
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Real-Virtual World Device
Synchronisation in a Cloud-enabled
Social Virtual Reality IoT Network
ANDERSON AUGUSTO SIMISCUKA1, (Student Member, IEEE), TEJAS MORESHWAR
MARKANDE1 and GABRIEL-MIRO MUNTEAN1, (Senior Member, IEEE)
1School of Electronic Engineering, Dublin City University, Dublin, Ireland.

Corresponding author: Anderson Augusto Simiscuka (e-mail: anderson.simiscuka2@mail.dcu.ie).

This work was supported by the Irish Research Council and Dublin City University, grant number EPSPG/2015/178, and in part by the
European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 688503 (http://newtonproject.eu).

ABSTRACT Virtual Reality (VR) is currently being used in many different areas such as car prototyping,
gaming, medical training, teaching, etc. Internet of Things (IoT) devices such as systems-on-a-chip
(e.g. Raspberry Pi), smart appliances and sensors support a wide range of services, including machine
automation, remote monitoring and control. This paper introduces a novel social VR-IoT environment,
which allows users to share and control local or remote IoT devices in a virtual platform. Two approaches
using the VR-IoT solution are presented: one local network-based and one cloud-based. The proposed
VR-IoT environment contains VRITESS, the novel VR-IoT Environment Synchronisation Scheme, which
facilitates a consistent and integrated experience for users by enabling control of real IoT objects with
VR headsets. Control of some IoT objects in extreme environments or devices which are complex to
operate, can be simplified in a virtual environment. The VRITESS synchronisation scheme maintains the
real objects updated, following instructions given in the virtual world and vice-versa. Testing involved local
network-based and cloud-based testbeds created with a VR headset and IoT devices at the Dublin City
University’s Performance Engineering Laboratory in Ireland. Test results demonstrated that lower latency is
experienced in the local-network testbed in comparison with the cloud testbed. Further tests regarding the
communications protocols implemented in the cloud testbed indicated that MQTT generates less delay and
data traffic than REST.

INDEX TERMS Multimedia IoT, three-dimensional visualisation, virtual reality (VR), VR-IoT.

I. INTRODUCTION

ANALYSTS expect the Internet of Things (IoT) to net-
work 500 billion devices and seamlessly deploy and use

data aggregation, data analysis, data insight and data delivery
by 2030 [1]. Devices such as smart appliances, wearables,
health monitors, smart cars, etc. are changing the way users
interact with devices. However, certain IoT devices are still
complex to operate and do not provide a simple and mature
user experience [2], [3]. Multimedia solutions such as [4],
[5], [6], enable users to enjoy a rich media experience. These
solutions combined with Virtual Reality (VR) technology can
expand the perception of reality thanks to the introduction of
realistic scenarios with auditory, tactile and visual capabili-
ties, which translate the real world into an immersive virtual

world [7], [8]. According to [9], it can be easier to interact
and understand IoT devices by using gestures, language and
other human senses. IoT objects such as landslide sensors or
devices for water level monitoring, which can be located in
hazardous places, and other IoT objects, which can be too
complex to use, can be operated in an easier way in a virtual
environment. The virtual environment also enables the social
IoT to become reality: users will be able to consume content
and share access to services and devices.

This paper proposes the VR-IoT Environment Synchroni-
sation Scheme (VRITESS), an innovative mechanism, which
enables users to seamlessly operate real IoT devices on a
virtual environment. Through VRITESS, users can visualise
data provided by beacons and operate sensors and other

VOLUME 7, 2019 1



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

features available in single-board computers (e.g. Raspberry
Pi). The visualisation is performed in a VR environment with
a user-friendly interface facilitating the interaction with real
objects. When a user manipulates a device in the virtual
environment, besides the actions being executed in the virtual
world, they will also be executed on the real objects. Oper-
ations in the real objects will also be reflected in the virtual
ones, with VRITESS being responsible for the synchronisa-
tion between real objects and virtual objects. Fig. 1 illustrates
the concept of interconnecting the IoT devices j, which are
networked by smart gateways i, to the VR platform, where
they can be visualised and manipulated. The details of the
IoT and VR platforms integration will be further discussed
later in this paper.

VRITESS was deployed and tested in two different situa-
tions using the VR-IoT solution: a local network-based ap-
proach and a cloud-based approach, allowing the analysis of
performance metrics, such as network latency. Both testbeds
contain beacons, an Oculus Rift and Raspberry Pis. Tests
were conducted in the Performance Engineering Laboratory
at the Dublin City University, Ireland. The VR environment
recreated the laboratory in 3D, with virtual devices matching
the real IoT ones located in the office. A synchronisation
algorithm, which is part of the VRITESS solution, main-
tains the devices up-to-date, sending actions and events that
happened in the virtual environment to the real objects, and
vice-versa, updating changes of their states and maintaining
consistency. Comparative testing results show that the cloud-
based solution has slightly increased latency in comparison
to the local-based deployment.

The remaining sections of this paper are organised as
follows. Section II presents related works and Section III
discusses the architectural design of the proposed solution.
Section IV describes the proposed synchronisation mecha-
nism and Section V details the architectures of the testbeds,
testing scenarios and results. Conclusions and directions for
future work end this paper in Section VI.

II. RELATED WORK
The related works of VR and IoT solutions relevant to this
paper are classified in the following topics: multimedia IoT
and protocols, VR background, VR and IoT integration,
cloud-based IoT and VR solutions, and social impact. These
categories contain solutions and approaches relevant to the
scheme proposed in this paper, hence the importance of
reviewing these works.

A. MULTIMEDIA IOT AND PROTOCOLS
A number of multimedia solutions supporting IoT systems
have been recently introduced, such as a web application
framework based on the Google Web Toolkit for improving
the interaction between users and IoT devices [10]. Authors
presented a visualiser for operating smart objects in a graph-
ical and functional way. Tools for managing the devices and
their interactions and for web services communications were
also included. For testing purposes, healthcare applications

FIGURE 1. Real-world and virtual-world devices.

were integrated to the framework. Other IoT applications are
yet to be integrated to the solution.

The concept of Multimedia IoT (MIoT) was formalised in
[11]. The authors also introduced a QoE model for MIoT,
with layers regarding physical devices, network, combina-
tion, application and context. For testing purposes, the au-
thors developed a vehicle application with remote control,
and presented the best QoE scenario among different condi-
tions in relation to bitrate, synchronism speed, visualisation
speed and map synchronisation quality.

In [12], authors proposed a home automation system based
on a 3D virtual world. The goal is to help users interact with
smart homes in a friendly and easy-to-use environment. A
computer runs the graphical user interface, which is con-
trolled with a mouse. MPEG-V standard is used along with a
user-defined protocol. Authors did not consider VR for user
interaction and did not implement different protocols in the
solution to analyse the performance of the platform.

Authors in [13] introduced a web-based interactive frame-
work for visualisation and authoring of indoor IoT environ-
ments containing sensors and devices in homes or small of-
fices. An indoor 3D scene was configured to display attributes
of the available physical sensors and actuators, also allowing
the visual programming of virtual sensors and actuators. The
testing of the proposed framework, however, did not consider
a synchronisation scheme and did not include real physical
sensors and actuators, which were emulated by the server.

