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Abstract

Cloud and IoT technologies have the potential to support applica- tions that are not strictly limited to technical fields.
This paper shows how digital fabrication laboratories (Fab Labs) can leverage cloud technologies to enable resource
sharing and provide remote access to distributed expensive fabrication resources over the internet. We call this new
concept Fabrication as a Service (FaaS), since each resource is exposed to the internet as a web ser- vice through REST
APIs. The cloud platform presented in this paper is part of the NEWTON Horizon 2020 technology-enhanced learning
project. The NEWTON Fab Labs architecture is described in detail, from system concep- tion and simulation to system
cloud deployment and testing in NEWTON project small and large-scale pilots for teaching and learning STEM subjects.

Keywords: Fabrication as a service (FaaS), Cloud architectures, Internet of the things (IoT), Machine to machine
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Introduction
Most developed countries are experiencing a shortage of
scientists; for example, the proportion of students gradu-
ating in STEM (Science, Technology, Engi- neering and
Mathematics) subjects in Europe has reduced from 12%
to 9% since 2000 [1]. There are strong evidences that
young people disengagement from STEM subjects
begins during secondary education [2] since students
perceive scientific subjects as difficult and they consider
science-related careers as less lucrative and more de-
manding compared to other disciplines. Govern- ments
worldwide are putting great efforts in order to reverse
this process and the European Union, in particular, has
made a huge investment to fund large scale technology-
enhanced-learning (TEL) projects like NEWTON in
order to foster the passion for scientific disciplines
among the younger generations. The goal of NEWTON
project is avoiding early student dropout from the scien-
tific stream, for this reason it is mainly targeted to

primary and secondary school students. NEWTON aims
at developing student-centered non-formal (i.e. out- side
the education system) and informal (i.e. based on self-
learning) teaching methodologies that leverage the latest
innovative technologies to deliver more effectively learn-
ing contents and make STEM subjects more appealing.
In such context, Fab Labs [3, 4] have been proven to be
an innovative and effective teaching tool to attract
students to STEM subjects. A Fab Lab is a small-scale
workshop with a set of flexible computer-controlled
tools and machines such as 3D printers, laser cutters,
computer numerically-controlled (CNC) machines,
printed circuit board millers and other basic fabrication
tools which can allow the student to experiment and to
prove theoretical concepts by prototyping. Thus, a Fab
Lab is a place where the students can learn with a
hands-on ap- proach based on experimentation and
where they can materialize their ideas in engaging and
stimulating ways and supervise the whole fabrication
process. The Fab Lab concept is gaining worldwide
interest and both governments and population are start-
ing to recognize the importance of digital fabrication
tech- nologies even as early as primary and secondary
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level education.1 A direct consequence is that the num-
ber of Fab Labs is continuously increasing and to date
there exists a worldwide network of more than 1100 Fab
Labs located in more than 40 countries, which are coor-
dinated by the Fab Lab Foundation.
The main factor that is actually limiting a wider diffu-

sion of the Fab Lab concept is the lab set up cost.2 Fabri-
cation machines and materials are expen- sive and not
all educational institutions, especially in primary and
secondary education streams may afford the costs to
start and especially maintain a Fab Lab. Surprisingly, all
the research efforts put to date in the digital fabrication
area have been aimed at demonstrating the effectiveness
of Fab Labs in education [5] and at incorporating digital
fabrication in the curricula [6–8]. However, to the best
of authors knowledge no attempt has been made to
address the challenges faced enhancing the Fab Lab
functionality by providing support for pervasive and
ubiquitous Internet access and resource sharing. That’s
when the concept of Fabrication as a Service (FaaS)
comes into play. FaaS has been introduced in [9] and is
an architecture designed to enable remote access to Fab
Labs as a Cloud-based service. This approach is a neces-
sary evolution of Fab Labs, allowing them to become
available to a wider community over the Internet.
As described in [9], the NEWTON Fab Lab platform

relies on a loosely- coupled set of microservices running
either on cloud or on the Fab Lab premises. These
microservices implement: (1) the communication layer
to interconnect all the networked Fab Labs, (2) the Fab
Lab software abstraction layer, and (3) the fabrication
machines software abstraction layer. Each microservice
ex- poses a set of REST (REpresentational State Trans-
fer) APIs (Application Programming Interface) used for
system integration and for communication with third-
party services and applications. These APIs enable the
development of application and protocols to implement
remote access and resource sharing of the underlying
digitally-controlled hardware (i.e. the fabrication ma-
chines). The cloud infrastructure acts as the Hub node
of a spoke-hub architecture where the interconnected
Fab Labs represent the spoke nodes. The Fab Lab infra-
structure can be accessed though a Fab Lab gateway that
implements the Fab Lab abstraction layer as well as
security and API requests rate-limiting policies. Each
machine in a Fab Lab is wrapped by a software abstrac-
tion layer that provides mechanisms to monitor the

machine status as well as the status of the queued jobs.
The Hub node keeps a registry of all the interconnected
Fab Labs. The registry includes information on Fab Lab
location, infrastructure, bill of materials and fabrication
machines’ load. The registry is updated in real-time
using machine-to-machine communication protocols.
The Cloud Hub acts also as a router that seamlessly
relays the incoming fabrication requests to the Fab Lab
that is geographically closer to requester’s location, has
availability of fabrication resources and matches the
machine and material types specified in the fabrication
request.
In this paper we dive deeper into the FaaS concept

and the design and de- velopment of the NEWTON Fab
Lab platform by analyzing in detail the soft- ware and
hardware architecture as well as the design tradeoffs.
The manuscript is organized as follows: Section 2
describes the system architecture and the service inte-
gration into Amazon AWS (Amazon Web Services) in-
frastructure. Each of the three tiers (i.e. cloud hub, Fab
Lab gateway and machine wrap- per) is analyzed in
depth and a comprehensive description of all the soft-
ware modules is provided. Section 3 reports the results
of the tests performed to stress the platform perform-
ance, the measured data has been used to build a simple
simulation model on top of CloudSim simulator3 in
order to per- form a rough estimation of the system
performance and to find possible system bottlenecks
under realistic operating scenarios. In Section 4 we
analyze the de- ployment costs of the architecture
described in this paper whereas, in Section 5, we evalu-
ate the educational impact of the designed platform and
present the data collected and the result obtained during
NEWTON small- and large-scale pilots. Finally, in Sec-
tion 6 we summarize our achievements, draw up some
conclusions and analyze possible related research topics
and future develop- ments.

