
1

Is Multimedia Multisensorial? - A Review of Mulsemedia Systems

ALEXANDRA COVACI, Brunel University London
LONGHAO ZOU, Shenzhen University
IRINA TAL, Dublin City University
GABRIEL-MIRO MUNTEAN, Dublin City University
GHEORGHITA GHINEA, Brunel University London

Mulsemedia - multiple sensorial media - makes possible the inclusion of layered sensory stimulation and
interaction through multiple sensory channels. �e recent upsurge in technology and wearables provides
mulsemedia researchers a vehicle for potentially boundless choice. However, in order to build systems
that integrate various senses, there are still some issues that need to be addressed. �is review deals with
mulsemedia topics remained insu�ciently explored by previous work, with a focus on multi-multi (multiple
media - multiple senses) perspective, where multiple types of media engage multiple senses. Moreover,
it addresses the evolution of previously identi�ed challenges in this area and formulates new exploration
directions.
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1 INTRODUCTION
You are perched atop of a motorcycle, speeding up through Brooklyn with the wind whipping
through your hair. �e ra�le of the engine rumbles your backside, the handlebars shake to the beat
of the road, the sound of the engine and of the surroundings are delivered in full stereo, and an
inde�nable city whi� hits your nose. �en your tokens run out. You have just experienced the
Sensorama Simulator, a machine invented in 1962 by Heilig [100]. In the spirit of Aldous Huxley’s
Brave New World, where sensory elements were used to heighten the “feely e�ects” of a movie,
Heilig created an immersive environment by playing a 3D �lm along with stereo sound, scents and
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wind. Sensorama stands out as one of the early examples of using technology to create alternate
realities. �ere is an obvious correlation between Sensorama and today’s multimedia and virtual
reality (VR) projects.

In order for systems like Sensorama to successfully simulate reality, they need to integrate several
sensory channels into a unique multisensory experience by following the brain’s perceptual mecha-
nisms [111]. VR is becoming a promising framework to immerse people into realistic environments
and triggers the development and evaluation of various prototypes, displays, interfaces and inter-
actions with virtual objects [41, 74, 134]. However, many multimedia systems lack the inclusion
of layered sensory stimulation and of interaction through multiple sensorial channels. Alas, over
the past years, physically cumbersome technologies have generally restrained the delivery of truly
immersive experiences.

In multimedia applications, research and technology developments are generally focused on
improving image and/or sound in audiovisual (AV) systems. �is limitation of stimuli [61] maintains
a level of disconnect between the user and the represented scene. �e potential impact on enriching
the interaction through combinations of AV with one or several di�erent types of feedback (e.g.,
haptic, olfactory, gustatory) remains underused in digital media. Moreover, recent advancements
in ultra-high de�nition video technologies are not su�cient for higher immersion because the
simulated senses remain visual and audio. �is, notwithstanding the fact that complementary
pieces of multisensory information could push the sensations of immersion way beyond anything
experienced so far [35]. Indeed, the importance of sensorial feedback in user immersion has
increasingly been studied over the last years, with contributions focused on olfactory [85] and
haptic aspects [163].

Mulsemedia was coined as a type of multimedia involving more than three senses in [61]. Back
then, just as Sensorama envisaged in the 60s, the leap towards this transportive world was still
di�cult because of the e�ort behind incorporating other senses and the lack of multisensoriality on
the devices market. Nowadays, the exponential upsurge in technology and wearables is providing
mulsemedia researchers a vehicle for potentially boundless choice. �e underpinning technology is
becoming incredibly widespread determining us to head towards a future economic “golden age” of
technological convergence in 2020s. Roto VR chair1 o�ers a Sensorama-like experience where the
user can feel wind, heat, scent and force feedback. Wearables are permanently evolving from their
single function of counting the number of daily steps to measuring brain activity and correlate
it with speci�c sounds (Muse headband2). Kickstarter projects that promise to engage in various
ways all the senses have emerged, trying to �nd pilot clients and development partners.

�e dynamics of these changes motivate the current review that puts multisensory media
challenges in an actualized context and illustrates technologies and research problems involved in
building systems that integrate various senses. Existent surveys [61, 194] o�er a useful introduction
to the �eld of mulsemedia with a focus on applications that have a multisensory dimension.
Other works were focused on speci�c subsets of senses: olfaction [58, 130], or haptics [35]. �ese
surveys presented detailed aspects of the production-distribution-rendering work�ow, with a scope
narrowed down on the addition of one sense. However, this paper has a wider remit (illustrated in
Figure 1) than the aforementioned surveys and brings a new perspective on mulsemedia, situating
the technical problem of communicating via multiple senses within the underlying a�ordances of
human sensory and cognitive systems.

In the present review, we extend the work carried out in previous multisensory surveys and
we address aspects that should be taken into consideration when starting to develop mulsemedia

1Roto VR: h�p://www.rotovr.com
2Muse Headband: h�p://www.choosemuse.com/
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Fig. 1. The main directions of the survey

systems. Moreover, we show how our perception is in�uenced by senses, how we can substitute a
sense with a combination of other senses or what happens when a sensory stimulus is stronger than
the others. We believe that crossmodal correspondences should be considered alongside semantic,
temporal and spatial congruency in the design of products from food experiences to mulsemedia
systems because they solve the crossmodal binding problem, generate our unique perceptual
experience and could aid in the rehabilitation of people with sensory impairments through the
use of sensory substitution devices. Importantly, whilst models of multisensory perception and
processing have been proposed in the literature [9, 17], there is relatively li�le work focusing on
how one maps such models into the digital realm of mulsemedia, and this is the main remit of
the work reported in this paper. �is survey follows four main directions, as depicted in Figure
1, such as: (1) o�ering a set of information about di�erent types of congruences that people who
design mulsemedia systems could re�ect on. In the remaining of the paper, we focus on design
issues related to the (2) production - (3) distribution - (4) rendering chain as we synthesize available
so�ware and hardware solutions for building mulsemedia systems. �us, we supplement the
aforementioned surveys by focusing on speci�c challenges and solutions characteristic to all phases
of the mulsemedia work �ow and we identify some potential areas for future research in the area.

�is paper is thus a comprehensive, up-to-date survey of research on mulsemedia systems that
aims to provide the research community with a detailed insight on this relatively new research �eld.
Additionally, our aim is to provide fundamental guidelines and knowledge for allowing readers to
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start designing or performing experiments with such systems. �is work comprises the following
main contributions:

• A thorough analysis of the current state-of-the-art in mulsemedia systems with the emphasis
on their challenges;
• An overview of di�erent opportunities that provide designers and developers a starting

point in creating meaningful mulsemedia systems where they make use of a wide spectrum
of sensory experiences;
• A discussion of the challenges of enriching digital content with multisensory features in

di�erent phases of the production-distribution-rendering work �ow;
• Identi�cation and discussion of future challenges/research directions.

2 MULTISENSORY PERCEPTION AND INTERACTION
We rarely experience senses in isolation. Real world events produce di�erent sensory signals that
comprise our perceptual experience as a coherent percept through the integration of information
from various independent channels. Multisensory interactions occur at the intersection of two
or more sensory modalities and are essential in constructing a meaningful representation of the
environment. Humans are equipped with multiple senses in order to sense the available information;
thus it is likely that our brain has evolved to learn, adapt and operate optimally in multisensory
se�ings. �e process of multisensory integration describes the synergy among the senses and
the fusion of their information content. Multisensory integration is more likely to occur under time
and space coincidence constraints and it is enhanced by semantic and synaesthetic congruency
on multisensory information processing [186]. �e key idea is that we can use the �ndings and
research methods from the �eld of cognitive science to bene�t the process of design and evaluation
of crossmodal mappings for multimodal user interaction and information display. Exploring the
multisensory phenomena in human computer interaction (HCI) might lead to the development of
more intelligent and adaptive user interfaces. In this section: (i) we look at multisensory processing
with a focus on the bene�ts of multisensory stimulation, and (ii) we explore the relevance of
crossmodal correspondences in the design process with a focus on how multisensory technologies
could transform the way we interact and experience.

2.1 The Selection of Human Senses
When it comes to the number of senses that could be mixed in building a multisensory system,
the answer could be anything between �ve (the Aristotelian senses) and twenty-one [46]. Ex-
teroceptive senses, corresponding to a sense organ, are that of sight, hearing, taste, smell, and
touch (tactile/haptic). Sensation is carried out by these sense organs that convert energy from
the environment to electrical pulse. �is electrical signal is transmi�ed to the brain, where it
is processed and interpreted creating a perception. However, humans have also interoceptive
capabilities that make them aware of the internal state of the body. �ese can be broken down into
the following categories [64]:

• Equilibrioception contributes in helping us maintain our balance. Although vision plays
a main role in this sense, the vestibular system of the internal ear provides the leading
contribution to the sense of balance and spatial orientation.
• Nociception is the sense of pain. Seen initially as an experience related to touch, recent

research showed that this phenomenon corresponds to a speci�c area of the brain [45].
• Proprioception is the awareness of the position of our body. �is kinaesthetic sense is

responsible for conveying information of where our body parts are, even if we cannot see
them.
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• �ermoception is the sense of heat and cold that relies on the temperature sensors in our
skin.
• Temporal perception is related to the perception of time. Although this can be subjective,

research shows that our basal ganglia and other parts of the brain are responsible for it
[53].
• Interoception conveys information about our visceral sensory receptors found in our

internal organs.

