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Abstract—Smart devices (e.g. smartphones, tablets, smart-
home devices, etc.) have become important companions to most
people in their daily activities, and are very much used for
multimedia content exchange (i.e. video sharing, real-time/non-
real-time multimedia streaming), contributing to the exponential
increase in mobile traffic over the current wireless networks.
While the next generation mobile networks will provide higher
capacity than the current 4G systems, the network operators
will face important challenges associated with the outstanding
increase of both video traffic and user expectations in terms of
their levels of perceived quality or Quality of Experience (QoE).
Furthermore, the heterogeneity of mobile devices (e.g. screen
resolution, battery life, hardware performance) also impacts
severely the end-user QoE. In this context, this paper proposes
an Evolved QoE-aware Energy-saving Device-Oriented Adaptive
Scheme (E3DOAS ) for mobile multimedia delivery over future
wireless networks. E3DOAS makes use of a coalition game-
based rate allocation strategy within the multi-device hetero-
geneous environment, and optimizes the trade-off between the
end-user perceived quality of the multimedia delivery and the
mobile device energy-saving. Testing has involved a prototype
of E3DOAS , a crowd-sourcing-based QoE assessment method
to model non-reference perceptual video quality, and an energy
measurement testbed introduced to collect power consumption
parameters of the mobile devices. Simulation-based performance
evaluation showed how E3DOAS outperformed other state of the
art multimedia adaptive solutions in terms of energy saving, end-
to-end Quality of Service (QoS) metrics and end-user perceived
quality.

Index Terms—Quality of Experience, Energy Saving, Adaptive
Multimedia, Wireless Networks, Optimization.

I. INTRODUCTION

THE global IP-based traffic has reached over 88 Exabytes
per month in 2016 (i.e. 1 Exabyte = 109 Gigabytes)

and increasing share is generated by the 8.0 billion connected
mobile devices, as reported by a Cisco white paper in February
2017 [1]. Cisco also forecasts that 78 percent of the world
mobile data traffic will be video by 2021 [1]. This video
content will include professional and user generated clips,
video from streamed and downloaded services, pre-recorded
media or generated on the fly and with different degrees of
interactivity, and consumed at home, at work, in public places
or on the move.
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With the rapid growth of mobile video traffic, the multime-
dia service vendors (e.g. YouTube, Netflix, etc.) will face the
effects of serious network congestions (i.e. higher packet loss
rates, increased and highly variable delays) and deployment of
innovative solutions to address these are required. Among the
solutions proposed to maintain high Quality of Service (QoS)
levels for multimedia services, adaptive mechanisms which
dynamically adjust the video delivery parameters according to
the underlying network conditions have been highly promis-
ing. MPEG-DASH1, a framework for dynamic HTTP-based
multimedia delivery adaptation was just standardized and other
commercial adaptive bitrate streaming solutions proposed by
Microsoft2, Apple3 or Adobe4 are already widely used.

Moving beyond QoS, which focuses on content delivery-
related metrics, the concept of Quality of Experience (QoE)
has gained strong momentum over the course of the last
decade, especially with increasing user quality expectations.
QoE is the key factor to measure the user perceived quality
of a particular application service, which is focused on under-
standing the overall human quality requirement based on social
psychology, cognitive science, economics, and engineering
science [2]. Generally, QoE can be influenced by the delivered
QoS network performance and also by the other psychological
factors of the end-user perception under different environ-
ments and services (phone call, web browsing, TV or movie
streaming, etc). Some ITU-T standards such as [3] [4] [5]
provide methods and metrics to subjectively measure how
the video quality is perceived by mobile users. The focus is
now on proposing innovative solutions to increase QoE when
delivering video content over different network types [6] [7]
[8].

Additionally, there is an explosive growth in the number
of affordable mobile devices with increased performance in
terms of different device characteristics (e.g. CPU, memory,
graphics, etc.), which also support a wider range of services.
These smart high-end mobile computing devices (e.g. smart-
phones, tablets) contribute positively to increasing the overall
user experience, but have a severe limitation in terms of battery
capacity. This represents a major restricting factor especially

1DASH Industry Forum: http://dashif.org/mpeg-dash/
2Microsoft Smooth Streaming: http://www.microsoft.com/silverlight/

smoothstreaming/
3Apple HTTP Live Streaming: https://developer.apple.com/streaming/
4Adobe HTTP Dynamic Streaming: http://www.adobe.com/ie/products/

hds-dynamic-streaming.html



when dealing with networked video-based services, as these
power hungry applications drain the battery of the mobile de-
vices quickly. Therefore, existing solutions [7] [9] [10] propose
different device-oriented mechanisms for video delivery that
take into consideration the device characteristics/heterogeneity
(e.g., device screen size resolution, battery power, etc.). In this
context, balancing user QoE and energy consumption of the
mobile devices represents the main challenge for video-based
services over the future mobile and wireless environments.

In this paper, we propose E3DOAS , an Evolved QoE-
aware Energy-saving Device-Oriented Adaptive Scheme for
wireless networks, which optimizes the trade-off between
QoE and energy savings. In order to allocate the network
resources in a fair manner to the mobile clients, E3DOAS
makes use of a two-stage coalition-oriented game-based rate
allocation scheme for multimedia delivery which considers
the underlying network conditions to achieve system fairness
(i.e., fair resource distribution between the mobile users).
Real experimental test-bed results are used alongside the
utility theory to model the QoE and energy-saving trade-off
optimization schemes for different device classes. Simulation
results in a near-real life OFDM-based environment show that
E3DOAS optimizes the trade-off between the end-user QoE
and energy-savings when compared to other state of the art
adaptive video delivery solutions from the literature.

The rest of this paper is organized as follows: Section II
describes several fundamental related works in terms of end-
user QoE, energy-aware modeling techniques and adaptive
multimedia delivery mechanisms over heterogeneous wireless
environments. Section III introduces the proposed E3DOAS
framework and the related functional blocks. Section IV
models the QoE and energy-saving utilities by making use
of real experimental results. Section V describes the network
simulation environment and the results and analysis are pre-
sented in Section VI. Finally Section VII presents the possible
improvements and future directions and concludes this paper.

The contributions of this paper as compared to the State of
the Art and our previous work are as follows:
• non-reference perceptual video quality and device-based

energy consumption utilities are modeled for multi-device
heterogeneous network environments based on real data
collected from both crowd-sourcing-based subjective tests
and real test-bed energy measurements;

• a method to optimize the trade-off between QoE and
energy-saving based on non-reference QoE and energy-
saving models for different device classes is proposed;

• a new coalition game-based rate allocation scheme for
multi-device heterogeneous environments is introduced to
achieve system fairness and better network performance.

II. RELATED WORKS

A. QoE Assessment Solutions

To date there has been extensive academic research related
to multimedia adaptation techniques over a heterogeneous en-
vironment and various industry solutions have been deployed
to address the problems related to the multimedia streaming
over the Internet while maintaining an acceptable end-user

QoE levels. In addition to the ITU-T standards for QoE
subjective evaluation of video streaming listed in Section I,
many objective QoE-based evaluation models were proposed
in the literature. The objective evaluation models are divided
into: (a) Full Reference (FR) Models such as Peak Signal-to-
Noise Ratio (PSNR) [11] and Structure Similarity (SSIM) [12],
which are based on the comparison between the original and
distorted video clips when assessing the video quality. Typical
used metrics include: blockiness, blur, brightness, contrast,
etc. However, although FR models are more accurate, the
computational complexity is high, as they are based on per-
pixel processing and synchronization between the two video
sequences; (b) Reduced Reference (RR) Models require
access to partial information of the original video source in
order to assess the distorted video stream quality; (c) Non-
Reference (NR) Models are not dependent on the original
video and network-related or application-specific characteris-
tics (e.g. throughput, packet loss, encoding bitrate, frame rate,
etc.) are used to assess the video quality.

In [13] [14], the authors proposed a logarithmic QoE predic-
tion model which considers the original video playback bitrate,
frame rate, packet error rate, and other channel condition
information. A QoE guaranteed video management system was
described in [15]. The system employs a Lyapunov function-
based approach to schedule optimal subframe delivery accord-
ing to user QoE requirements. In [16], the authors proposed
an analytical QoE prediction model based on the playout
buffer size by making use of Markov processes. Similarly,
an enhanced QoE objective prediction model considering user
acceptability was proposed in [17], which improves predictive
accuracy of current non-reference models. A comprehensive
non-reference QoE model was also proposed in [18]. The
model considers complex parameters including user personal
context (e.g. location, temperature and even heart rate infor-
mation), device characteristics (e.g. screen size, design layout,
and resolution), applications type and network conditions.
Additionally, Jingteng et al. [19] proposed a novel QoE model
for mobile video perception based on the viewing distance
between user and device screen, screen luminance and user
movement acceleration. In this context, most of the existing
solutions mentioned above are based on the NR QoE modeling
which would be more efficient compared to FR modeling.