Other mass market devices that have been employed for
controlling and interacting with smart homes are the voice-
driven virtual assistants and smart speakers [14], such as the
Google Assistant and Amazon Echo, which, however, lack
the graphical capabilities of other multimedia solutions.

Examples of communications protocols employed in IoT
are the Hypertext Transfer Protocol (HTTP) and the Message
Queuing Telemetry Transport (MQTT), which aim to meet
the requirements of IoT networks in constrained environ-
ments.

2 VOLUME 7, 2019



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

REST (Representational State Transfer) is a communica-
tion protocol used in IoT, which runs over the HTTP protocol
and uses a request/response model. REST is stateless, there-
fore, each request from a client to the server must contain
all data necessary for the server to process the request, as
the connection is always closed after the request. REST uses
methods from the HTTP library such as GET, POST and
DELETE requests, and can be implemented in most pro-
gramming languages and embedded devices, as the library is
part of most operating systems [15]. REST, however, requires
high usage of network resources as it establishes a connection
each time there is some transfer of data [16].

MQTT is a lightweight messaging protocol that uses TCP
as the transport layer in the TCP/IP model [17]. MQTT
is stateful, maintaining connections alive, and uses a pub-
lish/subscribe messaging model, consisting of subscribers,
publishers and a broker. The subscriber receives the data that
is sent by the publisher if it is subscribed to the topic(s) being
published, and the broker remains centred within this mes-
sage exchange to manage the events. MQTT aims to deliver
messages reliably, minimise network bandwidth usage and be
easy to implement on constrained devices [18]. MQTT uses
short headers and data is transferred as byte arrays unlike
REST, which needs to define content type. MQTT message
types include CONNECT, PUBLISH, SUBSCRIBE, UN-
SUBSCRIBE and DISCONNECT. Minimum packet size is
two bytes for a message, one byte for control field and one
byte for packet length field, which is all that is needed in a
DISCONNECT message.

The approaches reviewed in this section were used as
inspiration for the development of the multimedia elements
of the proposed solution, especially in relation to protocols,
user experience and application scenarios. The need for user-
friendly tools for IoT devices is evidenced by the research
efforts in the creation of multimedia solutions to control these
devices, especially in smart homes.

B. VR BACKGROUND
VR can be defined as a way of simulating the real world
by the application of the immersion theory into a virtual 3D
environment. In a certain virtual area, users interact with the
space using their human senses in a similar way to the real
world, and therefore, VR solutions mainly focus on three
human senses: haptics, sight, and hearing. The main compo-
nents and layers of a VR solution are the VR engine, software
and database, in the system layer; input and output devices, in
the middle layer; and users and tasks, in the application layer.
VR can be used in many fields including military training,
collaborative study rooms, healthcare, gaming, virtual tours
and museums, prototyping, product modelling and viewing,
etc. [19], [20].

Many works have discussed the relevance of user inter-
faces (UI), audio and visuals for VR applications, such as
the ones presented in [21], [22], [23]. The UI of VR systems
needs to consider how users will control the applications,
how space should be perceived and the integration with the

entire experience. Audio is also important as it works as a
guide to users and its quality impacts user experience. For
example, a VR application running the reproduction of an or-
chestral recital should prioritise audio without compression,
while a gaming application would focus on the location of
the element generating a sound for user guidance. Visuals can
be made of 3D polygons or omnidirectional (360°) captured
images of the real world. The graphics must not have distor-
tions and need to accurately map the area available for user
movement. The processing of this type of omnidirectional
visual content requires very high resolution (e.g. 4K, 8K),
massive storage, and consume a large amount of network
bandwidth. Therefore, visual content delivery is a challenge
and requires powerful hardware and/or compression without
much loss in quality, such as the proposed compression
approaches by the Joint Video Exploration Team (JVET) of
ITU-T SG 16 WP3 and ISO/IEC JTC1/SC29/WG11.

Authors in [24] introduced a VR approach for exploring
software-built cities using VR headsets and interactions with
gestures. Authors also created a reusable gesture model for
operating 3D environments. In order to test the solution,
participants of the tests were asked to rate the usability of ges-
tures and the overall VR experience. Results demonstrated
that participants praised most of the introduced gestures.

Regarding VR synchronisation, authors in [25] imple-
mented a computing offloading scheme via an mmWave
802.11ad 60GHz wireless link in order to share 360° VR con-
tent with a PC. Synchronisation algorithms were employed at
packet level, handling real-time video transmission without
packet loss.

Based on the idea of creating innovative ways of control-
ling IoT devices, VR seems like a suitable approach due to
the ever-increasing consumer adoption of VR technology.
The works reviewed in this section demonstrate the impor-
tance of a pleasant and user-friendly VR experience, and the
feasibility of its use in diverse fields.

C. VR AND IOT INTEGRATION
VR and IoT integration is a novel and young research field
and therefore there is little research work available in the
literature. Some interesting recent works relevant to this
paper have been identified and are presented in this section.

The creation, implementation, and evaluation of a Unity
game on an engine-based application layer for a brain-
computer interface was proposed in [26]. The game, which
integrates 3D graphics, VR, and IoT devices, was only tested
in a local-network environment.

An end-to-end system architecture that underlies IoT net-
works for seamless VR space was proposed in [27]. The
architecture contains five stages: acquisition, classification,
virtual image and video reconstruction, transmission, and
consumer processing. The authors, however, did not present
a testbed to demonstrate the architecture.

Authors in [28] proposed a layered model for the con-
nection and interaction between people and smart devices.
A virtual platform with the locations of smart devices in

VOLUME 7, 2019 3



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

a city was implemented, creating a Virtual Environment of
Things (VEoT). Users are able to interact with the smart
objects using VR headsets and gestures, and the platform
uses a multi-protocol sensing middleware and RESTful APIs
for the connection of devices and real-time communication.
Testing was limited to displaying the temperature of sensors,
not allowing user interaction with actuators or other devices.

A VR engine for immersive smart city visualisation was
proposed in [29]. The engine contains network features for
big spacial data and online sharing with hash-based peer-to-
peer (P2P) capabilities. Users can navigate in a map with real
geographic space using avatars, and performance evaluation
tests demonstrated high usability and user satisfaction. The
engine, however, does not allow users to interact with smart
devices of the city, being more useful for city planning
purposes.

A platform for hyper-connected IoT-VR was presented in
[30]. Users and devices can be interconnected in a virtual
space, which contains customisable remote services. The
authors built a testbed, which included a cloud server, but did
not analyse network latency and performance using different
protocols, and did not implement a synchronisation scheme
to guarantee consistency between real and virtual devices.

The approaches for integrating VR and IoT presented in
this section have limitations in their implementations, not
showcasing the full potential for a VR-IoT solution. The
first approach does not have cloud capabilities; the second
one focuses on the architectural aspects of VR and IoT
integration; the third solution did not fully implement user
interaction controls for IoT devices, only displaying sensor
data; the fourth approach is only applicable for city planning
and overall viewing of smart data; and the fifth approach does
not guarantee consistency between real and virtual devices
and does not test a variety of protocols.