Consistency between proprioceptive information and sensory feedback is essential when building
e�ective environments, increasing the sense of immersion. VR systems like “Amphibian” SCUBA
simulator, developed by the MIT Media Lab, engage sensory modalities additional to AV like
thermoception, equilibrioception, and proprioception [88]. Users wear an Oculus Ri� head-mounted
display and headphones that allow them to see and hear the underwater environment. Buoyancy,
drag, and temperature are simulated through various sensors. �e participants have Peltier modules
a�ached to their wrists to simulate temperature changes as they dive deeper into the water and use
an in�atable airbag placed under their torso that allows them to control ascent or descent through
breathing while the movements of their virtual representation are synchronized. However, despite
the e�orts of the community, interoceptive senses have made li�le progress.

�rough the synthesis and fusion of di�erent sensory signals, multisensory integration creates a
coherent and uni�ed perceptual evaluation of our surroundings [190]. To successfully combine
signals from di�erent sensory channels, the brain needs to solve a correspondence problem, integrate
the related information and dynamically adapt to spatial or temporal con�icts across senses [189].
Each sense has its own sphere and it is important in a di�erent context. Choosing the appropriate
sensing channels should be determined by environmental constraints and by the tasks or information
the user has to handle or her/his abilities.

2.2 Multisensory Processing
HCI studies, most speci�cally in cognitive load theory, Gestalt theory or Baddeley’s model of
working memory illustrate many advantages of designing multisensory interfaces [8, 149, 150].
Findings in cognitive science related to multimodal interaction show that providing an individual
with multiple sensory cues expands processing capabilities and leads to faster acquisition and
retention of information [179]. Research demonstrated that the presentation of non-visual cues
(e.g., tactile, auditory, audiotactile) has a bene�cial impact on the performance in visual tasks [205].
Moreover, it was shown that in certain circumstances, non-visual warning signals provided bene�ts
that visual cues cannot o�er [205].

Li�le research has investigated how multisensory information is represented in working memory.
In [200], the authors used crossmodal stimuli in their study, and found an improvement of free
recall of crossmodal audiovisual stimuli compared to modality-speci�c, audio or visual stimuli.
�ese �ndings suggest that the the combination of information from di�erent modalities (not the
redundancy) leads to an improved memory performance. �e advantage of crossmodal object recall
can be explained through the dual-coding theory.

Having as starting point the generative and the dual-coding theory, Mayer proposed a model
of multimedia learning, where visual animations that were accompanied with audio information
led to a split-a�ention e�ect in which students learned be�er [115]. �is model consists of three
analogous processes that take place in the dual planes: Selection - here the user selects relevant
information from the sense receptors into visual and verbal short-term memory; Organization -
involves a dual process of knowledge transformation within the respective short-term memories;
Integration - where one builds one-to-one references between the verbal and textual facets of
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the information. �is process takes place in working memory, which is part of the short-term
memory. However, it must be borne in mind that, due to the limited capacity of short-term memory,
integration of the visual and verbal models is constrained by the memory load. At this stage,
information has the potential to be absorbed into long-term storage, but it usually requires e�ort
on the part of the learner.

Hypermedia learning depends strongly on individuals’ spatial ability, i.e. their ability to mentally
map out the information presented to them, complete with the locations and routes of the hypertext
structure. Very o�en, individuals with high spatial ability create interior maps, which are superior
to the ones provided externally. �is prevents disorientation and reduces the cognitive overload that
might potentially be experienced [154]. Learners a�end di�erently to various stimuli and invest
intellectual e�ort accordingly. �us, learners invest more mental e�ort in media that they perceive
to be di�cult, than in those perceived as being easy. �is would suggest the use of contrived
methods such as highlighting in order to grab and direct the a�ention of the viewer [154]. Video
and audio can be successfully used in a multimedia environment to improve the quality of learning
as long as they do not compete for the same processing resources. Indeed, concomitant video
events can help users �lter out unnecessary sound e�ects and focus on relevant audio information
[70]. �ese �ndings were applied to educational interface design based on user-centered principles
and were shown to minimize the cognitive load and to lead to a be�er performance [149].

Providing an individual with multiple sensory cues should facilitate a representation; thus,
numerous educational programs have advocated the bene�ts of mutually supportive multisensory
information. Indeed, psychologists and neurologists have advanced the �eld of multisensory
perception over recent decades. Research has shown that the facilitative e�ect in information
processing is signi�cantly greater for multisensory stimulus combinations than within-modal
combinations [62]. Multisensory processes facilitate memory [126], as well as perceptual and
implicit learning and training outcomes [6]. In [68], the authors have shown that multisensory
audio/tactile cueing improves the performance (speed and accuracy) of visual search and reduces
the amount of mental workload. Multisensory intervention has been successfully used also as a
therapy for correcting and improving literacy skills [155] or for increasing sustained and selective
a�ention of people with autism [49]. Moreover, in this case, the multisensory experience was even
more e�ective by increasing students’ engagement with people and objects. Technology advances
now provide the opportunity to combine and connect neuroscience knowledge with game design
thinking, creating toolkits for learning, training, and therapy.

2.3 Cognitive Foundations
Multisensory integration combines information from di�erent sensory channels with positive e�ects
on accuracy, precision and reaction times. Some of the elements that govern multisensory processing
are: the temporal and spatial aspects (two signals should happen at the same time and come from
the same location), semantic congruency - sensory information should share the same identity
(this happens for both contexts and objects), crossmodal or synaesthetic correspondences -
information should be cross-sensory compatible. �ese factors act in conjunction during perception
and considering them might guide the process of multisensory and, by implication, mulsemedia
design.

2.3.1 Semantic congruency
Semantic congruency is one of the factors that underlies the integration e�ect and refers to

situations where the identity and/or meaning of pairs of stimuli match or mismatch. In the presence
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Table 1. Crossmodal correspondences between di�erent sensory dimensions

Sound Sight Touch
Pitch Timbre Spectral Shape Color Temperature So�ness

Balance
Smell high-fruity piano-fruity [31] n/a angular-lemon [69] paired [110] warm-cinnamon so�-lemon

[31, 182] [69] [37]
Taste low-bi�er, trombone-bi�er, low-sweet symmetry-sweet, pink-sweet,

high-sour, piano-sweet high-sour pleasant [202] white-salty n/a rough-sour
staccato - salty [10, 28–30] [14] angular-bi�erness green-sour, [184]

[66, 120] [40] black-bi�er [188]
Touch variation-direction light color-so�

[38], high-cold water n/a n/a n/a smooth, thin, light n/a n/a
[212] [213]

of redundant sensory information, their integration can increase signal strength and reliability, thus
semantic congruency becomes a critical factor in multisensory behavioral performance. Semantic
congruency was shown to increase visual a�ention through both spatial and object-based interac-
tions in a visual search paradigm presented in [84], where participants found a cat in a masked
image faster when hearing a meow sound. Positive a�ective e�ects when using semantical congru-
ent stimuli were illustrated in olfactory-audio or olfactory-visual combinations in [55, 178, 185]. In
[178], participants were exposed to a scent (e.g., odor of an orange) while they were asked to explore
a picture containing a corresponding odor-related visual cue (e.g., image of an orange) embedded
among other objects. �e results showed that the odor-related visual cue was explored faster and
for a shorter time in the presence of the congruent odor, highlighting that olfaction can a�ect visual
processing by capturing people’s a�ention. Similar results were found in the case of an information
recall task or of a word search game when cue-related odors were emi�ed [3, 56]. Another study,
where associations between the odorants and motion directions were arbitrarily established by
means of classical Pavlovian conditioning, consolidated the functional linking between the olfactory
information processing and the visual information processing are functionally [97]. Castiello et al.
[19] showed the e�ects of olfactory information on the process of selection for the control of a
goal-directed action illustrated by the task of grasping. �e authors administered an odor of an
object requiring a hand aperture similar in size to (congruent) or di�erent in size from (incongruent)
the one of a certain visual target and demonstrated that the size of the object evoked by the smell
in�uenced the subsequent grasping kinematics. �ese �ndings show that in a sensorium dominated
by vision and audition, olfaction in�uences perception and cognition in adults and opens up new
interaction possibilities.

2.3.2 Synaesthetic congruency
Multisensory binding is enhanced also when crossmodally congruent stimuli are presented

[186]. Synaesthetic congruency refers to correspondences between basic stimuli features (e.g.,
pitch, timbre, shape, color) in di�erent modalities. Crossmodal correspondences were shown
to in�uence people’s performance under di�erent experimental paradigms: direct crossmodal
matching, faster classi�cation tasks, faster simple detection tasks, Implicit Association Tests, spatial
localization tasks, and perceptual discrimination tasks [186]. In Table 1, we summarize a set
of crossmodal correspondences that have been shown to in�uence participants’ performance.
Crossmodal correspondences were demonstrated between various pairs of stimuli: pitch was
shown to change the perception on di�erent gustatory dimensions (high pitch was matched with
sweet/sour taste, while low pitch was matched with bi�er taste [10, 29, 30]). High pitch was
associated also with fruity smells [31, 182] and in the haptic dimension with cold water [212].
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Table 1 presents the pairs of stimuli that have a positive e�ect on performance and that should be
considered in any mulsemedia design process.