Recently, cost-effective crowd-sourcing techniques have
been increasingly employed. Crowd-sourcing-based subjective
tests involve participants that are doing the tests remotely,
anytime and from anywhere over the Internet, as opposed
to traditional laboratory-based tests. Gardlo et al. [20] stud-
ied data screening techniques for crowd-sourcing-based QoE
subjective testing, and proposed an enhanced crowd-sourcing
evaluation system with high efficiency and reliability [21]. In
this paper, NR QoE modeling will be performed based on real
crowd-sourcing subjective tests, and the FR metric PSNR will
be used for evaluation and analysis.

B. Energy-Efficient/Saving Adaptive Solutions
Regarding energy efficient adaptive solutions, a battery and

stream-aware dynamic adaptive multimedia delivery mecha-
nism (BaSe AMy) was proposed in [22]. BaSe AMy monitors



the power consumption of the mobile device and lowers
the stream quality if the battery lifetime is not enough to
finish the video playout. Additionally, the adaptive streaming
solution proposed in [23] conducted the lower screen backlight
level with image contrast enhancement to save more power
consumption. In our previous work we proposed EDOAS ,
an energy-aware device-oriented adaptive multimedia scheme
for WiFi offload [10]. EDOAS is built on top of the cellular
offloading architecture, and adapts the video streams based
on mobile device characteristics (e.g. screen resolution) and
battery lifetime, while maintaining good user perceived quality
levels. Noteworthy is that most of multimedia streaming solu-
tions proposed in the literature are either QoE-based or energy-
aware and do not consider both aspects at the same time.
The latest research work described in [24] which is closer to
our proposed solution considers the trade-off between energy-
saving and video quality by selecting the different transmission
paths (e.g. WiFi, LTE and 3G). However, this proposed solu-
tion lacks the video adaptation for the heterogeneous mobile
devices with different energy-saving and QoE models.

C. Fairness Issues

Some well-known adaptive multimedia streaming and re-
source allocation solutions such as those proposed in [25]
[26] [27] take into account fairness control based on network
conditions. The solutions proposed in [28] and [29] employed
an adaptive streaming solution to obtain high QoE for users
in a fair manner based on the network conditions. However,
most of them do not consider either user QoE or the energy
consumption of mobile devices in the wireless environment.
On the other hand, a joint optimal solution based on QoE
and energy-saving for DVB-T adaptive video transmission was
proposed in [30]. However, there is no clear definition for the
device-oriented solution and system fairness between the video
receivers is not addressed. Our previous work published in [7]
not only takes into account the trade-off between QoE and
energy-savings, but also adapts the multimedia stream deliv-
ery to quality levels according to the heterogeneous mobile
device characteristics. However, the system fairness was not
addressed. A common metric used to define the fairness of a
transmission system is the Jain’s Fairness index [31].

III. E3DOAS : EVOLVED QOE-AWARE ENERGY-SAVING
DEVICE-ORIENTED ADAPTIVE SCHEME

A. E3DOAS Architecture

The system architecture of E3DOAS is illustrated in Fig.
1 and consists of three main planes: the Mobile User Plane
(MUP), the middle-layer Network Environment Plane (NEP)
and the Service and Control Adaptation Plane (SCAP).

MUP includes different heterogeneous classes of mobile
devices consuming video on demand (i.e. Class 1 to M illus-
trated in Fig. 1). The mobile devices integrate several essen-
tial functional modules: (a) Device Characteristics − stores
device related information (i.e. screen resolution, maximum
battery capacity and voltage, operating system, etc.); (b) En-
ergy Monitor − stores power consumption related parameters
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Fig. 1. E3DOAS Architecture

(i.e. energy consumption rate per unit data, background energy
consumption while the device is in the idle state); (c) QoS
Monitor − provides periodic network conditions information
to SCAP. The proposed solution exploits QoS information
dependent on the network technology employed originating
from the QoS Monitor located at the mobile device. For
the 3G/4G network, information about the available channel
bandwidth is generated and shared in the form of Channel
Quality Indicator (CQI) reports. For the WiFi network, the
available channel bandwidth is calculated based on Probe Rate
Prediction Schemes [32].

E3DOAS is to be deployed in a multi-device heterogeneous
wireless mobile network environment similar to [10] [9]. It is
assumed that the IP-based multimedia streams are delivered
over the NEP, which maintains the basic IMS signaling ser-
vices. Additionally, it is also assumed that the heterogeneous
networks are owned by the same network operator (e.g. O2
UK TUGO service5), there is collaboration between different
network operators (e.g. Three - Bitbuzz Ireland Service6)
or a third-party company exists with contracts with diverse
operators (e.g. Googles Project Fi7) and a network traffic
offloading scheme is deployed (e.g. LIPA/SIPTO) [10]. In
this context, E3DOAS has less complexity of deployment
in comparison with other conventional multimedia delivery
schemes. The latter introduce additional overhead due to the
network handover management, whereas E3DOAS makes use
of the unified network management architecture.

As illustrated in Fig. 1, SCAP consists of several major
cloud-based subsystems: (a) Data Cloud (DC) - which stores
the classification information of mobile devices, encoded me-
dia streams, the QoE and Energy-saving models of different
device classes; (b) Crowd-sourcing Qualitative Test System
(CQTS) - a cloud-based video delivery and subjective quality
assessment system that provides an agile process to collect
and analyze the QoE-related information of different types of
mobile devices from a large group of persons through crowd-
sourcing; (c) Energy-Saving Device-Oriented Adaptation Sys-
tem (ESDOAS) - classifies the quality levels of the multimedia

5O2UK, TUGO: http://www.o2.co.uk/apps/tu-go
6Three Ireland - Bitbuzz: http://www.bitbuzz.com/index.html
7Google Project Fi: https://fi.google.com



streams based on different mobile devices types, then selects
and adapts the specific quality levels at the mobile users’
side according to the optimization problem and based on the
device energy saving and the perceptual quality information
obtained from CQTS. Depending on the channel conditions
and the coalition game-based fairness model, the adaptive
video content is streamed to the corresponding devices au-
tomatically. CQTS and ESDOAS could be deployed on the
same cloud server or distributed on different physical servers.
CQTS provides a web-based online assessment platform to
mobile users who want to participate in the crowd-sourcing
subjective tests in real-life scenarios anywhere and anytime.
The mobile users will need to register their mobile devices,
download the specific testing video clips, watch them on their
registered devices and then score the video quality through an
online questionnaire. The perceptual video quality score is then
mapped to the Mean Opinion Score (MOS). The functionality
and the subjective data collection of CQTS is detailed in our
previous work [7]. The following sub-sections will introduce
the Data Cloud and ESDOAS.

B. Data Cloud (DC)

DC consists of several database storing information related
to the device characteristics, the quality levels of the encoded
video streams for each device class, the QoE parameters
and the energy consumption models. It also provides the
interface for CQTS to update the QoE models periodically
and enables ESDOAS to access the QoE parameters and the
energy consumption models efficiently. All the data of user
profile and device information are transmitted using Session
Initiation Protocol (SIP) over a dedicated connection across
the network. DC consists of four functional modules: Device
Classification, Media Encoding, QoE Models and the Energy-
saving Model.

The Device Classification Module classifies the registered
mobile devices into several classes based on their device
characteristics (i.e. device screen resolution). The device clas-
sification information is stored in DC.

Definition 1. A registered mobile device belongs to the set
of Class m (i.e. 1 ≤ m ≤ M, ∀m ∈ M and M
is a set of classes ) when its screen resolution range is
RESm−1 > RESm > RESm+1 and RES0 = ∞, where
RESm ≡ RESm(WIm, HIm) and WI and HI are the
width and height in pixels, respectively. M is the total number
of device classes.

The Media Encoding Module is capable of transcoding
the original quality video clip into different quality level
sequences Q(m) with multi-step playback bit rates, frame
rates and resolutions based on the different device classes m.
Information about the characteristics of the encoded quality
levels of the multimedia streams is stored in DC.