The solution presented in this paper needs to allow end-
users to interact with IoT devices using intuitive controls,
guarantee that real and virtual devices are synchronised, and
test the performance of different communication protocols
used for the VR and IoT integration. Another feature possible
with a VR-IoT system is the ability of controlling objects
remotely, something that can be addressed by hosting certain
functionalities in cloud-based servers, therefore, the next
section focuses on cloud solutions for IoT and VR.

D. CLOUD-BASED IOT AND VR SOLUTIONS

There are a number of works exploring IoT capabilities in the
cloud. In [31], authors explained that the virtualisation of IoT
devices allows users to easily share the devices. They also
presented the multitenancy feature of cloud computing as an
enabler for resource sharing to multiple users over spatial and
time distributions.

Authors in [32] presented a cloud-based smart home plat-
form for integrating smart home IoT services and managing
operations. Users can manipulate and visualise the devices
in the platform with a user interface. Authors also compare

the data traffic and latency generated by HTTP and MQTT
protocols.

An approach on sharing IoT devices among end-users was
presented in [33]. The service-oriented approach allows IoT
devices to provide data and resources, which are available in
a cloud platform, at any given time from any place with con-
nectivity. The approach gives the opportunity for application
developers to reuse information provided by the users and
create applications on top of the solution.

Authors in [34] proposed the concept of local IoT au-
tomation clouds. The solution design was demonstrated in
a compartment climate control. Automation and real-time
performance were also analysed.

VR has also benefited from cloud technologies. Computa-
tional off-loading, image processing and mobile capabilities
are among the features found in cloud-based VR solutions.
Authors in [35] investigated how extensive rendering being
off-loaded to a cloud/edge/local server can make the VR/AR
processing to be lighter on the headsets. There are, however,
challenges from bitrate to latency requirements, and possible
solutions to enable cloud/edge-based wireless VR/AR in-
clude asymmetric video encoding and rendering, and hybrid-
casting.

In [36], authors presented a solution which uses off-
loading as a service, in order to to resolve the mismatch
between how mobile devices demand computing resources
and how cloud providers offer them. Authors also designed
a VR framework able to seamlessly operate a 3D game by
computation off-loading.

The works reviewed in this section demonstrate that cloud
technologies have been used in IoT and VR, mainly for
data virtualisation and off-loading. The benefit of accessing
data from anywhere brings challenges such as latency in
communications, which can be an issue especially in VR
applications. Therefore, the solution presented in this paper
needs to compare the performance of local-based and cloud-
based approaches, and demonstrate the feasibility of having
features in the cloud.

E. SOCIAL IMPACT
In [37], the author affirmed that VR will change fundamental
rules on how life has been lived throughout the entire length
of human history, creating social consequences.

According to the work presented in [38], IoT data can be
used to create novel ways of connecting people, with auto-
mated software networking people and objects. IoT objects
such as smart watches, wrist bands, appliances, healthcare
devices and cars can bring new ways of user interaction.

Similarly, VR provides a rich media experience that in-
creases the sense of reality with auditory, graphical and
tactile capabilities that translate the real world into a virtual
one. The possibility of manipulating virtual devices using
intuitive controls and human senses such as tactile gestures
and language can make it easier for users to operate and
interact with real IoT objects.

4 VOLUME 7, 2019



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

Additionally, the ability to share devices brings people
together, and enables IoT services to be made accessible to
users who do not possess certain devices.

Bringing IoT and VR technologies together can expand
their societal impact and help each other become more user-
friendly and mainstream to society.

A thorough review of related works was presented in
this section and important IoT solutions were discussed in
the context of this paper, highlighting their gaps, which
are addressed by this work. Some of the related works do
not perform analysis of network performance [12], [26],
other research outputs do not discuss comparatively different
protocols [12], [27], [30], and the remaining articles do not
consider synchronisation in order to guarantee consistency
between real and virtual devices [13], [30].

III. SOLUTION ARCHITECTURE
This section introduces the VRITESS solution architecture,
its components and the communication process among them.

A. ARCHITECTURE DESCRIPTION
VRITESS is implemented on top of an IoT architecture, as
illustrated in Fig. 2. The basic IoT architecture has been
presented and used in [39], [40], [41], [42] and was ex-
tended in [43]. The architecture, which deploys VRITESS,
has the following major components: IoT objects (e.g. smart
appliances, wearables, health monitors, sensors) providing
services to users and other devices – each of these IoT objects
have two instances: real (the real IoT device) and virtual
(the VR representation of the real object); Smart Gateways
networking the IoT devices, allowing communication among
connected objects; the IoT Integration Platform (ITINP), a
platform that contains a cloud-based server for the integra-
tion of services, including the interconnection of the smart
gateways, and the VR IoT Platform (VRITIP), composed of
a VR server and VR headsets for the rendering of 3D virtual
spaces containing the virtual representation of IoT objects,
allowing users to interact with them using straightforward
controls. VRITIP also maintains virtual objects up-to-date
with the operations executed in the real ones, showing them
in the virtual environment.

VRITIP and ITINP communicate over local networks or
the cloud, using IoT protocols such as the MQTT protocol.
In the local network approach, a local database stores the
operations executed in the virtual and real devices, and
based on timestamps, it keeps both types of devices updated.
In the cloud approach, a cloud-based IoT protocol-enabled
database keeps the operations and timestamps, while both
ITINP and VRITIP constantly access the data. VRITESS is
implemented in both ITINP and VRITIP, keeping devices
updated with the information stored in the local or cloud-
based databases. Network Time Protocol (NTP) is used to
synchronise ITINP and VRITIP clocks over the networks,
avoiding synchronisation errors [44]. Details on the im-
plementation of the testbeds representing the architectural
design are presented in Section V.

FIGURE 2. The VRITESS architecture.

B. COMMUNICATION PROCESS
A status structure is used by the gateways to store the actions
regarding the devices. ITINP receives operations executed in
real devices, VRITIP receives operations executed in virtual
devices and VRITESS enables the two-way communication
and synchronisation between these two. Both virtual and real
devices need to be able to update their functionalities based
on the latest information in these status structures.

Several devices can benefit from this communication struc-
ture, with operations such as turning on/off devices and
appliances, reading sensor temperatures, movements and ac-
tivities, turning on/off motors for opening and closing doors
and curtains, etc. Users exist on both virtual and real world,
so the status structure and its associated update mechanisms
support tracking the way users interact with the devices in
either world. The device status structure used in the local and
cloud-based databases are presented in the following exam-
ple (illustrating a virtual user turning off a virtual object):
{
"timestamp": "2019-04-15T09:15:12.147"
"last_change":"2019-04-15T09:14:23.133"
"user_id": "andersonsimis"
"type_of_user": "virtual"
"type_of_device": "virtual"
"tags: ["POWER_INSTRUCTION"]
"device_id": "0036:5E25:0000:21DC"
"data" "OFF"
}

VOLUME 7, 2019 5



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

This operation will result in the real device also turning off
and the appropriate status structure update:
{
"timestamp": "2019-04-15T09:15:12.235"
"last_change":"2019-04-15T09:14:23.224"
"user_id": "andersonsimis"
"type_of_user": "virtual"
"type_of_device": "real"
"tags: ["POWER_INSTRUCTION"]
"device_id": "0036:5E25:0000:21DD"
"data" "OFF"
}

This example illustrates a virtual user that turns off a
virtual object, resulting in the same operation being executed
on the real object. Operations performed in the virtual en-
vironment (e.g. turn on a device, change the temperature
of a thermostat, etc.) are synchronised in ITINP and then
updated in the database of the smart gateway responsible for
interconnecting the corresponding real device, passing the
instruction to the object using an IoT protocol such as MQTT.

