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Vehicular networks and their associated technologies enable an extremely varied plethora of applications and 

therefore attract increasing attention from a wide audience. However vehicular networks also have many 

challenges that arise mainly due to their dynamic and complex environment. Fuzzy Logic, known for its 

ability to deal with complexity, imprecision and model non-deterministic problems, is a very promising 

technology for use in such a dynamic and complex context. This paper presents the first comprehensive 

survey of research on Fuzzy Logic approaches in the context of vehicular networks, and provides 

fundamental information which enables readers to design their own Fuzzy Logic systems in this context. As 

such, the paper describes the Fuzzy Logic concepts with emphasis on their implementation in vehicular 

networks, includes classification and thorough analysis of the Fuzzy Logic-based solutions in vehicular 

networks and discusses how Fuzzy Logic could be employed in the context of some of the key research 

directions in the 5G-enabled vehicular networks. 
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1 INTRODUCTION 

Vehicular networks (VN) are acknowledged for their great potential for supporting an extremely large 

range of communication-based applications in three major areas of interest: active road safety, traffic 

efficiency and management and infotainment [1], [2]. The highly positive impact of these applications on 

both the society as a whole and individual lives is measured in terms of the number of crashes avoided and 

number of saved lives, reduced damage to property, reduced traffic congestion, decreased fuel consumption, 

improvement in environment conditions and increased satisfaction of the drivers in traffic. It is therefore a 

natural consequence that vehicular networking will have its distinct place in the context of 5G, the next 

generation wireless communications [3]. VNs inter-link “smart” vehicles (i.e. they are the nodes of the 

network) which communicate with each other and with the infrastructure via V2X communications. In the 

context of the relatively high mobility of the vehicle-nodes, these networks are very dynamic in terms of both 
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their topology, and their delivery-related characteristics. Modeling these networks has a high degree of 

imprecision and is difficult to define accurate analytical models. Fuzzy Logic (FL), known for its ability to 

deal with imprecision and non-deterministic problems, is therefore often used in this VN context. FL 

provides human-like reasoning based on linguistic information and has already been widely used in self-

control systems (automatic) in automotive and electronics industries.  

In the literature there are many surveys and tutorials dedicated to the emergent field of VNs. These papers 

include both more general studies [2] [4] – [6], and particular works that review a certain problem in the 

context of VNs such as VN-dedicated standards [7] routing [8] [9], MAC protocols [10], clustering  

algorithms [11] [12], vehicular social networking [13], vehicular cloud networking [14], and vehicular 

content delivery networks [15]. On the other hand, there are also reviews dedicated to computational 

intelligence and mathematical intelligent frameworks applicable in networking [16] – [21]. However, none of 

the later surveys focuses on FL applied to VNs. In [16], some of the first FL-based solutions in 

telecommunications are presented. Game theory application in network selection solutions in heterogeneous 

wireless networks has been surveyed in [17] while its application in network security and privacy issues has 

been surveyed in [22]. Swarm intelligence applicability in the context of wireless heterogeneous networks is 

surveyed in [23]. In [18], a survey and tutorial on the mathematical modeling of network selection in 

heterogeneous networks is presented, where FL is included among the mathematical frameworks used in 

modeling network selection. In [19], the authors mention FL among the computational intelligence 

techniques applied in the context of wireless sensor networking. The surveys presented in [20] and [21] 

present the employment of intelligent techniques used for reasoning in cognitive radio networks, and FL 

appears among these techniques.  

This paper is the first comprehensive survey of research on FL approaches in VN context and aims to 

provide fundamental information to enable readers to understand existing FL systems and their particularities 

and design their own FL systems in the VN context. This work includes the following main contributions: 

• A detailed presentation of FL concepts with the emphasis on their implementation in VNs 

• A step by step tutorial on how to design a FL-based system in VN context 

• A classification and thorough analysis of the FL-based solutions in VNs and their applications along 

with a discussion on the VN-related challenges that FL address and why FL was considered to be 

suitable for addressing them. Design decisions that relate to the FL system are also highlighted for each 

presented solution.  

• A summary of the most important lessons learnt as well as a discussion on future research directions in 

this context. 

 The structure of the paper is as follows. Section 2 familiarizes the readers with VNs, section 3 introduces 

FL concepts with the emphasis on their implementation in VN, presents a step by step tutorial on how to 

design a FL-based system in VN context and introduces a three-class classification of FL-based solutions 

designed in VN landscape. Sections 4, 5, and 6 present a comprehensive analysis of the FL-based solutions in 

VNs that subscribe to the three main classes identified in the classification. Last section draws paper 

conclusions in form of main lessons learnt and identifies future research directions. 

2 INTRODUCTION TO VEHICULAR NETWORKS 

This section presents an overview of VNs: main enabling VN communication technologies are presented 

and the VN’s specific characteristics that also impose the main challenges in VNs. Appropriate resources to 

the reader for further study are also indicated. 

2.1 VN-Enabling Technologies Supporting Standards  

This section presents an overview of VNs: main enabling VN communication technologies are presented 

and the VN’s specific characteristics that also impose the main challenges in VNs. Appropriate resources to 

the reader for further study are also indicated. The nodes in VNs communicate with each other and to the 

infrastructure via V2X communications. There are various proposed standards enabling V2X 
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communications and more enabling technologies proposed to be developed in the context of 5G. The main 

existing standards are briefly mentioned below. More details about these standards can be found in [1], [2] 

and [7]. 

Wireless Access for Vehicular Environment (WAVE) standards [7] include the following standards 

dedicated to vehicular communications: IEEE 802.11p and IEEE P1609.x. IEEE 802.11p1, developed to 

provide wireless access to vehicles, is a new amendment of IEEE 802.11 that was ratified in July 2010. Its 

aim was to make IEEE 802.11 suitable to the ever-changing transportation environment and able to deal with 

very short latencies. IEEE P1609.x suite of standards covers the entire VN scope of services, from 

application down to the MAC network layer, as IEEE 802.11p already covers the Physical and MAC layers. 

ITS-G52 is the profile standard of IEEE 802.11p, defined by the European Telecommunication Standards 

Institute (ETSI) in order to adapt 802.11p to the European spectrum. ETSI also defined in a standard the ITS 

station and communication reference architecture that covers the whole network stack3. 

Other types of technologies, not dedicated exclusively to VNs, are also used in supporting vehicular 

communications (e.g. WiFi, cellular technologies). Among the cellular technologies, LTE is currently the 

most promising in enabling vehicular applications [24]. However, LTE was originally designed for mobile 

broadband traffic and the requirements for V2X traffic are very different. For instance, direct V2V 

communication should be supported which means that the infrastructure should be bypassed. Steps were done 

in this direction as from Release 12 (Rel.12) a new feature known as Proximity Services is specified within 

3GPP4. Proximity Services Direct Discovery and Proximity Services Direct Communication enable Device-

to-Device (D2D) communications [25]. However, this current release of the Proximity Services specification 

has not considered the requirements of V2X communications. It was designed for public safety and 

commercial consumer scenarios that lead to low mobility support. Therefore D2D communications specified 

in Rel.12 is not really suitable for V2V communications, especially not in highway scenarios characterized 

by high speeds. Improvements of these specifications that take into consideration V2X characteristics are 

already planned and they are very likely to be introduced in 5G communications. 

2.2 VN Characteristics 

VNs have specific characteristics that differentiate them from any other type of networks. Some of these 

characteristics are very attractive to the researchers, while others are creating new technical challenges that 

need to be addressed. Next the most sought-after VN characteristics are discussed.  

• Predictable mobility is possible in VNs due to the fact that vehicle movement is constrained by roads 

and traffic regulations.  

• Theoretical unlimited power, due to the fact that the vehicle-node is capable of generating itself power 

while moving. Power is usually a very serious issue in the case of mobile nodes. This is not applicable 

for all types of vehicles (e.g. electric vehicles).  

• High computational and storage capabilities: theoretically vehicles can afford significant storage, 

computational, and communication capabilities, but this is not applicable to all types of vehicles (e.g. 

bikes). 

Most challenging VN characteristics are: 

• High mobility: The vehicle-nodes have often very high speeds: in highway scenarios speeds of up to 

200km/h may occur, while in city scenarios speeds of up to 50-70km/h are encountered. 

                                                                    
1 IEEE 802.11p, “Draft Amendment to Standard for Information Technology-Telecommunications and Information Exchange Between 

Systems-Local and Metropolitan Area Networks- Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications- Amendment 6: Wireless Access in Vehicular Environment", 2010. 
2 ETSI EN 302 663 V1.2.1, “Intelligent Transport Systems (ITS); Access layer specification for Intelligent Transport Systems operating in 

the 5GHz”, 2013. 
3  ETSI TS 102 636-3 V1.1.1, “Inteligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network 

Architecture”, 2010. 
4 3GPP TS 23.303. (July 2015). Proximity-based services (ProSe); Stage 2.V12.5.0 (Rel-12). 
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• Frequent disconnections and rapidly changing topology: The aforementioned high mobility of VN nodes 

leads to a frequent link disconnection between the vehicle-nodes and consequently to a rapidly changing 

VN topology.   

• Potentially large scale: VNs are networks with a potential high number of nodes. There is no limitation 

in terms of number of nodes, so vehicle-nodes can potentially expand over the entire road network. 

• Diversity of conditions and applications: Diversity of conditions mainly refers to the diversity of the 

network density that can be very sparse (e.g. highway scenario), very dense (e.g. city scenario during 

rush hours) or something in-between. As presented in the introduction, a large plethora of applications 

have been envisioned for VNs. The requirements of these applications are as diverse as their range is. 

Consequently, VN dedicated technology needs to be designed so these networks can cope with all this 

diversity.  

In the presence of these characteristics, some of the main technical challenges of VNs are imposed in the 

context of MAC protocols, security, handover, and routing and data dissemination protocols [4][6]. In later 

sections of this survey will be indicated how FL can be employed to address these challenges and other 

challenges imposed by VN applications. 

3 FUZZY LOGIC AND VEHICULAR NETWORKS 

FL, introduced by Prof. Zadeh in 1965, was defined as an “attempt to mimic human control logic” [26]. 

FL is the only mathematical framework able to do reasoning based on linguistic information (i.e. linguistic 

variables) and simulate human reasoning. It is also able to deal with uncertainty and imprecision, model non-

deterministic problems and deal with multiple parameters that describe the problem modeled. These 

characteristics make FL a suitable tool to model and solve a large plethora of real-world problems. Therefore, 

FL have had a huge impact: it was and it is used a wide scale and in various domains, including engineering, 

medicine, science, and business. There are many well-known, successful FL applications deployed in the 

industry (e.g. Sendai subway control (Hitachi), aircraft control (Rockwell Corporation), intelligent cruise 

control (Peugeot, Nissan vehicles) [27]). Besides these well-known industrial applications, many of current 

research works in different areas further explore the huge potential of FL. Telecommunication is one of these 

areas where FL was both successfully employed in solving various challenges and its potential is still being 

explored. Some of the first FL applications in telecommunications have been analyzed in [16] and include: 

queue modeling, faults and other conditions detection in the telephone networks, dynamic assignments of 

radio channels and control applications in the context of asynchronous transfer mode networks. The latest FL 

applications are in the context of wireless networks (e.g. decision making in network selection [18]), wireless 

sensor networks (e.g. decision making in energy-aware routing and clustering or security protocols [19]) and 

more recently in the context of cognitive radio networks (e.g. FL reasoning can be employed in inferring the 

“cognition”/knowledge of cognitive radio networks [20] [21]) and VNs. 

