts praieg the
projected data from RDA before all the data is ectgd. A
more detailed description and evaluation of theretation
finder can be found in [5].

D. Realisation of the Enhanced MapReduce

Magnet aims to constitute a modular system capable
discover network events patterns by analysing glecom
trace data and predict network incidents from thvene
patterns to provide corrective actions. For aceudiscovery
of event associations it requires designing a niotelligent

of

Random hash-tasélata collection mechanism to extract useful infdiaraonly.

And for responding to network incidents pro-actyethis
information should be forwarded to the next workingdules
within minimal time delay. In E-StreariMagnetprovides the
functionality of smart and scalable data collection

repeat the on-the-fly approximation several timesd a MapReduce (MR) is a special data-based programmiodel

parallelize the whole procedure to scale the psings
performance. The underlying idea is to partitioa ttata and
run the data approximation several times on eactitipa,
and in this way we are replicating the projectienesal times
to refine the approximation.

C. Data Intensive Correlation Finder

Correlation finder focuses on identifying any ctation
between the data instances in order to capturde¢pendency
relation between the instances. This correlativeictire
between the events can be detected by analysingities-
values of large dimensional random matrices anch asy-

which has been established as a standard practice f
processing large amounts of data in parallel. dtudes two
major phasesmap in which all the input data is transformed
by a single argument in parallel aretluce in which all the
transformed input data is grouped based on someipheul
arguments. The niche of MR usage in parallelisatom
scalability is the consequence of statelessnesiseomapping
algorithms (mappers) and independent processirdiffefent
reducing solutions (reducers). The executions eftésks take
place sequentially, which limits the scope of MRténms of
processing continuous large scale data (streamthelfdata
going through MR is kept reasonably small and pssitey is
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done incrementally, MR handles streaming data wéthuced
delay response. Following this observation,
workflow of MR was enhanced to enalMagnetprocessing
of event streams by micro splitting the trace stregescribed
next.

E. Micro-splitting of the Trace Stream

Stream micro-splitting starts with slicing the imtiog data
stream into small batches which are computed basduuffer
size (processing power) and then the data colleictegiach
batch is submitted to the MR. These small batchegart of
the jumping windows in which the results of thedbats are

accumulated. We consider the deployment of ‘jumping .

windows instead of the ‘sliding’ windows as thetidatrequires
more processing power for accumulating the outpiitse
length of the jumping window is controlled dynaniiga
according to the stream burst rate and the sizéhefslices

the ichas

TABLE |
STRUCTURE OF A SINGLEEVENT IDENTIFIER (EVENTID) WITH TOTAL
LENGTH OF19DIGITS

Field Numeric Length

Source Network Element 5
Destination Network Eleme
Protocol Type
Primitive Name
Information Elemer

5
2
2
2
Value 3

» Pattern Matching Module (PMM) and
Recommender System Module (RSM)

Magnet combines DRM, EDM, ECM and PMM in a single
solution which can be directly mapped to the asgdtitre
defined in E-Stream. As depicted in Figure 3, tlaee stream

depends on the minimal data volume the mappersighois first minimised in spatial size to reduce thenpatational

accumulate before sending it to the reducer (wlictually

complexity of discovering episodes (sequence ofnHis

performs the processing). The advantage of suchromighat indicate potential patterns of interest) i thext step

splitting of streams is that after receiving a sfi@time slice
from every mapper, the reducer starts the comlmingirocess
and merges the result with the previously mergedite

F. Incremental Processing

One of the sources of high latency in MR is thae th

commencement of one process needs to wait forhfimsof
the process started earlier. The enhanced MR ieslua
modification of the basic MR functionality to penfo parallel
process execution. Micro splitting the stream fatibs
pipelined parallelism between the componentMagnet this
procedure can also be defined as incremental Bimgesin
this improved solution, the reducer does not needit until
the map phase finishes the task. The reducer needsnpute
the aggregated slice value only after receiving theta
corresponding to the same slice from all mappefterAhis is
performed, it calls the user-defined merge() fuorctio merge
the slice results with the jumping window results.

l1l.  INTEGRATING MAGNET IN E-STREAM

E-Stream aims to constitute a modular system capabl
discover network events patterns by analysing tiecom
trace data and predict network incidents from thene
patterns to provide corrective actions. For aceuthiscovery
of event associations it requires the design of arem
intelligent data collection mechanism to extractefuk
information only. And for responding to network idents
pro-actively, this information should be forwardedthe next
working modules within minimal time delay. In theSEeam

which are then further classified according tortloeirelation.

