
IEEE NETWORK VOL. 31 NO. 5, 2017 
 

1

  

Abstract— The era of petabyte data has arrived as the digital 
big data universe continues its expansion towards exascale with 
massive volumes of data generated by diverse distributed 
sources. The size of big data makes it very difficult gaining 
insight into the data meaning. In industrial applications, in order 
to explore both data meaning and the complex relationship 
between data components, big data needs to be processed and 
reduced enabling further deeper analysis in a timely manner. In 
this paper an integrated data analytics framework is presented 
designed to extract the set of instances exhibiting statistical 
dependency from massive volume of data in a pre-defined quasi 
real-time manner. The parallel computing model of MapReduce 
is enhanced to realise Magnet. The solution presented in this 
paper is applicable to the telecommunications market where it 
optimises next-generation network management systems for 
heterogeneous radio access technologies. 

Index Terms—Operations Support System, Big Data, 5G, 
Real-time, MapReduce, Stream Analytics, Pattern Matching, 
Data Mining 
 

I. INTRODUCTION 

HE continuous increase in the number of mobile devices 
and users on one hand and advent of ubiquitous 

communication technologies, development of innovative 
networking applications and user demand for high quality rich 
media content on the other hand are behind the latest massive 
amounts of data generated and exchanged, whose volume 
continues to grow at an exponential pace. The astounding 
increase in the volume of data generated is shown for instance 
by the fact that the amount of information created from the 
dawn of human civilization to 2003 (i.e., 5 exabytes) is now 
generated in just a couple of days. Additionally the data digital 
universe is experiencing a two-fold expansion every two years 
since 2012 so that the annual global IP traffic is expected to 
exceed the zettabyte (1000 exabytes) threshold by the end of 
2016, and reach 1.6 zettabytes per year by 2018 according to 
forecasts by leading industry forums. This huge amount of 
information (lately labelled as “data explosion”, derived from 
“big data”) leverages myriad opportunities for its analysis and 
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use. However such exploration poses significant challenges, 
mostly as this massive volume of data, represented by 
heterogeneous and diverse dimensionality data components, is 
too big for the processing capacity of the traditional analytical 
tools. So far, in order to be able to cope with this influx of big 
data business enterprises constantly scale-up the analytic 
performance by employing incremental upgrades to the 
existing solutions. However, these solutions have severe 
limitations, especially in terms of handling streams of big data 
transferred over large bandwidth networks and originating 
from multiple sources and therefore proposal of novel 
approaches is required. 

Such big data is usually bursty in nature and can be handled 
by spreading the incoming data into multiple windows; this 
will also facilitate distributing the data processing. 
Alternatively, based on the data incoming rate, resources can 
be allocated dynamically [1]. Variability in the data is also 
caused by larger proportion of irrelevant, redundant and noisy 
information coming from various sources. This in turn makes 
very difficult the extraction of meaningful knowledge from the 
data within a limited time. Simple light weight data projection 
techniques can serve the purpose of reducing the data 
dimension, but is capable of handling limited volumes of data 
only. Parallelizing the projection can solve the problem, but 
there is a possibility of higher approximation error. Event-
based Stream Processing (ESP) is advantageous for reducing 
the number of events (which are distinct data instances 
labelled as such by the operators of ESP) with considerable 
low latency, but the scalability is constrained [2]. 

This paper addresses these challenges by proposing Magnet, 
an integrated scalable data analytics framework designed to 
extract the set of instances exhibiting statistical dependency 
from large amounts of data in a given time period. Magnet 
consists of two major components: a load balancer and a data 
reducer. The load balancer dynamically balances the load of 
the incoming data via an arrival rate-based adaptive window 
solution. Once the data is loaded, the data reducer 
approximates the data by applying an on-the-fly parallel 
random projection technique and finding correlated instances. 
Correlated instances do not necessarily imply a pattern of 
instances, but make the task of pattern discovery more precise. 
The data reducer is designed to work in conjunction with 
MapReduce (MR) [3] a ubiquitous parallel computing 
paradigm to process large data. Basically MR performs its 
tasks in batches with high latency, while Magnet’s low latency 
is the result of using micro-batches of the input data and 
pipelining the projection and correlation computation jobs.  