2.3.3 Congruences and HCI
Semantic and crossmodal mappings have a great potential in the design of meaningful computer

interfaces and interaction methods. �is is because they support comprehension and retention
of information through the accommodation of users’ sensorimotor skills. Moreover, computer
interfaces that explore the usage of crossmodal e�ects and correspondences have the potential to
be more e�ective and to increase immersion. Promising applications were illustrated in [43], where
the authors explore the e�ciency of olfaction in introducing a new semantic layer into interaction
design and HCI. �e study analyzed di�erent mappings between driving-relevant messages and
scents, and proposed ways of using olfactory simulation to transfer speci�c information to the
user, based on the congruence between visual and olfactory information. Strong associations were
found between the “Slow down” message and the scent of lemon, the “Fill gas” message and the
scent of peppermint and between “Passing by a point of interest” message and the scent of rose.
In [198], the authors explored the crossmodal correspondences between haptic and audio output
through “atmoSphere”, a sphere that provides haptic feedback designed to augmented focus during
mindfulness training by guiding the users into a particular rhythm of breathing.

Because all our senses interact to in�uence our experiences, di�erent types of sensory cues can be
used to guide or modify sensory expectations, search and augmentation. Since some of our senses
have currently a limited use in designing experiences (e.g., taste is currently explored via digitally
controlled electric or thermal sensations), there is also potential in designing applications, built
on top of crossmodal mappings, that target the user’s �avor expectation. For instance, extrinsic
cues of �avor can be augmented based on the crossmodal correspondence between roundness and
sweetness [207] or between musical articulation and the four basic taste groups [66]. �us, data
can be encoded with relevant parameters that can be perceived as synonymous in di�erent sensory
modalities. Inspired by �ndings from research on crossmodal perception, technology was used to
augment the way we experience the �avor in a variety of applications. Visual-taste crossmodal
stimuli were used in a mixed reality installation where a colored animated shape was projected on
yogurt, changing its taste [15] or in a study that proposes an augmented reality system that changes
the �avor of chips through increasing the chroma of a plate [143]. Crossmodal correspondences
can be exploited by interactive systems to reinforce or improve di�erent sensory perceptions. �us,
we suggest that crossmodal correspondences could play an important role in designing HCI from
research to more commercial se�ings.

Sensory Substitution Devices (SSDs) are most of the time complicated to use, since they require
intensive training. Crossmodal correspondences could be useful in designing such devices that
semantically translate cues of a speci�c type (e.g., visual information: brightness, shape) into
another dimension (e.g., audio information: pitch, loudness). �us, a more e�cient alternative to
existing SSDs could be to engage the sensory substitution via multiple sensory channels using
di�erent crossmodal mappings. As a result, the process becomes more intuitive, training time is
shortened and the participant performance is improved [192]. Encouraging results were found for
color to sound [67], tactile to sight [16], and sounds to smell substitutions [26].
3 PRODUCTION, DISTRIBUTION AND RENDERING IN MULSEMEDIA SYSTEMS
Mulsemedia systems are usually obtained by adding feedback to visual and/or audio stream which
triggers other sensorial channels (e.g., haptic, olfactory, gustatory). �is process consists of three
stages: (i) Production, (ii) Distribution and (iii) Rendering. In [34], the authors propose a work�ow
for adding haptic feedback to audiovisual (AV) content. In this section, we extend this work�ow
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Fig. 2. Production-distribution-rendering workflow for creating multisensory systems. AV = Audio Video,
AVHOT = Audio Video Haptic Olfaction Taste

with details regarding production and rendering of systems that stimulate also the chemical senses
(taste and smell), as illustrated in Figure 2. Accordingly, production deals with how di�erent
sensory e�ects can be created or generated in synchonization with the AV content. Multisensory
e�ects can be produced through di�erent techniques: digital capturing and processing of data
acquired from sensors; automatic extraction from video or AV content; or through manual
authoring of mulsemedia e�ects. Once the mulsemedia e�ects are captured, they are encoded
for transport, processed and then emi�ed for distribution to providers, distributed to the end
users and then decoded, so that the mulsemedia e�ects can be rendered by di�erent devices and
experienced by the end users. In order to be e�ective, mulsemedia e�ects have to be synchronized
temporally.

Since [35] provides an extensive overview of the haptic audio visual (HAV) aspects, in this section
we will focus on new research in the haptic area and on the addition of chemical sensory modalities,
which di�er in the production/rendering mechanism from the physical ones.

While we understand sight, hearing and touch good enough to build machines to mimic them,
we know less about the chemical basis of taste and smell. Cameras are electronic eyes, mechanical
resonators transmute sounds into signals our brain recognizes, touch is a pressure sensor, but smell
and taste are subtle senses, complex mixtures of di�erent molecules. Both sensing and actuation
of smells are hard to realize because of their organic nature. �us, despite their in�uence on the
human behavior and the interesting possibilities that they raise (for instance we have stereo smell
and can distinguish the origin vector of a scent to approximately 10 degrees of acuity [209]), there
is a surprisingly paucity of use of scent and taste in VR, HCI techniques and mulsemedia. In the
following subsections, we will o�er informative insights that extend the ad hoc knowledge about
mulsemedia design into a formal framework. We expect that academia or industry practitioners who
are not experts in mulsemedia design will have a starting point that will allow them to accelerate
the generation of multisensory tools, techniques and test scenarios.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Fig. 3. A Histogram of Di�erent Existing “Sense” Editors. Haptic Audio Video (HAV) editors are the most
popular with several open-source tools. Olfaction Haptic Audio Video (OHAV) are less represented. Olfaction
Audio Video (OAV) and Audio Video tools enhanced with Temperature, Light, Fog, Wind, Water, Light, Force
are mostly experimental, while Taste editors are not yet implemented.

3.1 Production
Although most human-technology interactions are still based on traditional desktop/mobile in-
terfaces that involve primarily the visual and audio senses, in recent years we have witnessed a
progress in multisensory experiences involving haptics. �ough much development is needed, the
perspective is that the senses we use in our interactions with technology will not be restricted and
we will be able to create richer experiences.

Notwithstanding the fact that audio and video content can be easily produced with a variety of
tools and methods, development of new interaction methodologies and the use of new interaction
devices is more problematic since it involves the rapid prototyping of user interfaces [152]. Designers
still manually create e�ects using in-house authorization tools in an event trigger scheme, resulting
in a labor-intensive work. Moreover, o�en, guiding principles for creating such e�ects that are
associated to the content watched, heard or read are missing [87]. Commercial companies like
D-Box3 or CJ 4Dplex4 create haptic e�ects using proprietary tools, but they do not make available
the lessons from their releases. Even if this technique does not require a change in the current
media production process, a be�er placement of e�ects should be provided when a designer has
the possibility to tune the result with authoring tools.

In this subsection, we will focus on how to create content that addresses various sensory channels
(visual, auditory, haptic, olfactory, gustatory) in order to produce new body experiences through
novel types of interactions. We will present libraries that could be used along with MPEG-V

3D-Box: h�p://www.d-box.com/
4CJ 4Dplex: h�p://www.cj4dx.com/
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based protocols and editing tools for di�erent types of sensory e�ects to be rendered with the
AV stream. In order to o�er an overview of the existing so�ware-based editing tools that could
be used to accelerate the prototyping of mulsemedia systems and the exploration of mulsemedia
design, we looked at di�erent solutions provided by the literature. In Figure 3 we illustrate the
repartition of these editors based on the targeted sense. We found that existing collections of sensory
sensations and programming toolkits are focused mostly on haptic e�ects (especially vibrotactile
(VT) stimuli) [20, 86, 87, 92, 93, 104, 112, 152, 166, 173–175, 177, 197], while the olfaction �eld
remains insu�ciently explored [24, 92, 196, 211] and there is no tool for editing gustatory e�ects.
�ese tools are presented in more detail in Table 2, Table 3 and Table 4, respectively.

3.1.1 Production of AV Stream
Visual content has evolved from traditional 2D videos to stereoscopic 3D panoramic images.
However, 3D content is o�en expensive to produce. 2D to 3D conversion techniques have the
potential to make the process faster and several approaches have been proposed for this: manual,
human-assisted and automatic conversion. Moreover, 3D visual information can be also produced
using capturing devices like 3D cameras and 3D scanners [151]. Mobile phones and tablets can be
used for stereo-based depth measurement opening up new possibilities for 3D reconstruction [94].
3D printers started to be used to provide a tactile dimension to traditional visual representations:
for cosmic representations [25] or for visualizing anatomy [1].