Definition 2. The QL
(m)
q (R

(m)
q , FR

(m)
q , RES

(m)
q ) denotes

the q-th quality level video (0 < qm ≤ q ≤ N, q ∈ Q(m)) with
playback bitrate R(m)

q , frame rate FR(m)
q , resolution RES(m)

q

for Class m. Where q is the quality level, N is the lowest coded
quality level, and N = M + ∆, where ∆ ∈ Z ∧ ∆ > 0 is

Encoding Degree. qm refers to the highest quality level with
qm = m. Thus, the number of quality levels allocated to Class
m is |Q(m)| = N (m) = N − qm + 1.

The QoE Model Module stores the QoE models of the dif-
ferent device classes which are updated from CQTS after the
data processing, based on the method in [33] [4]. According to
the logarithmic law of the QoE model in [14] [34], the specific
QoE parameters for α(m) and β(m) of Class m are modeled,
and a non-reference perceptual quality model for Class m is
described as follows:

Γ(m) = α(m) · ln(R(m)
q ) + β(m), (1)

where Γ(m) ∈ (0, 1] is the average PerceptualScore (which
represents a QoE factor) of Class m at playback bitrate R(m)

q ,
α(m) > 0 and β(m) are constants. This QoE model will
be referred to as QoE and energy-saving optimization in the
following section.

The Energy-Saving Model Module provides the param-
eters of energy consumption and saving modeling of the
different mobile device classes for ESDOAS. Following the
exponential law used for the application of risk-aversion utility
[35] and sensitive energy consumption characteristic of mobile
device studied in [36], a normalized energy-saving model for
a mobile device of Class m when receiving the multimedia
stream is proposed as follows:

E
(m)
S = 1− exp(ζ(m) · (P̂ − η(m))), (2)

where ζ(m) > 0 and η(m) > 0 are the specific parameters.
And P̂ ∈ (0, 1] is the normalized power consumption of the
mobile device when receiving the multimedia stream:

P̂ =
P

(m)
q − Pmin

Pmax − Pmin
, (3)

where P
(m)
q is the power consumption of Class m when

receiving the multimedia streaming with bitrate R
(m)
q . Ac-

cording to Definition 2, Pmax has the maximum value when
receiving the highest quality level (i.e. R(m)

qm ). Let Pmin = 0
when the mobile device is switched off. Therefore, (3) can
be simplified as P̂ = P (m)

q /Pmax, then 0 < P̂ ≤ 1. Let
P̂ < η(m), and knowing that the exponential function is always
greater than 0, then E(m)

S ∈ (0, 1). These formulas were such
chosen in order avoid starvation during resource allocation.
The formula for power consumption is described as below
[10] [37]:

P (m)
q = r

(m)
d ·R(m)

q + r
(m)
t , (4)

where r(m)
d > 0 is the energy consumption rate for streaming

data rate (mJoule/kbit) of Class m; r(m)
t > 0 is the energy

consumption rate per time unit (mWatt) of Class m.

C. Energy-Saving Device-Oriented Adaptation System (ES-
DOAS)

ESDOAS uses the same Device Classification module as
CQTS. The mobile devices attached to the adaptive multi-
media server are classified into several classes according to
Definition 1 and the requested multimedia content is encoded
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at several specific quality levels based on Definition 2. Fur-
thermore, ESDOAS consists of two main mechanisms shown
in Fig. 2: (a) QoE-aware Energy-Saving Optimization Scheme
(QESOS) which provides the best trade-off between QoE and
Energy-saving for mobile clients before video transmission
by using the QoE and Energy-saving model in (1) and (2),
respectively; and (b) Coalition Game-based Video Quality
Delivery Scheme (CGVQDS) which is responsible for fairness
resource allocation and adaptive video delivery based on
channel conditions.

1) QoE-aware Energy-Saving Optimization Scheme. QE-
SOS - provides a cooperative game model to obtain the
optimal video quality level for the trade-off between the
perceptual quality of the mobile user and the energy-savings
of the mobile device. From (1) and (2), the multiplicative
exponent weighting (MEW) trade-off utility function of the
individual mobile user and device of Class m is formulated as
in (5):

Um = [Γ(m)]wq · [E(m)
S ]wes , (5)

where wq and wes are the non-negative weighting coefficients
of the particular mobile user and device based on their pref-
erences of perceived quality, energy saving and performance
balance, respectively, where 0 ≤ wq ≤ 1 and 0 ≤ wes ≤ 1
and wq +wes = 1. The parameters of perceptual video quality
models of different device classes are given by CQTS.

In order to obtain the optimal value of the video quality level
for the individual Class m, the optimization game problem can
be formulated as follows:

maximize
R

(m)
q

Um(R(m)
q ) = [Γ(m)(R(m)

q )]wq · [E(m)
S (R(m)

q )]wes ,

subject to R(m)
q ∈ {R(m)

N , R
(m)
N−1, . . . , R

(m)
qm },

∀m ∈M,

∀R(m)
q > 0.

(6)
Lemma 1 below asserts that Um(R

(m)
q ) is a strictly concave

optimization problem satisfying the conditions defined in
Definition 1 and 2, and thus has a unique maxima.

Lemma 1. Um(R
(m)
q ) is a concave optimization problem

satisfying the conditions defined above with a unique maxima.

Proof. Let ϕ(x), g1(x), g2(x), f1(x) and f2(x) denote
Um(R

(m)
q ), Γ(m)(R

(m)
q ), E

(m)
S (R

(m)
q ), [Γ(m)(R

(m)
q )]wqand

[E
(m)
S (R

(m)
q )]wes , respectively, i.e., x = R

(m)
q , xmax = R

(m)
qm

and xmin = RN,m. And ϕ(x) = f1(x) · f2(x) is said
to be strictly concave down and has a unique maxima at
x ∈ {xmin, . . . , xmax} ∧ ∀x > 0 if the following condition is
satisfied [38]:

∂2ϕ

∂x2
=
∂2f1

∂x2
· f2 + 2 · ∂f1

∂x
· ∂f2

∂x
+ f1 ·

∂2f2

∂x2
< 0, (7)

According to the definitions of (1), (2) and (4), the two
functions f1(x) = [g1(x)]wq and f2(x) = [g2(x)]wes are
non-negative. The first derivatives of f1(x) and f2(x) can be
expressed as follows:

∂f1(x)

∂x
= α(m) · wq ·

1

x
· f1(x)

g1(x)
, (8)

∂f2(x)

∂x
= −

ζ(m) · r(m)
d

Pmax
· exp(ζ(m) · (P̂ − η(m))) · wes ·

f2(x)

g2(x)
,

(9)

In our context, α(m), r(m)
d , r(m)

t , wq and wes are non-
negative constants. From (1) and (2), g1(x), g2(x) are non-
negative as well. By using the properties of the exponential
function [39], this implies that f1(x) > 0 and f2(x) > 0. Then
we have,

∂f1(x)

∂x
· ∂f2(x)

∂x
< 0,∀x ∈ {xmin, · · · , xmax}, (10)

Next, in order to satisfy (7), we have to prove f1(x)
and f2(x) are strictly concave with a maxima at x ∈
{xmin, , xmax} > 0. Thus, the derivatives of (8) and (9) with
respect to x are give by,

∂2f1(x)

∂x2
= − α(m) · wq

(x · g1(x))
2 · f1(x) · η(m), (11)

with γ = g1(x) + α(m)(1− wq); (12)

∂2f2(x)

∂x2
= −

(
ζ(m) · r(m)

d

Pmax · g2(x)

)2

· exp(ζ(m) · (P̂ − η(m)))

· f2(x) · ε, (13)
with ε = g2(x) + (1− wes) · exp(ζ(m) · (P̂ − η(m))).(14)

As 0 < wq < 1 and 0 < wes < 1, along with the above
conditions, implies that γ > 0 and ε > 0. This proves that:

∂2f1(x)

∂x2
< 0,

∂2f2(x)

∂x2
< 0,∀x ∈ {xmin, . . . , xmax} (15)

Based on the two non-negative functions f1(x) and f2(x),
(8) and (15), (7) can be proved, namely ∂2ϕ

∂x2 < 0. Thus,
ϕ(x) is strictly concave down with a unique maxima in
{xmin, . . . , xmax} > 0.