System architecture
Most of the digital fabrication machines used in a stand-
ard Fab Lab deployment are not open source, this means
that hardware and software specifications are not avail-
able to developers and writing drivers and applications
for that equipment entails a serious challenge to reverse-
engineering the software in order to understand its be-
havior and write new open-source drivers and inter-
faces. Another major design constraint to NEWTON
Fab Lab is the lack of internet connectivity of the avail-
able fabrication machines. In order to over- come this
limitation a hardware and software wrapper must be
built on top of the fabrication equipment in order to
provide the system with the capability to expose a Fab

1“National Curriculum in England: Design and Technology
Programmes Study”, UK Department of Education, 2013, https://www.
gov.uk/government/publications/ nationalcurriculum-in-england-de-
sign-and-technology-programmes-of-study/
2The minimum deployment costs of a Fab Lab compliant with the Fab
Foundation (https://www.fabfoundation.org/) specifications can be as
high as 200.000 [$] 3http://www.cloudbus.org/cloudsim/
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Lab to the internet as a web service. We call this hard-
ware/software wrapper a Pi-wrapper since it is imple-
mented on a Raspberry Pi embedded computing board.
However, for security reasons, a machine is not directly
exposed to the internet but lies behind a Fab Lab Gate-
way. The Fab Lab Gateway dynamically collects in real
time the information from all the machine wrappers,
builds a snapshot of all the services available in the Fab
Lab and exposes them through a set of APIs that can be
consumed by the Cloud Hub application.
The NEWTON Fab Lab architecture is a three-tier

spoke-hub architecture in which the interconnected Fab
Labs (i.e. the spokes) can communicate through a cen-
tralized hub located on cloud premises. The digital fabri-
cation equipment of each Fab Lab is not directly
exposed to the internet but can be accessed through a
Fab Lab gateway that implement filtering and security
policies. Finally, each digital fabrication machine has a
software wrapper that exposes the underlying hardware
though a set of REST APIs. Both the Fab Lab gateway
and the machine wrapper are implemented using inex-
pensive off-the-shelf microcontroller boards. In our
specific case, we use Raspberry PIs boards to implement
the gateway and the machine wrappers; for this reason,
we also refer to them as Pi-Gateway and Pi-Wrapper re-
spectively. Fig. 1 depicts the simplified architecture of the
NEWTON Fab Lab infrastructure. In order to allow inter-
Fab Lab communication, each networked Fab Lab should
have at least one public IP address Addr:ePort. The
router/gateway maps the inbound traffic into a private

address pAddr:pPort by means of a Network Address
Table (NAT) and a Port Address Table (PAT). Similarly,
the router performs the same task on the outbound traffic
by forwarding it to the default gateway or by redirecting
the requests for a private address to the private network.
The message flow between the cloud application and the
networked Fab Labs is managed by a cloud-deployed mes-
sage broker that implements a publish/subscribe protocol.
Spoke and hub nodes form a Virtual Private Net- work
(VPN) in which the Fab lab gateway and the virtual
machine instances on cloud premises communicate se-
curely over the internet using private IP addresses though
an IPSec (IP Secure) tunnel. IPsec is a suite of protocols
for managing secure encrypted communications at the IP
Packet Layer. The cloud and Fab Lab gateways are the
tunnel endpoints deployed on local and cloud premises
respectively.

The cloud hub
The Cloud Hub is the centralized communication hub
for all the networked NEWTON Fab Labs, tightly inte-
grated into AWS (Amazon Web Services) web services
infrastructure. More specifically, the cloud hub infra-
structure requires the following AWS managed services:

1. Route 53 as the Domain Name Service (DNS).
2. S3 as the backend storage for the application

cluster.
3. Internet Gateway to expose to the internet the

underlying public infrastructure.

Fig. 1 NEWTON Fab Labs simplified system architecture
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Figure 2 depicts the minimum infrastructure require-
ments for the cloud hub. The deployment requires five
EC2 (Elastic Compute Cloud) instances. Two m3.medium
instances are necessary to deploy the service networking
infrastructure, whereas, three m4.large instances are ne-
cessary to deploy the cluster with the Platform as a Service
Infrastructure (PaaS) to manage the Fab Lab cloud
services. Digital fabrication services (i.e. the fabrication
machines soft- ware wrappers and the underlying hard-
ware) can be accessed through a set of REST APIs
described in [10]. The cloud service networking infrastruc-
ture is formed by:

– A VyOS4 software-defined router to forward the
incoming traffic from both the internet gateway and
the IPSec tunnel to the service cluster in the private
sub-network.

– A reverse proxy to route the traffic forwarded by the
VyOS router to the target service running on the
service cluster.

The VyOS router is also used to manage the cloud
end of the IPSec tunnel that connects the cloud hub to
the Fab Labs network. Thus, the cloud hub and the in-
terconnected Fab Labs form a unique VPN in which
cloud and on- premise services communicate over an
encrypted channel using private IPs.
The PaaS infrastructure is deployed on top of Flynn.5

Flynn can be considered as a grid of Docker containers, ra-
ther than a traditional cluster. Each host will run container-
ized services and applications that can be deployed and
scaled individually. Fig. 3 shows a simplified diagram depict-
ing a Flynn grid deployment across a cluster of three hosts.
Flynn architecture is split into two layers. Layer 0 provides
basic services such as host management, service discovery
and scheduling, whereas layer 1 implements the PaaS busi-
ness logic (GitHub interface, Slug Builder, Slug Runner,
etc.). Referring to Fig. 2, the layer 0 services are:

1. The Host Service (HS) that implements the interface
between Flynn ser- vices and Docker. The Host Service
is the only one that must run across all the Flynn hosts

2. The Scheduler (S). The scheduler distributes the
containers among the instances given the current state
of the grid and the resource allocation in each node.

The layer 1 services are:

1. The GitHub frontend (G). This module accepts Git
connections through SSH and Git pushes; then
deploys them in the Flynn grid.

2. The Controller (C) exposes APIs to control the
whole infrastructure.

3. The Router (R) is a TCP/HTPP router/load
balancer that distributes the incoming requests
through the instances deployed in the Flynn grid. In
order to implement a high-availability there must
be several instances of this module across all the
Flynn hosts.

4. The Slug Builder (SB) is a module that builds a slug
starting from a Git push received by the Flynn Git
front-end (G). A slug is a compressed and pre-
packaged copy of an application optimized for
distribution to the Flynn PaaS.