Sound had until recently a marginal role in the design of virtual environments or mulsemedia
systems. With the development of VR, immersive audio became something crucial because it
needs to match up 3D visuals that convey an enhanced sense of realism. Recent research started to
evaluate the in�uence of using 3D sound in improving performance or spatial localization in VR
systems, showing that it enhances the immersion level of players [23][144]. Binaural recording
systems is a speci�c approach of the stereo recording where two microphones are located in place
of the two ears on an arti�cial head [95]. Binauralisation engines that utilize Head Related Transfer
Functions (HRTFs) are available from plugins such as 3DCeption from Two Big Ears5 which captures
interaural level and time di�erences as well as spectral cues. 3DCeption ensures that the audio is
synchronized with the video, regardless the playback mechanism and ensures all kinds of audio:
mono, stereo, multi-channel and ambisonics across platforms and devices.

3.1.2 Production of Haptic E�ects
In this paper, we use the HCI de�nition for haptic that involves one or more perceived sensations of
touch (tactile and proprioceptive feedback, active human touch, and passive experience of actuated
technology).

Haptic e�ects occur within a scene with the aim to augment the user’s presence, to enhance
ambiance or emotion or for training purpose. A comprehensive classi�cation of the types of haptic
e�ects that can be used in multisensorial systems is presented in [210]. �ey include: temperature,
water sprayer, air-�ow, whole body vibration, passive kinaesthetic motion and force, active kinaesthetic,
tactile and rigid body. Haptic feedback can be produced in free space in several ways: through
conventional direct-contact wearable devices (e.g., gloves [109], haptic vest [106], manipulation
of the location of the actuators [171] or contactless haptic feedback through air-jet or ultrasonic
radiation pressure [7].

Haptic technology can produce stimuli to feel in diverse ways, the most common approach
being the vibrotactile (VT) feedback. VT arrays (gaming chairs or tactile vests [158]) are a haptic
technology that uses parametric models of sensory illusions to render moving haptic pa�erns. In

5Two Big Ears and 3Dception: h�p://twobigears.com/spatworks/index.html#features
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fact, VT signals exist in many everyday devices and a study presented in [176] con�rms users’
interest in customizing these e�ects. However, despite this potential and the rise of new haptic
interfaces, there is still a gap between haptics and mainstream communication caused by the lack
of haptic authoring tools, the production infrastructure, the standardized playback protocol or the
design of engaging, understandable e�ects. �e design of intuitive and e�ective VT cues requires
multiple development iterations and user evaluations. Haptic technology, already used to create
immersive user experiences in VR or video games, seems to display a great potential to also enhance
user experiences in mulsemedia [111]. However, mainstream media does not yet use the richness of
the haptic modality because of the lack of haptic authoring tools, standardized playback protocols
and trained workers.

Haptic feedback is mostly manually customized through dedicated editors with e�ects created
during the post-production phase. Haptic information can also be produced through data acquired
and processed directly from the sensors, or through automatic extraction from AV content or from
metadata [168] (e.g., e�ects from a football game displayed with a vibrating device [203]). For
instance, activity in a video feed [90] can be mapped to haptic transducers that are arranged along
a chair; movements from the visual scene are thus mapped with events from 4D movies or rides.
Similarly, sound can also be used to extract haptic cues for music or video gaming.

In embedding haptic information in media, designers need to have access to haptic e�ects tools
and libraries that enable rapid prototyping and easy authoring. As seen in Figure 3, haptic editors
are favored over authoring tools for other senses. Several interfaces that support di�erent types of
devices are currently available. Some of them are based on direct representation of the vibration
signal as editable waveforms [152]. �e Hapticon Editor [48] is used for creation and editing of
haptic icons for a 1-DOF6 force feedback device. VT icons can be prototyped with posVibEditor[166]
that supports also the creation of a library of pa�erns using XML-based pa�ern �les. Other editors
also support media augmentation through the prede�nition of a library of haptic pa�erns. �e
Touch E�ects Studio (Immersion Corporation) and Vivitouch Studio [197] are focused on devices
with either a temporal or spatial component through tools for enhancing video and audio with
e�ects from a library of haptic icons. Schneider, Israr and MacLean in [174] introduced the tactile
animation metaphor and proposed Mango to allow users to e�ciently create dynamic 2D haptic
pa�erns, associate them to multimedia and apply them to a variety of devices. Other editors are
built for authoring haptic content using accessible touchscreen interactions. Simplistic pa�erns,
that allow users to control only the vibration duration can be created using Apple’s vibration editor
(since iOS 5). Moreover, in [79], Apple’s approach was extended on an Android platform to support
complex vibration waveform design in an intuitive way (sequence of taps and drags).

3.1.3 Production of Chemical E�ects (Olfactory and Gustatory)
Unlike the other senses, smell and taste are complicated processes that result from the biomechanical
reaction between human receptor(s) and a binding site on a molecule. In fact, an aroma is not
identi�ed due to one single molecule, but due to the interaction of many molecules and biochemical
reactions. Although there are many challenges related to studying taste and smell, no other sensory
modality is as emotionally potent as olfaction [148]. It has been shown that smell reinforced the
way a viewer enjoys an artwork [101] or that smell and taste have the potential to facilitate the
acquisition of new knowledge based on previous experiences in education [73]. With the advance
of technology, and the understanding achieved in psychology and neuroscience, researchers started
to shape the development of technologies based on smell and taste [141]. ‘Virtual Cocoon’ is a
helmet that addresses all the �ve senses: hearing, sight and touch senses are stimulated digitally,

6DOF = Degrees of Freedom
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while taste and smell are stimulated analogically, by chemicals emi�ed by the helmet [21]. �is
analog solution, applied for chemical senses, has several drawbacks related to its manageability
and scalability.

Taste. �ere are �ve basic tastes: sweet, salty, bi�er, sour, umami [36]. When we taste any food
or beverage, we perceive each type of taste as a qualitative data analyzed by our brain indicating
e�ects on the sensory organs called taste buds. Within HCI, taste stimulation is mainly achieved
through the use of chemical stimulation or through electrical and/or thermal stimulation
of the user’s tongue. �is invasive nature of taste and the fact that taste-based experiences are
volatile represent important hurdles for HCI researchers [125].

Traditionally, users experience taste through chemical components (liquid or solid form): glu-
cose (sweet), citric acid (sour), ca�eine/quinine (bi�er), sodium chloride (salty), and monosodium
glutamate (unami) [146]. �is approach has been used in [116], where the author proposed the new
paradigm of Edible User Interfaces and evaluated its e�ectiveness in a HCI context. �e “painted
bits” of a computer monitor are replaced by tangible “edible bits”, with potential applications for
network monitoring and pro�ling. �is paradigm is used also for ‘Taste Screen’, which consists of
small transparent cartridges that are placed on the screen and release a �avoring agent when users
lick it [116]. In [125], the researchers proposed an example of gustatory interface called ‘LLOLio’,
an interactive lollipop that changes its taste. �e authors focused on the sweet taste of the lollipop
in combination with sour liquid to deliver a taste and haptic input modality. Results showed that
gustatory games could bene�t from the interaction between sweet and sour. While the chemical
approach is less invasive than the electrical and thermal simulation of the tongue, it requires the
continuous preparation of the taste stimuli that are di�cult to store and manipulate. Moreover, the
chemical stimulation is analogous, thus impractical for digital interactions.

Taste qualities can be perceived also by stimulating the tongue papillae through thermal or
electrical or stimulation. Sweet sensation was shown to be produced by warming the anterior
(front) edge of the tongue, while the sourness and/or saltiness were created through the cooling of
the tongue in [32]. Sweet, sour, and bi�er tastes were stimulated electrically by placing a silver wire
on the tip of the tongue and a reference electrode on the le� wrist of the subject in [156]. In [160],
a team from the University of Singapore presented a device with a 2×2 grid of peltier elements that
deliver heating and cooling stimuli to the tongue simulating the sensation of sweetness. Using this
approach, the team proposed a “Vocktail” (Virtual Cocktail) that utilizes three sensory modalities
(taste, smell, and visual - color) to create virtual �avors [162] and “Digital lollipop” that digitally
simulated the sour sensation on the human tongue at three intensity levels. In [170], the authors
presented a taste interface for future meaningful Internet multisensory communication through the
digital actuation of sweet sensations. �ey created the sweet taste by manipulating the temperature
on the tongue. Texture, another important factor in the eating experience, was simulated through
the Electric Food Texture System presented in [142]. �is device, placed on the masseter muscle
can not only mimic the texture, but also modify the texture of real food and its creators are
contemplating to combine it with chewing sounds. An advantage of the electrical/thermal approach
is that they allow for more control and replication of taste stimuli over a long period of time and
over distance (e.g., Taste/IP [159]). Currently, non-chemical taste stimulation methods are the least
explored in interactive systems.

Another approach consists of pseudo-gustatory displays based on the the virtual color of a
real drink [140]. “MetaCookie” is a system that creates customized tastes of the same cookie by
dispensing di�erent scents to users’ noses with the motivation to investigate crossmodal e�ects of
visual feedback and the interpretation of the �avor. “A�ective Tumbler” uses the same crossmodal
principles and applies thermal sensations on the skin to stimulate skin temperature changes [195].
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In [208], the authors highlight through “TasteBud” how the complete spectrum of �ve basic tastes
can be employed and propose a novel and innovative delivery mechanism that uses acoustic
levitation - “TastyFloats”. “Virtual Lemonade” introduces a new method and a digital platform for
sharing lemonade using crossmodal principles that consists of: sensing (RGB color and pH value
are captured), distribution (the XML protocol to encode the data) and stimulation through a tumbler
that overlays color over the beverage and stimulates the tongue using electric impulses [161].