The solution architecture contains databases at the level
of the gateways and in the cloud, so it is possible to record
the actions in real and virtual devices. When an action is
performed, details are registered following the status struc-
ture presented in this section. Section V describes in detail
the implementation of a local database (MySQL) in the local
network-based solution and a cloud database (Adafruit IO)
[45] in the cloud-based solution.

The database implementation also allows users to be iden-
tified when performing actions, therefore, when logging into
the applications, users can only control the devices that are
shared with or owned by them. The social aspect of the
platform is the possibility of granting access to other users
to control devices in the virtual platform.

The VRITESS synchronisation algorithm keeps the de-
vices updated, according to the operations executed in the
virtual and real versions of the devices, respectively.

IV. VRITESS SYNCHRONISATION
The VRITESS synchronisation algorithm is employed on
both real world devices, at the level of ITINP (acting on
the real objects), and virtual world devices, at the level of
VRITIP (acting on the virtual objects), in order to maintain
consistency.

Algorithm 1 presents the synchronisation of real-world
and virtual-world IoT objects. It works by sending to ITINP
and VRITIP the latest action performed by real and virtual
users, based on the timestamp value of these actions. ITINP
and VRITIP employ the Network Time Protocol (NTP),
therefore, their clocks are synchronised over the network.

As seen in algorithm 1, the timestamps and data struc-
ture maintain the real and virtual devices up-to-date and
synchronised with each other. The communication process
follows the structure introduced in Section III.B. The new_t

Algorithm 1. Synchronisation of real and virtual-world
IoT Objects

Require: old_t← The last timestamp sent by ITINP
and VRITIP; data[]← The set of data,
following the structure in section III.B

Output : new_t← New timestamp sent back to ITINP
and VRITIP; updated_data[]← Updated
data sent back to ITINP and VRITIP

1: new_t = old_t
2: foreach data in data[] do
3: if (data.timestamp > old_t) then
4: updated_data[].add(data.value)
5: new_t = max(data.timestamp,new_t)
6: end
7: end
8: return new_t, updated_data[]

variable stores the most recent timestamp when new actions
are received (i.e. newer than the old_t variable, which stores
the last executed action). Some of the instructions may
be informative (e.g. a virtual gauge representing a sensor
temperature) or actions (e.g. turn on/off a virtual appliance
resulting in the same action on the real appliance).

All the data sent by ITINP and VRITIP is organised into
an array of objects containing all data to be processed by
the algorithm. Each object of the array contains the structure
for communication, with fields including: data.timestamp
(current timestamp), data.last_change (timestamp of last data
modification), data.device_id and data.user_id (unique IDs
for device and user, respectively – strings used as keys), and
other strings such as data.type_of_user, data.type_of_device,
data.tags (indicating the type of action, e.g. power related or
the sensor type) and data.data (indicating the action to be
executed, e.g. turn off/on).

The algorithm is triggered on an event-based fashion,
therefore, every new event, e.g. turning on a light, will call
a function that inserts it into a database. After this insertion
process in the local or cloud database, the synchronisation
mechanism is triggered to send the latest action to the corre-
sponding virtual or real device, if a real or virtual device was
manipulated, respectively.

V. REAL LIFE TESTBEDS DESCRIPTION
The VRITESS solution was deployed in two different ap-
proaches in the Performance Engineering Laboratory at the
Dublin City University, Ireland.

Both a local network-based solution and a cloud-based
solution were created, so that comparative performance dif-
ferences between the two approaches can be assessed. In
the network-based approach, a browser-based VR application
was created, while in the cloud-based approach a 3D appli-
cation was developed with Unity, a 3D engine. Both were
tested with an Oculus Rift, real IoT devices and a Raspberry
Pi, which interconnects the IoT devices using its General

6 VOLUME 7, 2019



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

Purpose Input Output (GPIO) pins to control LEDs and a
servo-motor, and Bluetooth to receive data from beacons.

A. LOCAL NETWORK-BASED APPROACH

The local network-based implementation only allows local
devices to be visualised in the VR headset. The VR headset
and the computer that powers it communicate directly to the
IoT devices using a local wireless network.

The testbed illustrated in Fig. 3 has the following major
components: an Oculus Rift [46], two Raspberry Pis [47]
and four Beeks IoT beacons [48], which are connected to the
Raspberry Pis via Bluetooth Low Energy. A Dell Alienware
computer [49], which is connected wirelessly with the Rasp-
berry Pis in a local 802.11n network, supports the Oculus
Rift using an HDMI port, and also renders the browser-based
3D virtual world. The user shown in Fig. 3 uses the Oculus
Rift Touch controllers to select the available actions on the
Oculus headset. This is replicated on the computer screen,
which displays the same virtual environment seen on the
headset. The actions (e.g. power off device, turn LED on,
etc.) update the representation of the virtual Raspberry Pi
displayed on the Oculus headset and are also executed on
the real Raspberry Pis. The VR application also displays
information (e.g. temperature) generated by the IoT beacons
sent via Bluetooth.

The specifications of the Alienware computer, Beeks Bea-
cons and the Oculus Rift used are available in Tables I, II and
III, respectively.

The applications developed are as follows. The first appli-
cation is a Java VR communication application, which was
deployed on the Raspberry Pi, in order to read from and
send commands to the in-board LED, read temperatures of
the beacons connected to the Raspberry Pi via Bluetooth,
and send the shutdown and restart instructions to the oper-
ating system of the Raspberry Pi. This Java application also
communicates with the main computer (i.e. Alienware) using
Java ServerSockets and Input/OutputStreams for receiving
and sending instructions to the virtual IoT devices visualised
in the VR headset.

The Alienware computer is responsible for running a
Glassfish 4.0 web server [50] with the second Java applica-
tion, which reads and writes to a MySQL database containing
the status structures presented in Section III.B. These statuses
are related to the real world IoT objects. This application
updates the database with the received instructions from the
Raspberry Pi Java application, and also sends instructions
back to the Raspberry Pi.

A JavaServer Faces (JSF) web application [51], which also
contains the VR application in HTML pages optimised for
VR, is responsible for reading and writing the statuses in the
database regarding the virtual objects. The JSF application
receives and sends the current statuses of the virtual objects
coming from the interactions of the user with the VR headset
manipulating the options in the HTML pages optimised for
VR.

FIGURE 3. The implemented local network-based testbed.

FIGURE 4. Local network-based solution architecture.

Testbed development started with the creation of the two
Java applications in the Glassfish web server (i.e. Alienware)
and the Raspberry Pi, as seen in Fig. 4. As mentioned ear-
lier, threaded Java ServerSockets are used on both Glassfish
server and Raspberry Pi, therefore several devices can con-
nect to the Glassfish instance. The Java applications convert
the actions performed by the users into objects, following the
structure presented in the previous section, so they can be
sent over to the other application (either on the Raspberry
Pi or Alienware) and also stored in the database, by the
use of the MySQL Java database driver. These objects are
exchanged using the ServerSockets and Input/OutputStreams
every 0.5 seconds. The objects carry all statuses for the five
types of interactions that the web application enables, from
virtual devices (in the web application) to real devices and
vice-versa. The five types of interactions are: turn led on and
off, reboot and restart, on the Raspberry Pi, and temperature
measurement on the Raspberry Pi and beacons.