3.1 Fuzzy Logic Concepts in Vehicular Networks Context 

3.1.1. Linguistic Variables. Cognitive scientists state that humans tend to think in terms of concepts and 

images rather than in terms of numbers. Consequently, natural language is preferred in describing any kind of 

problem that requires reasoning. However, mathematical paradigms, with the exception of FL, do not allow 

for reasoning in natural language. FL allows reasoning in terms of natural language, expressed by means of 

linguistic variables. These were defined by the founder of FL, Zadeh, as “variables whose values are not 

numbers, but words or sentences in a natural or artificial language" [28]. The values of linguistic variables are 

named (atomic) terms. In linguistics, often to the fundamental term modifiers like: very, extremely, almost, 

approximately, slightly are associated. FL allows for the usage of these modifiers that are named linguistic 

hedges. 

Example 1: In the VN space, speed is one of the most common linguistic variables and it was used to refer 

either to the speed of the vehicle (e.g. [29]) or to the difference in speed of the vehicles (e.g. [30] [31]). In 

[29], the linguistic variable speed has as main terms slow, medium and fast. Additionally, a linguistic hedge is 
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applied to slow: very slow. Thus the speed is either: very slow, slow, medium or fast. The terms of the speed 

linguistic variable in both [30] and [31] are low, medium and high.  

3.1.2. Fuzzy Sets and Membership Functions. A fuzzy set is a fundamental concept in FL and represents a 

generalization of an ordinary set, called in FL, crisp set. A crisp set is defined either by listing its elements or 

by defining the condition that makes an element x member of the set. For any value x there are only two 

possible statuses: member of the set or non-member. Thus, the statement: “x is member of set A” can be 

either false (value 0 in binary logic), either true (value 1 in binary logic). A function that illustrates the 

membership relation (i.e. membership function) can be defined. Let A be a crisp set and µA(x) its membership 

function described by eq. (1). 

µA(x) =  � 0,    if  x is not a member of set A
1,                if x is member of set A   (1) 

A fuzzy set F, is described exclusively by its membership function µF(x) that unlike a membership 

function describing a crisp set, can take more than 2 values, 0 and 1, taking values in the interval [0, 1]. In 

this case, µF(x) shows the degree of truth of the element x being member of the set F. This is how fuzzy sets 

extend the crisp sets and fuzzy logic extends the binary logic from {0, 1} to [0, 1]. The formal definition of 

fuzzy set F is expressed as a set of pairs (x, µF(x)) as in eq. (2).   

F = {(x, µF(x))| x €X, µF(x):X → [0,1]}  (2), 

where X is called in FL the universe of discourse and defines all the possible values that x can take. 

A fuzzy set describes what the atomic term of a variable signifies in a mathematical language. The most 

popular membership functions in FL are: singleton, triangular, trapezoidal and Gaussian, named after the 

geometric figures that the pairs (x, µF(x)) are shaping. In increasing order of computational complexity of the 

membership functions, the singleton is followed by triangular, trapezoidal and Gaussian functions. These are 

the most common functions used in engineering applications [27]. 

 

Fig. 1. Fuzzy sets of speed ([30])   Fig. 2. Fuzzy sets of speed in [31] 

Example 2: Example 1 mentioned that the linguistic variable speed is used in both solutions [30] and [31] 

with the same atomic terms: low, medium and high. The interpretation of these terms is however defined by 

the fuzzy sets associated to these terms. Fig. 1 presents the fuzzy sets of low and medium terms as described 

in [30] and Fig. 2 illustrates the fuzzy sets of low, medium and high as described in [31]. It can be seen from 

the two figures how for instance the low term of speed is differently defined in the two approaches. Note that 

in both approaches trapezoidal membership functions are used. 

3.1.3. Fuzzy Logic Inference Systems – Overview and Main Architecture. Solving problems in FL involves 

a FL inference system or a FL controller, concepts introduced in [32]. Note that these two terms, FL 

inference system or simply FL system (FLS) and FL controller (FLC) are basically defining the same 

concept. However sometimes FLC refers to a specific type of FLS that is designed for control purposes. 
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Several types of inferences were imposed as models and therefore they are also called fuzzy models. Among 

these, the one introduced by Mamdani in 1975 is the most popular. Other fuzzy models were introduced in 

time, such as Sugeno fuzzy model [33], also known as Takagi and Sugeno fuzzy model, Tsukamoto fuzzy 

model [34] and Larsen fuzzy model [35]. FLSs can have multiple (M) / single (S) inputs (I) and multiple (M) 

single (S) outputs (O) in any combination (i.e. FLSs can be MIMO, MISO, SIMO, SISO systems). MISO 

FLSs are the most common ones and therefore this type is further considered for exemplification.  

The architecture of a classic MISO FLS is presented in Fig. 3, but its components and their description 

(adapted to the number of inputs/outputs) are valid for all FLSs. In the next paragraphs, each of the 

components of a FLS is presented, indicating the particularities of each fuzzy model. 

 

Fig. 3. Classic FLS Architecture 

The Fuzzifier takes the inputs of the system in the form of crisp values and fuzzifies these values: for each 

of the crisp value returns as output the corresponding fuzzy degree of membership. This fuzzification process 

is based on the membership functions correspondent to each input and stored in the Data Base.  

The Inference Engine is in charge with the actual reasoning process, mapping the fuzzified inputs of the 

system on the output fuzzy set based on the rules defined in the Rule Base. FL operators are applied on these 

rules. Different operators are applied depending on the type of fuzzy model that is followed by the FLS: 

Mamdani, Sugeno, Larsen or Tsukamoto. Therefore, in the FL terminology we talk for instance about 

Mamdani, Sugeno, Tsukamoto, and Larsen inferences, respectively. Detailed descriptions of the operators 

used in the inference can be found in [27] [36] and [37]. 

Knowledge Base contains the Rule Base, a collection of “IF-THEN” rules expressed linguistically, and the 

fuzzy sets of inputs and outputs that are represented in the Data Base. An example of rule formalization is 

given in eq. (3). 

R(l) : IF u1 is F1
l AND u2 is F2

l AND … 

up is Fp
l THEN v is Gl       (3) 

, where l is the index associated to the rule in the context of the Rule Base, u1…p  and v are linguistic 

variables, p is the number of input variables considered in the rule, F1…p
l are fuzzy sets. Gl has different 

interpretations depending on the types of inference: it is a fuzzy set in Mamdani and Larsen inferences, a 

crisp function depending on the numerical values of u1…p, a singleton in the Sugeno inference, or a fuzzy set 

with a monotonic membership function in the Tsukomoto inference. 

Example 3: In [29], the authors have built a FLS for congestion detection. They linguistically expressed in 

their rules the dependency of the congestion on the speed of the vehicle and density of the vehicles around. 

Speed as described in Example 1 is a linguistic variable having as terms: very slow, slow, medium and fast. 

Traffic density is a linguistic variable as well, having as terms low, medium, high and very high. An example 

of a rule is as follows: If speed is very slow and traffic density is medium then the level of congestion is 

moderate. 

The Defuzzifier performs the defuzzification, the opposite process of fuzzification: a fuzzy set (resulted 

from the inference) is mapped to a crisp value, which is the FLS output. There are various defuzzification 

methods, including: centre of area (COA) also called centre of gravity or centroid, bisecter of area, weighted 

average, maximum, and mean of maximum. In Sugeno and Tsukamoto fuzzy models the defuzzification used 

is the weighted average method, while in Mamdani and Larsen the defuzzification method is not imposed by 

Fuzzifier
Inference 
Engine

Defuzzifier

Rule Base

Input 1
...

Input n

Output

Data Base

Knowledge Base
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the fuzzy model applied, being decided when designing the FLS. The most popular defuzzification method is 

COA. Further discussions on defuzzification methods are included in [27] [36] and [37]. 

3.2 Designing a Fuzzy Logic System in Vehicular Networks Context 

This section outlines the steps that should be followed in the design of a FLS in tutorial manner. These 

steps are general and can be used for developing a FLS in any context, but there is specific particularization 

to VN context.  

1) The first step in designing a FLS is to define the inputs and outputs and their range: the linguistic 

variables representing the inputs and outputs are defined and their universe of discourse is identified. 

Moreover, the terms of the linguistic variables and their numerical range are also identified.  

2) The second step involves deciding the type of membership functions of the fuzzy sets describing the 

fuzzy terms of the inputs and outputs and in addition the setting of the parameter/coefficients of these 

functions. Initial setting of the parameters is based on expert knowledge of the designer or lessons learnt from 

the literature. Next, these parameters can be modified by performing either manual or automatic tuning.  

3) The third step in the design of a FLS requires defining the rules. This is a very important step for the 

performance of the system. Good rules can be defined based on the knowledge about how the system is 

supposed to work, its context and conditions. Similar to the case of the membership functions, initial rules 

should be based on expert knowledge or lessons learnt from the literature (Example 4). Further, manual 

tuning can be performed in order to adjust the rules.  

Example 4: Example 3 presented a rule associated to a FLS designed to detect road congestion. The rule 

base for the same FLS was built based on the levels of vehicular traffic congestion estimated by Skycomp 

[38] that used in this purpose data collected by aerial surveys of different freeways. 

4) The fourth step involves defining the inference type and the defuzzification method and is often 

influenced by the second step. For instance, if the output terms are represented by singletons, then a Sugeno 

inference might be suitable, but not necessary. Also, if the fuzzy sets of the output are monotonic, we have an 

incentive to apply a Tsukomoto inference. Tsukomoto and Sugeno inferences come with their own 

defuzzification methods. In the case of Mamdani or Larsen inferences, selecting a defuzzification method is a 

design decision.  

COA is the most popular defuzzification method. It is a bit more complex, but it is highly recommended 

as it is associated with higher accuracy. As in VNs high level of performance is often required, the 

complexity is an issue and consequently a trade-off between reduced computation complexity and 

performance/accuracy should be made when designing a VN-based FLS. For instance, the membership 

functions employed should be less computationally complex (e.g. singleton, triangular, trapezoidal functions) 

in order to compensate for the increased complexity of the COA defuzzifier. 

5) The last step in the design of a FLS is about assessing and tuning of the system. Tuning the system 

refers to reviewing the range of the inputs/outputs and their terms, revising the fuzzy sets, tuning the 

membership functions (i.e. revising their parameters or shape), tuning the rules (i.e. adding, removing, 

assigning/modifying their weights), and experimenting with different types of inferences.  

Most of the actions performed in tuning a FLS are done manually. However, for tuning the membership 

functions and the rules, automatic techniques were designed. These techniques are based on learning 

algorithms. In FLS tuning two types of learning are used: supervised and reinforcement-based learning. In 

both cases, there are a variety of learning techniques that can be used: classic learning techniques (e.g. Q 

learning), techniques borrowed from the fields of Neural Networks and Genetic Algorithms, Particle Swarm 

Optimization and H ∞ filtering.  

In automatic tuning based on supervised learning there is a need for a so called training set. This is 

represented by numerical data for inputs and their corresponding outputs. In some fields where FL is applied, 

the FLS is basically created starting from such a data set. However, in the context of VNs obtaining this 

training data set is not straightforward. One way to obtain it is via simulations, considering for certain inputs 

what the best output that can be obtained is. The final system evaluation should consider a different 
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simulation scenario than the one used for obtaining the training set. The supervised-based learning is 

performed off-line, before the deployment of the FLS.  

In automatic tuning based on reinforcement learning there is no need for a training set. The FLS is able to 

adapt its parameters dynamically, at run-time based on the output of the system and the impact of the output 

on the environment (e.g. process controlled, impact of the decision taken on the modeled problem, etc.).  

 

Fig. 4. Reinforcement learning-based real-time adaptive FLS architecture 

3.2.1. Alternative FLS Architectures. An automatic tuning based on reinforcement learning brings slight 

changes to the classic architecture of a FLS (Fig. 3) as the adaptation is based on run-time recursion. A 

reinforcement learning block is added to the classic architectural blocks that were discussed in section 3.1.3). 

This implements the learning technique that is employed at run-time on the input(s) that are the results of the 

impact of the FLS output on the environment. The output(s) of this block is fed into the Knowledge Base. 

This architecture is presented in Fig. 4. 