Commercially, Planet Licker7 is a �rst step toward incorporating taste into game play by licking
�avored ice pops on a USB-connected controller.

Smell. Natural odor molecules with the exception of a few molecules like hydrogen sulphide are
small carbon-based entities that �oat into the air and form an invisible plume of odor. Although it
is not clear how we detect molecules, there are some theories about this process. One idea refers to
the “vibrational modes” of an odorant that are its signature [54]. �is study suggests that an odor
molecule can be seen as a collection of atoms on springs. �e quantum e�ect causes the spring to
vibrate and thus the molecule to be identi�ed.

Smell in an environment can be captured manually by sucking the air across an automated
thermal desorption tube. �e odor molecules stick to the �ne granular material in the tube. �ese
molecules can be determined a�er they are separated by a gas-liquid chromatography instrument. A
mass-spectrometer then produces a histogram of the present molecules [63]. Olfactory information
can be produced through a system consisting of an electronic nose or an odor recorder. �e classical
electronic nose is based on an array of sensors that provides a pa�ern of a diagnostic given odor.
Classical electronic noses utilize an array of chemical sensors of di�erent speci�cities that respond
to volatile compounds present in gases. �is array of chemical sensors is coupled with a pa�ern
recognition mechanism that allows the identi�cation of complex smells [220]. �e electronic nose
can be used for olfactory recording if combined with a smell reproducing technique [133]. In
[132], the authors present an odor recorder for dynamic changes in an environment and in [214],
the authors proposed a method to record odors that consists of many components. In addition
to the classical sensor-array-based approach, electronic noses based on other technologies have
also been exploited. �ere are examples where mass and ion mobility spectrometers or �ash gas
chromatographs are used to detect the components of a gas mixture. Electronic noses have been
successfully used in cancer diagnosis [107] or in food industry [51]. However, in spite of having
di�erent approaches and thus providing di�erent input, the limits of electronic nose technology
resulting from the fundamental sensing components are obvious [167]. Commercially, NeOse8

combines di�erent technologies to directly analyze and quantify volatile organic compounds and
tests them against a database of known smells. NeOse allows companies to record their own scents
in the database and has as main targets the food and cosmetic industries, but it can also test air
quality.

Despite these a�empts in developing gustatory and olfactory input devices, the main focus of the
digital olfaction community in mulsemedia has been nonetheless on olfactory output modalities
through studies on timing and multimedia processing [57, 129].

3.1.4 Creating Multisensory Content; Ready-made Libraries and Editors
As shown, multisensory feedback has the potential to convey meaningful information to users.
However, despite the availability of a broad range of technologies there are no guiding principles
for associating multisensory feedback with AV content. �erefore, di�erent types of tools should be
provided to a designer who wants to create engaging experiences, to meaningfully harness touch,

7Planet Licker: h�p://a-o.in/games/pl/
8NeOse: h�p://aryballe-technologies.com
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Table 2. Multisensory Editors Based on Direct Signal Graphical Representation

Data
Format E�ects Tools Type About Users

XM
L

Audio,
Video,
Vibrotactile

posVibEditor [166] Standalone -
edit and play

Drag-and-drop design paradigms.
Waveform editing, multi-channel sup-
port for multiple actuators placed on
body sites. Suitable for mobile devices
and virtual reality applications.

Gen.

3D shapes,
Vibrotactile VITAKI [112]

Standalone
(C++ API)
- device
independent

Waveform editing, prototyping plat-
form for decoding vibrotactile feed-
back (i.e. Morse signals) on the hap-
tic gloves driven by Eccentric Rotating
Mass (ERM) motors (e.g. object fall de-
tection in VR gaming).

Dev.

Audio,
Vibrotactile

Beadbox [138];
Emoti-Chair [89] Standalone

Timeline editing, interface design with
“Bead” based on sensory substitution
models (color-frequency).

Art.

M
PE

G-
V

Pa
rt

3
(X

M
L)

Audio, Video,
Vibrotactile,
Wind, Water,
Temperature,
Light, Fog,
Scent

SeVinoa [211] Standalone,
Web service Tool chain for video annotation and

synchronization of di�erent e�ects -
device independent (writes MPEG-V
based SEM and performs 3D simula-
tion).

Dev.

Real4DStudiob

- authoring tool Standalone Gen.

SMURF (extension
of SeVino) [92] Web service Dev.

RoSE studio [24] Framework Gen.

Audio
Video
Vibrotactile
Wind, Force

H-Studio authoring
tool [34], PlaySEM
[169]

Standalone Edition of motion e�ects and synchro-
nization with AV content.

Dev.

Web haptic player
[44] Web service Import 3D models and add haptic prop-

erties - haptic device independent.
Gen.

M
PE

G-
4

BI
FS

Audio, Video,
Vibrotactile,
Force

Authoring frame-
work for haptic
broadcasting
[20][93]

Framework Passive haptic interactions. Dev.

M
PE

G-
2

Video,
Scent

Smell video system
[196] Standalone Image processing and text analysis to

extract smells and authoring tool.
Dev.

Note: Gen. - General area; Dev. - Development; Art. - Artists
aSeVino: h�p://selab.itec.aau.at/so�ware-and-services/

bReal4Dstudio: h�p://cast.real4dhub.or.kr/about/authoring/download

smell, taste in mulsemedia interaction, to determine the meaningful design space for multisensory
interactive experiences, to study and understand di�erent sensory modalities along with their cross-
sensory associations, etc. Using a framework or a library that includes �ne-grained descriptions
with their experiential correlates can speed up the design process [148]. While the libraries of
e�ects might still be useful for end user customization, they do not support the capability for

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://selab.itec.aau.at/software-and-services/
http://cast.real4dhub.or.kr/about/authoring/download


1:16 A. Covaci et al.

Table 3. Metaphor-based Multisensory Editors

Data
Format E�ects Tools Type About Users

M
PE

G-
4 Video,

Audio,
Vibrotactile

Tactile movie au-
thoring [93] Standalone

Visual media metaphor (�rst, third per-
son and background e�ect) for tactile
authoring.

Dev.

XM
L

TactiPEd [152] Standalone

Actuator sequencing metaphor for vi-
sualisation and adjustment of ampli-
tude, frequency and sequence duration
(separate control of each actuator).

Dev.

Audio,
Vibrotactile

VibScoreEditor
[104]

Score-based editing using the musical
score and VT clef metaphors. Dev.

Video,
Vibrotactile Mango [174]

Animation metaphor that allows the
manipulation of vibrotactile sensations
continuously in space and time.

PA.

Note: Gen. - General area; Dev. - Development; Art. - Artists; PA. - Professional Animators.

deconstruction and re-composition, they are opaque in construction and immutable. For experts,
who want access to the source code, editable model and external examples would be necessary in
the design process.

Table 2, Table 3 and Table 4 present di�erent types of multisensory design tools starting from
VT libraries and continuing with editors based on variations of MPEG-V format [201] that support
di�erent types of haptic e�ects (vibration, temperature, wind, water-spray, motion) as well as
scent, shadow or fog. Some of these editors are track-based with a graphical representation to
edit waveforms (Table 2), some are based on di�erent types of metaphors (Table 3), some address
additional features like mobile interfaces while others are example-based tools. In Table 4 we
present libraries of e�ects that can be used for keyframe based behavior editing and re�nement.
Based on the level of required expertise and on the multisensory channels that need to be stimulated,
these tools could be used to make the prototyping process faster.

3.2 Distribution
In the mulsemedia content distribution, the formalized sensorial e�ects are stored, transmi�ed
and synchronized through authoring tools/platforms (see Table 2, 3 and 4) over the heterogeneous
network environment [35]. In networked systems there are many concurrent processes making
use of the same resources. When simultaneous signals are evoked from more than two sensory
modalities, the user’s a�ention is quickly directed towards the source and the �ality of Experience
(QoE) is enhanced [165, 216]. �ese sensory inputs become coherent through crossmodal integration.
As a result, we make be�er temporal or spatial judgments [12], or we have a richer experience [47]
of the event that generated those signals. In mulsemedia systems, sensory inputs are integrated
according to the temporal interval between the stimuli[190]. When the real-time data streams are
transmi�ed over a network, the delay ji�er disturbs the temporal relationship between the media
streams. Moreover, a temporal ordering of sensorial events has to be guaranteed in the mulsemedia
synchronization systems [2].

Scant research in the mulsemedia domain has focused on identifying the thresholds that allow
di�erent senses to be separated while remaining integrated. �e procedure to identify the point
where the bond between sensorial channels breaks, consists of separating the events in time and
space and varying the increments until they are no longer perceived as an entity [42]. �ese
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Table 4. Multisensory Editors based on Libraries and Databases

Data
Format E�ects Tools Type About Users

Libraries

Vibrotactile VibViz [177] Standalone

120-items VT library (annotated by 5
taxonomies: physical, sensory, emo-
tional, usage examples, metaphor).

Dev.