Hence, the utility model of the individual Class m is a
concave optimization problem with a unique optimal video
quality level for the trade-off between perceptual video quality
and the energy savings of the mobile device. Thus, the optimal



video quality level requested by the individual mobile user of
device Class m at index OPT (q) can be denoted as follows:

QL
(m)
OPT (q) :⇔ R

(m)
OPT (q)

= arg max
R

(m)
q

Um(R(m)
q ), (16)

∀q ∈ Q(m),m ∈M. (17)

2) Coalition Game-based Video Quality Delivery Scheme.
After the optimal video quality level OPT (QLq,m) of Class
m is selected by QESOS, the Coalition Game-based Video
Quality Delivery Scheme (CGVQDS) adapts the multimedia
stream to the current QoS conditions periodically. In this paper,
only the streaming mobile users distributed within the same
network (e.g. the users located within the coverage area of
the same wireless cell) are considered. From the illustration
in Fig. 2, the CGVQDS is a two-level rate allocation and
delivery structure which contains the feasible rate allocation
sub-scheme for users based on a coalition game between the
optimal video quality levels from QESOS, the channel quality
constrains, and the device-oriented video delivery sub-scheme
by using the multi-step device classification algorithm.

a) Stage 1: Coalition Game-based Rate Allocation.
The game theory provides a set of mathematical tools to study
the complex interaction among the rational players in network
applications [40]. In general, game theory can be divided
into two main branches: non-cooperative and cooperative
(i.e. coalition) game theory. In this paper, a coalition-based
game approach was considered and used to solve the fair
rate allocation problem among the network users of different
device classes. This work is restricted to the Transferred Utility
(TU) games.

The cooperative game is a competition between coalitions
(i.e. group) of players, rather than between the individual
players. The individual decisions made by the players will
affect each member of the coalition. Normally, a coalition
game contains a pair (I, v) which involves a list of players,
denoted by I = {1, . . . , I}, the cardinality I = |I|, and the
coalition value, denoted by v that quantifies the worth of a
coalition in a game. The coalition value v in TU games can be
defined as the characteristic function over the real line, namely
v : 2I → R with v(∅) = 0 [41]. This characteristic function
is associated with every coalition S ⊆ I, which quantifies the
gains of S. In addition, I\S denotes the complement set of
I. Every coalition game has 2I possible coalitions.

In this paper, the problem of channel rate shared by stream-
ing mobile users in the same network is formulated as a
bankruptcy game or Talmud’s allocation game [42], one of
the coalition game models. The set of streaming mobile users,
namely the players, is referred to as I and its characteristic
function of coalition S can be denoted by vΦ(S). According
to the O’Neill approach [43], the value of vΦ(S) can be
formulated as:

vΦ(S) = max

Φ−
∑

i∈I\S

R
(m)
i,OPT (q), 0

 for S ⊆ I.

(18)

where Φ is the feasible system channel bandwidth estimated
by the periodical channel quality conditions, R(m)

i,OPT (q) is the
bitrate of the requested optimal video quality level q of the
mobile user i from device Class m given by (16). The value
vΦ(S) of the coalition of users S is the remaining benefit of
the channel resources after allocating the rates to the rest of
the users in the complementary coalitions.

The Shapley value proposed by L. S. Shapley [44] is solving
the problem on how to obtain the unique solution and the
fairness in the resource allocation process for each player and
for each coalition in the coalition games. Thus, the Shapley
value ψi(v) of player i ∈ I in the TU game (I, v) is given
by

ψi(v) =
∑

S⊆I\{i}

|S|!(|I| − |S| − 1)!

|I|!
[v (S ∪ {i})− v(S)]

(19)
Generally the Shapley value is given by a unique mapping in
TU games and satisfies the following set of axioms [45]:

Axiom 1. Efficiency:
∑

i∈I ψi(v) = v(I).
Remark: The first axiom implies the group rationality which
requires the players to precisely distribute the available re-
sources of the grand coalition. In this paper, the total rate allo-
cated to the mobile users (i.e. the users claim the video streams
within the same network) equals to the available network
system channel bandwidth Φ. Thus, this axiom guarantees
that a user cannot obtain a greater rate allocation without
decreasing the rate of another user.

Axiom 2. Symmetry: If v(S ∪ {i}) = v(S ∪ {j}) for all
S ∈ I\{i, j}, then ψi(I, v) = ψj(I, v).
Remark: The symmetry axiom requires symmetric players that
share the resources equally. In other words, the mobile users
in the game equally share the available system bandwidth and
their rate allocations do not depend on their order of entering
the network.

Axiom 3. Dummy: If v(S) = v(S∪{i}) for all S ∈ I\{i, j},
then ψi(I, v) = 0.
Remark: The dummy axiom requires that zero sharing resource
should be assigned to the players whose utilities do not
improve the value of any coalition. For the proposed video
delivery system, there is no rate allocation assigned to the
users who have stopped the video streaming or left the current
video delivery system or network already.

Axiom 4. Additivity: Given any two games (I, v) and (I, w),
if their characteristic function is defined as (v + w)(S) =
v(S)+w(S), then the shapley value ψi(I, v+w) = ψi(I, v)+
ψi(I, w).
Remark: The additivity axiom requires that the shapley value
be an additive operator on the space of all games. Thus for
our proposed video delivery system, if the users are under the
Heterogeneous Networks (HeNets) environment with multi-
network interfaces, then they request the video services from
the same remote multimedia server via the multi-network
interfaces simultaneously, for example, via Network A and
B. Then, the rate allocation of Network A and B based on the
game should be an additive function for the operator. Thus,



their sum equals to the corresponding rate allocated on the
remote server side.

Hence, the proposed rate allocation scheme of CGVQDS
satisfying the four axioms above, will have the feasible rate
allocated to streaming mobile user i belonging to the device
Class m based on (18) and (19) is given by

R(m)
i = ψi(vΦ(S)). (20)

s.t.
∑
i∈I
R(m)

i ≤ Φ. (21)

b) Stage 2: Device-Oriented Video Delivery. If the
available channel bandwidth of the current network is good
enough, CGVQDS will adapt theQL(m)

i,q∗ = QL
(m)
i,OPT (q) to the

corresponding quality level for mobile user i. If the available
bandwidth reduces, the CGVQDS will adapt down the quality
level from QL

(m)
i,OPT (q) to QL(m)

i,N . This is done using (22).

QL(m)
i,q∗ =



QL
(m)
i,OPT (q) , if R(m)

i ∈
[
R

(m)
i,OPT (q),+∞

)
,

QL
(m)
i,OPT (q)+1 , if R(m)

i ∈
[
R

(m)
i,OPT (q)+1,

... R
(m)
i,OPT (q)

)
,

...
...

QL
(m)
i,N , if R(m)

i ∈
(

0, R
(m)
N

)
.

(22)

To conclude, ESDOAS ensures smooth rate adjustments and
avoid sharp fluctuations in the bitrate switching that might
affect the overall QoE. Moreover, the device-oriented approach
in E3DOAS avoids sending higher quality level video (i.e.
higher bitrate) to the devices that do not require it. The Energy-
Saving Device-Oriented Adaptation Scheme is summarized
in Algorithm 1. The complexity of ESDOAS algorithm is
given by O(2I), mainly determined by the main loop in
the algorithm. In the practical deployment of E3DOAS, the
operators are suggested to distribute the CQTS and ESDOAS
on different servers. The CQTS aims to collect and model
the mobile users regionally and periodically (e.g. per week
per sub-area within the service coverage). The information of
general energy models can be obtained from the mobile device
manufacturers. Both the data mentioned above will be stored
in the regional data servers. Depending on the complexity
of ESDOAS, the QESOS and CGVQDS will be suggested
to serve a small number of users (e.g. the LAN or wireless
small cell with under 50 users). Additionally, the frequency of
ESDOAS adaptation can be defined by service providers. In
the next section, a prototype of E3DOAS experiment was set
up which results in setting the following parameters of QoE
and Energy-saving Models, such as α(m), β(m), r(m)

d , r(m)
t .

IV. E3DOAS QOE AND ENERGY-SAVING MODELING

In this section, a real experiment of E3DOAS is set up to
gather real data for modeling the QoE paramteres and the
Energy-saving and enabling the achievement of the optimal
QLs for different device classes. CQTS can be deployed either

Algorithm 1: Energy-Saving Device-Oriented Adapta-
tion Scheme
input : Pre-defined M, the set of device classes with

corresponding Energy-Saving Model Parameters
(ζm,ηm); Mobile Devices requesting video
streaming in the same network I at time
constant t; Pre-defined Q, the set of Quality
Levels with Parameters (αm, βm) and their
corresponding pre-coding video dataset
{QL(m)

q }, ∀m ∈M and ∀q ∈ Q
output: QL(m)

i,q∗

1 for i← 1 to I do get the optimal bitrates
2 RESi ← GetDeviceResolution (i);
3 m← GetDeviceClass (RESi);
4 (αm, βm)← GetQoePars (m);
5 (ζm, ηm)← GetESPars (m);
6 for q ← qm to N do
7 ComputeUm (αm, βm, ζm, ηm, QL

(m)
q ) using

(2)-(6);
8 end
9 QL

(m)
i,OPT (q) ← GetOptimalQL by (17);

10 end
11 for j ← 1 to 2I do compute 2I coalition values
12 vΦ(j)← ComputeCVs (QL(m)

i,OPT (q)) using (19);
13 end
14 for i← 1 to I do
15 R(m)

i ← ComputeSVs ({vΦ}) using (20)-(22);
16 QL(m)

i,q∗ ← GetAdaptiveRate (R(m)
i ) using

(23);
17 end

on a cloud-based server (e.g. Amazon Web Service or Google
Form based Service) or on a campus local platform that was
developed in our previous works [7]. The first sub-section
describes a subjective assessment setup that was built on a
local server located in the Performance Engineering Lab at
Dublin City University (PEL@DCU). The aim of the tests
carried out using this test-bed are threefold: (a) to study the
CQTS subjective assessment of the proposed architecture;
(b) to study the impact of different video quality levels on
the perceptual scores of mobile users; (c) to instantiate non-
reference perceptual video quality models for different mobile
device classes. In the second sub-section, the other open-
source energy measurement test-bed based on ESDOAS is
introduced and the energy-saving model of the real mobile
devices are illustrated.