There is also another type of real-time adaptive architecture used in the FLS design which is presented in 

Fig. 5. The adaptive mechanism is very simple and is not based on any kind of learning algorithms, but on the 

impact of the output on the environment only. This is a typical architecture used by FL controllers (i.e. FLSs 

designed for control). These three architectures illustrated in Fig. 3, Fig. 4 and Fig. 5, respectively are the 

main architectures for FLSs.  

 

Fig. 5. Simple real-time adaptive FLS architecture 

3.3 Fuzzy Logic Solutions in Vehicular Networks – Solutions 

After surveying the FL solutions proposed in VN context we propose a generic classification of these 

solutions in three main classes based on the process FL is mostly employed in as follows: decision making 

solutions, control solutions, and detection and prediction solutions, respectively. By far, the most popular 

class includes FL-based decision making solutions, while the class which encompasses FL-based detection 

and prediction solutions is the least popular with few solutions only. This generic classification can be further 

granulized considering the architecture type adopted by the FLS employed in the outlined processes. The use 

of the classic FLS architecture leads to non-adaptive solutions, while using the other two architectures, 

reinforcement learning-based real-time adaptive architecture and simple real-time adaptive architecture, 

results in adaptive solutions.   
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Fig. 6. FL Solutions in Vehicular Networks – Taxonomy 
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Further on, we focus on solution classification based on FL areas of applicability in VN context. FL-based 

decision making solutions in VNs include: routing protocols, clustering algorithms, handover schemes and 

data aggregation mechanisms. Two major directions are identified within FL-based control solutions in VNs: 

MAC protocols and driving automation. Other FL-based control solutions include video transmission over 

VNs and beacon rate control solutions. FL-based detection and prediction solutions involve routing protocols, 

clustering algorithms, highway tolling schemes and road congestion detection mechanisms. Based on these 

considerations, a detailed taxonomy of the FL-based solutions in VNs is presented in Fig. 6. 

The next three sections present detailed analysis of the solutions that subscribe to each of the three main 

classes of FL solutions in VNs. The solution presentation follows the taxonomy presented. In the analysis of 

the solutions a great emphasis is made on the VN-related aspects that FL is employed to address, why FL is 

suitable for addressing these aspects and what are the benefits of a FL approach in comparison to other 

approaches. The design decisions that relate to the FL system are also highlighted for the solutions as 

important lessons can be learnt for the further development of FL systems in VN context. 

4 FUZZY LOGIC-BASED DECISION MAKING SOLUTIONS IN VEHICULAR 

NETWORKS 

4.1 Fuzzy Logic Solutions in VN Routing   

4.1.1. Why Using Fuzzy Logic? In the literature there are several surveys describing routing protocols in 

VNs [8] [9]. A routing protocol defines the data exchange between two entities that communicates in a 

network and usually includes network path/route selection, data forwarding and route maintenance or 

recovering from route/link failure [8]. It is obvious that route selection involves a decision making process. 

Less obvious is the fact that in the context of data forwarding we can also have a decision making process, 

especially in the particular case of the broadcast protocols that use relay nodes for data forwarding. Relay 

nodes selection, which is a decision making process, has a decisive role in protocol performance. 

Routing is listed as a challenge in VNs because of their specific characteristics which include: rapid 

change in topology, relative high speed of nodes, dynamic information exchange, and frequent 

disconnections. Consequently, it is of high importance to consider these characteristics in VN routing 

protocols. A routing protocol in VNs considers multiple parameters in the decision making process for either 

route or relay node selection. However, so far there are no deterministic models that describe with precision 

the influence of these parameters in routing. As FL is known as an excellent mathematical framework for 

handling multiple parameters and dealing with non-deterministic problems, it is a perfect candidate to solving 

routing challenges in VNs. 

4.1.2. State-of-the-art. Wang et al. [39] proposed the Fuzzy control-based AODV routing (Fcar), which 

enhances the performance of the classical ad hoc on-demand distance vector routing (AODV) by taking into 

consideration VNs specific criteria. Simulations performed show that Fcar improves the routing performance 

in comparison with AODV in a VN context. Several criteria are incorporated into the input parameters of the 

FLS designed for route selection: percentage of same-directional vehicles and route lifetime. Route lifetime is 

computed based on vehicle’s speed and distance between vehicles related to the effective communication 

range between vehicles. The FLS described is very flexible and allows for multiple inputs which lead to 

multiple path/route selection criteria. This aspect was considered by the authors when choosing to employ FL 

in their solution. The best route is indicated by the output parameter of the FLS which is the selection 

probability. FLS has trapezoidal membership functions, the authors motivating their decision based on the 

fact that these are simple and computational efficient. In the design of the rule base, manual tuning was 

adopted. 

In [40], it was proposed a FL-based routing protocol aiming to comply with the demanding Quality of 

Service (QoS) requirements of real-time traffic over VNs. The proposed protocol is derived again from 

AODV that provides some basic mechanisms to allow nodes for the specification of QoS parameters. VN 

specific criteria are taken into consideration by the designed protocol in order to address the rapidly changing 

topology. These parameters were incorporated into the inputs of a FLS that determines as output the 
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suitability of the vehicle to be an intermediate node in the route. Namely, the inputs are: minimum bandwidth 

for the real-time traffic (R)/length of the queue for the non-real-time traffic (Q), the foreseen connection time 

between the vehicle and its neighbors (L) and the currently used bandwidth (B). The VN specific criteria are 

incorporated into the L input which is dependent on vehicle’s speed, position and vehicle’s mobility model. 

The other two inputs are considered in such way to avoid congestion and to provide load balancing. In this 

way, the protocol proposes to satisfy the stringent QoS requirements in VNs, especially in the case of real-

time traffic [1]. In the design of the FLS, triangular functions are the authors’ option for the membership 

functions. The membership functions are automatically tuned using H-infinity filtering in order to adapt to 

the volatile characteristics of VNs. Thus, the FLS designed is adapting in real-time and subscribes to the 

generalized architecture illustrated in Fig. 4. The authors experimented the neural networks (NN)-based 

tuning and genetic algorithms (GA)-based tuning as well, but the performance tests have shown that while 

the accuracy is comparable (i.e. NN is performing slightly better, while GA visibly worse), the learning time 

is much longer for these latter techniques. In VNs, due to the ongoing network topology changes, frequent 

training is required, and so NN and GA based learning techniques may not to be suitable. However, this last 

statement cannot be generalized, as not many details are provided about the specific learning algorithms 

implemented and multiple NN and GA-based learning algorithms can be implemented. The rule base of FLS 

resulted from expert knowledge on the deep understanding of the influences of each parameter in the 

network. The Inference Engine is based on the Tsukamoto inference and consequently, the defuzzification 

process is also Tsukamoto. 

Wu et al. [41] [42] proposed FL and Q-learning [43] based approaches for unicast routing. Both 

approaches derive from the AODV protocol. The routing protocol proposed in [41] is called Fuzzy Q-

Learning AODV-based protocol (FQLAODV), while the one proposed in [42] is called Portable Fuzzy Q-

learning AODV-based protocol (PFQ-AODV). Both protocols have the same basic principle: they use a FLS 

for evaluating the link that is possible to be used in the routing path and based on the ranking provided by the 

FLS, Q-learning is applied for selecting a route that ensures multi-hop reliability and efficiency. The 

differences between FQLAODV and PFQ-AODV are in the inputs considered for the FLS and in the fact that 

the last one does not assume the existence of any GPS or other positioning system, making it portable and 

more practical. The FLS in FQLAODV has as inputs: bandwidth, mobility factor and received signal strength 

indicator. PFQ-AODV is refining more its inputs, considering again bandwidth, mobility factor and a new 

input link quality. Mobility factor is computed different than in FQLAODV, as it does not make the 

assumption that the vehicles know their positions. Link quality is a more complex input than received signal 

strength taking into consideration in its computation a network metric, packet loss, and a topology metric – 

number of neighbors. In the design of both FLSs, same decisions are applied: triangular and trapezoidal 

membership functions for their efficiency, Mamdani inference type and COA defuzzification method. The 

membership function parameter selection is entirely based on authors’ experience and knowledge, thus expert 

knowledge, although the authors do state that automatic tuning is possible and brings an advantage to FLS in 

VNs – adaptability to any kind of conditions (e.g. sparse or dense network) in comparison to other solutions. 

Moreover, the benefits of employing FL in the proposed routing protocols are demonstrated against AODV 

and QLAODV [44] – AODV modified with Q-learning via both simulations and real testbed. In PFQ-AODV 

testing, real-world experiments were performed. However, no comparison is performed between the two FL-

based approaches.  
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Table 1. Summary of FL-based Decision Making Solutions in VNs Routing Protocols 

Why using FL? Objective 

FLS design decisions 

Ref. Testing 
µ functions 

type/definition 

method 

Rule base 

building 

method 

Inference 

Type 
Defuzz. FLS Arch. 

Decision making 

based on multiple 

parameters; dealing 

with imprecision 

and non-

deterministic 

problems. 

Route/path 

selection  

 

Trapezoidal functions/ 

n.a. 

Manual 

tuning 
- - 

Classic FLS => 

non-adaptive 

type 

[39] Simulations 

Route/path 

selection  

 

Triangular functions/ 

Automatic tuning – 

H∞ filtering technique 

Expert 

knowledge 
Tsukamoto 

Tsukamoto-

specific 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[40] Simulation 

Route/path 

selection  

 

Triangular functions/  

Manual tuning 

Expert 

knowledge 
- COA 

Classic FLS => 

non-adaptive 

type 

[52] Simulations 

Route/path 

selection  

 

Triangular and 

trapezoidal functions/ 

Expert knowledge 

Expert 

knowledge 
Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[41] Simulations 

The reason above + 

FLS design is 

transparent, easily 

tunable, adaptable 

to the variability of 

VN conditions 

Route/path 

selection  

 

Triangular and 

trapezoidal functions/ 

Expert knowledge 

Expert 

knowledge 
Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[42] 

Simulations 

and real-world 

experiments 

Route/path 

selection  

 

Triangular 

functions/Expert 

knowledge 

Expert 

knowledge 
Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[45] 

Simulations 

and real-world 

experiments 

FL allows for a 

flexible design  

Backbone node 

selection 

 

Triangular 

functions/Expert 

knowledge 

Expert 

knowledge 
Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[49] 

[50] 
Simulations 

Backbone node 

selection 

 

Triangular 

functions/Expert 

knowledge 

Expert 

knowledge 
Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[48] 

[51]  
Simulations 

Dealing with 

imprecision; design 

flexibility, the 

system being easily 

tunable  

Relay nodes 

selection  

 

Triangular and 

trapezoidal 

functions/n.a. 

- Mamdani COA 

Classic FLS => 

non-adaptive 

type 

[53] 

[54] 
Simulations 

Relay nodes 

selection  

 

Triangular and 

trapezoidal functions/ 

Automatic tuning – Q 

learning and Transfer 

Learning 

- Mamdani COA 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[55] Simulations 

Efficiency in 

dealing with 

multiple parameters 

in real-time 

Relay nodes 

selection 

Triangular and 

trapezoidal functions/ 

Automatic tuning – Q 

learning  

- Mamdani COA 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[56] 

Simulations 

and real-world 

experiments 

Dealing with 

multiple 

parameters, 

imprecision and 

non-deterministic 

problems 

Relay nodes 

selection  

Triangular 

functions/n.a. 
- Tsukamoto 

Tsukamoto-

specific 

Classic FLS => 

non-adaptive 

type 

[57] Simulations 

FL able to solve 

problems in fast 

ever-changing 

environment 

Decide whether 

to  re-broadcast 

or not 

Triangular and 

trapezoidal 

functions/n.a. 