The illustrated pattern model library in Figureepresents the
linking storage element between the episode disgaued the
future pattern model matching mechanisms akin to a
commonly known relational database implementation.

IV. EVALUATION

A. Emulation Set-up

In order to test and evaluatdagnettwo high end 24 core
servers were utilized with 128 GB RAM each runnisiguntu
server 12.04. In order to guarantee a scalabler@mwient
where no single module is permitted to utilise all
computational resources available on the physicathime,
DRM, ECM, PMM and RSM were set up in a virtualised
environment using Kernel Virtual Machines (KVMs).

The integrated E-Stream test-bed is only as goodhas
environment in which it is presented. Without a lrea
continuous stream of trace data, the implementedules
would not be able to be tested against their sitéahnd the
real-time requires. That is why OpenMSC was dewdom
highly configurable C-based emulator which generate
stream of integer numbers, denoted as EventlDsrépaesent
the control plane communication data of a telecomioation
network. OpenMSC allows specifying a single succass
case, e.g., the set-up of a call from a mobile ph@md an
arbitrary number of failure use caSe&ach use case is
referred to as a communication description with

context, Magnet provides the functionality of smart andCommunication descriptors being represented by gerte

scalable data collection, processing and pattegntification
of any root-cause relationship possibly availalbighie trace

numbers. More precisely, a descriptor denotes alesin
primitive exchange between a source and a destmatE and

stream. The presented framework follows the E-@trealS part of an entire use case. Multiple communirati

system design, as described in [8, 9]. E-Streanmeléfthe
five modules:

« Dimension Reduction Module (DRM)
» Episode Discovery Module (EDM)
» Episode Classification Module (ECM)

descriptors are referred to as a communicationrii®n (the
entire use-case). In comparison to discrete orimoots event
simulators which produce a sequence of events uaimg
internal simulator clock to model the system, Op&M
generates each EventID based on the actual system t

2 See the appendix for a detailed message sequbade ¢
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All communication descriptors are specified in aB®/file
which follows the same terminology as the mségmmol to
plot MSCs. The concept of OpenMSC is based on
assumption that each User Equipment (UE) in thevordt
follows the same control plane procedures, as fpdcin
advance through a MSC configuration file. Addititpaeach
UE repeats this action within a given time-framge@®VSC
lets the researcher set parameters such as nurhbé&soand
number of Base-Stations (BSs) in the network. Astioaed,
a particular communication descriptor is represtnds a
single numeric EventID due to the requirement ofstriata
mining algorithms which are able to work with nurrgenly.
Therefore, OpenMSC translates each
descriptor entity into a single unique integer es@ntation,
then concatenates these representations in a siisethway,
as shown in Table 1.

configuration used in OpenMSC to generate the statgam in
the testbed is given in the Appendix section toohew
theroviding the two input files, as given in the Applé,
OpenMSC generates an EventID rate per second
approximately 210. The stream is filled up with dam
EventlIDs representing noise; the generation ofenBigent|Ds
follows a normal distribution.

B. Results

This section presents the results of the E-Stredeyiated
test-bed where Magnet has been fully implementéuguhe
modular E-Stream system described in Section Id #me

communicatigigorithmic approach from Section II.

1) Stream Reduction
In the emulation the dimension reduction algorithisn

Each communication descriptor has a source NE andc@mputed on 100000 events per window and transectid

destination NE which exchange information usingritives
that are standardised by 3GPP. As primitive naraesbe the

different lengths. Transactions lengths are vartedheck the
sensitivity of the noise reduction, as described5h The

same across multiple protocols, OpenMSC distingsishtransaction lengths are derived from the frequetisyibution

between the protocol type and primitive name. Hadinitive

has various Information Elements (IEs) which hoddtigular
values. The total length of the generated Evensl9 due to
the maximal length of the data type unsigned langlin all

modern programming languages. The source and d#stin
NEs are represented by a five digit long integdues The
integer representations are being allocated oteaative basis