5. The Slug Runner (SR) is a module that allocates
and instantiates several Docker containers
(depending on the scaling parameters) to deploy
and execute the code contained in a slug.

6. The Application (A) is a module that
implements the application code (for example,
the Cloud Hub and the Service Registry in our
specific case).

The fab lab gateway
The Fab Lab gateway (i.e. the Pi-Gateway) is the entry
point to the local network and to the digital fabrication in-
frastructure of a Fab Lab. Fig. 4 depicts the Pi-Gateway
software architecture. The architecture is modular and
distributed over four layers. The Communication Layer is
a proxy server that implements the communication proto-
cols between the cloud hub and the gateway (HTTP and
HTTPS are both supported). The incoming requests are
forwarded to the API Wrapper Layer that implements
simple APIs to com- municate with the underlying Fab
Lab infrastructures and a simple reactive websocket proto-
col to update in real-time the Fab Lab status in the cloud
hub infrastructure. The proxy configuration is managed
by a command line interface (CLI). Both the CLI and the
API wrapper layer leverage the Middle- ware Layer func-
tions to implement the business logic and the communi-
cation protocols. Middleware provides primitive functions
to implement websocket communications, logging,
process management (using programmatically the APIs
provided by the PM26module), transactional e-mail (using
an AWS Simple E-mail Service client) and persistence
layer interfacing. Open API 2.0 (Swagger) support is also
integrated in the middleware layer and APIs specifi- cat-
ions are described in [11]. Finally, the Data Layer (persist-
ence layer) is used to store the proxy and the Fab Lab
configurations. We use a NoSQL model and Redis7 mod-
ule) as the key-value store.

4https://vyos.io
5https://flynn.io

6https://keymetrics.io/pm2/
7https://redis.io

Cornetta et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:12 Page 4 of 22

https://vyos.io
https://flynn.io
https://keymetrics.io/pm2/
https://redis.io


The machine wrapper
The Machine Wrapper (i.e. the Pi-Wrapper) provides the
connected machine with a software abstraction layer by
exposing the machine functionalities through a set of APIs.
Fig. 5 depicts the software architecture of the Pi- Wrapper.
The software architecture is modular and distributed over
five layers. The Communication Layer implements the
HTTP server and the APIs interface to manage and schedule
fabrication batches. The Presentation Layer implements the
user interfaces to set up and manage a connected fabrication
machine. An MVC (Model View Controller) programming
paradigm is used at this stage; namely, a route in the browser
triggers a controller function that dynamically generates and
renders an HTML view using the data stored in the persist-
ence layer (i.e. data base). The Application Layer implements
the business logic. The business logic and the user interface
rely on the middle- ware functions implemented in the
Middleware Layer. More specifically, the middleware in-
cludes custom and third-party methods to manage security
and authentication, machine to machine communications
and interfacing, HTML views rendering, system logging, data
base connection and access, and ADC (Analog to Digital
Converter) drivers to sample data from the machine moni-
toring circuit as described in [9]. Open API 2.0 (Swagger)
support is integrated in the application middle- ware, this
makes the Pi-Wrapper a very developer- friendly software
since APIs and data models documentation is embedded into
the application, in addition a developer can test the API
using the Swagger User Interface that is also embedded in
the Pi-Wrapper. Swagger Pi-Wrapper API specifications are
described in [12]. Finally, the Data Layer is used to store ses-
sion information as well as User and Machine data models.
We use a NoSQL model and MongoDB8 as the data store.

Machine to machine communication
The communications between client applications and
the remote NEWTON Fab Labs rely on a protocol stack
which includes a simple publish/subscribe protocol. The
fabrication equipment is accessed through the Fab Lab
Gate- way that routes incoming commands to a given
machine depending on both availability and the specific
task to be carried on. The communication protocol re-
lies on a server-to-server model in which some nodes
act as message brokers collecting the incoming messages
and re- laying them towards a destination node. A fabri-
cation job is routed to a networked Fab Lab by the
Cloud Hub message broker; however, the message bro-
ker on the cloud side has not direct visibility of the Fab
Lab network infrastructure. Its main task is to connect a
client to the Fab Lab infrastructure or to perform inter-
Fab Labs message routing. The networked machines in a
Fab Lab can be accessed through the Fab Lab Gateway

only. The gateway main task is routing the outbound
traffic to the networked equipment and managing intra-
Fab Lab communications. Fig. 6 presents a simplified
timing diagram that describes the communication be-
tween the cloud infrastructure and a networked Fab Lab.
The message exchange has four stages:

1. link establishment;
2. topic subscription;
3. communication;
4. disconnection (not illustrated for the sake of

simplicity).

Once the TCP links between the machine and the Fab
Lab Gateway on one side, and the Fab Lab Gateway and the
Cloud hub broker on the other side, have been established,
both the Gateway and the Hub subscribe to topics they are
interested in. The topic string is generated using the unique
name and connection ID sent by the server that initiates the
communications to the destination server during the link es-
tablishment. Both the link establishment and the subscrip-
tion phases are terminated by an ACK message (Init ACK
for the link establishment and Subscription ACK for the
subscription phase). In other word, the Fab Lab Gateway
and the Cloud Hub implement a double broker architecture:
the former collects all the incoming messages from the Fab
Lab machines whereas the latter collects all the incoming
messages from the networked Fab Lab Gateways. The
double broker architecture allows the implementation of
Fab Lab access and security policies and of custom mes-
sage filters mechanisms. Once the subscription phase has
terminated, the end nodes start exchanging messages. Each
published message can be acknowledged by an optional
Publication ACK message. The use of a Publication ACK is
mandatory in those cases when it is necessary to guarantee
the delivery of a message and to implement retransmission
mechanisms to increase the QoS of the protocol.

Test, modelling and simulation
The system infrastructure has been tested in real scenar-
ios through small-scale pilots that have involved the par-
ticipation of six schools and universities lo- cated in
three European countries as part of the EU-funded
NEWTON project. The test pilots have been used to
stress the system infrastructure and evaluate the per-
formance of the proposed algorithms for task scheduling
and fabrica- tion resources allocation. In order to detect
system peak performance, system infrastructure and
APIs have been also load tested using Locust.9 Locust
allows to simulate user behavior using a Python script.
We have designed a set of simple use cases that stresses

8https://www.mongodb.com/ 9Project Website: https://locust.io
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all the Fab Lab APIs and provides a unified picture of
the system performances.
The test scenario implements the use cases de-

scribed in Table 1. These use cases have been trans-
lated into a Python script that is parsed by Locust in
order to generate the requests for the infrastructure
under test. Locust can be further configured so that
the user behaviour described in that script can be as-
sociated to an arbitrary number of virtual users in
order to stress the system response under different
load conditions.