- Mamdani COA 

Classic FLS=> 

non-adaptive 

type 

[58] Simulations 

Trapezoidal 

functions/n.a. 
- Mamdani COA 

Classic FLS=> 

non-adaptive 

type 

[59] Simulations 
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The FL-based routing protocol proposed in [45] follows AODV principles as well, but also emphasizes 

the fact that it is not enough to consider only the high mobility of VN nodes, but also MAC layer 

characteristics, such as transmission rate at MAC layer. This observation is based on the analysis of the data 

collected via real-world experiments. Consequently, a FLS having as inputs transmission rate and link quality 

that considers vehicle mobility and signal stability is employed in route selection together with a Q-learning 

algorithm. The transmission rate is estimated based on the hello reception ratio. Q-learning and Transfer 

Learning are employed in this estimation. The output of the FLS is the rank of the path/link between the 

current vehicle and the vehicle sending the hello message. Based on the ranks provided by the FLS, a Q-

learning-based component is performing the route selection. The approach is thoroughly tested via both 

simulations and real-world experiments. 

The solution is demonstrated to perform better against AODV enhanced to consider MAC layer 

characteristics (i.e. AODV with ETX) [46] and a hybrid routing protocol for VNs that combines this 

enhanced AODV with greedy forwarding geographic routing [47]. The design decisions related to FLS are 

detailed in Table 1.   

Similar to the previous approach, the following routing solutions also consider MAC layer characteristics. 

These routing protocols aim at reducing MAC layer contention by using backbone nodes for data forwarding. 

The performance assessment of these proposed approaches has shown a clear reduction of the number of 

packets transmitted (i.e. up to 25% in the case of the protocol proposed in [48]) which results in a reduction 

in MAC layer contention time. In [49] and [50], FL is employed in selecting backbone vehicles in order to 

create a reliable connected network for data forwarding. A FLS deployed in each vehicle is designed having 

as inputs antenna height factor and VN-specific criteria: vehicle velocity and number of vehicles travelling in 

the same direction. The output is the rank that characterizes the suitability of the vehicle to be a backbone 

node. The FLS structure is detailed: follows the Mamdani inference model, has triangular membership 

functions, the rule base is fully presented and uses COA as defuzzification method. The authors choose to use 

FL because it allows for a flexible design: the variability of VN environment from road segment to road 

segment makes it very difficult to create simple mathematical models to describe the relationship between the 

aforementioned metrics considered as inputs and the output. The FLS employed in these two solutions has 

been enhanced in the routing protocols proposed in [48] and [51]. The antenna height input was replaced with 

a new channel condition-related parameter that is estimated based on exchange of HELLO messages.  

Khokhar et al. [52] proposed a routing protocol dedicated to urban vehicular environment that employs 

novel concepts in order to address security challenges in VNs. The novel aspect is the rationale behind the 

routing protocol. The authors state that there are some social behavior patterns developed in urban 

environments and these should be exploited in order to make secure routing decisions. A friendship 

mechanism is developed that is used in taking routing decisions at intersections. The decision making is 

based on a FLS that has the following inputs: friends, friends of friends and non-friends and gives as output 

the path fuzzy cost. The list of friends of a vehicle is made based on the social behavior pattern developed in 

traffic: if there was a V2V communication between two vehicles, there is a friend relationship between them. 

In addition, the social networks of the drivers are considered. For instance, if the drivers are friends on 

Facebook, their vehicles are friends as well. Regarding the FLS design decisions, the authors opted for 

triangular functions as they are computationally efficient. Membership function parameters and rule base 

were established based on expert knowledge and manual tuning. The COA defuzzification method is the 

authors’ option for defuzzification. 

Wu et al. [53] introduced a FL decisional system to select the nodes where to relay the broadcast 

messages in the context of a new broadcast protocol for VNs. The technique of using only a few neighboring 

nodes for relaying broadcast messages ensures the efficiency of the proposed broadcast protocol. The FLS 

uses multiple parameters in the relay node selection which ensures high reliability of the protocol. These 

parameters are distance factor (inter-vehicle distance), mobility factor that considers both the current and 

future position and received signal strength and are used as inputs by the FLS which outputs the rank of a 

node. The node with the highest rank is selected as a relay node. All the FLS design decisions are presented 
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in Table 1. The same FLS was employed in the broadcast protocol proposed in [54] in the relay nodes 

selection, but the overall solution was enhanced with network coding in order to improve the packet reception 

ratio. In both approaches, it is highlighted the fact that FL is employed due to its capability of dealing with 

imprecision and its design flexibility the system being easily tunable.   

Another broadcast protocol was proposed in [55], which employs for relay node selection the same FLS 

used in [53] and [54] enhanced with a real-time Q-learning-based tuning of the membership function 

parameters. Consequently the new FLS has a reinforcement learning-based real-time adaptive architecture as 

shown in Fig. 4. In order to speed up the learning time, the authors also employed a Transfer Learning 

technique that allows one vehicle node to make use of the lessons learnt by another vehicle node. The testing 

shows how the protocol based on the FLS with online automatic tuning clearly outperforms the protocol 

based on the classic FLS. The automatic tuning allows for a better adaptation of the protocol to the ever-

changing VN environment. The tests were performed using different communication ranges. The authors do 

not make any specific comments regarding learning time, however, from the results presented it is clear that 

this does not have any impact on the performance of the proposed protocol. 

In [56], another FLS with a reinforcement learning-based real-time adaptive architecture is employed for 

relay nodes selection in a broadcasting protocol. Q-learning is again used for automatic tuning of the 

membership functions parameters. As a novelty the authors consider the packet size in relay node selection as 

it was demonstrated in the literature that this parameter can have a significant impact on the packet loss rate. 

This parameter is incorporated in what is called link quality metric, considered as an input for the FLS 

together with distance and a mobility metric. Moreover, an extra-step is considered in the decision making 

process of the relay nodes. The FLS gives the rank for the nodes, but the selection is performed based on both 

rank and redundancy level using a heuristic approach. The purpose of jointly considering the relay node 

selection with the redundancy level is to improve packet forwarding probability in order to eliminate 

retransmissions. The proposed approach is tested both via simulations and real-world experiments. The 

design decisions related to FLS are listed in Table 1.  

FL is also employed in the relay node selection described in [57]. Two FLSs are employed in the decision 

making. The first FLS is used to decide upon the most appropriate vehicle from a list of candidates to become 

the relay node that is storing and forwarding the data to the requesting nodes. A second FLS is designed to 

decide from these requesting nodes if they are suitable to become relay nodes. The first FLS has as inputs 

bandwidth, overhead and lifetime, the latter incorporating the VN-specific parameters: vehicle velocity, 

distance between vehicles and direction of vehicles. The output is represented by the appropriateness of the 

node to be a relay node. The membership functions are triangular and the FLS has a Tsukamaoto inference 

type and defuzzification method. The design decisions of the FLSs are very poorly described; none of the 

design decisions are motivated. Regarding the second FLS, no details are provided except for the inputs that 

are represented by the capabilities of the requesting node such as computation capability, buffer size and 

stability of the signal strength and the output which is the suitability of the node to become a relay. 

Very recently, FL decisional systems were employed to help the node take the decision if to re-broadcast 

or not in the context of some receiver-based routing protocols. Such solutions are presented in [58] and [59]. 

In [58], each vehicle node has a FLS that uses as inputs: coverage (i.e. factor computed based on the 

distances to potential forwarder vehicles), connectivity (i.e. number of vehicle’s neighbors) and mobility 

factors (i.e. factor computed based on the vehicle’s speed) in order to decide where the node should re-

broadcast or not. FL is employed due to its suitability in solving problems in a fast ever-changing 

environment that characterizes VN. Another argument in favor of FL is the success stories in the context of 

other VN solutions. A similar solution is proposed in [59], where a FLS is used in deciding if a vehicle-node 

is suitable to re-broadcast or not. The inputs considered for the FLS are coverage and mobility factors, 

computed similarly as in [58]. A set of re-broadcasting candidates is formed based on the suitability decided 

by the FLS and the node decides to re-broadcast if its coverage factor is the highest among the vehicles in the 

set. Again, the motivation for using FL stresses out its capability of solving problems in a fast ever-changing 

and uncertain environment. Moreover, in [59] it is underlined the fact that FL has improved the decision 
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making process in the general context of VN and has reduced delays in computation. The details of FLS 

design decision for both solutions are presented in Table 1. 

4.2 Fuzzy Logic Solutions in VN Clustering 

4.2.1. Why Using Fuzzy Logic? In networking, clustering techniques are used to partition the network by 

forming virtual and temporary groups of nodes (i.e. clusters) leading to a network with better manageability 

and improved performance. It can be said that clustering helps solve some of the main issues in VNs: 

scalability and stability [60] therefore it was widely adopted in VNs. Clustering algorithms were 

implemented in the design of a large variety of VN solutions: MAC protocols, routing protocols, data 

aggregation, security protocols, inter-vehicle communication, and data and infotainment dissemination 

solutions and architectures. In addition, various generic clustering algorithms were defined for VNs [11] [12]. 

A clustering algorithm considers that a node can be in one the following main states based on node 

membership and task associated to the node: unclustered (i.e. non-clustered or independent, when the node 

does not belong to any cluster), cluster member (i.e. clustered, the node is within a cluster), gateway node – 

GW – (the node that ensures information exchange and relay with the neighboring clusters) and cluster head 

– CH – (i.e. the node has extra-responsibilities in a cluster). Usually, CH is the main controller of the cluster, 

the main coordinator of the communication within the cluster (i.e. intra-cluster communication) and has a 

main role in the functionality that is supposed to be provided by the cluster. 

In VNs, due to the ever-changing topology, some secondary node states are also considered including: 

candidate node and CH backup or CH candidate (quasi-CH) states. The candidate state was introduced by 

some approaches in order to obtain a better stability of the cluster. A node is not immediately given a cluster 

member state; it goes into the candidate state until it proves that it has certain stability in the cluster. The CH 

backup or CH candidate states were introduced to make faster and smoother the process of changing the CH.  

Basically, a clustering algorithm involves decision making processes that select the appropriate state of 

the node based on some clustering metrics. Most complex decision making processes are the ones employed 

for CH selection and then for GW selection as these involve multiple clustering metrics reflecting the 

complex VN environment. A stable CH is mandatory for obtaining a stable cluster, as usually vehicles 

organize themselves around a CH in order to form a cluster. Therefore most of the clustering algorithms 

consider VN specific metrics that describe the high mobility, rapidly changing topology and diversity of 

conditions (e.g. direction, vehicle’s relative speed in comparison to other neighboring vehicles, vehicle’s 

relative position, traffic flow, lane in urban scenarios, density of vehicles, etc.) and for the clustering 

algorithms designed for a specific problem/application/service, the corresponding metrics. Beside the fact 

that clustering algorithms need to consider multiple parameters, another issue is that it is impossible to define 

precisely how each of the clustering metrics influences the stability of CH or GW in particular and clusters in 

general. This is exactly the context FL is applied in so many domains successfully: to model and solve non-

deterministic problems that need to consider multiple factors. Next, it is discussed how FL was employed in 

the literature in the context of VN clustering. 

4.2.2. State-of-the-art. FL is used in [31] for selecting the most appropriate cluster heads in a cluster-based 

VN architecture. The option for FL is motivated based on the fact that it is an excellent mathematical 

framework for dealing with imprecision and multiple parameters. The inputs of the designed FLS are: 

average relative distance, average relative velocity, direction of travelling and average relative compatibility. 

The last parameter measures the compatibility in the users’ (vehicles’ drivers/passengers) preferences in 

certain data/content. The aim is to increase the probability of users being provided with data/content of their 

interest inside the cluster. The FLS output is called cluster head eligibility, a rank on the basis of which the 

most appropriate vehicle in a cluster becomes cluster head. The inputs and the output of the FLS have 

triangular and trapezoidal membership functions chosen because of their efficiency. The inference type is 

Mamdani, while the defuzzification method is COA. 

In [61], a new cluster-based vehicular cloud architecture is proposed for a better management of the 

limited resources in VNs. The cluster head selection algorithm is based on FL and it is proven to have better 
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performance as compared to the previously described FL-based cluster head selection algorithm (i.e. [31]). 