 

Magnet: Real-time Trace Stream Analytics 
Framework for 5G Operations Support Systems 

Sebastian Robitzsch, Faisal Zaman, Sven van der Meer, John Keeney and Gabriel-Miro Muntean 

T



IEEE NETWORK VOL. 31 NO. 5, 2017 
 

2

Our research is focused specifically on the telecoms 
industry as it has dealt with large amounts network data for 
decades and is preparing to cope with big data, mostly due to 
the unprecedented rise in network control information 
generated by the next generation mobile networks. The 
purpose of Magnet is to serve specific business needs, making 
the big telecom network data a “service” rather than a 
“technique” by integrating the analytical results to pattern 
discovery to enable predictions of the network scenarios and 
respective solutions. Magnet performance is tested on 
artificially generated telecoms network trace data. The input 
consists of an online stream generated by the in-house 
developed emulator OpenMSC1. The contribution of this work 
can be summarized as follows: 

• Developed a parallel algorithm for scaled and refined 
approximation of data 

• Developed an analytical framework Magnet capable of 
handling streams of data 

• Evaluated Magnet on abstracting the symptomatic 
events leading to cell congestion from an artificially 
simulated trace file. 

The principle of how Magnet works and where the MP design 
has been improved are described in Section II. This is 
followed by describing the realization of Magnet in the E-
Stream architecture in Section III. The evaluation of the 
integrated Magnet solution is presented in Section IV followed 
by a discussion on how Magnet fits in the context next 
generation Operations Support Systems (OSSs). The work is 
concluded in Section VI. 
 

II. THE MAGNET ALGORITHM 

The success of Magnet relies on its ability to scale the 
processing of massive data volumes, approximate the data 
with high accuracy and introduce a limited time delay. In 
Magnet, parallelizing the process of approximation and 
correlation computation is the source of scalability; replicating 
the parallelization process incurs minimal approximation error 
and adaptive slicing of the stream integrated with pipelining 
the processes facilitate stream processing. 
The workflow of Magnet is presented in Figure 1 and consists 
of three stages: dynamic load balancing, refined data 
approximation, and correlation finding. These three stages 
ensure low latency and low error, which are the pivotal 
features of a stream processing model [4]. In summary Magnet 
is capable of: 
● Rate-based diffusion of stream: Magnet splits the 

stream based on the arrival rate and spreads the split 
stream among smaller slices. 

● Fault tolerant processing: Magnet replicates each slice 
of the split stream to maintain better approximation 
accuracy. 

● Incremental processing: Magnet supports pipeline 
parallelism of the tasks. 

 
 

1 OpenMSC is available at www.github.com/seronline/OpenMSC 

Conventional data approximation techniques incur 
significant number of distortions while projecting data points 
onto lower dimensions. In Magnet the Data Approximation 
(DA) was realised using MapReduce where data partitioning 
and re-processing of each partition has been optimised, as 
described with further details in [5]. This optimisation 
involves an extension of the approximation process by 
processing each partition multiple times according to 
statistical theory. Consequently, the approximated results will 
be more accurate. This is why the chosen MapReduce 
approach can be described as enhanced.  

In Magnet, DA approximates a micro-batch of streams 
and starts correlation finding on that micro-batch rather 
than waiting for the whole stream-batch to be processed. 
Sequential processing is at the core of this hybridisation of 
batch processing and real-time processing. This design 
fully serves our objective of maintaining low latency and 
high throughput processing. Spark-based stream processing 
is similar to the proposed approach where the stream is split 
into discretised small batches but processed in-memory 
which allows a more interactive and faster processing of 
batches by design; however, at the time E-Stream started 
MapReduce still provided a much more stable environment 
compared to Spark which was key towards a future 
integration into Ericsson’s xStream system [6]. Thus, 
MapReduce was favoured over Spark. 