of the events to maintain a balanced spectrum ehtsvin
each transaction. As can be seen from Figure rf@ll and
medium transactions the dimensionality reductiarceasfully
removes all noisy events, however, for larger t@atiens it
incorrectly removes a higher portion of interestoagrelated
events. It should be noted that the trade-off wsthaller
transactions is that the correlation matrix needs be

where an unknown NE will receive a number which i§alculated over higher number of samples causirgheni
incremented by one, when compared to its predecdéSo Computational complexity. In smaller transactiohs spiky
The only exceptions are UEs and BSs, as they ament OcCcurrences of correlated events (co-occurring angd
differently by OpenMSC. In case of a BS, OpenMmSd@umbers) can be well separated from the unimpontargy

calculates a BS EventlDys by:

ID,, =100 CBS (m) (1)

with m € Z andm > 0. If the total number of BSs,, equals
50 the five digit long numerical representationttoé second

BS (m = 2) is 00200. The numerical UE representation is

calculated as follows:

ID ,, =100 [BS (m) + UE (n) 2)
with mandn € Z andmandn > 0. For instance, leth = 2 and
n = 45, the corresponding UE identifi&y,. would be00245.
All other NEs receive a unique integer in the rargjel
through 99. This ensures that the five digit longnerical
representation of a NE is always unique.

The only limitation by generating the EventIlD asdéed
above is the total number of NEs, primitives and tkat can
be used in the entire emulation while ensuringiguainteger
representation for every piece of information. Haere with
999 BSs, 99 UEs at each BS, and further 99 NEs BSobr

UE), it is ensured that OpenMSC still provides egiou

flexibility to generate data-streams emulating eatharge
networks.

The MSC used for this example is shown in Figure 8
two communicatio

(Appendix) which comprises the
descriptions Success and Failure which consistiné mand
two communication descriptors, respectively. Thare three
NEs chosen, and two protocol types, i.e., RadiooRes
Protocol (RRC) and S1 Application Protocol (S1AFhe

® The open source tool is available at http://wwweamtan.me.uk/mscgen

events. With larger transactions the record ofribisy events
increases, causing to score higher correlation.

EventTag

[%] Event Identifiers removed

Transaction size

Figure 3: Accuracy of detecting and removing noisyevents from
trace stream

2) Detecting Episodes

The detection of sequences of EventIDs (i.e., el@spis
the next step in the trace analysis. The emulats aase
consist of 20 different episodes pre-defined in @EenMSC
tream data out of which 10 are successful calugstand
r{eleases and 10 failure cases. The successfuldgsismnsist
of 37 unique EventIDs and the 10 failure patterrdets of 27
uniqgue EventIDs. Note, episodes that form either fhll
success or failure case are denoted as patternisnode

Figure 4 depicts the result of the episode disgopeocess
where the dark blue colour represents the succa#ierip
models and the blue colour represents the failuatem

of
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models. The discovered episodes are displayed ovithge The discovered pattern model tree is then populetdte
dots. After repeatedly running the episode discpwal the pattern model library which is the input to the tpat
pre-defined pattern models including success ariliréa matching task. It can be reported that when scalipgthe
pattern models can be found in the collection of@ges stream rate, the processing of thousands of egsadeder to
cumulatively discovered and identification by theibuild the pattern tree was always finished in teak
correlation. The results presented in Figure 4catgi that this utilising. It can be concluded that all pattern rlgdand their

solution is capable of discovering the pattern niede an
effective manner.

21
20
19 [ : : -
18 R R e — oo .
17 [ - : :
16 R eI .
c14
213
Z12

Pattern Mode

C2NWARUON®OO
L 1 )

Length 37 PMs
Length 27 PMs
Discovered Episodes

0 40 80 120 160 200 240 280 320 360 400
Event Identifiler
Figure 4: Successful discovery of all episodes (petn models)
defined in OpenMSC

Pattern Models
1l |

}

fiiiul;mmuauw_s;

4
=

LT m—

artial Patterns

Matched PMs [CJPredicted PMs W PMs ® PPs
o

A »

Figure 5: Pattern tree of classified episodes (a)nd visualisation
of the matched and predicted pattern models in thelata stream

(b)