FL is chosen due to its flexibility and adaptability to the dynamic VN environment. The inputs for the FLS 

that has a classic architecture are: neighborhood degree, average speed and Road Side Unit (RSU) link 

quality and the output is the fit factor for a vehicle to be a cluster head. Trapezoidal and membership 

functions are used due to their reduced complexity. Their parameters and the rule base are chosen such as it 

subscribes to the following policy: a cluster head should have a high neighborhood degree and the RSU link 

quality should also be high.  

Table 2. Summary of the other FL-based Decision Making Solutions in VNs 

Subclass Why using FL? Objective 

FLS design decisions 

Ref. Testing  
µ functions 

type/definition 

method 

Rule base 

building 

method 

Inference 

Type 
Defuzz. FLS Arch. 

FL-based 

Decision 

Making 

Solutions in 

VNs 

Clustering 

Dealing with 

imprecision; 

modeling 

linguistic 

information 

(human-like 

reasoning) 

Cluster head 

selection  

Triangular and 

trapezoidal 

functions/Manual 

tuning 

Lessons 

learnt from 

the 

literature 

Mamdani COA 

Classic FLS 

=>non-

adaptive type 

[31] Simulations 

FL allows for a 

flexible design  

Cluster head 

selection 

Triangular and 

trapezoidal functions 

Lessons 

learnt from 

the 

literature 

Mamdani COA 

Classic FLS 

=>non-

adaptive type 

[61] Simulations 

Dealing with 

imprecision 
Gateway selection  

Trapezoidal 

functions 

Expert 

knowledge  
Mamdani COA 

Classic FLS 

=>non-

adaptive type 

[62] Simulations 

FL-based 

Decision 

Making 

Solutions in 

VNs 

Handover 

Decision 

making based 

on multiple 

parameters that 

describe the 

environment 

with a degree of 

imprecision 

network selection - - - - - 
[66] 

 
Simulations 

network selection - - - - 

Classic FLS 

=>non-

adaptive type 

[67] Simulations 

network selection  

Triangular/ expert 

knowledge 

 

Expert 

knowledge 
- - 

Classic FLS 

=>non-

adaptive type 

[68] Simulations 

FL-based 

Decision 

Making 

Solutions in 

VNs Data 

Aggregation 

FL is able to 

take decisions 

based on 

multiple 

criteria; 

A FL-based 

design allows 

for flexibility 

and 

extensibility  

 

Deciding upon the 

data similarity 

 

Triangular functions; 

Parameters’ selection 

method not specified 

- Sugeno 
Sugeno-

specific 

Classic FLS 

=>non-

adaptive type 

[74] Simulations 
Selection of most 

relevant data from 

the aggregates to 

be further 

disseminated 

- - - - - 

Deciding upon the 

data similarity  

Trapezoidal 

functions; 

Parameters’ selection 

method not specified 

- - - 

Classic FLS 

=>non-

adaptive type 

[30], 

[75] 
Simulations 

Deciding upon the 

data trustfulness 

Trapezoidal 

functions; 

Parameters’ selection 

method not specified 

- - - 

Classic FLS 

=>non-

adaptive type 

[76] Simulations 
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A newer trend in VN clustering is the employment of clustering algorithms in designing reliable and 

efficient VN architectures that bring together multiple access technologies [11]. Such a cluster-based hybrid 

architecture is proposed in [62]: the vehicles in the cluster communicate via V2V communications based on 

the IEEE 802.11p standard, while a GW in the cluster is chosen for connection to the LTE Advanced 

infrastructure. GW selection is based on a FL decision making system. The selection takes into consideration 

multiple criteria, the decisional FLS having the following inputs: QoS classes, which are introduced as 

novelty element in comparison with other schemes, connectivity strength between the vehicle and 

infrastructure, connectivity strength between the CH and infrastructure, CH load and link connectivity 

between the vehicle and CH. The latter parameter considers the mobility. The FLS has a classic architecture 

with a Mamdani inference. It uses COA for defuzzification and trapezoidal membership functions. The 

knowledge base is built based on expert knowledge and careful analysis on the influence of the inputs on the 

output performed on extensive simulation results. The choice for a FL-based decisional system is based on 

the FL inherent strength of dealing with imprecision that characterizes the vehicular network environment 

and the relationship between the clustering metrics considered and the suitability of a vehicle node to become 

GW. 

4.3 Fuzzy Logic Solutions in VN Handover 

4.3.1. Why Using Fuzzy Logic? Among the architectures presented for VNs, the hybrid architecture that 

supports vehicular heterogeneous networking is the most promising. One of the underlined challenges of 

vehicular heterogeneous networks is the handover (HO) [63]. HO in vehicular heterogeneous networks 

subscribes to the general HO problem in heterogeneous networks, but also due to the VN characteristics, 

needs specific approaches. A HO process has three phases: monitoring (i.e. collecting the information related 

to network conditions based on which the HO decision phase is triggered), HO decision (i.e. selecting the 

most suitable access network – network selection – and deciding whether to switch to this network) and HO 

execution (connecting to the pre-selected network). HO decision phase has an overwhelming importance in 

the HO process as its performance highly depends on how the targeted network is selected in order to secure 

the best communication performance possible.  

An effective network selection in wireless heterogeneous networks takes into account multiple criteria 

including: network metrics, device-related metrics, application requirements and user preferences [17]. 

Deciding accurately and often in real-time the influence level these parameters have on the degree of 

electability of a network is impossible. Therefore, FL, known for its capability of dealing with imprecision 

and multiple parameters and for its suitability for real-time systems provides a robust framework for HO 

decision.  

A considerable number of HO solutions for heterogeneous networks have employed FL in the network 

selection process [64] [65]. This section focuses on the vehicular heterogeneous networks that require 

dedicated solutions that take into account their specific characteristics. Consequently, besides considering 

network and device-related metrics, application requirements and user preferences, a good network selection 

mechanism in VNs should take into account VN-specific characteristics in the decision making process. FL-

based network selection solutions dedicated to vehicular heterogeneous networks are further discussed.   

4.3.2. State-of-the-art. A general framework for network selection transparency in VNs is proposed in 

[66]. This framework considers multiple decision criteria from each of the following classes: network and 

device-related metrics, user preferences and application requirements. However, no VN specific criteria are 

used. For the decision making process the authors propose FL as a math model. The authors provide only 

architectural details of the framework, where decision making is one of the architectural blocks, leaving the 

implementation details out of the picture.   

Ma and Liao [67] proposed a speed adaptive HO algorithm for vehicular heterogeneous networks based 

on FL. The HO decision is based on a FL decisional system that decides the best available network and 

whether HO should be performed. The input parameters of the system are a combination of network metrics 

and application requirements: bandwidth capacity, power charge, received signal strength (RSS) and delay. 
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No VN-specific characteristics are directly considered in the inputs of FLS. These are incorporated in the 

speed adaptive strategy that considers the high mobility of the vehicles. This strategy is applied in order to 

form the list of candidate networks that are then ranked by the FLS. The membership functions chosen for the 

designed FLS were triangular and trapezoidal based on the fact that these are known for their good 

performance especially in real-time systems. Except for specifying the type of the membership functions, 

their parameters are not specified either, no other design decisions are revealed about the FLS. The efficiency 

of the solution proposed is demonstrated against a classic FL-based solution for heterogeneous networks that 

does not take into consideration any VN-specific characteristics.  

FL is also employed in network selection in [68]. Multiple parameters are considered, including VN-

specific characteristics, application requirements, cost and network metrics. In this approach, VN-specific 

criteria are considered directly in the FL-based decision making process. The VN-specific characteristics 

considered are the vehicle speed and vehicular density around a vehicle. On the basis of these parameters plus 

RSSI, a FLS decides on the network metrics: throughput, latency and packet loss. The latter are considered as 

inputs for another FLS together with application requirements. This FLS gives as output the weight of the 

network that is used as input together with the cost in the last FLS that is selecting the network. Expert 

knowledge and deep analysis on the influence that inputs have on the outputs are at the basis of defining the 

knowledge base. No other details related to FLS structure and design are presented. 

4.4 Fuzzy Logic Solutions in VN Data Aggregation 

4.4.1. Why Using Fuzzy Logic? This section presents the concept of data aggregation in VN context, its 

challenges and discusses why FL is suitable to be employed in addressing some of these challenges.   

Data aggregation can be the answer to some of the major challenges in VNs. For instance, one of the 

major challenges in VNs is the efficient usage of the available bandwidth [69] – [71].  Data aggregation can 

be employed to address this challenge in the context of data collection. Data aggregation is used to combine 

correlated information from different nodes before redistributing the information in the network. As such the 

dissemination of similar information in the network will be avoided. Data aggregation process consists of the 

following functional components: decision, fusion, storage and dissemination [69] [70]. In the decision 

component, the data is analyzed to see whether there is any correlation between atomic data items and a 

decision is taken accordingly. If the decision component detects a correlation then the data is fused (i.e. 

fusion component). Data, fused or not depending on the correlation level, is disseminated in the network (i.e. 

dissemination component). Regarding the storage component this is placed either before decision phase in 

which case it stores all the collected data, or after the fusion, in which case it stores the aggregated data 

before disseminating it in the network [69]. 

Data aggregation schemes in VNs have several limitations and challenges. Among the main challenges 

are the flexibility in the criteria used to decide upon the data similarity and security [70]. The lack of 

flexibility in the criteria of similarity between data is a very common problem of data aggregation schemes in 

VNs. For instance, some of these schemes correlate the data based on fixed or structured segmentation of the 

road which makes them dependent on these structures. A FLS has a flexible design, not only that allows for 

tuning the system, but also considers multiple criteria and enables adding easily new inputs to the system. 

Therefore, FL is a highly suitable technology in deciding the correlation between data. 

The other highlighted challenge that arises in VN data aggregation is the security: it is more difficult to 

decide if an aggregated data can be trustful. In order to address this challenge, some data aggregation 

solutions rely on a tamper-proof service in each vehicle that randomly requests for integrity proofs. However, 

this service can be easily by-passed by attackers. Other approaches employ security mechanisms that are 

dependent on node reputation or on some fixed structures. Security schemes based on node reputations are 

very hard to employ in the self-organized networks such as VNs [72], while the security schemes based on 

fixed structures are demonstrated to have scalability issues [73]. Moreover, in the case of structure-based 

trust mechanisms implemented in data aggregation solutions more or less same disadvantages are met as in 

the case of the data aggregation approaches that have their decision component dependent on such structures. 
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There the concern was the lack of flexibility in the correlation criteria, here the issue is the lack of flexibility 

in the trust criteria. A FL-based design can address the flexibility issues in the context of trust criteria as well. 

4.4.2. State-of-the-art. FL was employed in the decision making process not only in the decision phase of 

the proposed data aggregation schemes, but also in two other phases, fusion and storage, as it can be seen in 

the next paragraphs.  

Caballero-Gil et al. [74] proposed a data aggregation solution that employs FL in the decision component. 

The FL decisional system is exemplified with two inputs: space – the approximate location the data pertains 

to, and time – the data lifetime. The output is represented by the correlation between the pieces of data to be 

aggregated. It has two possible values: YES and NO. The solution is open to extension and generalization: 

other inputs can be easily considered. In the given example, the membership functions used for inputs are 

triangular, while the output has a singleton function. The inference, as it appears to be from the rules 

description, is of Sugeno type. However, the focus is not on the FLS design, but instead on the benefits of 

using FL in the decision component of a data aggregation scheme: flexibility and extensibility in the set of 

criteria used for correlating the information for aggregation. 

This approach also proposes a FL-based selection scheme to be implemented in the storage component 

that is placed in this solution immediately after data collection. This scheme aims to select the most relevant 

data items for aggregation in order to avoid the overloading of communication channel that could lead to 

restrictions in data that is sent in the network to the vehicles. However, the solution is not detailed, some 

inputs that could be considered in the selection are named only (e.g. severity or antiquity of data).  