Load tests
The Fab Lab infrastructure described in the previous
sections has been load tested in the following emulated
scenarios:

1. 50 concurrent users with a hatch rate of 5 users per
second.

2. 100 concurrent users with a hatch rate of 5 users
per second.

3. 150 concurrent users with a hatch rate of 5 users
per second.

All the incoming requests are forwarded to the same
fabrication machine, each test has a duration of 2 mi-
nutes and, as mentioned before, each simulated user
performs the operations described in Table 1 which
means that the following HTTP requests are sent to the
Fab Lab APIs:

1. GET the available Fab Lab status.
2. POST a job to the available Fab Lab.
3. GET the status information of the submitted job.

Fig. 3 Example of Flynn grid deployment across three hosts

Fig. 2 Cloud Hub deployment on Amazon AWS infrastructure
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4. DELETE the submitted job.
5. GET the information of the jobs running in the

available Fab Lab.

The most time-consuming operation is the POST re-
quest to submit a fabrication job since it involves the fol-
lowing steps:

1. Uploading the image on the cloud hub.
2. Sending the image to the Fab Lab Gateway.
3. Sending the image to the target fabrication

machine.
4. Update the jobs queue in the fabrication machine.

Fig 7 shows the load tests results for the three scenar-
ios under test (i.e., the cases with 50, 100 and 150

concurrent users respectively). Fig. 7 a summarizes the
overall results for all the request types, whereas Fig. 7 b
depicts the results only for POST requests. Test results
are excellent, considering the Fab Lab infrastructure has
been deployed on inexpensive Raspberry Pi III boards.
For example, the 90% of the incoming requests are
served in maximum 680 ms for 50-user scenario, 1100
ms for the 100-user scenario, and 5100 ms for 150-user
scenario. Of course, as outlined earlier in this section,
the most time-consuming operations are the POST re-
quests whose delay can be as high as 9141 ms in the case
of 150 concurrent users. An overview of the measure-
ments performed using Locust is summarized in Tables
2, 3 and 4. The tables report the median, minimum,
maximum and average response time in milliseconds for
each one of the API called by our simulated scenario for

Fig. 5 Machine wrapper (Pi-Wrapper) software architecture

Fig. 4 Fab Lab Gateway (Pi-Gateway) software architecture
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all the test cases studied (namely for the 50-, 100- and
150-user load respectively). The measured values con-
firm the excellent performance already outlined by Fig.
6. The total average response times for the 50-, 100- and
150-user test cases are 452 ms, 568 ms and 1680 ms re-
spectively, whereas the maximum average response
times are 801 ms, 1158 ms and 3883 ms respectively. An
average response time of 3883 ms is acceptable and, ac-
cording to Fig. 7 a allows, on the average, the comple-
tion of the 100% of the requests for the 50-user scenario,
the 99% of the requests for the 100-user scenario and

almost the 80% of the total requests for the 150-user
scenario.

Platform modelling
The system stressed by the load tests described in Sec-
tion 3.1 is a minimum deployment formed by the Cloud
Hub located in the eu-central-1 AWS region (i.e., in the
Amazon AWS data center in Frankfurt) and a single
spoke node (i.e., the San Pablo-CEU Fab Lab located in
Madrid). Thus, in order to estimate the performances of

Table 1 Fab Lab modules test cases

Id Test case objective Test case description Expected result

1 Check the interface link between the
REST client and the Cloud Hub

Authenticate with the JWT token The user is authorized and can use submission APIs

2 Check the interface link between the
Cloud Hub and the Fab Lab Gate- way

Send a request to the Fab Lab
gateway

The user submits a job, the request is for- warded to the Fab Lab
gateway and the all the data bases are correctly updated

3 Check that a fabrication batch is
successfully delivered to a machine

Send the request to the machine
wrapper

The gateway forwards the requests to the wrapper and all the
databases are correctly updated

4 Check that the system correctly stores
all the fabrication requests

The user gets a list of the jobs he/
she has submitted to fabrica- tion

The user receives a re- sponse with the list of the submitted jobs
and the fab lab details

5 Check that a fabrica- tion batch can be
can- celled

The user cancels a fabrication batch The cancellation re- quest is delivered to the machine, the job is
cancelled and all the databases are correctly updated

Fig. 6 Overview of the Inter- and Intra-Fab Lab Messaging Flow
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larger deployments across several AWS regions, a simu-
lation model is necessary. The cloud infrastructure
under test, depicted in Fig. 8, is very complex and re-
quires up to six levels of AWS services (Route 53, Elastic
Load Balancing, Autoscaling, EC2 instances, S3 storage
and optionally, Cloudfront CDN services). This, in turn
entails several challenges tied to infrastructure and appli-
cation setup, administration, and behaviour predictabil-
ity. On one hand, the promise of scalability, redundancy
and on-demand service deployment makes a cloud im-
plementation a very appealing solution. On the other
hand, all these advantages come at the price of several
issues that can make cloud application development and
management a challenging task. More specifically, the is-
sues with cloud deployment are related to the following
impact factors:

– Performance: Disk IO operations can be a serious
issue and limit the performance of a cloud
deployment. In a cloud infrastructure, the network
and the underlying storage are shared among
customers. If, for example, another customer sends
large amounts of write requests to the cloud stor-
age system, your application may experience
slowdowns and its latency becomes unpredictable.
Moreover, also the upstream network is shared
among customer, so one can experience bottlenecks

there too. Unluckily, cloud vendors use to offer to
their customers large storage, but not fast storage.

– Transparency: Transparency and simplicity are
key factors when debug- ging either an
application or an infrastructure. Unfortunately,
cloud ser- vices are, in many cases very opaque
and tend to hide underlying hardware and
network problems. Cloud infrastructure is a
shared service, and, for this reason, cloud users
may experience issues that do not occur in dedi-
cated infrastructure. More specifically, cloud
infrastructure customers, share hardware
resources such as CPU, RAM, disk and network,
thus the workload of other users can saturate a
computing node and heavily affect the
performance of your application.