 
 

 
 
Figure 1: Internal workflow of Magnet 



IEEE NETWORK VOL. 31 NO. 5, 2017 
 

3

A. Dynamic Load Balancing 

The concept of dynamic load balancing is based on controlled 
processing of the incoming data stream. This entails feeding 
the processors with a manageable data volume, while the I/O 
is confronted with the event storm. In this mechanism the 
incoming data volume is controlled adaptively with the data 
arrival rate. In Magnet the data arrival rate (also defined as 
stream burst rate) is estimated first and based on that the 
window length is derived (which is the volume of incoming 
data stream), leading to seamless interaction between 
streaming rate and the capacity of the processors (i.e., buffer 
size). 

B. Refined Data Approximation 

The purpose of Refined Data Approximation (RDA) is to 
increase the efficiency of load balancing by further reducing 
the events, while maintaining lower estimation errors. RDA 
proceeds on-the-fly and therefore has no storage requirements. 
The theoretical basis of RDA is underpinned by the seminal 
Johnson-Lindenstrauss (JL) lemma [7]. 
In event-based streams distinct events exist as inputs rather 
than continuous values and this requires a careful re-
configuration of the approximator. Random hash-based 
indexing is utilised to project events to lower dimensions. To 
maintain the on-the-fly processing of the input events we 
simply recompute the entries by Gaussian random hashing. 
Following the JL lemma and the law of large numbers we 
repeat the on-the-fly approximation several times and 
parallelize the whole procedure to scale the processing 
performance. The underlying idea is to partition the data and 
run the data approximation several times on each partition, 
and in this way we are replicating the projection several times 
to refine the approximation. 

C. Data Intensive Correlation Finder 

Correlation finder focuses on identifying any correlation 
between the data instances in order to capture the dependency 
relation between the instances. This correlative structure 
between the events can be detected by analysing the eigen-
values of large dimensional random matrices and as a ‘by-

product’ the events with poor spectral condition can be filtered 
out. These events can be ignored, as noisy events. This 
technique is more data intensive in a sense that it analyses the 
eigen-space (spectrum) of the covariance matrix of the 
observed event set and identifies eigen-states coming from 
random noise using the known eigenvalue distribution of 
random matrices. This results in a decomposition of the 
covariance matrix: a part containing useful information from 
events with potential correlative structure and another part 
capturing the random noise. We designed the correlation 
finder to work with RDA in a pipeline parallel framework. In 
this framework the correlation finder starts processing the 
projected data from RDA before all the data is projected. A 
more detailed description and evaluation of the correlation 
finder can be found in [5]. 

D. Realisation of the Enhanced MapReduce 

Magnet aims to constitute a modular system capable of 
discover network events patterns by analysing the telecom 
trace data and predict network incidents from the event 
patterns to provide corrective actions. For accurate discovery 
of event associations it requires designing a more intelligent 
data collection mechanism to extract useful information only. 
And for responding to network incidents pro-actively, this 
information should be forwarded to the next working modules 
within minimal time delay. In E-Stream, Magnet provides the 
functionality of smart and scalable data collection. 
MapReduce (MR) is a special data-based programming model 
which has been established as a standard practice for 
processing large amounts of data in parallel. It includes two 
major phases: map: in which all the input data is transformed 
by a single argument in parallel and reduce: in which all the 
transformed input data is grouped based on some multiple 
arguments. The niche of MR usage in parallelisation and 
scalability is the consequence of statelessness of the mapping 
algorithms (mappers) and independent processing of different 
reducing solutions (reducers). The executions of the tasks take 
place sequentially, which limits the scope of MR in terms of 
processing continuous large scale data (stream). If the data 
going through MR is kept reasonably small and processing is 

Figure 2: System design of the E-Stream project 
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done incrementally, MR handles streaming data with reduced 
delay response. Following this observation, the basic 
workflow of MR was enhanced to enable Magnet processing 
of event streams by micro splitting the trace stream described 
next. 