Dietzel et al. [30] [75] proposed a FL-based decision component in their data aggregation approach that 

does a step forward in showing the flexibility, extensibility and generality that can be achieved via FL. The 

output parameter of the FL decisional system is the same as in the aforementioned approach, but the input 

parameters are generalized and called influences: Influence 1, …, Influence n. This is as these parameters 

represent the influence on deciding upon data similarity. Examples of influences are speed difference [30] 

[75] and location difference between vehicles [75]. In exemplifying the fuzzification of the inputs, the 

authors use trapezoidal membership functions for the speed difference input. However, the focus is again not 

on the internal design decisions of the FL decisional system, but on its generalization. As already 

emphasized, all the proposed FL-based decision components ensure extensibility and flexibility in the set of 

criteria employed for correlating the data to be aggregated. These characteristics lead to structure-free and 

dynamic aggregation approaches unlike the others data aggregation approaches.  

Dietzel et al. [76] proposed an enhanced FL-based data-centric solution in order to address the security 

challenge in VN data aggregation. A selective attestation process is employed based on a probabilistic 

scheme that results in clues leading to trust in the correctness of an aggregate. A FLS is designed in the 

fusion component having as inputs the aforementioned clues and as output the Trust in the {0%-100%} 

range. The inputs of the FLS are generalized/abstracted: Clue 1, …, Clue n, as the focus of the solution is 

again on the generalization, extensibility and flexibility that a FL-based design allows for. These clues can 

then be particularized to the specific type of VN application. Some examples of inputs are provided together 

with their fuzzification for which trapezoidal membership functions have been chosen. However, as in the 

previously presented FL-based approaches, the focus is not on the internal design decisions of the FLS, but 

on its flexibility and generalization. Basically in each vehicle the parameters influencing the trust can be 

different, the clues being selected locally through a probabilistic scheme. Moreover, this generalized design 

of the security scheme can be employed in any type of data aggregation solution independent of the 

application type. In addition, the FL-based approach solves some of the aforementioned limitations of the 

other existing security mechanisms in VN data aggregation solutions. It removes the need for a tamper-proof 

service in each car, and it is dependent neither on node reputation as the scheme is data-centric, nor on any 

kind of structures, being also highly flexible. 
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Table 3. Summary of FL-based Control Solutions in VNs 

Subclass Why using FL? Objective 

FLS design decisions 

Ref. Testing 
µ functions & 

Fuzzy sets 

definition 

Rule base 

building 

method 

Inference 

Type 
Defuzz FLS Arch. 

FL-based 

Control 

Solutions in 

VNs MAC 

Protocols 

Ability to 

qualitatively 

capture the 

attributes of a 

control system 

based on 

observable 

phenomena; 

dealing with the 

imprecision  

Backoff 

interval 

control  

Triangular 

functions/n.a. 

 

Expert 

knowledge 
Mamdani COA 

Simple real-time 

adaptive FLS 
[77] Simulations 

Backoff 

interval 

control 

Triangular 

functions/ n.a. 

Expert 

knowledge 
Mamdani COA 

Simple real-time 

adaptive FLS 
[78] Simulations 

Contention 

window 

control 

Triangular 

functions/ 

Expert knowledge 

Expert 

knowledge 
- - 

Simple real-time 

adaptive FLS 
[79] Simulations 

Contention 

window 

control 

Triangular 

functions/ 

Expert knowledge 

Expert 

knowledge 
- - 

Simple real-time 

adaptive FLS 
[80] Simulations 

Contention 

window 

control 

Triangular 

functions/ 

Expert knowledge 

Expert 

knowledge 
- - 

Simple real-time 

adaptive FLS 
[81] Simulations 

FL-based 

Control 

Solutions in 

VNs-enabled 

Driving 

Automation 

Control 

processes 

difficult to 

model and 

linearize 

Speed 

Control 

Singleton, triangular 

and trapezoidal 

functions/n.a. 

- Mamdani COA 
Classic FLS => 

non-adaptive type 
[86] Simulations 

FL has powerful 

reasoning 

capabilities & 

adapts to real-

time conditions 

through 

reinforcement 

learning 

traffic control 

system for 

intersections  

Triangular functions 

(shape can be 

changed in real-

time)/neural 

networks based 

learning 

Expert 

knowledge 

modified 

fuzzy 

model 

Mean of 

max 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[87] 
Real-world 

experiments 

Dealing with 

uncertainty and 

complexity; 

“imitating a 

human driver 

while steering 

and managing 

speed” 

Automatic 

control of the 

steering and 

speed  

Trapezoidal, 

triangular & 

singleton 

membership 

functions/ Manual 

tuning 

Expert 

knowledge 
Mamdani COA 

Simple real-time 

adaptive FLSs 
[88] Simulations 

FL is suitable for 

real-time 

systems and 

when there is no 

clear 

dependency 

between inputs 

and outputs 

Speed control  

Trapezoidal & 

singleton 

functions/automatic 

tuning 

Expert 

knowledge 
Sugeno 

Sugeno 

specific 

Classic FLS => 

non-adaptive type 
[84] 

Simulations 

and real-

world 

experiments 
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FL-based 

Control 

Solutions in 

Video 

Transmission 

over VNs 

Dealing with 

multiple 

parameters 

Redundancy 

amount 

control 

Triangular 

functions/lessons 

learnt & expert 

knowledge 

Lessons learnt 

& expert 

knowledge & 

analysis on 

results 

obtained 

through 

simulation 

- - 
Classic FLS => 

non-adaptive type 
[92] Simulations 

Dealing with 

imprecision; 

design 

flexibility, easily 

tunable and open 

to changes  

Redundancy 

amount 

control 

Triangular and 

trapezoidal 

functions /n.a. 

- Mamdani COA 
Classic FLS => 

non-adaptive type 
[91] Simulations 

FL-based 

Beacon 

Control in 

VNs 

Dealing with the 

imprecision  

Beacons 

amount 

control 

Triangular functions 

Lessons learnt 

from the 

literature and 

expert 

knowledge 

Mamdani COA 
Simple real-time 

adaptive FLS 
[89] Simulations 

5. FUZZY LOGIC-BASED CONTROL SOLUTIONS IN VEHICULAR 

NETWORKS  

5.1 Fuzzy Logic Control Solutions in VN MAC Protocols 

5.1.1. Why Using Fuzzy Logic? MAC protocols are considered to be a key issue in VN design [10] and 

they are identified among the main technical challenges imposed by VNs [5] [6]. In a VN context, efficient 

MAC protocols need to be designed in order to cope with the highly dynamic environment. In addition they 

need to be able to provide quality of experience (QoE) for non-safety applications and reliability for safety 

applications.  

In [10], a recent survey of MAC protocols in VNs is presented with the focus on TDMA-based MAC 

protocols that classifies VN MAC protocols in three broad classes: contention-based, contention-free and 

hybrid.  The first class has the advantage of not being influenced by the ever-changing topology of VNs, but 

their main problem relates to the random delay introduced in order to regulate the access to the medium so 

that the chances of collisions are reduced. This delay is bounded by an interval, also called backoff interval 

that is statically increased/decreased, approach that is not the best for a dynamic environment such as that of 

VNs. Thus, the delay is controlled through the increase/decrease of this backoff interval regulated by so 

called backoff schemes. An inappropriate control of this delay can cause serious issues especially in the case 

of safety applications. On the other hand, the second class of MAC protocols does not have the delay issue, 

but it is influenced by the topology change – slot relocation may often occur due to the rapidly changing 

topology of VNs. The third class of MAC protocols combines the two previous classes in a single 

architecture in order to minimize their disadvantages. So far, FL has been employed in VNs MAC protocols 

pertaining to the first class for an appropriate control of the delay that takes into consideration the complexity 

of VN environment and the imprecision that characterizes the network conditions in this environment. 

5.1.2. State-of-the-art. Abdelkader et al. [77] proposed a feedback FLS that controls the changes in the 

backoff interval (i.e. the level of increase/decrease). They started from the premise that each node in the 

network should monitor network conditions and based on this control their backoff interval increase/decrease. 

However, there is no direct mathematical mapping between network conditions and backoff interval 

computation therefore an exact model cannot be built. This is the reason why FL, as being suitable for 

dealing with imprecise information, was selected for modelling the relationship between the network 

conditions and backoff interval computation. The network conditions monitored are successful transmission 

ratio (S) and the last backoff interval value (Blast) as a measure of the network load. These are used as inputs 
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for the FLS designed for controlling the increase/decrease in the backoff interval. The output is the 

normalized amount of decrease/increase of the interval, dB. Note that this is an adaptive FLS as the output 

processed in Blast is fed back into the FLS as input. The rule base is designed based on expert knowledge – 

authors knowledge regarding the influence of the network conditions taken into consideration and backoff 

interval – and manual tuning – “trial experiments”. The other FLS design decisions are mentioned in Table 3. 

Abdelkader et al. [78] proposed four FL-based backoff control schemes: three are built upon SISO FLSs 

that control and the other one is built upon a MISO FLS. All these FLSs are designed based on the previously 

proposed FLS [77]. The MISO FLS has the same inputs and output as in [77]. The changes are in the 

membership function of the output, that now has 5 fuzzy terms instead of 3 and consequently the rule base is 

extended with new rules, but it is built based on the same considerations – expert knowledge.  

Regarding the three SISO FLSs proposed, they have only one input, S (successful transmission ratio), and 

same output as the MISO FLS. Each of these FLSs implements one of the following policies: selfish policy 

(i.e. the node objective is to access the network independent of its limitations), generous policy (i.e. the 

channel is given to other nodes if found busy) and cautious policy or a fair policy (i.e. each network node has 

the objective of a fair access to the medium). The rule base for each of these systems is designed based on 

expert knowledge in terms of authors’ understanding on how the inputs influence the output. This knowledge 

can be summarized as follows: if the success ratio is very low this means that the channel is busy so the 

probability of collision is very high, therefore the recommendation is to increase the backoff interval. This 

recommendation is reflected differently by the three FLS in their rule bases depending on the policy adopted: 

selfish, generous or fair. For instance, the selfish scheme, tends to rather decrease the backoff interval than to 

increase it in most of the circumstances. All FLSs have triangular functions. 

Chrysostomou et al. [79] proposed a FLS to control the wireless access in an adaptive QoS-aware MAC 

protocol. The proposed MAC protocol presents a different approach for controlling the backoff value. It 

keeps the IEEE 802.11p basic principle of updating the backoff interval based on the contention window 

(CW) value, but controls CW based on network conditions reflected in channel traffic occupancy (CTO). 

Keeping the IEEE 802.11p basic mechanism allows for differentiation and prioritization of different traffic 

types in the proposed solution. This combined with the FL-based control scheme of CW results in improved 

QoS level compared to the classic IEEE 802.11p. The FLS with control of CW has as inputs CTO values for 

consecutive sampling periods. The membership functions are triangular, design decision motivated by the 

authors by their computational simplicity. Their parameters were selected based on “qualitative 

understanding of the system”. The rule base was built on the understanding of the system, expert knowledge, 

and manual tuning. The philosophy behind the knowledge base: on one hand aggressive response when the 

density of the channel is very high for two consecutive periods of time and on the other hand smooth 

response when the density is low.  

In [80], the same authors proposed a FL-based mechanism for controlling min and max CW values. 

According to the authors, this is the first scheme in the literature in which CWmin and CWmax values are 

adapted based on network conditions. The FLS has the same inputs as the FLS proposed in [79] and as output 

the value controlling the increase/decrease of CW min and CW max values called factor. Similar design 

principles are adopted for designing this proposed FLS as those employed in [79].  

The solutions proposed in [79] and [80] were designed for unicast communications. In [81], these 

solutions were extended for broadcast communications. The modifications are done at the level of rule base 

in order to meet the requirements of broadcast communications. 