– Complexity and scalability: Fig. 8 gives an idea of
the complexity of the cloud architecture that has
been deployed to ensure NEWTON Fab Labs
connectivity. This entails the interaction of up to six
different AWS service layers that require expertise
for set-up and configuration. Moreover, Elastic Load
Balancing and scalability are not straightforward in
AWS and require the deployment and configuration
of additional services (namely, CloudWatch and
CloudFormation) that incur extra costs and
complexity.

Fig. 7 Percentage of Requests Completed in a Given Time Interval a Total Requests, and b POST Requests

Table 2 Summary of System Performance for 50 Users Load (values are in ms)

API call Median min 50 users avg.

max

GET /fablabs 220 137 2990 313

GET /fablabs/fablab:id/jobs?job = job:id 205 139 664 246

DELETE /fablabs/fablab:id/jobs?job = job:id 438 285 3508 546

GET /fablabs/jobs 210 139 3370 354

POST /fablabs/jobs?machine = type&lat = .. . 560 374 3673 801
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Finally, as mentioned in Section 2.1, we have deployed a
PaaS (Platform as a Service) infrastructure on top of the
cloud infrastructure depicted in Fig 8. The PaaS simplifies
application and service deployment in a cloud environ-
ment but adds other software layers and additional com-
plexity to the underlying infrastructure, making the
application behaviour even more unpredictable. In order
to build a simulation model as close as possible to the real
behaviour of the cloud infrastructure, we have followed
the steps reported in the sequel:

1. We have instrumented the Cloud Hub server in
order to measure the server latency to process an
incoming request.

2. We have developed a fake client that performs
fabrication requests at ran- dom times and have
measured the elapsed times from request arrival to
request dispatch to the selected Fab Lab. This time
represents the server latency that is necessary to serve
a request.

3. We have performed latency measurements for
several server configurations, scaling the number of
containers allocated to the database and to the
Cloud Hub application.

4. We have used the measured data to build a simple
regression model to predict the server latency as a
function of the incoming requests and of the
number of allocated containers.

5. We have deployed a test infrastructure across several
AWS data centers in order to ensure the maximum
geographic coverage as depicted in Fig. 8. The Fab
Lab network implements a spoke-hub architecture in
which each spoke relies on the Registry Server of the
Cloud Hub for service detection and trac routing.

6. We have performed several measurements on the
cloud infrastructure in order to determine latency
and bandwidth across the networked Data Cen- ters.

7. We have used RIPE Atlas10 data to build a latency
and bandwidth model for the connections among a
client and a Data Center and a Data Cen- ter and

the target Fab Lab for each geographic region
covered by AWS infrastructure.

8. We have used the experimental data gathered in
Steps (6, 7) and the simple predictive model
developed in Step (4) to build a delay model for the
NEWTON Fab Lab infrastructure.

9. We have built an ad-hoc simulator on top of
CloudSim [13] to simulate the behavior and the
performance of the NEWTON Fab Labs network
under different load conditions and using the delay
model implemented at step (8).

Cloud hub delay estimation
The Cloud hub server has been instrumented in order to
capture the the incom- ing POST requests and to meas-
ure the time elapsed from the request arrival and its sub-
sequent forwarding to the selected Fab Lab. The
measurements have been performed for several request-
ing users and server configurations. For each simulation
set up the measurements have been performed 10 times
at random intervals. We assume that the number n of
requesting users is a power of 2 with 1 ≤ n ≤ 64 and that
the number c of Docker containers allocated to the
Cloud hub server is also a power of 2 with 1 ≤ c ≤ 8.
For each configuration under test we compute the mean,
the median, the standard deviation and the geometric
mean of the measured latencies. The measurements are
reported in Tables 5, 6, 7 and 8. Tables 5, 6, 7 and 8
summarize the statistical distributions of the measured
delays for several application deployments. As also ob-
served in [9], the measured values exhibit a high stand-
ard deviation. Moreover, observing the minimum, the
median and the maximum values, one can infer that the
measured latencies have a tail distribution (either log-
normal or Pareto). This tail behaviour, as reported in
[14], is typical for networked and internet appli- cations.
More specifically, we have found that the distribution of
the measured values, whose statistical behaviour is sum-
marized in Tables 5, 6, 7 and 8, matches a Pareto type I
distribution.11 Due to the high dispersion of the

10https://atlas.ripe.net

11The experimental data has been open-sourced and is available at
https://github.com/ gcornetta/data

Table 3 Summary of system performance for 100 Users Load
(values are in ms)

API call median min 100 users avg.

max

GET /fablabs 220 137 3515 347

GET /fablabs/fablab:id/jobs?job = job:id 212 137 623 256

DELETE /fablabs/fablab:id/jobs?job = job:id 568 285 4803 800

GET /fablabs/jobs 210 138 3211 282

POST /fablabs/jobs?machine = type&lat = ..
.

830 398 5233 1158

Table 4 Summary of System Performance for 150 Users Load
(values are in ms)
API call median min 150 users avg.

max

GET /fablabs 280 138 3786 478

GET /fablabs/fablab:id/jobs?job = job:id 285 141 3679 504

DELETE /fablabs/fablab:id/jobs?job = job:id 3750 320 7600 3164

GET /fablabs/jobs 230 140 2948 372

POST /fablabs/jobs?machine = type&lat = .. . 3900 502 9141 3883
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measured data, the mean values are not meaningful and
may lead to wrong conclusions since the arithmetic
mean is heavily affected by the outliers. A more objec-
tive analysis must rely on the minimum and median
values of the latency as well as on its geometric mean
since, unlike arithmetic mean, it is less sensitive to the
effect of the outliers. Analyzing Tables 5, 6, 7 and 8 as a
whole, one could easily observe that the minimum, the
median and the geometric mean of the measured delays

decrease as expected (with some outliers) as the number
of allocated containers scales up. However, this is not
the case for the maximum delays. As mentioned before,
Downey [14] showed that this high variability is very
typical in internet applications. In our specific case, the
high dispersion of the measured values is due to the un-
predictable latency introduced by the cloud infrastruc-
ture. As pinpointed in Section 3.2, a cloud deployment
has some drawbacks that arise from the fact that several

Fig. 8 NEWTON Fab Labs global infrastructure deployment

Table 5 Cloud Hub latency (in ms) with one container allocated
to the appli- cation

Users Requests Latency

mean median min max std.
dev.