A. Subjective Assessment Setup and Modeling

1) Subjective Test Setup. For the purpose of the subjective
assessment tests, a total number of 73 participants including
43 males and 31 females participated in the study. The
participants have volunteered to participate in the subjective
study following a campus-wide advertisement via email. Most
subjects are Dublin City University students, staff members



TABLE I
CLASSICATION OF MOBILE DEVICES BASED ON A PREVIOUS STUDY ON 4914 DEVICES [9]

Device Classes Class 1 Class 2 Class 3 Class 4 Class 5
Resolution Ranges ≤ 1024× 768 (1024× 768, 800× 600] (800× 600, 480× 360] (480× 360, 320× 240] < 320× 240

Device Models Samsung Galaxy S3 Samsung Galaxy S4 mini Samsung Galaxy S2 Vodafone Smart Mini Vodafone 858 Smart

Model Images

Operating System Android 4.2.2 Android 4.2.2 Android 4.1.2 Android 4.1.1 Android 4.0.4
Screen Types Super AMOLED Super AMOLED Super AMOLED TFT TFT

Resolution 720× 1280 540× 960 480× 800 320× 480 240× 320
Battery Capacity 2100 mAh 1900 mAh 1650 mAh 1400 mAh 1200 mAh
Battery Voltage 3.8 V 3.8 V 3.7 V 3.7 V 3.7 V

VLC Player 0.2.0-git 0.1.4 0.1.4 0.1.4 0.2.0-it

and their friends with an age range between 20 and 50 years
(median age is 25). According to the personal information
questionnaire, 9.6% of participants are professionals in sub-
jective video quality assessment area. The rest of participants
do not have any knowledge of subjective tests. Over 89%
of participants watch movies, video clips or any other types
of video media everyday. The information collected from the
participants also indicates that up to 69% of them are usually
watching videos via the Internet using their own mobile
devices.

In the subjective tests, the classification of the mobile
devices provided to the participants is based on the five
different screen resolution ranges (i.e., M = 5) listed in Table
I [10]. Five types of mobile devices were used (i.e. Galaxy
S3, Galaxy S4 mini, Galaxy S2, Vodafone Smart Mini and
Vodafone 858 Smart) with their characteristics (i.e., screen
types, resolutions, and battery characteristics) as listed in Table
I. Based on previous work findings [10], all the mobile devices
were fully battery charged and their display brightness level
was set to 30% (i.e., 170 ∼ 245 cd/m2) in all the experiments
in order to maintain the same testing conditions. Moreover,
only basic network connectivity (i.e. WiFi and LTE) was
enabled and the participants were not allowed to modify these
settings.

Four 10-second video clips with different Spatial
Information (SI) and Temporal Information (TI) (i.e., Clip
A - <SI:TI=65.52:15.39>, Clip B - <SI:TI=49.39:60.58>,
Clip C - <SI:TI=253.38:66.25>, Clip D - <SI:TI=51.0:8.0>
[3]) extracted from a 10 minute long animation movie, Big
Buck Bunny8, were transcoded into 6 quality levels (i.e.,N=6)
for each device class with an Encoding Degree ∆=1 and
stored on the CQTS server. The selection of the quality levels
was done based on the results obtained from the adaptive
streaming calculator in [46], for different encoding parameters
(i.e. Resolution - RES; Frame-rate - FR) as listed in Table
II. A total number of 120 video clips were generated from
the 30 video quality levels and used in the subjective tests.
To reduce the impact of the background environment and
the device display brightness on video perceptual quality, the
indoor test room illumination was set to 15 ∼ 18 lux [5].

Following the instructions described in Section III-B, the
73 participants divided into four groups were scheduled to

8Big Buck Bunny: https://peach.blender.org/

attend the experiments in different time slots within five days.
Each participant needed to register the five devices to the
server and streamed the 120 encoded video clips randomly
to each device. Using the Single-Stimulus method suggested
in ITU-BT.500, ITU-T P.910 and ITU-T P.913 [3] [4] [5], it
took around 27 minutes for the participant to finish the whole
test. The participants rate the video quality on a scale from
0 to 1 with a granularity of 0.01., then the final results were
submitted to CQTS for processing and regression analysis.
Algorithm 2: Outlier Removing for Data Screening

1 forall k, j(m) do
2 if KURTk ∈ [2, 4] then
3 if (Γk,j(k) < Γk − 2SDk ∩ Γk,j(k) >

Γk + 2SDk) then
4 remove j(k);
5 end
6 end
7 else
8 if (Γk,j(k) < Γk −

√
20SDk ∩ Γk,j(k) >

Γk +
√

20SDk) then
9 remove j(k);

10 end
11 end
12 end

2) Data Processing and QoE Modeling. This sub-section
introduces the processing of the submitted data-set on the
CQTS server and models the QoE factor based on (1). Let Γ
be the individual QoE score, k be the video clip index (a total
K video clips used in the tests), and j(k) be the participant
index (a total J (k) test participants) of the k-th video clip.
Then the average QoE score of the k-th video clip can be
described as

Γk =
1

J (k)

∑
j(k)

Γk,j(k) , and k ∈ K, (23)

The standard deviation of the scores of the k-the video clip
can be calculated as:

SDk =

√√√√∑
j(k)

(
Γk − Γk,j(k)

)2
J (k) − 1

, (24)

In order to check the data completeness and to remove the
outliers from the results, the Kurtosis coefficient is used to



TABLE II
ENCODING VIDEOS IN DIFFERENT QUALITY LEVELS OF DIFFERENT DEVICE CLASSES

Device Classes Class 1 Class 2 Class 3 Class 4 Class 5
Original Video Format H.264/MPEG-4 AVC Baseline Profile, total duration 597 seconds; 4 Clips: A<0:01∼0:11>; B<9:00∼9:10>; C<4:45∼4:55>; D<7:10∼7:19>;

QL1 - 3840kbps RES<1280× 720>FR<30fps> RES<960× 544>FR<30fps> RES<800× 448>FR<25fps> RES<480× 320>FR<20fps> RES<320× 240>FR<20fps>
QL2 - 1920kbps RES<800× 448>FR<30fps> RES<960× 544>FR<30fps> RES<800× 448>FR<25fps> RES<480× 320>FR<20fps> RES<320× 240>FR<15fps>
QL3 - 960kbps RES<512× 228>FR<25fps> RES<592× 366>FR<25fps> RES<800× 448>FR<25fps> RES<480× 320>FR<20fps> RES<320× 240>FR<15fps>
QL4 - 480kbps RES<320× 176>FR<20fps> RES<368× 208>FR<20fps> RES<480× 272>FR<20fps> RES<480× 320>FR<20fps> RES<320× 240>FR<15fps>
QL5 - 240kbps RES<320× 176>FR<15fps> RES<368× 208>FR<15fps> RES<288× 160>FR<15fps> RES<300× 200>FR<15fps> RES<320× 240>FR<15fps>
QL6 - 120 kbps RES<320× 176>FR<10fps> RES<368× 208>FR<10fps> RES<288× 160>FR<10fps> RES<300× 200>FR<10fps> RES<320× 240>FR<10fps>

verify whether the data distribution of the test for the k-th
video clip is normal and it can be expressed as

KURTk =
J (k)

∑
j(k)(Γk − Γk,j(k))4[∑

j(k)(Γk − Γk,j(k))2
]2 (25)

Using the Algorithm 2, the outliers and inconsistent partici-
pants are removed from the data-set (complexity is O(n2)).
For KURTk ∈ [2, 4], the data distribution is regarded to
be normal. If Γk,j(k) /∈ [Γk − 2SDk,Γk + 2SDk], the
corresponding participant j(k) can be regarded as an outlier
[47] [4]. After the outliers are removed, the distribution of
processed subjective results (Γ ∈ (0, 1]) is illustrated in Fig.
3. The mapping between the CQTS QoE score Γ (i.e. scale
0-1) and MOS (i.e. scale 1-5) is performed as follows [7]:
Γ ∈ (0, 0.25) corresponds to MOS = 1, Γ ∈ [0.25, 0.50)
corresponds to MOS = 2, Γ ∈ [0.50, 0.75) corresponds to
MOS = 3, Γ ∈ [0.75, 1) corresponds to MOS = 4 and
Γ = 1 corresponds to MOS = 5. Then, the processed data-set
is imported to a curve-fitting regression analysis mechanism to
get the QoE model for each device class, similar to the single-
stimulus tests presented in [14] [34]. Finally, the parameters of
the QoE model are listed in Table III, where R2 (R-squared)
represents the goodness fit of the modeled parameters, i.e., the
value is close to 1.