5.2 Fuzzy Logic-based Control Solutions in VN-enabled Driving Automation 

5.2.1. Why Using Fuzzy Logic? Automated driving is one of the key transformations that are taking place 

in the automotive industry [3]. There are several levels of driving automation that are defined starting from 

driver assistance and ending up to full automation, a scenario for the future. Both research and industry 

agrees that full automation is not possible on the basis of on-board sensors only, wireless communications, 

namely VNs, being mandatory [3]. Full automated driving is one of the main directions followed by the 

research in academia and industry in the automotive space in general and VNs in particular.  
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As mentioned above, driver assistance applications are the first steps towards autonomous driving. Driver 

assistance solutions provide driver with useful information in the driving process and if these solutions are 

more automated, they would intervene actively in the driving process. However, a driver assistance solution 

can be overridden by the driver. There is a large plethora of VN-enabled driver assistance applications 

including for instance applications that give driving advices based on certain criteria such as for instance how 

to drive in certain conditions in order to reduce gas emissions, fuel or energy consumption in the case of 

electric cars. Very recently, VN-based assistance applications started to target not only drivers but also other 

types of users such as cyclists. Riding assistance applications were also proposed in order to give riding 

advice for energy consumption reduction in the case of electric bicycles [82] – [85].  

FL has a considerable long history of success in developing self-control/automatic systems such as for 

instance the speed control system deployed in Sendai subways or in the automotive industry intelligent cruise 

control solutions developed by Nissan or Peugeot. Consequently, FL is most suitable to be used in VN-

enabled driving automation. 

5.2.2. State-of-the-art. Milanés et al. [86] proposed a FL-based crossroad-traversing system for 

autonomous cars that aims to improve traffic flow. The FL controller is used to control the speed of the car 

without right of way according to the speed of the car with right of way. The input information of the FLS is 

based on the information provided from the vehicular network i.e. speed and positions of other vehicles. The 

FLS has a Mamdani inference type and is a MIMO type system, having three inputs and two outputs: throttle 

(T) and break (B). The membership functions of the inputs are trapezoidal and triangular, while the outputs 

have singleton membership functions. The decisions of the FLS design are not motivated. The defuzzification 

process is based on COA. Another FL-based and VN enabled solution that considers autonomous vehicles is 

the one proposed in [87]. A reinforcement learning-based real-time FLS was designed in order to control 

vehicular traffic at the intersections. The learning is based on neural networks and it allows for the real-time 

adaptation of the membership functions to the current traffic conditions: both membership parameters and the 

shape can be changed as a result of the learning process. Using this FLS, groups of vehicles are scheduled to 

cross the intersection in a real-time adaptive manner that is demonstrated to avoid delays and congestion in 

the intersections. The authors claim that the powerful reasoning capabilities of FL empowered by the learning 

ability of neural networks made their traffic control system more efficient and more adaptive to real-time 

traffic conditions. The approach makes the assumption that all the vehicles are autonomous.  

The system proposed in [88] employs FL in automatic steering and speed control in the context of a driver 

assistance system for safe overtaking maneuver. There are two FLSs designed, one for steering control and 

one for speed control. V2V communications are employed in collection of the information that is fed into the 

two FL controllers. FLSs have a simple real-time adaptive architecture. The membership functions chosen for 

the two FLSs are trapezoidal, triangular and singleton membership functions for their reduced computational 

complexity. For their parameter selection, manual tuning was performed in order to ensure satisfactory 

driving behavior. The rule bases are built based on expert knowledge that is defined by the authors as 

engineering judgement plus driver knowledge. Other design decisions for the two FLSs include the use of the 

Mamdani inference system and COA for defuzzification. The overall system was deployed and tested in a 

commercial vehicle. 

FL was also employed in speed control in [84] that proposes a VN-based speed advisory system for 

electric bicycles. A FLS is employed to control the increase/decrease in the speed of reference that is the 

maximum speed the cyclist is advised to ride to in order to conserve the energy in certain weather conditions, 

while not affecting considerable the time travel. V2I is used again for data collection that is fed into the FLS. 

The FLS follows Sugeno model and has trapezoidal and singleton membership functions chosen for their 

suitability for real-time systems and reduced computational complexity. Their parameters are determined at 

the system initialization as they are dependent on electric bicycle characteristics. The overall system is again 

tested using a vehicle – an electric bicycle, but also via extensive simulations. 
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5.3 Other Fuzzy Logic-based Control Solutions in VNs 

Another example of FL in control process is provided in [24], where a FLS is used to control the beacon 

rate in the vehicular network, depending on the traffic conditions: in dense traffic conditions the beacon rate 

is required to be low, and in sparse traffic conditions the beacon rate is required to be high in order to 

increase the cooperative awareness. The inputs of the FLS designed to control the beacon rate are the 

percentage of the vehicles travelling in the same direction and the vehicle emergency status. The first 

parameter is chosen based on the traffic flow theory of Kerner [90] that states this parameter is an indicator of 

traffic density, while the latter is imposed by the fact that an emergency vehicle has to continue sending its 

status in the network. Thus the beacon rate is dependent not only on traffic density, but also on the 

emergency status of the vehicle. This is one of the considerations that together with the expert knowledge are 

at the basis of the FLS rule base. The output of the FLS is represented by the beacon rate. Both, the inputs 

and the output have triangular membership functions. The inference type used is Mamdani, while the 

defuzzification method is COA. 

Ghafoor et al. [91] proposed a FL redundancy controller for controlling the amount of redundant packets 

depending on the traffic density and SNR of the channel. The controller is designed in the context of a video 

streaming solution for VNs. The traffic density and SNR of the channel are the inputs of the FLS, while the 

output is called the coding density: the ratio between the encoded packets and the whole amount of packets 

received. The option for FL employment in controlling the amount of redundant packets in order to improve 

the network load is motivated by the authors based on the capacity of FL of dealing with the uncertainty and 

imprecision, characteristics of the ever-changing VNs environment. Moreover, the authors emphasize the 

advantages of the FLSs/FL controllers: their modifiability, as it is easy to tune rules, membership functions or 

even change the parameters of the system in order to enhance its performance. All the FLS design decisions 

are presented in Table 3. 

A FL-based redundancy controller is also employed in [92]. The difference is that the amount of 

redundancy is considered for each packet delivered over a QoE-driven video transmission mechanism over 

VNs. In addition, more parameters are considered for controlling the redundancy. FL is employed due to its 

capability of dealing with multiple parameters. The authors do not describe in detail the FLS, and only an 

example of membership function is given, which is triangular.  

6. FUZZY LOGIC-BASED DETECTION AND PREDICTION SOLUTIONS IN 

VEHICULAR NETWORKS 

6.1 Why Using Fuzzy Logic? 

FL has been employed in detection and prediction systems in various areas, including technical areas such 

as networking (e.g. detect some faults in the network, detect/predict network congestion) and automotive 

(e.g. different fault detections, prediction of driver’s maneuver [93]) or less technical areas such as banking, 

elections, or medicine [27] [36]. Imprecision characterizes detection and especially prediction solutions 

independent of the area they are employed in. Therefore, FL is a powerful and suitable tool to be employed in 

such solutions. The detection and prediction FL-based solutions in the context of VNs were used to predict 

acceleration and speed, detect network congestion and predict ticket rate in a tolling system used on 

highways. All these solutions are described next. 

6.2 State-of-the-art 

Hafeez et al. [94] described their new cluster-based VN MAC protocol which makes use of an adaptive 

FLS for predicting the speed and location in order to adjust the protocol to driver’s behaviour on the road. 

The FLS is used in the cluster maintenance process and based on the predictions made, the structure of the 

cluster is updated or not. The inputs of the FLS are the speed and inter-vehicle distance and the output 

predicts if the driver is going to accelerate or decelerate. Based on this prediction, the vehicle’s speed and 

position in the near future are further predicted. The membership functions of inputs and output are 
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triangular. A basic reinforcement learning algorithm is implemented for automatic tuning of the parameters 

of speed membership function. Basically this mechanism adapts the FLS to the driver’s behaviour. The rule 

base of the FLS is fully described and it is based on expert knowledge. Other FLS design decisions are 

illustrated in Table 4.  

A FL predictive system is employed in a routing protocol in order to design a mechanism for proactive 

recovery from failure [95]. This mechanism, deployed in each vehicle, involves two components: an 

alternative link construction component and a prediction component. The prediction component 

detects/predicts the congestion or the link failure and either if congestion is detected or link failure is 

predicted it activates the alternate link construction component. The prediction component has two modules: 

Fuzzy speed prediction module and Fuzzy congestion detection module. Basically, these modules are 

represented by two FLSs. The FLS predicting the speed incorporates some knowledge about driver’s age as 

there is a connection between driver’s age and driver’s behavior. Thus the inputs of this FLS are driver’s age, 

distance between vehicle and the front vehicle and current speed. The output is the predicted velocity. The 

FLS for congestion detection has as inputs: queue length, hop count that the packets travel through in terms 

of number of vehicles and expected number of the vehicles within radio range during next time period, and as 

output the congestion indicator. Both FLSs have similar design: trapezoidal membership functions chosen to 

reduce computational complexity, and Tsukamoto inference type and defuzzification method. The design of 

the FLS follows the real-time adaptive design that allows for automatic tuning of the parameters of the 

membership functions based on Particle Swarm Optimization techniques.  

Table 4. Summary of FL-based Detection and Prediction Solutions in VNs 

Why using FL? Objective 

FLS design decisions 

Ref. Testing 
µ functions & 

Fuzzy sets 

definition 

Rule base 

building 

method 

Inference 

Type 
Defuzz. FLS Arch. 

Dealing with the 

volatile 

characteristics of 

VNs 

Prediction of  

speed and 

detection of 

network 

congestion  

Trapezoidal 

functions/ 

Automatic tuning 

– PSO techniques 

- Tsukamoto 
Tsukamoto-

specific 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[95] Simulations 

Dealing with the 

uncertainty; 

A FLS is adaptable 

to external changes 

when combined with 

learning techniques 

Acceleration 

prediction 

Triangular 

functions/ 

automatic tuning 

using a basic 

reinforcement 

learning algorithm 

Expert 

knowledge 
Mamdani COA 

Reinforcement 

learning-based 

real-time 

adaptive FLS 

[94] Simulations 

Addressing complex 

nondeterministic 

problem: detecting 

traffic congestion 

Road traffic 

congestion 

detection 

Singleton, 

triangular and 

trapezoidal 

functions/ Lessons 

learnt from the 

literature 

Lessons 

learnt from 

the 

literature 

Sugeno 
Sugeno-

specific 

Classic FLS => 

non-adaptive 

type 

[29] 

[96] 
Simulations 

FL allows for 

human like 

reasoning and for 

adapting the system 

through tuning 

Ticket rate 

prediction  

Triangular and 

Gaussian 

functions/n.a. 

- - - 

Classic FLS => 

non-adaptive 

type 

[97] Simulations 

A FL-based detection solution is described in [29] [96] where a FL-based system for road traffic 

congestion detection was designed starting from the premise that FL is a powerful tool to address complex 

nondeterministic problems as it is the case of traffic congestion detection. The FLS developed to determine 

the level of congestion is designed following some rules of congestion developed by Skycomp [38]. These 
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rules express in a linguistic manner the level of congestion based on density of the vehicles and their speed. 

Thus, FL appears as the natural tool in solving this problem. A FLS is designed to be deployed on each 

vehicle for detecting the level of congestion around. The inputs of the FLS are the speed of the vehicle and 

the density that is determined based on the number of neighboring vehicles detected through V2V 

communications. The membership functions of the inputs are triangular and trapezoidal. The output of the 

FLS is the level of congestion and its membership function is a singleton. Although not explicitly specified, 

from the description and the results detailed, it is clear that the FLS has a Sugeno inference type. 