geometric
mean

1 10 1815 1307 513 4294 1307 1424

2 20 1935 1448 525 5132 1560 1418

4 40 1636 1122 516 5298 1388 1238

8 80 1592 984 477 5280 1386 1189

16 160 1368 871 474 6636 1184 1048

32 320 1302 898 473 6654 1073 1034

64 640 1273 936 458 5742 881 1052

Table 6 Cloud Hub latency (in ms) with two containers
allocated to the application

Users Requests Latency

mean median min max std.
dev.

geometric
mean

1 10 4090 618 469 19.187 6607 1420

2 20 4595 615 476 17.288 5346 1792

4 40 1685 538 469 12.560 2815 868

8 80 2746 599 458 15.646 3989 1178

16 160 3477 601 447 24.968 5484 1015

32 320 1016 563 448 14.329 1425 752

64 640 930 540 446 17.391 1616 684
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customers are sharing the same virtualized hardware
and network infrastructure. Consequently, the perform-
ance of a cloud application is heavily affected by the
other customers’ application that are loading the under-
lying infrastructure at the same time. We have deliber-
ately performed our measurements at random times to
trigger this variable behavior and the effect of the other
AWS customers application load on the performance of
our platform. To this latency, we should also add the la-
tency introduced by the virtual networking routing infra-
structure de- ployed by Flynn. However, recall that the
impact of the maximum delay on the overall perform-
ance is minimum; since, in a tail distribution the prob-
ability of a high delay is very low.

Communication latency and bandwidth
In order to build a realistic simulation model, we
need to estimate communica- tion latency and band-
width among the nodes that form the Fab Lab net-
work as well as the maximum concurrency level that
each node can support. This goal is accomplished
through the following steps:

– We estimate the network latency Lcj from client to
Data center j and Lfj Fab Lab to Data Center j in the
same AWS region. To do this, we use the real
measurements provided by RIPE Atlas network.
RIPE Atlas is a public network located in the last
mile and formed by more than 16.000 measurement
probes capable of measuring connectivity between
internet endpoints on demand.

– We estimate the network uplink and downlink
bandwidth between client and Data Center j
(Buplink,cj and Bdownlink,cj respectively) and Fab Lab
and Data Center j (Buplink,fj and Bdownlink,fj
respectively) in the same AWS region. To do this,
we use the Clouharmony speed test service.12 How-
ever, this service allows measuring the desired

parameters only between the client browser and the
target Data Center. This means, that we are able to
track performance only within Europe and must make
the simplifying assumption that the network
performances within the same AWS region are
approximately the same using the measurements
performed in Europe as the reference values.

– We measure the Data center i to Data center j network
latency Lij using ping and traceroute. Traceroute is even
better than ping since it allows testing the response
time of each network segment along the path. There-
fore, this tool can not only measure but also locate the
latency across the routers that form the packets path.

– We measure the Data center i to Data center j
uplink and downlink band- with (Buplink,ij and
Bdownlink,ij respectively) using iPerf3 tool.

The delay D of the system response after a fabrication
(POST) request has been issued is computed as follows:

D ¼ Lcj þ tuplink;cj þ Ljk þ tuplink;jk þ Lkj þ tuplink;kj

þ Ljf þ tuplink;cj þ Lfj þ tuplink;fj þ Ljc þ tuplink;jc

ð1Þ
where j denotes a Datacenter located in a spoke node,
whereas k denotes the Data center located in the hub
node. The delay D of a response is hence the packet
round-trip time necessary to follow the path the goes
from the client to the spoke node, from the spoke to the
hub node and then to the spoke again, from the spoke
to the selected fab lab and then to the spoke again, and
finally to the client. Observe that the data transfer time
tij between nodes i and j in Equation 1 is computed as:

tij ¼ Sij
Bij

ð2Þ

where Sij and Bij represent, respectively, the number of
bytes transmitted and the measured bandwidth between12https://cloudharmony.com/speedtest

Table 7 Cloud Hub latency (in ms) with four containers
allocated to the application

Users Requests Latency

mean median min max std.
dev.

geometric
mean

1 10 798 501 477 2660 757 644

2 20 1418 527 477 7521 2016 816

4 40 1852 549 478 12.302 2731 1002

8 80 2260 608 443 12.944 3100 1153

16 160 2613 698 465 12.944 3500 1251

32 320 1750 509 446 12.069 2566 907

64 640 1190 508 447 14.704 2081 710

Table 8 Cloud Hub latency (in ms) with eight containers
allocated to the application

Users Requests Latency

mean median min max std.
dev.

geometric
mean

1 10 2375 764 478 9162 3035 1272

2 20 1702 678 481 5553 1674 1112

4 40 1419 756 475 11.542 2102 935

8 80 1483 525 448 14.571 2391 879

16 160 2226 611 453 19.745 3727 1165

32 320 1550 535 454 14.341 2429 902

64 640 845 507 436 15.895 1415 631
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nodes i and j. Table 9 summarizes the average latencies
measured from client to Data center from different
world regions.
Table 10 reports the uplink and downlink bandwidth be-

tween a client and a Data center located in the same AWS
region. More specifically, these mea- surements refer to a
client and a Data center located in Europe since, as we
pointed out earlier, the Cloudharmony speed test service
only allows perform- ing measurements from the client
browser to the target Data center. We will use the values
of Table 9 as reference for all the AWS supported region
that form the NEWTON Fab Lab network architecture.
Table 11 reports the Data-center-to-Data-center latency.

For each possible connection, we report minimum, aver-
age and maximum latency as well as the standard devi-
ation with respect the average latency.
Finally, Table 12 summarizes the measured uplink and

downlink band- widths for the Data center to Data cen-
ter connections.