FeelE�ects [87] and
FeelCra� plugina

[173]

50-items VT library (6 types of
metaphors - rain, travel, etc.). Gen.

Macaronb [175] Web service
Open-source interactive design editor
that facilitates remixes of existing vi-
brations.

Gen.

Feel Messenger [86] Standalone
(Android)

Communication API, haptic vocabu-
lary (haptic pa�erns stored as feelgits
with preset parameters - feelbits), and
interface for receiving and authoring
haptic messages.

Gen.

Vibrotactile,
Force

TouchSense SDKc

(Android),
ViviTouch Studio
[197]

Standalone/
plugin

Haptic prototyping alongside video
and audio (pause, seek, mute, synchro-
nize e�ects).

Gen.

Vibrotactile,
Force,
Audio

iFeelpixeld Standalone

Enables users to interact with the com-
puter GUI using vision, touch and hear-
ing and allows them to mediate graphic
structures.

Gen.

Databases
Video,
Audio,
Vibrotactile

Content Portal e
Standalone
(Android,
iOS)

Showcase of video, media, and games
enhanced with tactile e�ects. Gen.

Demonstration-
based editor [80],
Apple’s vibration
editor (only binary
on/o� information)

Generates a VT pa�ern by imitating
the touch input pa�ern of the user. Gen.

Note: Gen. - General area; Dev. - Development; Art. - Artists; PA. - Professional Animators.
aFeelCra�: h�ps://github.com/Litarvan/Feelcra�

bMacaron: h�ps://www.cs.ubc.ca/labs/spin/macaron
cTouchSense SDK: h�ps://www.immersion.com/products-services/touchsense-sdk-mobile-apps/

diFeelpixel: h�p://www.ifeelpixel.com/download/
eContent Portal: h�ps://play.google.com/store/apps/details?id=com.immersion.tsengageportal&hl=en

temporal in sync/out of sync boundaries were explored for audio, video, olfactory [57, 131], haptic
and air�ow [215] combinations as shown in Table 5, where we present di�erent asynchrony
thresholds between media channels.

Media synchronization has been evaluated as the relationship between two types of media
streams. �e investigation of intermodal asynchrony was initially focused on audiovisual events. In
[42], the authors observed that speech and non-speech stimuli had di�erent thresholds (non-speech:
{-75ms, 175ms} speech: {-130ms, 250ms}). Reinforcing this, [119] proposed a lip-reading task and
showed that the performance of users dropped signi�cantly when the soundtrack was delayed by
160ms. In [191], the users’ perception evaluations of lip synchronization for audiovisual events
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Table 5. �ality of Service for Synchronization Purposes

Media 1 Media 2 Synchronization
Type

Application Tolerable Range

Video

Scent

Audio media
dependent [57]

In the absence of audio media
[129]

[-5s, +10s]

In the presence of audio
media [4]

[-30s, +20s]

Scent type
dependent [128]

Foul scent [0s, +15s]

Spicy, fruity, �owery scents [-10s, 10s]
Burning scents [-5s, +10s]

Haptic Tightly coupled Gaming Vest [215] [0s, 1s]
Air�ow Tightly coupled Fan [215] [-5s, +3s]
Taste Tightly coupled Di�erence between taste-visual

latencies [135]
[13ms - 837ms]

Haptic Scent Video media
dependent [83]

Good [-1380ms, -250ms]

Allowable [-1380ms, 400ms]

showed that the skews could be more easily sensed by users when the video is ahead of the audio,
and the “in sync” region of the lip synchronization is {-80ms, 80ms}.

Recently, additional media streams (e.g., addressing touch) were added as a new dimension to
the user experience [169]. Haptic technology has become accessible and started to be used in
modern devices interfaces like teleoperators (e.g., haptic mouse and grip for video gaming, medical
simulation or art design), touchable screens of smartphones and some PCs, and some contactless
devices in Augmented/VR systems. Haptic applications require high demand of bandwidth to
enable the data transmissions over a high reliable and responsive network [183]. In applications
like teleoperation, the accuracy of timing between haptic and other media streams is vital for the
QoE. �us, it is signi�cant to consider the network restrictions (i.e. delays, ji�er and losses) in the
mulsemedia distributions and to identify the thresholds of inter-stream synchronization. In [181],
a high degree of sensitivity (100ms) in perceiving asynchrony between media channels (HA and
HV) has been observed in a multimedia presentation with a haptic reference stream resembling a
ping pong game. In [199], the authors investigated to what extent QoE is a�ected by network delay
across the transmission of haptic media, audio and video through a haptic-transferred system.

In this study, a simulated network delay for each media stream has been introduced, while
monitoring changes in the QoE. �e results indicated that Mean Opinion Score (MOS) values are
bound up with the di�erences of network delay ji�ers among the media streams (i.e. haptics, audio
and videos)[199]. However, the authors did not identify the threshold of perception of asynchrony.
In [219], this study was extended with a networked musical ensemble composed out of a tambourine
and a keyboard harmonica with results showing that the inter-stream synchronization error rate
in this situation was decreased against the works in [199]. Interestingly, this asynchrony can be
masked in tri-stimuli systems by one of the present sensory modalities (e.g., audio has been shown
to mask the synchronization skews in olfaction-enhanced presentations [4]).

Another important aspect of the distribution is supporting high quality services for mulsemedia
in the context where there is an exponential growth in user population and in the resource
requirements of the networked applications.
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In [217], the authors propose an adaptive mulsemedia framework (ADAMS) that has been shown
to improve user perception and QoE in variable network delivery conditions. Using a MPEG-79

description scheme compatible with MPEG codecs, ADAMS designs two adaptation schemes on the
server side: a �ow-based steam-switch adaptation scheme and a mulsemedia-based packet priority
scheduling scheme which di�erentiate the mulsemedia (i.e. haptic, air-�ow and olfaction) and
multimedia (i.e. audiovisual) content distribution depending on the available network bandwidth
and human preferences.

Network Function Virtualization (NFV) and So�ware De�ned Networking (SDN) are technologies
that provide tools to design networks with greater degree of abstraction, increasing the network
�exibility [5]. SDN architecture decouples network control and data forwarding functions and
enables direct programmability by upper layer applications. SDN paradigms can be used to dynam-
ically allocate network resources to di�erent DASH clients, while a SDN manager would be used
to dynamically modify video �ows and/or network resources in order to achieve a QoE fairness
between users [50]. �us SDN techniques will play a crucial role in the design of the Tactile Internet,
which is a combination of multi-systems and multi-technologies which need to share the frequency
spectrum as well as the physical infrastructure. In addition, existing multimedia distribution tech-
nologies have successful experiences on supporting the adaptive multimedia streaming, which
o�ers smooth real-time audiovisual services and solves the issues of network restrictions, energy
consumption and user perceived quality [123, 193, 221]. Considerable e�ort has been made in
this research direction and a large plethora of adaptive multimedia delivery solutions have been
proposed in the literature. We argue that these solutions could teach us important lessons that can
be further used in mulsemedia delivery: mulsemedia services can also be tailored to users based on
the di�erent network conditions and multisensorial devices.

To this end, one promising endeavor is that a�orded by the Tactile Internet in 5G, which
envisages an ultra-responsive and ultra-reliable network connectivity that enables the delivery of
physical haptic experiences remotely and allows the building of real-time interactive systems [52].
Using predictive analysis together with arti�cial intelligence and changing the air interface and
architecture design at the wireless edge, the Tactile Internet thus has the challenge to achieve 1ms
round trip latency and to provide an enhanced haptic perception. If the Tactile Internet delivers on
its potential, then we surmise that mulsemedia applications of the future can harness its abilities to
deliver seamless synchronization between the di�erent media components.

3.3 Rendering - From Prototypes to O�-the-shelf Devices
A�er mulsemedia content has been transmi�ed over a network, di�erent types of sensorial devices
have to retrieve and translate the content to represent

the appropriate e�ects [35]. An extensive review of olfactory displays following di�erent
classi�cations (location, how the scent is delivered) is presented in [130]. �e authors analyze
di�erent setups and discuss limitations of di�erent technologies (both experimental and commercial)
used in building olfactory displays. Haptic devices and their possible e�ects and applications are
presented in [34]. A more recent e�ort in this direction is presented in [124], where the authors
present the concept of altered touch through an integrated �ngertip haptic display that uses
integrated force, tactile and thermal feedback and the appropriate e�ects [35]. An extensive
review of olfactory displays following di�erent classi�cations (location, how the scent is delivered)
is presented in [130]. �e authors analyze di�erent setups and discuss limitations of di�erent
technologies (both experimental and commercial) used in building olfactory displays. Haptic
devices and their possible e�ects and applications are presented in [34]. A more recent e�ort in this
9MPEG-7: h�p://mpeg.chiariglione.org/standards/mpeg-7
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Table 6. Rendering Devices

Prototype �eme Interesting Unexplored
Directions O�-the-shelf Devices

H
ap

tic
Gl

ov
es Exoskeleton glove

with pin arrays [111]

Force and tactile feedback
that allows people to touch,
stretch and pull virtual fab-
rics

Distinction between di�er-
ent fabrics

Dexmo - exoskeleton glove that captures 11
DOF of users’ hand motion and provides
force feedback of variable sti�ness [65]

Mood glove [117]

Enrich moods in
�lms/music through
tactile sensations (eight
vibration pa�erns)

Emotional experience
through cross-modality

Gloveone/Avatar VR - tracks �nger and arm
motions and produces haptic sensations
through vibrations

H
ap

tic
Ch

ai
rs

Feel e�ects - Haptic
chair (24 tactors
on the back of the
chair). E�ect libraries:
stroke, pulse, motor,
rain, strike, travel
[87].