In [97], a V2V and FL-based prediction solution is proposed in order to predict the ticket rate depending 

on the vehicular fluctuation in the context of ticket generation system for highways that aims to address 

traffic congestion. The performance evaluation of the solution shows that the system reduces congestion on 

the highway and decreases the travel time. There are not too many details provided regarding the FLS design: 

the inputs are the congestion level and number of vehicles queuing and have triangular and Gaussian 

membership functions, respectively. The authors chose FL due to the fact that it allows for human like 

thinking which made more natural and easier to describe the ticket generation rate depending on the traffic 

congestion level and number of vehicles queuing, as there is no exact dependency between inputs and the 

output. Another aspect highlighted by the authors is the fact that FLSs in general are open to change having a 

flexible design: the rules and membership functions defined in the context of a FLS can be easily modified.  

 

Fig. 7 Why using FL – keywords cloud 

7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

VNs are acknowledged for their great potential of supporting an extremely varied range of applications. 

The large positive impact of these applications is measured in crashes avoided, lives saved, traffic congestion 

reduced, improvements on environment and increased satisfaction of the drivers in traffic. VNs have many 

challenges that arise mainly due to their dynamic and complex environment. FL known for its ability to deal 

with complexity, and imprecision and model non-deterministic problems was considered for application in 

the dynamic and complex VNs context. In this paper we analyzed these FL-based solutions and on the basis 

of this analysis we present next some lessons learnt related to FL implementation in VN space and future 

research directions. 

7.1 Lessons Learnt 

Some of the lessons that can be learnt from the survey performed on FL solutions in VNs are summarized 

below: 

• FL seems to be a powerful mathematical tool for dealing with imprecision and uncertainty of VN 

dynamic environment. FL seems also to be able to deal with multiple parameters that are necessary in 

order to describe the complexity of this environment.  

• The previous considerations plus the fact that FL is a powerful decisional tool resulted in the 

employment of FL in decision making in the context of a large variety of VN-based solutions (see Fig. 

7). The results of these solutions recommend FL as being suitable to be employed in making complex 

decisions in the context of VNs.  

• FL seems to be a very powerful tool that can be used for control processes that are difficult to model and 

this is exactly the case in VN environment. 
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• A FLS has a design that allows for flexibility and generality at conceptual, structural and architectural 

levels.  

• FLS are considered to be suitable to be applied in VNs as they have predefined automatic tuning 

techniques for adjusting membership functions and rules to accommodate the dynamic network 

environment. In VN context, real-time tuning (i.e. reinforcement learning-based tuning) appears to be 

more suitable than the off-line tuning (supervised learning-based tuning); except for the cases where the 

solution is designed for certain network architecture. Otherwise, in order to adapt to the diversity of 

conditions imposed by VNs, it is most appropriate that FLS is real-time adaptive. One issue that might 

arise is that the learning time at the run time might affect the performance of the FLS in such a dynamic 

environment. It is imperative for the researchers to consider this aspect and try to choose faster 

converging learning techniques. What can be fast for some domains, may not be fast enough for VNs, a 

highly volatile environment. Regarding this aspect, our survey reveals that H ∞ filtering and Q learning 

techniques appears to be the most suitable techniques applied so far in VNs context. The solutions that 

employed Q learning did not report any performance issue that might be caused by the learning time. 

Some other techniques might introduce a longer learning time which affects the performance. For 

instance, in [40] the authors experimented with three techniques: H ∞ filtering, neural networks (NN)-

based tuning and genetic algorithms (GA)-based tuning. The performance tests have shown that while 

the accuracy is comparable, the learning time is much longer for NN and GA-based tuning as compared 

to H ∞ filtering. In this context, a better option is to choose a simple real-time adaptive FLS architecture 

as this eliminates the complexity of learning algorithms and reduces the time needed for learning, but 

might still provide good adaptation. 

• In the previous paragraph some performance tests in relation to different learning techniques were 

discussed. It is to be highlighted that more such tests are needed. More performance tests are required 

before FL can be considered as a feasible technology for VN dynamic environment with the emphasis 

on FL imposed complexity. This aspect is discussed in more details in section 7.2.  

• Regarding the other design decisions related to a FLS, Mamdani is the most popular inference type, 

together with its specific COA method for defuzzification. The complexity of this is compensated by 

opting for singleton, triangular or trapezoidal membership functions that prove to provide good 

performance in this context and due to their reduced computational complexity and efficiency they are 

perfect candidates when choosing to design any FLS used in VN solutions. 

7.2 Future Research Directions: The 5G Automotive Vision and Fuzzy Logic 

Currently, steps are made towards 5G, the next generation of mobile communication technology. VNs and 

their applications in automotive industry occupy a distinct place in the 5G network design [3]. The 5G 

networks will include novel technologies for V2X communications that will co-exist with existing VN-

enabling solutions that were briefly introduced at the beginning of this survey. Consequently, 5G is foreseen 

to integrate a mix of Radio Access Technologies (RAT) and enable their cooperation and combination. This 

will lead to the creation of a multi-link multi-RAT multi-interface environment which will be associated with 

many other challenges. Some of these challenges are discussed in the next subsection 7.2.1. A more detailed 

and comprehensive list of the issues that encourage new research directions in the 5G-enabled VNs and their 

applications is presented in [3]. Some of the key avenues identified by both industry and academia in the 5G 

automotive vision are as follows: autonomous or self-driving vehicles, vehicular cloud and big data. As this 

paper focuses on FL-related aspects, the following subsections include discussions about the possibility of 

employing FL in these research directions. Additionally, another future research direction that can be 

identified in relation to FL, VN and VN-enabled applications is performance evaluation and complexity 

analysis of FL-based solutions. A summary of the identified future works is displayed in Fig. 8. 

7.2.1. Multi-link multi-RAT and multi-interface environment. Supporting such an environment is a 

challenge in 5G-enabled VNs. In this “multi-multi-multi” environment, decision making has an important 

role and we have seen in this review that FL is a powerful decision making framework. 
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In this context, it is highlighted the need for proposing new routing algorithms to encompass this “multi-

multi-multi” aspect. Path selection in a multi-link environment will be a main challenge to address; deciding 

dynamically which packets should be assigned to which link, when the links have various characteristics (e.g. 

different performances). As noted in this review, FL is highly successful in dealing with path selection in the 

context of different VN proposed algorithms. The main reasons for employing FL relate to dealing with 

decision making in real-time based on multiple parameters that describe highly variable conditions. This is 

exactly the issue (only more augmented) that needs to be addressed in the context of 5G-enabled VNs, and 

therefore we believe to be worthwhile investigating the possibility of employing FL in the newly developed 

routing algorithms for 5G-enabled VNs. 

Another use case for decision making in this “multi-multi-multi” environment is network selection. RAT 

selection or - as a new aspect - selection of multiple RATs, based on a variety of parameters in order to 

ensure QoS requirements for content delivery, is possible in 5G. Again, based on existing success stories that 

were also described in this review, investigation of the possibility of employing FL in this context is also 

interesting. Moreover, another argument in favour of FL is the fact that FL decisional systems are highly 

adaptable: they are easier to adapt in order to consider multiple outputs as it is the case for multiple selection 

of networks. 

 

Fig. 8 Future Research Directions 

7.2.2. Autonomous Vehicles and Fuzzy Logic. As already mentioned, a major and highly promising fields 

in the automotive research includes self-driving or autonomous vehicles. The overall goal of the effort put in 

this space is to have the first such cars on the market by 2020. In this survey we discussed some VN FL-

based control solutions that represent important steps made towards autonomous vehicles. FL can play a 

prominent role in this research direction as it is able to provide a human-like reasoning, has a transparent and 

flexible design and is able to adapt to the dynamic conditions that characterize the VN environment. 

Moreover, FL has a long history of success in self-control systems that are already deployed in automotive 

and electronics industries.   

7.2.3. Vehicular Cloud Networking and Fuzzy Logic. The support of VNs and the recent advancements in 

computing and storage technologies developed for vehicles have enabled the definition of vehicular cloud 

computing. In the vehicular cloud, any vehicle with computing and storage capabilities can be not only 

service consumer, but also a service provider. By being part of a vehicle cloud, any vehicle could share its 

computing, storage and sensing resources to support advanced services.  

The research in this area is in early stages [14], but as stated before, it is considered a very promising 

research direction and a main component of the 5G-enabled automotive vision [3]. In comparison to the 

traditional cloud paradigm, vehicular cloud has its specific characteristics and challenges. One of its main 
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challenges is the variability of the available resources [14]. This is due to the dynamic vehicle behavior as 

they can join and leave the cloud at any given time. To address this issue, FL could be used for instance in 

predicting if a vehicle will leave the cloud in order to avoid relying on its resources/services. Moreover, as we 

have seen in this survey, clustering can address the issue of resource management in VNs in general and in 

vehicular cloud in particular and FL was successfully employed with cluster-based architectures. We argue 

that this could be another FL-based viable solution to the resource variability problem in vehicular cloud and 

a very promising research avenue. 

7.2.4. Big Data in Vehicular Networks and Fuzzy Logic. Tremendous amount of data is expected to be 

generated, disseminated, processed, and stored in this vehicular landscape: a network with almost no limit in 

terms of the number of nodes and with a large plethora of applications. However existing methods, models 

and algorithms for general big data processing and analysis may not be suitable for VNs. One of the most 

important aspects in VN context is real-time or near-real-time big data analysis requirement, which is not 

present in the big data paradigm. Some steps were made in this direction, but more work needs to be 

performed [69] [98]. One of the research avenues relates to data aggregation techniques: there is a need for 

new, efficient and secure data aggregation schemes in VN context. As presented in this work, FL was 

successfully applied so far in VN data aggregation schemes. A FL-based solution in data aggregation 

provides flexibility in the criteria used for deciding upon the data similarity and deciding upon the 

trustfulness of data, too. The design of such solution is flexible, open to changes as imposed by the VN 

requirements.  

Along with data aggregation schemes, other data manipulation techniques are required for big data in VN 

context. Decision making occupies a central role in big data paradigm in general (e.g. decision in classifying 

data, decision if the data is trustful or not, etc.) [99] and as we have seen in the survey, FL is a powerful tool 

in decision making processes applied to VNs, and also in other domains. Moreover, FL was successfully 

employed in big data analysis, for instance in the analysis of data in social networking [100] [101 ].  

Based on all these considerations, we conclude that the applicability of FL in the context of big data in 

VNs is a promising research direction. 

7.2.5. Performance Evaluation, Complexity and Real-world Scenarios. Most of the proposed solutions 

were tested through simulations. Although most of these were large scale simulations, the simulation models 

tend to be simplified in comparison to the real-world scenarios. Moreover, in the performance evaluation of 

the solutions discussed, there is little analysis of the complexity introduced by FL reasoning in each solution. 

As mentioned in the Lessons Learnt section, there were some performance measurements regarding the 

learning time with various techniques, but no real complexity analysis related to the impact of applying FL in 

any of the solutions. This aspect should be investigated in further works. Other aspects of high interest to be 

considered in future works include comparison-based assessments between different FL approaches, and, 

knowing that the complexity of FLSs increases with the number of inputs, investigation in terms of the 

number of inputs/parameters which could be successfully handled in different VN scenarios (e.g. sparse, 

dense, high speeds, low speeds, etc.). 

Although the majority of the analyzed FL-based solutions were tested through simulations only, some of 

these were also tested through real-world experiments as it can be seen in the tables summarizing these 

solutions (i.e. Table 1, 2, 3, 4). Noteworthy is that the results show there are no performance drawbacks 

imposed by FL reasoning; on the contrary, the FL-based solutions outperform other solutions. However, the 

real-world experiments are not based on a large scale deployment of the solutions. For instance, the testing of 

the routing protocols proposed in [42] and [45] consider a VN based on 10 vehicle-nodes in three different 

scenarios (imposed by three different road types). The ultimate confirmation of the feasibility of FL 

reasoning in VN context would be obtained through large scale deployment of such solutions in real-life. 
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