TABLE III
PARAMETERS OF QOE MODELING (R(m)

q IN [KBPS])

Device Classes Class 1 Class 2 Class 3 Class 4 Class 5
α(m) 0.1512 0.1571 0.1393 0.1202 0.0427
β(m) -0.33 -0.369 -0.2619 -0.1469 0.333
R2 0.8730 0.9330 0.942 0.8979 0.8787

TABLE IV
PARAMETERS OF POWER CONSUMPTION MODELING (R(m)

q IN [KBPS])

Device Classes Class 1 Class 2 Class 3 Class 4 Class 5
r
(m)
d 0.2018 0.2723 0.3624 0.5011 0.144
r
(m)
t 907.2 666.6 880.6 531.6 596.6

B. Mobile Device Energy Measurements Setup and Energy
Saving Modeling

In order to measure the energy consumption of the mobile
devices while receiving the adaptive streaming, an open-source
Arduino-based energy measurement test-bed was developed at
PEL@DCU. A detailed description of the test-bed is provided

in [10] and the latest source code of the platform has been
released on Gitbub9. The 10-minute long video (i.e. Big Buck
Bunny) encoded at the quality levels listed in Table II for
each device class, were used for streaming via RTP over
UDP. During the tests, all the background applications except
the basic network connection and the VLC media player10

in the mobile devices were off, which guarantees the stability
between the measurements. The brightness level of the display
was set to 30%. The videos encoded at different quality levels
were streamed from the VLC server to the mobile devices
via a Access Point (AP) (i.e. the signal strength ranged from
35 to 50 dbm), respectively. The mobile devices were located
randomly within 100 meters of the coverage area of the AP.
Each experiment was repeated three times and the average
values were used for calculations. The data was collected
on a JAVA-based platform via the programmable Arduino
board. Using linear regression analysis, the data was processed
and the parameters of energy consumption model of different
mobile devices based on (4) are listed in Table IV. From the
experiments, the coefficients of Energy-Saving used in (2) are
identified as: ζ = 2 and η = 1.18.

Based on the parameters in Table III and IV and the optimal
utility model of QoE and Energy-Saving described in (5),
the utility trade-offs of different mobile devices with different
weight values are shown in Fig. 4.

The graphs in Fig. 4 reveal the trade-offs between QoE and
Energy-Saving with the optimal utility within the quality levels
from 3840kbps to 120kbps. The different optimal weighting
coefficients provide the different options for the requirements
of service operators and users. For example, the users of Class
1 with the weighting coefficient {wq : wes = 0.1 : 0.9}
(i.e., energy-oriented users) get an optimal QL at 240kbps
based on the highest Um, similarly the users of Class 3
with {wq : wes = 0.9 : 0.1} (i.e., quality-oriented users)
should select 3840kbps as the optimal QL. Furthermore, this
QoE and Energy-Saving models will be configured into the
network simulation scenarios to evaluate the performance of
the proposed solution, E3DOAS, in next section.

V. SIMULATION ENVIRONMENT

This section describes the performance evaluation for
E3DOAS. For testing E3DOAS was deployed in a simulation
model which was developed in the C++ based LTE-Sim simu-
lator [48], and the simulation parameters configured for LTE-
Sim is illustrated in Table V. In order to simulate the network

9PowerMonitor: https://github.com/allengzmm/Smartphone
PowerMonitor

10VLC media player: http://www.videolan.org/vlc/index.html
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Fig. 4. Utility Trade-Off between QoE and Energy-Saving with Different Weights (i.e. wq and wes) for different Device Classes
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performance in a small wireless coverage layout similar to
the practical life (e.g. small restaurants, coffee shops, small
workspace or living room at home), five classes of mobile
devices were considered, based on the model listed in Table
I. The users are randomly distributed in a small single cell
area with 250 meters coverage. The Jakes Model for Rayleigh
Fading was used [49], and the mobile users were set up with
a low mobility model (i.e. 3km/h).

The number of mobile users for each device class varies
from 0 to 10 with a uniform distribution. Hence the total
number of the mobile users varies randomly from 0 to 50, and
a total of 50 scenario simulation runs with different number of
mobile users were considered. In addition, the antenna model
and path loss model were set up with low power coverage for
the OFDM downlink [50].

The performance of E3DOAS was compared against that
achieved when QOAS [51], [52], BaSe AMy [22] and
E2DOAS [7] were employed. Table VI lists the main char-
acteristics of each of these solutions. QOAS adapts the stream
based on the channel conditions only and has no consideration
of the energy consumption. Furthermore, BaSe AMy adapts
the multimedia stream taking into consideration the battery
level of the mobile device and the network conditions. The
decision mechanism in BaSe AMy includes several battery
thresholds (e.g. percentage of the remaining battery capac-

TABLE V
SIMULATION PARAMETERS

Simulation
Parameters Configuration

Scenarios
6 Scenarios: TO-1, TO-2, TO-3, TO-4,
TO-5 and Random TO; Frequency of

Adaptation: every 10 seconds

No. of Mobile Users Total numbers: Randomly from 0∼50; 5
Classes;

Cell Layout
Single Cell; Radius: 0∼250 meters;

User Location: Random Distribution;
User Mobility: 3 km/h

Antenna Model Low TxPower:30 dbm; Noise Figure: 2.5
dB; FDD; SISO

Carrier Frequency 2.0 GHz
Path Loss and
Channel Model

Low Power:
Loss = 140.7 + 36.7 log10 d in 2GHz

Modulation Scheme QPSK, 16QAM, 64QAM
OFDM Downlink

Bandwidth 20MHz; Sub-carrier:15kHz
MAC Layer Proportional Fair Scheduler

Transport Protocol RTP/UDP

Traffic Model
Video Traffic: Pareto Distribution Model;
10%-90% random background load (i.e.

CBR)

TABLE VI
SIMULATION BENCHMARK

Adaptive Solutions QoS-Aware Device-Oriented Energy-Aware QoE-Aware
QOAS YES NO NO NO

BaSe AMy YES NO YES NO
E2DOAS YES YES YES YES
E3DOAS YES YES YES YES

ity=10% or 30%) and one packet loss threshold (e.g. loss
ratio=10%). When the video playout is shorter than the battery
lifetime, and remaining battery capacity is above 30% and
loss ratio is below 10%, the multimedia server will stream
the highest quality level. E2DOAS uses a proportional rate
allocation scheme which is different from the coalition-based
game for the rate allocation employed by E3DOAS.



In order to study the performance of E3DOAS two types of
scenarios are considered: (a) Scenario I - all the mobile devices
using E3DOAS or E2DOAS are evaluated under five different
optimal weighting coefficients showed in Fig. 4 , such as: TO-
1 (wq : wes = 0.1 : 0.9), TO-2 (wq : wes = 0.3 : 0.7), TO-3
(wq : wes = 0.5 : 0.5), TO-4 (wq : wes = 0.7 : 0.3), TO-5
(wq : wes = 0.9 : 0.1), respectively; and (b) Scenario II -
is using the Random-TO to study the performance between
non-device-oriented and device-oriented adaptive schemes,
allowing the mobile users to select different TOs with an
uniform random distribution. This kind of Random-TO was
repeated three times.