The 0.5s time interval for the local network testbed was
selected based on the performance of the network and re-
quired communication time between real and virtual devices.
Experimental tests did not show any significant improvement
in the perception of the real-time execution of tasks for time

VOLUME 7, 2019 7



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

TABLE 1. Alienware Specifications

Parameter Value

Model Alienware Aurora R6
Processor Intel Core i7-7700
RAM Memory 16GB
Hard Drive 1TB
SSD 256GB
Graphics Card NVIDIA GeForce GTX 1080 8GB
Operating System Windows 10
3D Development Unity Personal 2017.3

TABLE 2. Beeks Beacons

Parameter Value

Battery 3.6V / 2600mAh - Primary Lithium
Size 2.36" x 0.85" (60mm x 21mm)
Weight 1.0 oz (28 gr)
Temperature Range -30°C to +77°C
Bluetooth Type Bluetooth Low Energy 4.1
Bluetooth Sensitivity -97dBm
Bt. Max Power Output +5dBm
Bluetooth Antenna 0dBm Single Antenna, Omni Directional
Bluetooth Data Rate 1Mbit/s / 2Mbit/s
Bluetooth Security 128 bit AES
Power Consumption RX 7.5mA RX Active Mode
Power Consumption TX 6.5mA TX Active Mode
Power Consumption Sleep 1.6µA (SRAM retention and RTC running)
Power Output -40dBm to +5dBm
CPU Dual Code: ARM Cortex M3 and M0
Sensors High Accuracy Temperature sensor

3 Axis Accelerometer
- Detect.: Freefall. Motion, Pulse, Transient
- Custom detection: Door opening/closing
with counter; human walking detection;
driving detection, motor vibration learning
Magnetometer
- Custom detectable modes: Door opening
and closing, Metal nearby trigger, car detec-
tion, electric motor, efficiency/torque
Light Sensor

Internal Flash Memory 55KB Flash standard
LED Red LED

intervals lower than this limit (i.e. after an action is taken in
the virtual environment, it takes 0.5s for the action to be exe-
cuted in the real environment, and vice-versa). However, any
rate larger than 0.5s would impact severely the performance
of the platform. Several update rates were tested in order to
define a balance between user perception and performance
(i.e. CPU and memory consumption), ranging from 0.1s to
2s. Update rates larger than 0.5s start to impact negatively the
VR application. Such negative effects need to be avoided in
order to prevent both poor quality and potential user motion
sickness.

The developed JSF web application also runs on the Glass-
fish server and was built with responsive design for mobile
device screens and VR devices. JSF is responsible for binding
the user interface and the core of the Java application, which
communicates with the IoT devices using sockets in the local
network.

The HTML pages of the web application implement
Mozilla’s A-Frame [52], an HTML-based framework for VR

TABLE 3. Oculus Rift

Parameter Value

Display PenTile OLED
Graphics 2160x1200 (1080x1200 per eye) @ 90 Hz
Sound Integrated 3D audio headphones (user re-

movable/exchangeable)
Input 6DOF (3-axis rotational tracking + 3-axis

positional tracking) through USB-connected
IR LED sensor, which tracks via the ‘con-
stellation’ method

Controller input Oculus Touch motion tracked controllers
Connectivity HDMI 1.3, USB 3.0, USB 2.0
Weight 470g (1.04lb)

FIGURE 5. Virtual Raspberry Pi - device off.

FIGURE 6. Virtual Raspberry Pi - led off.

FIGURE 7. Virtual Raspberry Pi - led on.

8 VOLUME 7, 2019



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

development. A-Frame includes tags designed to enable head
movements in smartphone-based VR headsets by natively
reading smartphones’ accelerometers and gyroscopes. It is
also compatible with regular VR headsets. A-Frame supports
and offers creation tools for 3D environments. It also dupli-
cates graphical content for the use of smartphones inside of
VR headsets such as the Google Cardboard (each half of
the smartphone screen is seen by a different eye, creating
a 3D effect with the help of the VR headset). A-Frame is
compatible with web browsers such as Google Chrome and
Mozilla Firefox, and also with the Oculus Rift.

Fig. 5 illustrates how the Web-VR application displays
the virtual device turned off. In figs. 6 and 7, the virtual
device has its LED off and on respectively. Users are allowed
to control objects which they are granted permission. This
allows users to keep devices private or share them with
different users, developing a social network of virtual and
real IoT devices. In order to enable device sharing, users are
identified by user IDs, allowing them to share their devices
with other users, therefore, the web application has login and
share functions.

The MySQL database stores all data necessary for the
monitoring and synchronisation of the solution, with times-
tamps, IDs for users, devices and tasks, and the permission
lists with users and their granted devices.

B. CLOUD-BASED APPROACH
The cloud-based implementation allows for the real-world
devices to be visualised and manipulated through the use
of the Oculus Rift VR headset. Remote IoT objects can be
accessed and receive the VR actions performed, as the actions
are stored and synchronised on the Adafruit IO cloud server,
as detailed in Fig. 8.

In this testbed, the major components are the VR headset
(Oculus Rift) connected to an Alienware computer, a Rasp-
berry Pi 3 Model B+, IoT objects (servo-motor – representing
a motor to open and close doors – and light bulbs), and
the cloud-based Adafruit IO server. For the cloud-based
approach, a 3D virtual room was designed using Unity,
containing wall switches, which are used to open/close doors
and to turn on/off lights in the real-world, just as they are
performed in the virtual environment, as seen in Figs. 9
and 10. Functionalities programmed using C# scripts, such
as shutting down and rebooting the real-world system (i.e.
Raspberry Pi), are also available in the VR application. Users
interact with the 3D VR environment by using the Oculus
Touch controllers.

The real-world part of the proposed solution contains a
Raspberry Pi to which IoT objects, such as a servo-motor
and a light bulb, are connected. The interfacing of the IoT
objects to the Raspberry Pi is performed via the Raspberry Pi
GPIOs and a program written using the Python programming
language.

The cloud-based IoT server Adafruit IO is responsible for
storing the commands received from the VR-world devices as
well as the real-world devices. Adafruit IO manages "feeds"

FIGURE 8. Cloud-based solution architecture.

FIGURE 9. Virtual living room - light on.

FIGURE 10. Virtual living room - open/close door.

that are available in its dashboard. These feeds store the
commands for each device. These commands are accessed
by the devices via communications protocols (i.e. MQTT
and REST) at lower network layers with instructions such
as open/close for the door and turn on/off for the lights, or
shutdown and reboot instructions. The Raspberry Pi is also
connected to Adafruit IO, and therefore it reads and writes
to the feeds related to the devices attached to the Raspberry
Pi (e.g. light bulb, servo-motor), updating the feeds with the
latest status values synchronised by VRITESS.