E. Micro-splitting of the Trace Stream 

Stream micro-splitting starts with slicing the incoming data 
stream into small batches which are computed based on buffer 
size (processing power) and then the data collected in each 
batch is submitted to the MR. These small batches are part of 
the jumping windows in which the results of the batches are 
accumulated. We consider the deployment of ‘jumping’ 
windows instead of the ‘sliding’ windows as the latter requires 
more processing power for accumulating the outputs. The 
length of the jumping window is controlled dynamically 
according to the stream burst rate and the size of the slices 
depends on the minimal data volume the mappers should 
accumulate before sending it to the reducer (which actually 
performs the processing). The advantage of such micro 
splitting of streams is that after receiving a specific time slice 
from every mapper, the reducer starts the combination process 
and merges the result with the previously merged results. 

F.  Incremental Processing 

One of the sources of high latency in MR is that the 
commencement of one process needs to wait for finishing of 
the process started earlier. The enhanced MR includes a 
modification of the basic MR functionality to perform parallel 
process execution. Micro splitting the stream facilitates 
pipelined parallelism between the components of Magnet; this 
procedure can also be defined as incremental processing. In 
this improved solution, the reducer does not need to wait until 
the map phase finishes the task. The reducer needs to compute 
the aggregated slice value only after receiving the data 
corresponding to the same slice from all mappers. After this is 
performed, it calls the user-defined merge() function to merge 
the slice results with the jumping window results. 

III.  INTEGRATING MAGNET IN E-STREAM 

E-Stream aims to constitute a modular system capable of 
discover network events patterns by analysing the telecom 
trace data and predict network incidents from the event 
patterns to provide corrective actions. For accurate discovery 
of event associations it requires the design of a more 
intelligent data collection mechanism to extract useful 
information only. And for responding to network incidents 
pro-actively, this information should be forwarded to the next 
working modules within minimal time delay. In the E-Stream 
context, Magnet provides the functionality of smart and 
scalable data collection, processing and pattern identification 
of any root-cause relationship possibly available in the trace 
stream. The presented framework follows the E-Stream 
system design, as described in [8, 9]. E-Stream defined the 
five modules: 
 

• Dimension Reduction Module (DRM) 
• Episode Discovery Module (EDM) 
• Episode Classification Module (ECM) 

• Pattern Matching Module (PMM) and 
• Recommender System Module (RSM) 

 
Magnet combines DRM, EDM, ECM and PMM in a single 
solution which can be directly mapped to the architecture 
defined in E-Stream. As depicted in Figure 3, the trace stream 
is first minimised in spatial size to reduce the computational 
complexity of discovering episodes (sequence of EventIDs 
that indicate potential patterns of interest) in the next step 
which are then further classified according to their correlation.  
 
The illustrated pattern model library in Figure 2 represents the 
linking storage element between the episode discovery and the 
future pattern model matching mechanisms akin to a 
commonly known relational database implementation. 

IV.  EVALUATION  

A. Emulation Set-up 

In order to test and evaluate Magnet two high end 24 core 
servers were utilized with 128 GB RAM each running Ubuntu 
server 12.04. In order to guarantee a scalable environment 
where no single module is permitted to utilise all 
computational resources available on the physical machine, 
DRM, ECM, PMM and RSM were set up in a virtualised 
environment using Kernel Virtual Machines (KVMs). 
The integrated E-Stream test-bed is only as good as the 
environment in which it is presented. Without a real 
continuous stream of trace data, the implemented modules 
would not be able to be tested against their scalability and the 
real-time requires. That is why OpenMSC was developed: a 
highly configurable C-based emulator which generates a 
stream of integer numbers, denoted as EventIDs, that represent 
the control plane communication data of a telecommunication 
network. OpenMSC allows specifying a single success use 
case, e.g., the set-up of a call from a mobile phone, and an 
arbitrary number of failure use cases2. Each use case is 
referred to as a communication description with 
communication descriptors being represented by integer 
numbers. More precisely, a descriptor denotes a single 
primitive exchange between a source and a destination NE and 
is part of an entire use case. Multiple communication 
descriptors are referred to as a communication description (the 
entire use-case). In comparison to discrete or continuous event 
simulators which produce a sequence of events using an 
internal simulator clock to model the system, OpenMSC 
generates each EventID based on the actual system time.  