Concurrency level
We use Apache Benchmark13 to estimate the maximum
concurrency level that can be effectively borne by a node of
the NEWTON cloud infrastructure. This allows us to esti-
mate the maximum number of concurrent requests that can
be served by the cloud infrastructure and to configure suit-
ably the simulator that models NEWTON Fab Lab infra-
structure. The Cloud Hub APIs provide a root (/) endpoint
that supports both HTTP and HTTPS protocols and returns
a response with a 200-status code and a body with an empty
JSON (JavaScript Object Notation) object. We use this end-
point to ping the Cloud Hub sever; however, we can also
use the same endpoint to perform simple load tests on our
infrastructure. Nonetheless, you have to keep in mind that
the result obtained in this way are optimistic since the au-
thentication server and the underlying data base are not
stressed. Although Apache Benchmark tool generates very
detailed reports, we are only interested in detecting which is
the maximum number of concurrent requests that breaks
our server leading to a timeout error. In order to do this, we
stress our server during a prolonged period with an increas-
ing number of concurrent requests until it breaks. Table 13
summarizes the percentiles measured when a minimum
cloud deployment (with only one container allocated to the
cloud hub application) is stressed by 20.000 requests with
concurrency levels 10, 50 and 100 respectively. Observing
the percentiles of the measurements, we note that in all the
scenarios under test the response delays exhibit a tail distri-
bution. In addition, increasing the concurrency level of the
incoming requests leads to larger tail delays, being 100 the
maximum concurrency level that can be supported by the
cloud configuration under test. However, the measurements

carried out are qualitative and are only useful to set-up our
simulation model with reasonable values. In fact, the mea-
surements performed have been carried out just for a short
period of time, thus they do not consider the delay variabil-
ity of the cloud infrastructure as pointed out previously.
Moreover, the measured times refer to the response latency
for a simple API endpoint that returns a 200-OK response;
consequently, they do not consider the extra latency to ac-
cess to the underlying data base to retrieve the Fab Lab in-
formation. For all the aforementioned reasons, it seems
reasonable to assume that, in a real deployment, the Fab
Lab infrastructure can support without problems up to 50
concurrent accesses and manage approximately 1000 re-
quests per second (by scaling up the number of containers
allocated to the cloud application).

Simulator implementation and simulation results
The measurements performed on the Cloud Hub infra-
structure reported in Tables 5 to 8 show, as expected, non-
normal distribution of the measured data that seems loosely
correlated to the number of requests and the number of
containers allocated to the application, which makes very
difficult to make reliable predictions of the Cloud Hub ap-
plication latency. Lognormal and Pareto distributions are
those that better model server response time [14]. For this
reason, the proposed prediction scheme does not predict
the latency of the Cloud Hub application; this would make
no sense, since, as stated before in a cloud environment
several customers share the same network and infrastruc-
ture which makes very hard to predict the server behaviour
in a given instant. What we do instead, is using the mea-
sured data to predict the shape of a type
I Pareto distribution that models the performance of

our cloud infrastructure under different load conditions
and number of allocated containers. We then use the
prediction to generate, in our simulator, a random la-
tency X(r, n) that is a function of the number r of in-
coming requests and of the number n of allocated
containers, with that Pareto distribution starting from a

Table 9 Summary of the latencies (in ms) of client-to-Data
center connection

World region AWS Data center Location Average Latency

North America us-east-1 N. Virginia 43

Central America 71

South America sa-east-1 Sao Paulo 54

Europe eu-central-1 Frankfurt 29

Asia ap-southeast-1 Singapore 93

Oceania 20

Africa 451

13https://httpd.apache.org/docs/2.4/programs/ab.html
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uniform random variable U ∈ (0, 1) using the following
equation:

X r; nð Þ ¼ x̂i r; nð Þ
1−Uð Þ1=α̂ r;nð Þ ð3Þ

Where βˆ(r, n) = x̂ i(r, n) is the prediction of the Pareto
distribution scaleparameter and α̂(r, n) is the prediction
of the Pareto distribution shape parameter. Both βˆ and α̂
are computed using a simple regression model as a func-
tion of r and n. The simulation software has been built
according to the following hypothesis:

1. The CPU load of each instance of the cluster must
not exceed the 50%.

2. The requests are evenly distributed among the
cluster instances.

3. The incoming requests are evenly distributed within
a given instance among blocks of 8 Docker
containers, being 64 the scaling threshold.14

4. The cluster minimum configuration can manage up
to 50 concurrent ac- cesses.

The following pseudo-code snippet describes the block
allocation and latency estimation process implemented
by our simulator:

The algorithm estimates the delay of the infrastructure
response and follows the steps described next. First an

array to hold the estimations of the response delay is ini-
tialized (line 1). Afterwards, the number of incoming re-
quests is computed and the number of containers
necessary to manage all the incoming requests is allo-
cated in each of the virtual machines that form the clus-
ter (lines 3 to 7). Then, the number of requests that
must be forwarded to each allocated block of containers
is computed (line 8). After that, for each allocated block,
the shape of the Pareto distribution of the possible de-
lays is computed (lines 9 to 13). Recall that, as stated be-
fore, the Pareto distribution shape and scale parameters
are computed by performing a multivariate linear regres-
sion on the measured data whose statistics are summa-
rized in Tables 5, 6, 7 and 8. Finally, the values of the
shape and scale parameters for the given number of re-
quests and allocated containers are used to estimate the
system response latency using Equation 3.
Thus, our simulator relies on the measurements re-

ported in Sections 3.3 to 3.5 to build a network band-
width and latency model and on Equation 3 to estimate
the delay of the spoke and hub nodes taking into ac-
count the variabil- ity introduced by the cloud shared in-
frastructure. The overall system delay, i.e. the packet
round-trip time from a fabrication request issued by a
client until the system acknowledge is computed using
Equation 1. Experiments have been designed to analyze
the behaviour of the NEWTON Fab Lab infrastructure
with the following users’ distribution: 250, 500, 1000,
and 1500. Each user can issue from one to five requests;
moreover, for each load configuration, the number of
containers allocated to the application will scale as mul-
tiples of 8 from 8 to 128 (for 16 possible configurations).
Finally, the simulated infrastructure must cover requests
from four AWS availability zones (Europe, North and
Central America, South America and Asia-Pacific) in
order to ensure a globally optimal service to all the
world regions. Table 14 summarizes the experiments
configurations. The variable simulation parameters are
the num- ber of users, the number of requests per user,

14This design choice is due to the fact that our simple prediction
functions are defined for 1 ≤ r ≤ 64 requests and 1 ≤ n ≤ 8 containers.
Also, consider that Flynn does not natively support the container
autoscaling feature implemented by our simulator. In order to enable
container autoscaling you should use other container orchestration
platforms such as DC/OS or Rancher instead of Flynn, provided you
may afford higher deployment costs.

Table 10 AWS uplink and downlink bandwidths (Mb/s)

Service Mean Median Fastest Slowest Std. Dev. `Data transf.