Whenever an action is performed by users in the vir-
tual or real worlds, such as pressing switches for turn-
ing on/off lights or opening/closing a door, the com-
mands DOOR_OPEN, DOOR_CLOSE, LIGHT_ON or
LIGHT_OFF are sent to the specific feeds available in the

VOLUME 7, 2019 9



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

TABLE 4. Delay (seconds) - MQTT and RESTful API

Delay (seconds) RESTful API MQTT Prococol

Maximum 1.353s 0.0469s
Minimum 0.439s 0.0419s
Average 0.826s 0.0437s
St. Dev. 0.301s 0.0017s

TABLE 5. Data Traffic (bytes) - MQTT and RESTful API

Direction RESTful
API

MQTT
Prococol

Avg. MQTT Im-
provement

Outgoing
Bytes

Maximum 385B 270B 34% (in relation
to REST outgoing

traffic)

Minimum 362B 216B
Average 372B 245B
St. Dev. 8B 17.7B

Incoming
Bytes

Maximum 118B 94B 18% (in relation
to REST incoming

traffic)

Minimum 95B 77B
Average 107B 88B
St. Dev. 7.4B 5.2B

Adafruit IO cloud server, according to the actions performed.
A menu is presented when pointing at devices such as doors
or light bulbs, with the option of sharing these devices with
other users. Users must be granted permissions for device
manipulation and for sharing devices.

Fig. 11 presents the implemented cloud-based testbed in
the Performance Engineering Laboratory. In order to keep
the devices synchronised with their corresponding virtual or
real devices, an implementation of communication protocols
was necessary. Adafruit IO supports communications using
MQTT or RESTful API. Adafruit IO has a current rate limit
of 1 request per second (or 60 requests within 60 seconds),
therefore lower latency is experienced in the local network
approach, with a higher rate of 0.5s for sending/receiving
messages, also illustrated in Fig. 12.

Extra testing was performed to test the latency in the
cloud-based approach. Using the tests performed in the lo-
cal approach as a control test case, it could be observed
that simple database queries ran much faster in the local
approach. Twenty select queries were performed in both local
and cloud-based implementations, and the average retrieval
time was 4ms for the local test running MySQL and 12ms in
the cloud-based approach powered by Adafruit IO.

Tests were conducted in both MQTT and RESTful API
in order to demonstrate which approach has the best per-
formance in the cloud-based implementation of the VR-
IoT environment, in terms of communication delay and data
traffic.

Table IV shows the minimum, maximum, standard devi-
ation and average delays of the ten times the application
was executed, as seen in Fig. 13 (sorted from minimum to
maximum delay). Delay here refers to the amount of time
required to transfer the action performed either in a real-
world device or the virtual reality device to the cloud-based
IoT server. The delay calculations were performed using
Wireshark. The cloud-based IoT server, Adafruit IO, runs on

FIGURE 11. The implemented cloud-based testbed.

FIGURE 12. Latency in local-network approach and cloud-based approach.

FIGURE 13. Delay (s) in cloud approach - MQTT and REST.

FIGURE 14. Data traffic (bytes) in cloud approach - MQTT and REST.

10 VOLUME 7, 2019



A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

the ports 1883 and 8883 (for SSL encrypted connections),
and the 8883 port was used for the tests. In order to monitor
delay, Wireshark’s TCP port was set to the cloud-based IoT
server port, allowing the capture of all the outgoing packets,
data, their time and length. One of the major reasons that im-
pact RESTful API’s delay in comparison to MQTT is the fact
that a new connection is established each time the devices
send data to the cloud and then the connection is terminated.
MQTT optimises this process, keeping the connection alive
once it is established. Tests demonstrated that, in average,
there is 20 times less delay in MQTT communications in
comparison to the RESTful API in the cloud-based VR-IoT
environment.

Table V shows the number of outgoing and incoming
bytes used for data communications when performing actions
exchange in the VR-IoT environment (i.e. bytes measured
for the six available actions: turn on/off LEDs, turn on/off
servo-motor, reboot and shutdown), also demonstrated in
Fig. 14 (sorted from minimum to maximum values). The
MQTT and RESTful API implementations were compared in
terms of outgoing and incoming data, respectively, in relation
to the Raspberry Pi and Alienware communicating to the
Adafruit server, and vice-versa. When considering average
outgoing data, 245 bytes are used for MQTT in comparison
with 372 bytes for REST and measuring average incoming
data, 88 bytes are needed by MQTT versus 107 bytes by
REST. Therefore, in terms of percentages about 34% less
outgoing traffic and approximately 18% less incoming data
is exchanged by the MQTT solution in comparison with the
REST approach. This is also shown in Table V. The main
explanation for these results is the lightweight design of
MQTT, which maintains one TCP connection alive and uses
small size headers in comparison to the RESTful API that
runs over HTTP, which creates new TCP connections when
needed.

VI. CONCLUSION AND FUTURE WORK
The innovative VR-IoT Environment Synchronisation
Scheme (VRITESS) was introduced and described. The pro-
posed VR-IoT platform allows users to operate IoT objects
in a virtual environment and contains a synchronisation
algorithm that maintains virtual and real IoT objects updated,
according to actions and events that happened in both virtual
and real environments, reflecting changes on each other.

Two approaches were employed for the VRITESS real-
life testing: a local network-based solution and a cloud-
based deployment with a 3D room developed with Unity.
Testing results show that the cloud-based solution has higher
latency in comparison to the local-based approach. In the
cloud-based scenario, two communications protocols were
employed: MQTT and RESTful API. Testing results demon-
strated better performance in favour of MQTT, as it has
achieved lower delay and requires less amount of data ex-
changed due to its lightweight design.

Future work includes network testing of multiple gate-
ways with remote VR users manipulating objects located in

different gateways, and also integration of additional smart
devices, beacons and sensors into the virtual world.

REFERENCES
[1] Cisco, “Internet of Things: Connected Means Informed,”

2016. [Online]. Available: https://www.cisco.com/c/dam/en/us/products/
collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

[2] C. Rowland, “What’s Different About User Experience Design for the In-
ternet of Things?” 2015. [Online]. Available: https://uxmag.com/articles/
whats-different-about-user-experience-design-for-the-internet-of-things

[3] E. Rubio-Drosdov, D. Díaz-Sánchez, F. Almenárez, P. Arias-Cabarcos, and
A. Marín, “Seamless Human-Device Interaction in the Internet of Things,”
IEEE Transactions on Consumer Electronics, vol. 63, no. 4, pp. 490–498,
Nov. 2017.

[4] G.-M. Muntean, P. Perry, and L. Murphy, “Objective and subjective
evaluation of QOAS video streaming over broadband networks,” IEEE
Transactions on Network and Service Management, vol. 2, no. 1, pp. 19–
28, Nov. 2005.

[5] A. N. Moldovan, A. Molnar, and C. H. Muntean, “EcoLearn: Battery
Power Friendly E-Learning Environment for Mobile Device Users,” in
Learning-Oriented Technologies, Devices And Networks. Lambert
Academic Publishing, 2011, pp. 273–296.

[6] G.-M. Muntean, P. Perry, and L. Murphy, “Subjective Assessment of the
Quality-Oriented Adaptive Scheme,” IEEE Transactions on Broadcasting,
vol. 51, no. 3, pp. 276–286, Aug. 2005.