Fig. 5 shows the video set used in the simulations which is
modeled based on the Pareto distribution similar to [9]. The
device-oriented solutions (e.g. E2DOAS and E3DOAS) adapt
the multi-step video set and the non-device oriented solutions
(e.g. QOAS, BaSe Amy) use the full quality level videos (i.e.
all the 6 quality level) for all the device classes. In addition,
five remaining battery capacity thresholds (e.g., 90%, 70%,
50%, 30% and 10%) and 10% loss threshold are configured
for BaSe AMy. The solutions were compared in terms of
average throughput, packet loss, delay, fairness, PSNR and
power consumption.

VI. RESULTS AND ANALYSIS

In this section, the network simulation results were gen-
erated from the two types of scenarios previously described.
The aim of the first scenario is to test the impact of different
utility trade-offs between energy-saving and QoE when all
the users in the network have the same TOs (e.g. all the
users were assigned with TO-1). This also enables us to
study the performance of the rate allocation schemes between
E3DOAS and E2DOAS. The second scenario was run several
times where all the users in the network were assigned with
random TOs. This scenario enabled the performance analysis
of E3DOAS against the non-device-oriented solutions.

A. Impact of Different Utility Trade-offs on Coalition Game-
based Rate Allocation

E3DOAS makes use of the coalition game-based scheme
for the fair rate allocation of the limited bandwidth resources.
Whereas, E2DOAS makes use of the simple proportional
allocation scheme based on the channel conditions. Fig. 6 illus-
trates the average received bitrates of different device classes.
The TO-1 represents the users with the highest energy-saving
requirement and the users with TO-5 require higher QoE.
Therefore, the descending encoding bitrates adapt the video to
the mobile users based on the TO-5 to TO-1 requirements. The
received bitrates of the mobile users under both of E3DOAS
and E2DOAS decrease from TO-5 to TO-1. This is because
the user with a higher QoE requirement (e.g., TO-5) will
be allocated more throughput, whereas the users with higher
energy-saving requirement (e.g., TO-1) will be allocated less
throughput to conserve the battery lifetime of their mobile
devices. Moreover, the results show that E3DOAS using the
proposed coalition game-based rate allocation mechanism is
able to fit the available channel bandwidth more efficiently

than E2DOAS. Hence, on average, the received bitrates under
E3DOAS are 34% higher than that under E2DOAS. According
to the device-oriented solution, the lower highest adaptive
bitrates are assigned to the lower performance device classes
(i.e. decreasing from Class 1 to Class 5), which causes
the lower proportional allocation for the lower performance
device classes, for example, the average received bitrates of
Class 5 are much lower than that of other classes. Moreover,
E3DOAS using the coalition game-based solution considers
the fairness of resource allocation between the different classes
and achieves better performance of the received bitrates. In
addition, the higher standard deviations of E3DOAS averaged
from 50 scenarios (i.e. the number of mobile users were
randomly changed) indicate E3DOAS senses the change of
network topology (i.e. the mobile users come and go in the
network during the different duration) and is able to adapt the
bitrate flexibly.

The results of Packet Loss Ratio (PLR) shown in Fig.7 also
reveal that E3DOAS has a higher capability for the channel
resource allocation and keeps on average 0.17% lower PLR
than E2DOAS.

Moreover, the Jain’s Fairness Index of the whole adaptive
system shown in the right figure of Fig. 8 indicates that by
using E3DOAS with the coalition game approach, the system
fairness is increased considerably. When the mobile users
set with TO-1 and requested lower video quality levels, the
available channel bandwidth is enough for the allocation under
both adaptive solutions. However, the fairness is decreasing
when the requested bitrates are growing and the available
channel resources become limited. However, E3DOAS gains
24% higher fairness than E2DOAS when the utility trade-off
of mobile users is set to TO-5 and the encoding bitrate of video
is the highest. Therefore, E3DOAS using coalition game-based
rate allocation improves the efficiency and the fairness of the
system when compared to E2DOAS by using the proportional
rate allocation.

B. Performance Comparisons between Device-Oriented and
non-Device-Oriented Solutions

This section compares the performance of the Device-
Oriented solutions (E3DOAS and E2DOAS) against that of
the non-Device-Oriented (BaSe AMy and QOAS) in terms
of QoS, QoE and power consumption metrics. 50 scenario
simulation runs were considered with different number of
mobile users (i.e. varying from 10 to 50 in a single cell)
with the different device classes based on the configuration
in Section V. Different from the previous sub-section, all the
mobile users were assigned with different utility TOs randomly
allocated to simulate the different personal QoE and Energy-
saving willingness while testing E3DOAS and E2DOAS. Then
the simulation results were averaged and listed in Fig. 9 and
Table VII.

Fig. 9a indicates the average achieved throughput of each
mobile device class under the different adaptive solutions.
QOAS achieves the highest bitrates for all the mobile users
because the adaptation is based on the network conditions
only, at the cost of high packet loss ratio and high end-
to-end packet delay. BaSe AMy allocates the different level
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Fig. 6. Average Received Bitrate of Different Class Devices with the Different Utility Trade-offs (E3DOAS vs. E2DOAS )

TO-1 TO-2 TO-3 TO-4 TO-5
0

0.1

0.2

0.3

0.4

0.5

Class 1

A
v

g
. 
P

a
c

k
e

t 
L

o
s

s
 R

a
ti

o
 [

%
]

 

 

e2DOAS(Proportional)

e3DOAS(Coalitional Game)

TO-1 TO-2 TO-3 TO-4 TO-5
0

0.1

0.2

0.3

0.4

0.5

Class 2

 

 

A
v

g
. 
P

a
c

k
e

t 
L

o
s

s
 R

a
ti

o
 [

%
]

e2DOAS(Proportional)

e3DOAS(Coalitional Game)

TO-1 TO-2 TO-3 TO-4 TO-5
0

0.1

0.2

0.3

0.4

0.5

Class 3

 

 

A
v

g
. 
P

a
c

k
e

t 
L

o
s

s
 R

a
ti

o
 [

%
]

e2DOAS(Proportional)

e3DOAS(Coalitional Game)

TO-1 TO-2 TO-3 TO-4 TO-5
0

0.1

0.2

0.3

0.4

0.5

Class 4

 

 

A
v

g
. 
P

a
c

k
e

t 
L

o
s

s
 R

a
ti

o
 [

%
]

e2DOAS(Proportional)

e3DOAS(Coalitional Game)

TO-1 TO-2 TO-3 TO-4 TO-5
0

0.1

0.2

0.3

0.4

0.5

Class 5

 

 

A
v

g
. 
P

a
c

k
e

t 
L

o
s

s
 R

a
ti

o
 [

%
]

e2DOAS(Proportional)

e3DOAS(Coalitional Game)

Fig. 7. Average Packet Loss Ratio of Different Class Devices with the Different Utility Trade-offs (E3DOAS vs. E2DOAS )

TABLE VII
AVERAGE PEAK SIGNAL-TO-NOISE RATIO AND POWER CONSUMPTION

E3DOAS E2DOAS BaSe AMy QOAS

PSNR [dB]
Power

Consumption
[mW]

PSNR [dB]
Power

Cosumption
[mW]

PSNR [dB]
Power

Consumption
[mW]

PSNR [dB]
Power

Consumption
[mW]

Class 1 49.42 1227.62 49.33 1095.84 10.92 1142.82 10.03 1192.98
Class 2 49.05 968.46 48.95 855.17 21.80 906.78 10.36 1035.30
Class 3 49.51 1146.86 48.85 1060.39 22.49 1053.56 9.81 1405.10
Class 4 47.60 750.83 47.61 690.41 50.52 760.78 10.55 1198.31
Class 5 47.60 627.68 47.60 621.26 12.48 703.31 10.17 795.88
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Fig. 8. System Fairness Index (E3DOAS vs. E2DOAS )

bitrates to the users based on the battery level and power
consumption information of mobile devices. For example,
according to Table IV, the mobile devices from Class 4
have the highest power consumption rate per unit data (i.e.
r

(m)
d ) which results in Class 4 devices receiving the lowest

adaptive bitrate. The Device-Oriented solutions, E3DOAS
and E2DOAS, decreasingly assign the optimal quality level
bitrates to the mobile devices from Class 1 to Class 5 based
on the different device characteristics. Due to the fairness
controlled by the coalition game-based scheme, E3DOAS gets
higher throughput than E2DOAS. Moreover, by considering
the heterogeneity of the mobile devices the channel resources
are used more efficiently. These solutions achieve lower PLRs
and end-to-end delay, especially in case of E3DOAS with a
PLR as low as below 0.2% and the average delay reaching
under 12ms when compared to other adaptive solutions, as

listed in Fig. 9b and 9c.
Additionally, Fig. 9d demonstrates that E3DOAS,

BaSe AMy and QOAS QOAS provide very good system
fairness (i.e. over 0.8) for the mobile users in terms of Jain’s
fairness index computed based on the received throughput of
each mobile users. However, E3DOAS enhances on average
the estimated PSNR given by [53], with up to 24.99dB and
38.45dB improvement when compared against BaSe AMy
and QOAS, respectively (see Table VII). Moreover, according
to average power consumption of each class calculated using
(4) (see Table 7), E3DOAS also achieves higher power
savings for the lower class devices (i.e. Class 4 and Class 5)
than the non-Device-Oriented solutions.