 
2 See the appendix for a detailed message sequence chart 

TABLE I 
STRUCTURE OF A SINGLE EVENT IDENTIFIER (EVENTID)  WITH TOTAL 

LENGTH OF 19 DIGITS 

Field Numeric Length 

Source Network Element 5 
Destination Network Element 5 

Protocol Type 2 
Primitive Name 2 

Information Element 2 
Value 3 
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All communication descriptors are specified in an MSC file 
which follows the same terminology as the mscgen3 tool to 
plot MSCs. The concept of OpenMSC is based on the 
assumption that each User Equipment (UE) in the network 
follows the same control plane procedures, as specified in 
advance through a MSC configuration file. Additionally, each 
UE repeats this action within a given time-frame. OpenMSC 
lets the researcher set parameters such as number of UEs and 
number of Base-Stations (BSs) in the network. As mentioned, 
a particular communication descriptor is represented as a 
single numeric EventID due to the requirement of most data 
mining algorithms which are able to work with numbers only. 
Therefore, OpenMSC translates each communication 
descriptor entity into a single unique integer representation, 
then concatenates these representations in a standardised way, 
as shown in Table 1. 

Each communication descriptor has a source NE and a 
destination NE which exchange information using primitives 
that are standardised by 3GPP. As primitive names can be the 
same across multiple protocols, OpenMSC distinguishes 
between the protocol type and primitive name. Each primitive 
has various Information Elements (IEs) which hold particular 
values. The total length of the generated EventID is 19 due to 
the maximal length of the data type unsigned long long in all 
modern programming languages. The source and destination 
NEs are represented by a five digit long integer values. The 
integer representations are being allocated on an iterative basis 
where an unknown NE will receive a number which is 
incremented by one, when compared to its predecessor NE. 
The only exceptions are UEs and BSs, as they are treated 
differently by OpenMSC. In case of a BS, OpenMSC 
calculates a BS EventID IDbs by: 

)(100 mBSID bs ⋅=  (1) 

with m ∈ Z and m > 0. If the total number of BSs, nbs, equals 
50 the five digit long numerical representation of the second 
BS (m = 2) is 00200. The numerical UE representation is 
calculated as follows: 

)()(100 nUEmBSID ue +⋅=  (2) 

with m and n ∈ Z and m and n > 0. For instance, let m = 2 and 
n = 45, the corresponding UE identifier IDue would be 00245. 
All other NEs receive a unique integer in the range of 1 
through 99. This ensures that the five digit long numerical 
representation of a NE is always unique. 

The only limitation by generating the EventID as described 
above is the total number of NEs, primitives and IEs that can 
be used in the entire emulation while ensuring a unique integer 
representation for every piece of information. However, with 
999 BSs, 99 UEs at each BS, and further 99 NEs (not BS or 
UE), it is ensured that OpenMSC still provides enough 
flexibility to generate data-streams emulating rather large 
networks. 

The MSC used for this example is shown in Figure 6 
(Appendix) which comprises the two communication 
descriptions Success and Failure which consist of nine and 
two communication descriptors, respectively. There are three 
NEs chosen, and two protocol types, i.e., Radio Resource 
Protocol (RRC) and S1 Application Protocol (S1AP). The 

 
3 The open source tool is available at http://www.mcternan.me.uk/mscgen 

configuration used in OpenMSC to generate the data stream in 
the testbed is given in the Appendix section too. When 
providing the two input files, as given in the Appendix, 
OpenMSC generates an EventID rate per second of 
approximately 210. The stream is filled up with random 
EventIDs representing noise; the generation of noise EventIDs 
follows a normal distribution. 

B. Results 

This section presents the results of the E-Stream integrated 
test-bed where Magnet has been fully implemented using the 
modular E-Stream system described in Section III and the 
algorithmic approach from Section II. 