3) Episode Classification

The objective of the real-time classification obabvered
episodes in the previous step
classification of all discovered episodes of aligths utilises
the graph theory theorem of building an acyclicdineictional
tree of episodes. The top level episodes (patteydefs) are
the top of the pyramids in Figure 5.a, while thetrevel of
episodes (partial patterns) of the acyclic graph displayed
below and connected with a black line.

is presented heree Tf

corresponding partial patterns were discovereibgnet

4) Pattern Matching

This section presents the last step of€tagnetframework:
the matching of the discovered pattern models @ dhline
trace stream. The objective is to match and prebetpattern
models from the reduced event streams on the lodisike
pattern model information provided by the pattermdel
library. The matching approach is evaluated ushagets of
events drawn from OpenMSC, the E-Stream emulator to
generate a continuous stream of mobile teleconraloplane
communication events. For visualisation purpose® th
matching function is designed to show matched aedigted
pattern models only together with their correspogdfirst
level partial patterns. The prediction itself issbd on the
assumption that if a non-top level pattern moded baen
found, it must have been actually there and wababtly only
lost due to the slicing of the stredwagnetmust undertake.
The visualiser, depicted in Figure 5.b illustratesange
squares for matched pattern models, pale blue ssgufar
predicted pattern models, dark blue squares faepamodels
available in the patter model library and dark btireles for
Level 1 pattern models.

V. DISCUSSION

This last section aims at putting the conductedassh into
perspective addressing questions around applibgbili
scalability and ease of integration into existin§$3. For this
discussion the main objective dflagnetis of significant
importance, i.e.: the system should be agnostthéaise case
in which it should discover root-cause relationshif existing
and potential misbehaviours. With this objective riind,
Magnet (the final solution of the E-Stream project) is a
fundamental step forward, as part of Ericsson'sagldr&D
initiative in the area of management of next get@maOSSs,
being ahead of the state of the art in this spktzgnet as
result of a collaborative Dublin City UniversityiEsson R&D
effort, complements Ericsson’s industrial-drive8tream[6]
approach, which is currently embedded in a newrprige
network management product.

While the existing Magnet system as a researchofyme
might run into performance issues, Ericsson hadbleia
software that can use and deploy thkagnet ideas in a
commercial, scalable and high-performance enviraimEhe
related Ericsson works [6,11,12] focus on real-tewaluation
large-scale data streams demonstrating thatvtagnets
objectives of designing a solution which is agrogt the
actual stream’s content while persistently discaeet-causes
is feasible. To this extend the choice of MapRedasethe
agnostic stream processing platform on whMhagnet has
been realised can be explained by a rather pragreatiware
engineering viewpoint which prefers platform stipiland
integrablity as long as the overall objectives barmet.
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VI. CONCLUSION di st Cccurrence = "uniformreal ";
di st GccurrenceM n = "0.001";

: ; ; ; ; di st OccurrenceMax = "0.01";
This paper introduces an innovative integratedadtal data event | dRangeM n = "1":

analytic_s frameworkMagnet proposed for _extracting the event | dRangeNax = "500";

correlative structure between events (data insgnéene of 1)

the key functionalities oMagnetis to reduce data through a 3.

refined approximation process which is based op;

randomization and rough preservation of the stadist

relationship between data instances. The approidmat Furthermore, the MSC used as the second requipad file
process is applied to multiple copies of partitbraata in  for OpenMSC is also provided in Figure 6.

order to support both increased scalability andhkigcuracy HHOCU;NNEGT‘ON HEQU:‘;?:EB . AR — Py
of the data approximation process. This also redultfaster TR )
correlation computation. Further scalability isramtuced by — mecowecron coweiegrue o