Storytelling, story lis-
tening

Training for disabled
(wheel chair users)

Roto VR - Haptic chair with rumble shakers
�xed to the underside and back of the chair
(e�ect libraries: crashes, �aps, turbulence -
plane, race car, rollercoaster), VR ampli�er
(�lters audio signals and creates tactile feed-
back), base and foot pedals (walk in VR).Haptic chair [139],

Emoti-chair [13]

Enrich the music experi-
ence for the deaf by the
touchable vibrations

O
th

er
H

ap
tic

D
ev

ic
es HALUX [204] Interactive skin for digital

sports based on projections
Investigate the level of im-
mersion

Rez In�nite - whole body vibrotactile inter-
action

Jorro Beat [82] -
shower head that
controls the water
�ow and provides a
tactile stimulation
synchronized with
music

Enrich the music experi-
ence in the bathroom

Playing live music with an
input interface n/a

O
lfa

ct
or

y
D

isp
la

ys Wearable

Product evaluation in
visual-olfactory envi-
ronment [18]; Low cost
wearable display [75];
Miniaturised olfactory
display [71]

Generate multiple odors
simultaneously; Create
scents in the vapor state

Aroma Join - messenger app, noti�cation,
odor card, DaleAir , Exhalia AromaStick -
personal mood changer for o�ce workers

Desktop

Odor emanated by a spe-
ci�c region of the screen in
an immersive environment
[114]; Cooking game with
odors [134]

W
in

d
D

isp
la

y WindCube [122] Create stable �ow pa�erns
for directional wind dis-
play; Wind direction per-
ception [136]

Crossmodal e�ects with
other sensory modalities;
Precision of wind percep-
tion

DC fans; Feelreal mask - Two powerful mi-
crocoolers (cool and hot air)MSF [113]

Treadpod Active
Wind Tunnel TPAWT
[99] [98]

direction is presented in [124], where the authors present the concept of “altered touch” through
an integrated �ngertip haptic display that uses integrated force, tactile and thermal feedback and
can be used with augmented reality applications.

One of the aims of this paper is to o�er guidance in the aspects that should be considered by
researchers who explore the potential or the particularities of multisensory interaction. �us, in
Table 6 we focus on a list of prototype rendering devices presented in research papers by describing
the context in which they were used, the feedback they provide, the research directions we identi�ed
as interesting to explore and potential o� the shelf commercial devices that anyone can use in
replicating or extending the initial studies.

In this section we have focused on di�erent particularities related to production, distribution
and rendering of multisensory systems. Most of the existent studies in mulsemedia delivery or in
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creating new ways of interaction with technology are considering bi-sensory se�ings. However,
as presented in previous subsections, the creating multisensorial systems started to be populated
with tri or multiple-sensory options from creation to rendering. All these tools and devices allow
researchers to further address the set of challenges presented in the next section.

4 FUTURE DIRECTIONS
Media production and consumption play an important role in our everyday life. Research on
interactive experiences with mulsemedia is a growing �eld of study subdivided into topics related
to: crossmodal processes, content production, system design and architecture, application and
evaluation of user’s experience and development of new interaction paradigms. While in the 20th
century the interest in the media industry was on the visual, the present demands an investigation
of touch, taste and smell as sensory interaction modalities. Starting from this, a set of questions
arises: which mulsemedia experience to design for, how can this be achieved, or how to evaluate
the QoE. Recent advances in experimental psychology (described partially in Section 2) and HCI
[147] are two important sources of inspiration [145].

Previous work showed that researchers focused on rendering and production of haptic, sound,
olfaction or taste, from the point of view that they represent a single-medium engaging a single-
sense [61][130][35]. In this article, and indeed, in our work, we are interested in the multi-multi
perspective where multiple types of media engage multiple senses.

4.1 Research Topics
Rendering continues to present challenges in creating a holistic multisensory percept in a digital
context. An important characteristic of the rendering devices should be adaptability that can
happen automatically or through the help of the designer or end-user. In order to ensure correct
rendering, devices that are operable by non-experts need easy methods for troubleshooting. In
Table 6 we present interesting research prototypes and their corresponding o�-the-shelf devices
that could be considered isolated or combined in building mulsemedia setups.

Design guidelines need to be further developed. Like in the case of the standardization of
HTML/CSS, and Blu-Ray versus HD DVD, diverse �le formats and infrastructures will emerge.
Given the diversity of multisensory technologies and experiences, we expect these to be centered
around paradigms that can propose ways to work with mulsemedia content and which can be
applied to multiple devices in a class. Best practices in working with multisensory content have
yet to be formulated. An interesting study about the haptic design process was presented in
[172], where the authors identify current obstacles in the design of haptic user experiences and
present the results of intensive interviews with six professional haptic designers. �e authors make
valuable recommendations for accelerating the development of HaXD that can be applied also in
a mulsemedia context. Another paper that provides a tutorial and recommendations on the key
steps to conduct olfactory-based evaluation of the QoE is presented in [127]. �is represents an
important step in proposing a standardized methodology to conduct subjective mulsemedia quality
assessment. However, there is still a need for more guidelines since they will enable the support of
mulsemedia researchers and HCI designers alike. It is important to develop a set of best practices
to guide people in the design of meaningful mulsemedia experiences.

Non-Aristotelian senses are not yet intensively targeted by digital mulsemedia systems, where
the focus is overwhelmingly, if not exclusively on the traditional �ve Aristotelian senses. Whilst
interoceptive senses like proprioception have been studied in the non-digital world, their stimulation
and integration through traditional and/or non-traditional media types is yet to be explored in the
digital. However, whilst steps in this direction have been made in di�erent virtual environments
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for the treatment of phobias or for the investigation of the contribution of proprioception , this has
been done by calling upon intermediate modalities, such as force feedback, which stimulate the
interoceptive senses. However, such incipient work did not make any formal conclusions since
follow-up research is necessary to validate their �ndings.

Taste was identi�ed in several research papers as one of the least investigated senses in terms of
sensory interaction modalities [61][148]. So far, things have not changed substantially. Although
gustation has been extensively studied to understand the functionality of the taste system, there
is still a lack of understanding related to how taste can be exploited in developing new ways of
interaction with technology. An interesting work in this context is presented in [146]. A�er a
thorough analysis that is centered on user experience, the authors of this work identi�ed three
main types of characteristics that de�ne taste experiences: temporality, a�ective reactions and
embodiment. �ese characteristics are presented as a framework for designing gustatory experi-
ences. As such, one of the main contribution of the work in discussion is that it provides a rich
understanding and a vocabulary of the gustatory experience and its in�uence on user experience
as well as new tools to design such experiences. Both electrical and thermal stimulation of taste
require more focused experimental studies considering aspects such as: material characteristics (i.e.
gold vs. silver), position on the tongue, the waveform of the electrical signal. Moreover, it is very
important to experiment di�erent physiological and psychological aspects of the sensation of taste
at the intersection with other sensory cues. As highlighted in [206], there is a growing interest
on enhancing HCI and food interaction design by understanding the multisensory in�uences on
�avor perception. Scenarios where visual, auditory, and haptic cues were used for modulating
�avor are presented, while the authors also summarize important challenges related to the need
for long-term follow-up investigations that could add value to �avor augmentation.

Crossmodal correspondences andmultisensory substitution. Crossmodal correspondences
still present a number of unanswered questions related to sensory cue integration and to how
correspondences a�ect metaphorical understanding, feelings of ‘knowing’, behavior, learning and
perceptual experiences [39]. Practical guidelines for the design of experiments that might shed
new light in crossmodal correspondences are presented in [153]. Continuously investigating this
direction could also bene�t the development of more e�ective sensory substitution devices, since
it has been shown that crossmodal correspondences enhance the performance of color to sound
systems [67].

Attentionmodeling. �ere are o�en situations when an interface designer wants to capture the
a�ention of the user. A�ention is a cognitive concept that determines how particular sensory input,
perceptual objects, thoughts, or courses of action are selected for further processing. Typically,
researchers tended to focus on an individual sensory modality, ignoring the other senses [187],
and noticed that each sense presents di�erent capabilities: vision is precise for spatial information,
sound is e�ective in the perception of temporal information, haptics can be used in processing
both temporal and spatial [180]. However, it has been shown that multisensory audio/tactile
cueing improves the performance (speed and accuracy) of visual search and reduces the amount of
mental workload [68]. �us, crossmodal cuing represents a feasible approach for enhancing task
performance without causing an increase in the a�ention a�ributed to a singular sensory modality
[81]. �e magnitude of cueing e�ects was measured in a laboratory environment for HCI or for
driving. A multisensory driver described in [78] provides interesting interface design guidelines
supported by multisensory human perception research and has the potential to help the development
of ergonomic interfaces. In designing a car interface, implications for VT warning signals of the
crossmodal links between touch and vision in motion processing have also been presented in [76].
However, the same authors show that laboratory-based studies on spatial a�ention do not capture
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all the key factors of real world situations and present a set of recommendations that could help
researchers without compromising the value of their experiments [77].