 
1) Stream Reduction 

In the emulation the dimension reduction algorithm is 
computed on 100000 events per window and transactions of 
different lengths. Transactions lengths are varied to check the 
sensitivity of the noise reduction, as described in [5]. The 
transaction lengths are derived from the frequency distribution 
of the events to maintain a balanced spectrum of events in 
each transaction. As can be seen from Figure 3, for small and 
medium transactions the dimensionality reduction successfully 
removes all noisy events, however, for larger transactions it 
incorrectly removes a higher portion of interesting correlated 
events. It should be noted that the trade-off with smaller 
transactions is that the correlation matrix needs to be 
calculated over higher number of samples causing higher 
computational complexity. In smaller transactions the spiky 
occurrences of correlated events (co-occurring in large 
numbers) can be well separated from the unimportant noisy 
events. With larger transactions the record of the noisy events 
increases, causing to score higher correlation. 
 

 
Figure 3: Accuracy of detecting and removing noisy events from 
trace stream 

2) Detecting Episodes 
The detection of sequences of EventIDs (i.e., episodes) is 

the next step in the trace analysis. The emulated use case 
consist of 20 different episodes pre-defined in the OpenMSC 
stream data out of which 10 are successful call set-ups and 
releases and 10 failure cases. The successful episodes consist 
of 37 unique EventIDs and the 10 failure pattern models of 27 
unique EventIDs. Note, episodes that form either the full 
success or failure case are denoted as pattern models. 

Figure 4 depicts the result of the episode discovery process 
where the dark blue colour represents the success pattern 
models and the blue colour represents the failure pattern 
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models. The discovered episodes are displayed with orange 
dots. After repeatedly running the episode discovery all the 
pre-defined pattern models including success and failure 
pattern models can be found in the collection of episodes 
cumulatively discovered and identification by their 
correlation. The results presented in Figure 4 indicate that this 
solution is capable of discovering the pattern models in an 
effective manner. 

 
Figure 4: Successful discovery of all episodes (pattern models) 
defined in OpenMSC 

 

 

  

Figure 5: Pattern tree of classified episodes (a) and visualisation 
of the matched and predicted pattern models in the data stream 
(b) 

3) Episode Classification 
The objective of the real-time classification of discovered 

episodes in the previous step is presented here. The 
classification of all discovered episodes of all lengths utilises 
the graph theory theorem of building an acyclic unidirectional 
tree of episodes. The top level episodes (pattern models) are 
the top of the pyramids in Figure 5.a, while the next level of 
episodes (partial patterns) of the acyclic graph are displayed 
below and connected with a black line. 

 

The discovered pattern model tree is then populated in the 
pattern model library which is the input to the pattern 
matching task. It can be reported that when scaling up the 
stream rate, the processing of thousands of episodes in order to 
build the pattern tree was always finished in real-time 
utilising. It can be concluded that all pattern models and their 
corresponding partial patterns were discovered by Magnet. 
 
4) Pattern Matching 

This section presents the last step of the Magnet framework: 
the matching of the discovered pattern models in the online 
trace stream. The objective is to match and predict the pattern 
models from the reduced event streams on the basis of the 
pattern model information provided by the pattern model 
library. The matching approach is evaluated using traces of 
events drawn from OpenMSC, the E-Stream emulator to 
generate a continuous stream of mobile telecom control plane 
communication events. For visualisation purposes the 
matching function is designed to show matched and predicted 
pattern models only together with their corresponding first 
level partial patterns. The prediction itself is based on the 
assumption that if a non-top level pattern model has been 
found, it must have been actually there and was probably only 
lost due to the slicing of the stream Magnet must undertake. 
The visualiser, depicted in Figure 5.b illustrates orange 
squares for matched pattern models, pale blue squares for 
predicted pattern models, dark blue squares for pattern models 
available in the patter model library and dark blue circles for 
Level 1 pattern models.  