means of pipelining the approximation and correfati S Ef]i:(i "Z’!
computation processeblagnet framework is realized in the T
MapReduce model proposed for handling massive ataain EVULAUTHENTICATION AEQUEST(UE 1)
data. Fundamental enhancements are proposed fdRédace oo ok caremne 1]
to handle pipelining of the two processes and pE®ce EVI SEGURITY MGDE GOVPIUE D)
continuous flows of big data (streami)agnetevaluation was DIAETER-TAU AEQUESTILE 0}
performed and the experimental results show tha tf N T . sy
framework is capable of reducing significant partiof the <GTPGMODIFY BEAFER REGUESTIVE D)
large input data stream and at the same time kegepindata SETPMOPIRT HEAER BEQLRETICE o]
. . . . eGTPC-MODIFY BEARER RESPONSE(UE_ID)
fragments with potential correlative structure. Remg the | S  ——
bulk of the events through randomization and thegping the *LTPCSEARER AESOUACE COMMANDILE o)
set of events linked through statistical or tempora RN crmpmemspre zf(‘u“j“;’)’
dependency, has enabled the reduction at such. sth&e 4GTPG CREATE BEARER REQUESTIUE ) i
processing time of the framework is highly encourggand SIAFSETUP REQUESTIUE D)
. oy . - . RRC-RADIO_BEARER SETUP(UE_ID)
recommends its utilisation as a continuous anaysigstem. T e o)
From an application point of viewMagnet enhances the SIAPISETUP RESPONSEWYE D)
effectiveness of the algorithms looking for pattein data by  =wseameResouace MoBIOATON AEGUESTUE
T . eGTPC-DELETE BEARER REQUEST(UE_ID
providing only the.correlated instances. The qtﬂmect of A | —— v
the Magnetis that it can also be implemented in any strear S e oDy o)
computing model for building a real-time stream |giies i ipgh oIl IATE BIAER G OIEMT [JE RSl =)
EMM-DEACTIVATE BEARER CONTEXT ACCEPT&EJD)
SyStem' StAPrélELEASE RESPONSE(UE_ID)

eGTPC-DELETE BEARER RESPONSE(UE_ID

eGTPC-DELETE BEARER RESPONSE(UE_ID)
ETE BEARER RESPO!

VII. APPENDIX

S1AP-UE_CONTEXT RELEASE COMMAND(UE_ID}

For completeness of this publication, the authomvige the G CQUNECTION RELEASEICE_D)

S1AP-UE_CONTEXT_RELEASE_COMPLETE(UE_ID)
_CONTEXT RELEASE COM! |

configuration file of OpenMSC so that interestedicfe up o
d benchmark their solution against EaBtre N e
reagers can g RRC-GONNECTION_SETUP(UE_ID)
RRC-CONNECTION COMPLET&(UEJD)
Opennfsccbnf i g: { EMM-SERVICE REQUEST(UE ID)
nundrBss = 1
nunof Ues Per B_S = 10; . £V AUTHENTICATION REQUEST(UE 10}
ueActivity-Di st = "exponenti al"; EMMAUTHENTICATION, RESPONSE(UE o))
ueActi vi ty- Di st-Lanbda = 0. 2, | EMM-SECURITY MoJEr MMAND(UE_ID)
chJer | ap = f a| se; EMM-SECURITY_MODE_COMP(UE_ID)
i nf or rmt i OnEl errent S = ( { DIAMETER-TAU_REQUEST(UE_ID)
. —_ n ", DIAMETER-TAU_ACCEPT(UE_ID)
! eN.anE - Sl REr ror Val ue-; ECM-TAU ACCEPT(UE D)
ieDist =" gaussi an"; eGTPC-MODIFY_BEARER REQUEST(UE_ID)
ieDistMu = "80.0" ; eGTPC-MODIFY_BEARER REQUEST(UE_ID)
i eDi st Si gma = "5.0"; €GTPCMODJFY_BEARER RESPONSE(UE_ID)
} { eGTPC-MODIFY BEARER RESPONSE(UE_ID
" " " €GTPCBEARER RESOLRCE COMMAND(UE D)
i eName = "Error Code"; GGTPC-BEARER RESOURCE. COMM ND(UE_ID)
ieD st = "constant"; GTPC-CREATE BEARER REQUEST(UE ID)
ieDistValue = "1"; 9GTPC-CREATE BEARER_REQUEST(UE_ID)
} ’ { S1AP-SETUP_REQUEST(UE_ID)
A " " RRC-RADIO_BEARER SETUP|UE_ID)
! eNgma = "SuccessCode"; RRC-RADIO_BEARER_SETUP_FAILURE (UE_ID ErrorCode
ieDist = "constant"; S1AP-SETUP_FAILURE(UE_ID.ErmorCode)

ieD stValue = "0";
)
noi se = {
uncorrelated = ( {

Figure 6: Emulated message sequence chart
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