Building databases, libraries of e�ects, examples and rapid prototyping tools �e use
of multisensory media is nontrivial, thus it needs to be supported through a variety of tools that
help the design process. Most of the existing libraries (media interactions [173][33], TouchSense; for
accessible way�nding [218]) do not o�er examples, or indeed the possibility to decompose these
e�ects. Latest features allow parameters to be adjusted [87] and provide faceted library search and
browsing [177], but most times designers need to choose prede�ned e�ects or to build them from
scratch. An interesting approach for VT e�ects is the Macaron tool [175] that includes a web-based
editor and a gallery for interactive design [102]. �e authors’ observations present implications for
other editing tools.

4.2 Application Areas
Mulsemedia and performing arts. Interactive art started to be increasingly present not only in
art galleries, but also in events like ISEA and Prix Ars Electronica or in demo tracks at academic
conferences like CHI or SIGGRAPH. Multisensory interactive art installations perform an open-end
exploration, questioning the role of multisensory interfaces for communication. Art o�ers an
alternative approach and allows researchers to gain insights into the interactive process, facilitating
the collaboration between artists and technologists. In [137], the authors identify a theoretical
framework of interactive installations and highlight their relevance to HCI through relevant
examples. Art installations could lead to a be�er understanding of under-exploited senses like
taste and smell. In [103] authors propose an installation exhibited at SIGGRAPH ASIA Art Gallery
that allows the user draw the lollipop on a virtual screen and print it with fragrance inks. Tate
Sensorium10 was a winning project of IK Prize 2015 Award. It featured an immersive display with
four paintings from the Tate Collection that allowed viewers to experience sounds, smells, tastes,
and physical forms inspired by these artworks while having their psychological responses recorded.

An ongoing project funded by the European Commission’s Horizon 2020 Framework, Accessible
Resources for Cultural Heritage EcoSystems (ARCHES)11 aims to exploit multisensorial devices and
media among other technologies in order to create more inclusive environments at museums and
cultural heritage sites for people having di�culties associated with perception, memory, cognition
and communication. We argue that mulsemedia systems can have a high impact on helping people
with di�erent disabilities not only in art, but also in other aspects of human life, such as education.
�erefore, we consider this to be a challenging but worthwhile exploring research direction in the
context of mulsemedia systems.

We are at the point where technology o�ers a�ordable tools that allow us to create new experi-
ences and gather knowledge. It is important to understand how these tools should be used and
in this process, keeping this experimental mindset o�en met in creating art, would be key to give
insights and clarify aspects that can be used also in other �elds.

Wearable mulsemedia. �e evolution of multisensory technology embedded into wearables
represents a new modality for people to experience life enhancing all the human senses. Haptics
cannot be anymore dismissed as boring vibrations that alert you to messages. Now, prototype
touchscreens can use ultrasonics to create the ‘feel’ of di�erent objects while haptic motors are
becoming smaller and more �exible. People can send hugs over distance with the “Hug Shirt” 12,

10Sensorium: h�p://www.tate.org.uk/whats-on/tate-britain/display/ik-prize-2015-tate-sensorium
11ARCHES: h�p://arches-project.eu/
12�e Hug Shirt: h�p://cutecircuit.com/the-hug-shirt/
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feel vibrational cues that help them keeping up the rhythm with “Soundbrenner”13 or experience
what a player feel during games through Alert Shirt14. With the upcoming release of “watchOS 3”,
Apple is pushing things further. Breathe15, its new application designed to coach people through
stress-relieving breathing pa�erns, uses the Taptic engine to deliver subtle physical prompts on
when to inhale and exhale. Moreover, these advancements in a�ordable wearable technology have
the potential to also help people with special needs. Lechal16 is a haptic footwear that help the
visually impaired navigate. Unlike smartphones and tables which rely on people looking at them,
the lack of display space and digital interfaces make multisensory feedback an even more powerful
tool. Olfactory displays are still in a prototype status [71, 118], but it would be interesting to see
how the market evolves in this direction. Interesting horizons can be envisaged through devices
like Aromastic, a mobile scent dispenser that aims to act as a personal mood changer for the busy
professionals. �ese type of initiatives seem promising also in respect of multisensory therapy (e.g.
Snoezelen), which has been successfully applied to alleviate the symptoms associated with a wide
range of pathologies [22].

Mulsemedia and e-Learning. With the rapid growth and development of the information and
communication technologies, e-learning has seen a fast evolution over the past decade. Mobile
and multimedia technologies have also changed radically the online learning landscape [59, 60].
�e advances in wearables and mobile technologies such as improved network speeds, improved
processing power, improved graphics and higher-resolution displays enable enhanced, more com-
plex mobile learning experiences. Olfaction and haptic interfaces have started to be evaluated in
the context of education [108, 164], predominantly in science and mathematics but also in social
sciences [121]. However, since the majority of educational virtual environments are focused on
visual representation [157], there is still a need to investigate the capabilities of a multisensory
system and its e�ects on learning outcomes and knowledge retention. In [179], the authors dis-
cussed the bene�ts of multisensory learning over a unisensory paradigm. However, the authors
emphasize the fact that the magnitude of this bene�t is dependent on the congruency of the stimuli
e.g., the learning environment must closely map what users have experienced in nature, supporting
the �ndings in [72]. Crossmodal correspondences and crossmodal substitutions can also play an
important role in the learning process (also for people with disabilities) that has to be analyzed. Over
the last few years, the European Union Framework programs and Horizon 2020 have supported a
number of projects in the multimodal space. NEWTON17 (Networked labs for training sciences
and technologies) is of relevance for the present study since it focuses on multisensorial aspects in
learning STEM subjects [27].

Mulsemedia in e-Commerce and advertising. With the current upsurge in technology and
wearables on one hand and the increasing preference of customers towards on-line shopping
on the other hand, mulsemedia has the potential to in�uence and change consumer behavior.
Several studies have shown an increase of satisfaction and a be�er emotional state when using
environmental cues. Ambient cues (colors and scents) have an impact on user’s behavior with cool
visual and olfactory cues (blue or citrus-mint) rated higher than warm cues. Also, the in�uence of
touch on on-line shopping a�itudes was demonstrated in [105] for a Korean population. Using
devices like the smelling screen [114] or the FeelReal Helmet, digital marketers can improve the

13Sounbrenner: h�p://www.soundbrenner.com/
14Alert Shirt: h�p://wearableexperiments.com/alert-shirt/
15Breathe: h�ps://support.apple.com/en-gb/HT206999
16Lechal: h�p://www.lechal.com/
17EU H2020 NEWTON: h�p://www.newtonproject.eu
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store environment with both design and ambient factors [91] by proposing a new interface that
can be applied to a variety of visual contents such as ads and website.

Sensory marketing engages customers’ senses and can in�uence advertisement design and
e�ectiveness because of its in�uence on perception, judgment and behavior. An extensive review
discusses the role of sensory marketing in driving advertisement e�ectiveness, showing that
product evaluation is enhanced by touch and smell, a�ention and persuasiveness are a�ected by
music, whilst memory is enhanced by smell and taste perception is improved under multisensory
stimulation [96]. Well-implemented sensory experiences have positive e�ects on brand equity,
studies showing that participants agreed that sensory stimulators are congruent with the brand
identity [11].

5 CONCLUSION
Whilst multisensory interaction and displays have been studied in quite some depth in the non-
digital world (e.g.in psychology, education, therapy, performing arts, etc.), they are relative new-
comers to the digital world. Moreover, whilst multimodal systems have a long track record of
being studied in the digital world, digital mulsemedia systems are again relative newcomers on the
research scene, and, in the current paper, we have reviewed research e�orts targeting this extra
dimension of the multimedia experience.

It is already obvious that mulsemedia systems have the potential to make more e�cient use of the
human perceptual and cognitive capabilities because the human brain has evolved in a multisensory
environment. In the current review we tried to o�er a full picture of the spectrum of multisensory
systems starting with the neurological processes involved (from crossmodal correspondences to
multisensory integration), continuing with the work�ow for production-distribution-rendering
and ending with challenges that still need to be addressed. We made sure to emphasize important
aspects related to multi-stream synchronization, adaptation, fast prototyping, o� the shelf devices
and we identi�ed areas that could have a major bene�t from this multisensorial approach. All are
worthy of future endeavors.

Mulsemedia systems are multi-multi systems, where multiple (more than three) senses are
engaged by multiple media. In contrast to multimodal systems, mulsemedia systems are all about
the media and not the modality; the focus here is on the diverse new, non-traditional, media types,
their production, distribution, and rendering, and the issues raised when integrating non-traditional
and traditional digital media in mulsemedia systems. As our paper has shown, progress is being
made in our understanding of mulsemedia systems, yet there are challenges and opportunities
galore to be explored and overcome in the quest to transcend the overwhelmingly bisensorial
nature of digital multimedia into the multisensorial one of mulsemedia.
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