V. DISCUSSION 

This last section aims at putting the conducted research into 
perspective addressing questions around applicability, 
scalability and ease of integration into existing OSSs. For this 
discussion the main objective of Magnet is of significant 
importance, i.e.: the system should be agnostic to the use case 
in which it should discover root-cause relationships of existing 
and potential misbehaviours. With this objective in mind, 
Magnet (the final solution of the E-Stream project) is a 
fundamental step forward, as part of Ericsson’s global R&D 
initiative in the area of management of next generation OSSs, 
being ahead of the state of the art in this space. Magnet, as 
result of a collaborative Dublin City University-Ericsson R&D 
effort, complements Ericsson’s industrial-driven xStream [6] 
approach, which is currently embedded in a new enterprise 
network management product.  

While the existing Magnet system as a research prototype 
might run into performance issues, Ericsson has viable 
software that can use and deploy the Magnet ideas in a 
commercial, scalable and high-performance environment. The 
related Ericsson works [6,11,12] focus on real-time evaluation 
of large-scale data streams demonstrating that the Magnet’s 
objectives of designing a solution which is agnostic to the 
actual stream’s content while persistently discover root-causes 
is feasible. To this extend the choice of MapReduce as the 
agnostic stream processing platform on which Magnet has 
been realised can be explained by a rather pragmatic software 
engineering viewpoint which prefers platform stability and 
integrablity as long as the overall objectives can be met. 
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VI.  CONCLUSION 

This paper introduces an innovative integrated scalable data 
analytics framework Magnet proposed for extracting the 
correlative structure between events (data instances). One of 
the key functionalities of Magnet is to reduce data through a 
refined approximation process which is based on 
randomization and rough preservation of the statistical 
relationship between data instances. The approximation 
process is applied to multiple copies of partitioned data in 
order to support both increased scalability and high accuracy 
of the data approximation process. This also results in faster 
correlation computation. Further scalability is introduced by 
means of pipelining the approximation and correlation 
computation processes. Magnet framework is realized in the 
MapReduce model proposed for handling massive amounts of 
data. Fundamental enhancements are proposed for MapReduce 
to handle pipelining of the two processes and process 
continuous flows of big data (streams). Magnet evaluation was 
performed and the experimental results show that the 
framework is capable of reducing significant portion of the 
large input data stream and at the same time keeping the data 
fragments with potential correlative structure. Removing the 
bulk of the events through randomization and then keeping the 
set of events linked through statistical or temporal 
dependency, has enabled the reduction at such scale. The 
processing time of the framework is highly encouraging and 
recommends its utilisation as a continuous analytics system. 
From an application point of view Magnet enhances the 
effectiveness of the algorithms looking for patterns in data by 
providing only the correlated instances. The other aspect of 
the Magnet is that it can also be implemented in any stream 
computing model for building a real-time stream analytics 
system. 

VII.  APPENDIX 

For completeness of this publication, the authors provide the 
configuration file of OpenMSC so that interested follow up 
readers can benchmark their solution against E-Stream: 
 
openmscConfig: { 
numOfBss = 1; 
numOfUesPerBs = 10; 
ueActivity-Dist = "exponential"; 
ueActivity-Dist-Lambda = 0.2; 
cdOverlap = false; 
informationElements = ( { 

ieName = " SIRErrorValue"; 
ieDist = "gaussian"; 
ieDistMu = "80.0"; 
ieDistSigma = "5.0"; 

},{ 
ieName = "ErrorCode"; 
ieDist = "constant"; 
ieDistValue = "1"; 

},{ 
ieName = "SuccessCode"; 
ieDist = "constant"; 
ieDistValue = "0"; 

} ); 
noise = { 
uncorrelated = ( { 

distOccurrence = "uniform_real"; 
distOccurrenceMin = "0.001"; 
distOccurrenceMax = "0.01"; 
eventIdRangeMin = "1"; 
eventIdRangeMax = "500"; 

}); 
}; 

}; 
 
Furthermore, the MSC used as the second required input file 
for OpenMSC is also provided in Figure 6. 

 
Figure 6: Emulated message sequence chart 
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