[7] F. Buttussi and L. Chittaro, “Effects of Different Types of Virtual Reality
Display on Presence and Learning in a Safety Training Scenario,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 2, pp.
1063–1076, 2018.

[8] A. Steed, S. Friston, M. M. Lopez, J. Drummond, Y. Pan, and D. Swapp,
“An ’In the Wild’ Experiment on Presence and Embodiment using Con-
sumer Virtual Reality Equipment,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 4, pp. 1406–1414, 2016.

[9] C. Peng, X. Tan, M. Gao, and Y. Yao, “Virtual Reality in Smart City,”
in Geo-Informatics in Resource Management and Sustainable Ecosystem.
Communications in Computer and Information Science. Springer, Berlin,
Heidelberg, 2013, pp. 107–118.

[10] A. Castellani and M. Dissegna, “WebIoT: A Web Application Framework
for the Internet of Things,” in Proc. of the IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), 2012, pp. 202–207.

[11] A. Floris and L. Atzori, “Quality of Experience in the Multimedia Internet
of Things: Definition and Practical Use-Cases,” in Proc. of the IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2015, pp. 1747–1752.

[12] J. Han, J. Yun, J. Jang, and K. R. Park, “User-Friendly Home Automation
Based on 3D Virtual World,” IEEE Transactions on Consumer Electronics,
vol. 56, no. 3, pp. 1843–1847, Sep. 2010.

[13] Y. Jeong, H. Joo, G. Hong, D. Shin, and S. Lee, “AVIoT: Web-Based
Interactive Authoring and Visualization of Indoor Internet of Things,”
IEEE Trans. Consum. Electron., vol. 61, no. 3, pp. 295–301, Sep. 2015.

[14] V. Kepuska and G. Bohouta, “Next-Generation of Virtual Personal Assis-
tants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home),”
in Proc. of the IEEE 8th Annual Computing and Communication Work-
shop and Conference (CCWC), 2018, pp. 99–103.

[15] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam,
and R. Xiang, “Building Smarter Planet Solutions with MQTT
and IBM WebSphere MQ Telemetry,” 2012. [Online]. Available:
https://www.redbooks.ibm.com/redbooks/pdfs/sg248054.pdf

[16] T. Yokotani and Y. Sasaki, “Transfer protocols of tiny data blocks in IoT
and their performance evaluation,” in IEEE 3rd World Forum on Internet
of Things, 2017, pp. 54–57.

[17] S. Sreeraj, N. Suresh Kumar, and G. Santhosh Kumar, “A framework for
predicting the performance of IoT protocols, a use case based approach,”
in Proceedings of the 2017 International Conference On Smart Technology
for Smart Nation, SmartTechCon 2017, 2017, pp. 577–580.

[18] M. H. Asghar and N. Mohammadzadeh, “Design and simulation of energy
efficiency in node based on MQTT protocol in Internet of Things,” in
International Conference on Green Computing and Internet of Things,
ICGCIoT, 2016, pp. 1413–1417.

[19] N. Singh and S. Singh, “Virtual Reality: A Brief Survey,” in Proc. of the
International Conference on Information Communication and Embedded
Systems (ICICES), Feb. 2017, pp. 1–6.

VOLUME 7, 2019 11

https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://uxmag.com/articles/whats-different-about-user-experience-design-for-the-internet-of-things
https://uxmag.com/articles/whats-different-about-user-experience-design-for-the-internet-of-things
https://www.redbooks.ibm.com/redbooks/pdfs/sg248054.pdf


A. A. Simiscuka et al.: Real-Virtual World Device Synchronisation in a Cloud-enabled Social Virtual Reality IoT Network

[20] Z. Zhang, M. Zhang, Y. Chang, E.-S. Aziz, S. K. Esche, and C. Chass-
apis, “Collaborative Virtual Laboratory Environments with Hardware in
the Loop,” in Cyber-Physical Laboratories in Engineering and Science
Education. Cham: Springer International Publishing, 2018, pp. 363–402.

[21] P. Lelyveld, “Virtual Reality Primer with an Emphasis on Camera-
Captured VR,” SMPTE Motion Imaging Journal, vol. 124, no. 6, pp. 78–
85, Sep. 2015.

[22] M. Narbutt, S. O’Leary, A. Allen, J. Skoglund, and A. Hines, “Streaming
VR for immersion: Quality aspects of compressed spatial audio,” in
Proceedings of the 2017 23rd International Conference on Virtual Systems
and Multimedia, VSMM, 2017, pp. 1–6.

[23] H. G. Kim, H. Lim, and Y. M. Ro, “Deep Virtual Reality Image Quality
Assessment with Human Perception Guider for Omnidirectional Image,”
IEEE Trans. Circuits Syst. Video Technol., vol. PP, pp. 1–11, 2019.

[24] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring Software Cities in
Virtual Reality,” in Proc. of the IEEE 3rd Working Conference on Software
Visualization, 2015, pp. 130–134.

[25] T. T. Le, D. V. Nguyen, and E. S. Ryu, “Computing Offloading over
mmWave for Mobile VR: Make 360 Video Streaming Alive,” IEEE
Access, vol. 6, pp. 66 576–66 589, 2018.

[26] C. G. Coogan and B. He, “Brain-Computer Interface Control in a Virtual
Reality Environment and Applications for the Internet of Things,” IEEE
Access, vol. 6, pp. 10 840–10 849, 2018.

[27] D. You, B. S. Seo, E. Jeong, and D. H. Kim, “Internet of Things (IoT) for
seamless virtual reality space: Challenges and perspectives,” IEEE Access,
vol. 6, pp. 40 439–40 449, 2018.

[28] M. Alessi, E. Giangreco, M. Pinnella, S. Pino, D. Storelli, L. Mainetti,
V. Mighali, and L. Patrono, “A Web Based Virtual Environment as a
Connection Platform between People and IoT,” in Proc. of the 2016 Inter-
national Multidisciplinary Conference on Computer and Energy Science
(SpliTech), 2016, pp. 1–6.

[29] Z. Lv, T. Yin, H. Song, and G. Chen, “Virtual Reality Smart City Based
on WebVRGIS,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1015–
1024, Dec. 2016.

[30] M. I. Choi, L. W. Park, S. Lee, J. Y. Hwang, and S. Park, “Design and
Implementation of Hyper-connected IoT-VR Platform for Customizable
and Intuitive Remote Services,” in Proc. of the 2017 IEEE International
Conference on Consumer Electronics (ICCE), 2017, pp. 1–2.

[31] A. R. Biswas and R. Giaffreda, “IoT and Cloud Convergence: Opportuni-
ties and Challenges,” in Proc. of the 2014 IEEE World Forum on Internet
of Things (WF-IoT), Mar. 2014, pp. 375–376.

[32] Y.-T. Lee, W.-H. Hsiao, C.-M. Huang, and S.-C. Chou, “An Integrated
Cloud-Based Smart Home Management System with Community Hierar-
chy,” IEEE Trans. Consum. Electron., vol. 62, no. 1, pp. 1–9, Feb. 2016.

[33] Y. Benazzouz, C. Munilla, O. Gunalp, M. Gallissot, and L. Gurgen,
“Sharing User IoT Devices in the Cloud,” in Proc.of the 2014 IEEE World
Forum on Internet of Things (WF-IoT), 2014, pp. 373–374.