To conclude, E3DOAS provides better system fairness,
higher bandwidth utilization, lower network latency and packet
loss ration, offering a better trade-off among QoS, QoE and
Energy savings when compared to the other schemes involved.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposes E3DOAS, an Evolved QoE-aware
Energy-Saving Device-Oriented adaptive multimedia delivery
solution that makes use of the coalition-game theory and the
heterogeneity of mobile devices to optimize trade-off between
QoS, QoE and energy savings in a multi-device wireless
multimedia environment. E3DOAS exploits the coalition game
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Fig. 9. Performance Comparison between Device-Oriented and non-Device-Oriented Solutions

to propose a rate allocation scheme which achieves up to 20%
increase in system fairness when compared to other device-
oriented adaptive solution. Moreover E3DOAS proposes the
use of a crowd-sourcing-based qualitative system for QoE
modeling. The evaluation results show that E3DOAS finds
the optimal trade-off between QoE and energy-savings, out-
performing the other non-device-oriented schemes considered
from the literature, in terms of average throughput, packet
loss ratio, end-to-end delay, PSNR and energy consumption
rate. Moreover, other subjective/objective evaluation methods
for quality assessment including VQM and SSIM could be
considered as part of the future works.

Additionally, in terms of future directions, the proposed
solutions could be extended in several ways: (a) a wider
definition of QoE modeling could integrate users’ context
(e.g. instance location, mood, etc.) (b) the crowd-sourcing-
based qualitative system could be improved by integrating
geographical location information and by defining target areas
to improve the accuracy of resource allocation for better user
experience; (c) the utility trade-offs could be extended by
integrating contextual information of the mobile users. Such
that, when the mobile users watch video outdoor, the utility
trade-off could be automatically configured in ‘Energy-saving
Mode’ with high wes and low wq . In contrast, the utility trade-
off could be automatically set to ‘Quality First Mode’ with
low wes and high wq when the mobile users are indoor or the
mobile devices are connected to the power supply.

ACKNOWLEDGMENT

This work was supported by the China Scholarship Council
and by the European Union Horizon 2020 Research and
Innovation programme under Grant Agreement no. 688503 for
the NEWTON project (http://newtonproject.eu).

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, from 2016 to 2021,” White Paper, Feb 2017.

[2] ITU-T, “Quality of telecommunication services: concepts, models, ob-
jectives and dependability planning - terms and definitions related to the
quality of telecommunication services,” Tech. Rep. E.800, 2008.

[3] ITU-T R., “Subjective video quality assessment methods for multimedia
applications,” Tech. Rep. P.910, 2008.

[4] ITU-T R., “Methodology for the subjective assessment of the quality of
television pictures,” Tech. Rep. BT.500, Jan. 2012.

[5] ITU-T R., “Methods for subjective assessment of video quality, audio
quality and audiovisual quality of internet video and distribution of
television content in any environment,” Tech. Rep. P.913, Jan. 2014.

[6] C. Xu, T. Liu, J. Guan, H. Zhang, and G.-M. Muntean, “CMT-QA:
Quality-aware adaptive concurrent multipath data transfer in heteroge-
neous wireless networks,” Mobile Computing, IEEE Transactions on,
vol. 12, no. 11, pp. 2193–2205, Nov 2013.

[7] L. Zou, R. Trestian, and G.-M. Muntean, “E2DOAS: user experience
meets energy saving for multi-device adaptive video delivery,” in Com-
puter Communications Workshops (INFOCOM WKSHPS), 2015 IEEE
Conference on, in press 2015.

[8] C. Xu, P. Zhang, S. Jia, M. Wang, and G. M. Muntean, “Video streaming
in content-centric mobile networks: Challenges and solutions,” IEEE
Wireless Communications, vol. PP, no. 99, pp. 2–10, 2017.

[9] L. Zou, R. Trestian, and G.-M. Muntean, “DOAS: Device-Oriented
Adaptive Multimedia Scheme for 3gpp lte systems,” in Personal In-
door and Mobile Radio Communications (PIMRC), 2013 IEEE 24th
International Symposium on, Sept 2013, pp. 2180–2184.

[10] L. Zou, R. Trestian, and G.-M. Muntean, “eDOAS: Energy-aware
device-oriented adaptive multimedia scheme for wi-fi offload,” in Wire-
less Communications and Networking Conference (WCNC), 2014 IEEE,
April 2014, pp. 2916–2921.

[11] N. Thomos, N. Boulgouris, and M. Strintzis, “Optimized transmission
of JPEG2000 streams over wireless channels,” Image Processing, IEEE
Transactions on, vol. 15, no. 1, pp. 54–67, Jan 2006.

[12] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” Image Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 600–612, April 2004.

[13] A. Khan, L. Sun, E. Jammeh, and E. Ifeachor, “Quality of experience-
driven adaptation scheme for video applications over wireless networks,”
Communications, IET, vol. 4, no. 11, pp. 1337–1347, July 2010.

[14] W. Zhang, Y. Wen, Z. Chen, and A. Khisti, “QoE-driven cache man-
agement for http adaptive bit rate streaming over wireless networks,”
Multimedia, IEEE Transactions on, vol. 15, no. 6, pp. 1431–1445, Oct
2013.

[15] H. Kowshik, P. Dutta, M. Chetlur, and S. Kalyanaraman, “A quantitative
framework for guaranteeing qoe of video delivery over wireless,” in
INFOCOM, 2013 Proceedings IEEE, April 2013, pp. 290–294.

[16] Y. Xu, Y. Zhou, and D.-M. Chiu, “Analytical qoe models for bit-rate
switching in dynamic adaptive streaming systems,” Mobile Computing,
IEEE Transactions on, vol. 13, no. 12, pp. 2734–2748, Dec 2014.

[17] W. Song and D. W. Tjondronegoro, “Acceptability-based qoe models
for mobile video,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp.
738–750, April 2014.

[18] K. Mitra, A. Zaslavsky, and C. AŁhlund, “Context-aware qoe modelling,
measurement, and prediction in mobile computing systems,” Mobile
Computing, IEEE Transactions on, vol. 14, no. 5, pp. 920–936, May
2015.

[19] J. Xue and C. W. Chen, “Mobile video perception: New insights
and adaptation strategies,” IEEE Journal of Selected Topics in Signal
Processing, vol. 8, no. 3, pp. 390–401, June 2014.

[20] B. Gardlo, M. Ries, and T. Hossfeld, “Impact of screening technique
on crowdsourcing qoe assessments,” in Radioelektronika (RADIOELEK-
TRONIKA), 2012 22nd International Conference, April 2012, pp. 1–4.

[21] B. Gardlo, S. Egger, M. Seufert, and R. Schatz, “Crowdsourcing 2.0:
Enhancing execution speed and reliability of web-based qoe testing,” in
Communications (ICC), 2014 IEEE International Conference on, June
2014, pp. 1070–1075.

[22] M. Kennedy, H. Venkataraman, and G.-M. Muntean, “Battery and
Stream-aware Adaptive Multimedia delivery for wireless devices,” in
Local Computer Networks (LCN), 2010 IEEE 35th Conference on, Oct
2010, pp. 843–846.



[23] J.-S. Leu, M.-C. Yu, C.-Y. Liu, A. P. B. Budiarsa, and V. Utomo, “Energy
efficient streaming for smartphone by video adaptation and backlight
control,” Computer Networks, vol. 113, pp. 111 – 123, 2017.

[24] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Energy-minimized
multipath video transport to mobile devices in heterogeneous wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 5, pp. 1160–1178, May 2016.

[25] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation
in multiuser ofdm systems with proportional rate constraints,” IEEE
Transactions on Wireless Communications, vol. 4, no. 6, pp. 2726–2737,
Nov 2005.

[26] M. Ergen, S. Coleri, and P. Varaiya, “Qos aware adaptive resource
allocation techniques for fair scheduling in OFDMA based broadband
wireless access systems,” IEEE Transactions on Broadcasting, vol. 49,
no. 4, pp. 362–370, Dec 2003.

[27] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive,” ser.
CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 97–108.

[28] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck, “Qoe-
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