[34] J. Delsing, J. Eliasson, J. Deventer, H. Derhamy, and P. Varga, “Enabling
IoT Automation Using Local Clouds,” in Proc. of the IEEE World Forum
on Internet of Things (WF-IoT), 2016, pp. 502–507.

[35] X. Hou, Y. Lu, and S. Dey, “Wireless VR/AR with Edge/Cloud Comput-
ing,” in Proc. of the 26th International Conference on Computer Commu-
nication and Networks (ICCCN), 2017, pp. 1–8.

[36] Y. Kang, H. Kim, and J. Kang, “Docker Based Computation Off-Loading
for Video Game Based Mobile VR Framework,” in Proc. of the 8th IEEE
International Conference on Software Engineering and Service Science
(ICSESS), 2017, pp. 123–125.

[37] M. E. Koltko-Rivera, “The Potential Societal Impact of Virtual Reality,”
Advances in Virtual Environments Technology: Musings on Design, Eval-
uation, and Applications, vol. 9, pp. 1–18, 2005.

[38] G. Kobayashi, M. C. Broens, M. E. Q. Gonzalez, and J. A. Quilici-
Gonzalez, “The Internet of Things and its Impact on Social Relationships
Involving Mutual Trust,” in Proc. of the 2015 IEEE International Sympo-
sium on Technology and Society (ISTAS), 2015, pp. 1–6.

[39] A. A. Simiscuka and G. M. Muntean, “Age of Information as a QoS Metric
in a Relay-Based IoT Mobility Solution,” in Proc. of the 14th International
Wireless Communications and Mobile Computing Conference (IWCMC),
2018, pp. 868–873.

[40] A. A. Simiscuka, C. H. Muntean, and G.-M. Muntean, “A Networking
Scheme for an Internet of Things Integration Platform,” in Proc. of
the IEEE International Conference on Communications Workshops (ICC
Workshops), 2017, pp. 271–276.

[41] A. A. Simiscuka and G.-M. Muntean, “A Relay and Mobility Scheme for
QoS Improvement in IoT Communications,” in Proc. of the IEEE Inter-

national Conference on Communications Workshops (ICC Workshops),
2018, pp. 1–6.

[42] A. A. Simiscuka, M. Bezbradica, and G.-M. Muntean, “Performance
Analysis of the Quality of Service- aware Networking Scheme for Smart
Internet of Things Gateways,” in Proc. of the 13th International Wireless
Communications and Mobile Computing Conference (IWCMC), 2017, pp.
1370–1374.

[43] A. A. Simiscuka and G.-M. Muntean, “Synchronisation between Real and
Virtual-World Devices in a VR-IoT Environment,” in Proc. of the IEEE
International Symposium on Broadband Multimedia Systems, 2018, pp.
1–6.

[44] P. Corcoran, “A Matter of Timing: Consumer Electronics and Network
Time,” IEEE Cons. Electronics Magazine, vol. 2, no. 4, pp. 20–25, 2013.

[45] “Adafruit IO,” 2018. [Online]. Available: https://io.adafruit.com/
[46] “Oculus Rift,” 2018. [Online]. Available: https://www.oculus.com/rift
[47] “Raspberry Pi,” 2019. [Online]. Available: https://www.raspberrypi.org/
[48] “Beeks Beacons,” 2017. [Online]. Available: http://bluvision.com/wp-

content/uploads/2017/09/Specs-BEEKs-Industrial_1.pdf
[49] “Alienware Aurora,” 2018. [Online]. Available:

https://www.dell.com/en-ie/shop/desktops-and-all-in-ones/alienware-
aurora/spd/alienware-aurora-r7-desktop

[50] “GlassFish,” 2018. [Online]. Available: https://javaee.github.io/glassfish/
[51] “JavaServer Faces,” 2018. [Online]. Available: https://javaee.github.io/

javaserverfaces-spec/
[52] “A-Frame,” 2018. [Online]. Available: https://aframe.io/

ANDERSON AUGUSTO SIMISCUKA (S’17)
is a Ph.D student with the Performance Engineer-
ing Laboratory, School of Electronic Engineering,
Dublin City University (DCU). He received the
B.Sc. degree in Information Systems in 2014 from
Mackenzie Presbyterian University, São Paulo,
Brazil. He has worked in several telecom and
software development projects in companies such
as Wittel (2010-2013), DCU/Ericsson (E-Stream
Project, 2014), Arkadin (2014) and IBM (2015).

His research is mainly focused on Internet of Things communications
performance and is funded by the Irish Research Council and DCU.

TEJAS MORESHWAR MARKANDE received
his Masters in Engineering degree from the School
of Electronic Engineering, Dublin City University.
He received the B.E. degree in Electronics and
Telecommunication in 2015 from University of
Pune, India. He has worked in two prominent
startups as embedded hardware and software de-
veloper (2015-2017). He was actively involved in
research that focused on designing, implementing
and testing a working model for IoT objects and

virtual reality integration with the use of IoT protocols.

GABRIEL MIRO-MUNTEAN (M’04–SM’17)
is an Associate Professor with the School of
Electronic Engineering, Dublin City University
(DCU), Ireland, and co-Director of the DCU Per-
formance Engineering Laboratory. He has pub-
lished over 300 papers in top-level international
journals and conferences, authored three books
and 18 book chapters, and edited seven additional
books. His research interests include quality, per-
formance, and energy saving issues related to mul-

timedia and multiple sensorial media delivery, technology-enhanced learn-
ing, and other data communications over heterogeneous networks. He is an
Associate Editor of the IEEE Transactions on Broadcasting, the Multimedia
Communications Area Editor of the IEEE Communications Surveys and
Tutorials, and a Reviewer for important international journals, conferences,
and funding agencies. He is a Project Coordinator for the EU-funded project
NEWTON http://www.newtonproject.eu.

12 VOLUME 7, 2019

https://io.adafruit.com/
https://www.oculus.com/rift
https://www.raspberrypi.org/
http://bluvision.com/wp-content/uploads/2017/09/Specs-BEEKs-Industrial_1.pdf
http://bluvision.com/wp-content/uploads/2017/09/Specs-BEEKs-Industrial_1.pdf
https://www.dell.com/en-ie/shop/desktops-and-all-in-ones/alienware-aurora/spd/alienware-aurora-r7-desktop
https://www.dell.com/en-ie/shop/desktops-and-all-in-ones/alienware-aurora/spd/alienware-aurora-r7-desktop
https://javaee.github.io/glassfish/
https://javaee.github.io/javaserverfaces-spec/
https://javaee.github.io/javaserverfaces-spec/
https://aframe.io/

	Introduction
	Related Work
	Multimedia IoT and Protocols
	VR Background
	VR and IoT Integration
	Cloud-Based IoT and VR Solutions
	Social Impact

	Solution Architecture
	Architecture Description
	Communication Process

	VRITESS Synchronisation
	Real Life Testbeds Description
	Local Network-Based Approach
	Cloud-Based Approach

	Conclusion and Future Work
	REFERENCES
	Anderson Augusto Simiscuka
	Tejas Moreshwar Markande
	Gabriel Miro-Muntean