Uplink Cloudfront 6,26 6,19 11,04 3,72 1,95 5,13 MB

eu-central-1 4,74 4,47 6,31 3,76 0,7 4,4 MB

Downlink Cloudfront 50,13 43,11 107,46 10,64 26,24 2,62 MB

eu-central-1 8,89 7,96 19,33 4,04 4,17 2,54 MB

Table 11 Summary of the hub-to-spoke latencies (ms)

Connection minimum average maximum std. dev.

eu-central-1 - us-east-1 87,95 88,121 88,958 0,377

eu-central-1 - sa-east-1 226,968 227,837 233,604 1634

eu-central-1 - ap-southeast-1 165,083 227,837 165,637 0,312
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and the number of containers allocated to each in-
stance of the cluster. All the other parameters are
fixed. This means that for each possible user config-
uration 80 experiments must be performed (i.e. the
number of requests per user times the number of
possible containers configurations). For the sake of
simplicity, we also assume a uniform user distribution
among different AWS regions.
The scaling threshold is set to 1024 requests, i.e. the

request count per tar- get of each Elastic Load Balancing
(ELB) target group must be kept as close as 1024 for the
Autoscaling group.15 More specifically, assume that you
have configured an Autoscaling group with a minimum
of three instances (i.e. the minimum PaaS cluster config-
uration) and a maximum of six instances within an ELB
group of a given AWS region. Setting a threshold of
1024 means that each instance of your cluster should re-
ceive approximately 1024 requests. If the overall number
of incoming requests is larger, the number of instances
should be scaled up to match the target threshold as
close as possible. For example, if the cluster has three in-
stances and the number of incoming requests is, say
3800, the system should scale up by one instance (i.e.
from three to four), so that each instance handles 3800/
4 = 950 requests. Finally, note that with the simulation
set up depicted in Table 14, the maximum number of
incoming requests from a given region do not exceed

5000; thus, with a threshold of 1024 it is not necessary
to have more than five virtual machines in the Autoscal-
ing group. Prior to running all the experiments, we have
to make sure that the mathematical model we have de-
veloped for the cloud application behaves as expected.
To do this we simply check that the simulated latency of
the NEWTON cloud infrastructure matches a Pareto
distribution. After running all the simulations whose set-
up is detailed in Table 14 we obtain the Pareto-like dis-
tribution of the response latency depicted in Fig. 9. Re-
call that, as detailed in Table 14, our simulation scenario
assumes fabrication requests with a 5 MB attachment
(since this is the typical image le size of a design submit-
ted for fabrication). In addition, we have also assumed
that the users (and hence the service requests) are evenly
distributed among all the Data centers that form the
NEWTON Fab Lab cloud infrastructure.
Table 15 represents the percentiles for the distribution

of Fig. 9. Observe that 50% of the requests are served
within 8000 ms and 99% of the requests within 38.000
ms, being 49.000 ms the worst-case simulated delay.
These are indeed excellent results considering that:

– As highlighted earlier in this paper, cloud
infrastructure is shared among many customers,
leading to very variable delays.

– The simulated latency also includes the transmission
time of the design le (assumed to be 5MB) attached
to a request (that must go from the client to the
spoke or hub node of NEWTON infrastructure and
finally to the target Fab Lab).

– In the worst-case scenario the communication delay
depends on the follow- ing path: client - spoke - hub
- spoke - Fab Lab - spoke - client. Thus, the latency
of a response can be very high due to the
communication overhead introduced by each node
in the communication path.

15Please note that in a real (i.e. not simulated) AWS deployment you
need to enable the CloudWatch service to measure the metrics
necessary to trigger autoscaling and the CloudFormation service to
create and deploy an instance of the PaaS cluster node.

Table 12 Summary of the Inter-Data center uplink and
downlink bandwidths (Mb/s)

Connection minimum average maximum std. dev.

Uplink eu-central-1 - us-
east-1

17,4 37,59 69,80 18,35

eu-central-1 - sa-
east-1

7,39 18,88 35,5 8,58

eu-central-1 - ap-
southeast-1

3,57 5,91 8,07 1,74

eu-central-1 - eu-
central-1

21,9 82,89 188 49,2

Downlink eu-central-1 - us-
east-1

15,8 35,23 67,1 18,19

eu-central-1 - sa-
east-1

6,71 15,82 33,4 8,45

eu-central-1 - ap-
southeast-1

3,34 5,67 7,89 1,76

eu-central-1 - eu-
central-1

20,4 80,73 185 48,72

Table 13 Summary of the response times (in ms) for 20.000
incoming requests

Percentile Concurrency level

10 reqs. 50 reqs. 100 reqs.

50% 45 44 46

66% 46 45 48

75% 46 47 49

80% 47 48 51

90% 49 51 57

95% 64 60 64

98% 74 70 71

99% 80 74 85

100% 234 476 851
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After running the set of experiments described in in
Table 14, for each Data center in the network, we ob-
tain the performance estimations summarized from
Table 16, 17, 18, 19, 20 and 21. For each simulation
scenario and Data center, we report minimum, max-
imum, average, median and standard deviation of the
simulated latency.
Observing the simulation results we can easily infer

that the cloud system infrastructure behaves as expected
since:

1. The response delay increases with the number of
requests.

2. The Europe Data center is the one that exhibits the
longest delays because it is the hub of our
infrastructure and must always process all the
incoming requests.

3. The Data center latency exhibits a high variability,
which reflects the performance fluctuations of the
cloud infrastructure due to resource and network
sharing with other customers as outlined
previously.

4. The response latency exhibits a Pareto-like
distribution, which is typical of internet
networked systems.

Infrastructure costs
The NEWTON infrastructure must comprise four
Data Centers to ensure max- imum coverage in all
the AWS supported regions. The Data Centers im-
plement a spoke-hub architecture being the Frank-
furt node (eu-central-1 AWS region) the hub.
Spokes must be located in United States (eu-east-1

Table 14 Experiments conguration

Num. of users Reqs. per user Scaling threshold AWS zones Data transfer Virtual machines Num. of containers Num. of ex- periments

250 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

500 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

750 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

1000 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

1250 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

1500 1 to 5 1024 4 5 MB 3 to 5 8 to 128 80

Total: 480

Fig. 9 Distribution of the response latency for NEWTON Fab Lab infrastructure
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AWS region), South America (sa-east-1 AWS region)
and Singapore (ap-southeast-1 AWS region). The
main infrastructure and application (i.e. the registry
service, the Fab Lab monitoring service, the Fab Lab
connection/routing service) is hosted on the hub,
whereas the spokes only run a simple client to query
the service registry and the router. With this ap-
proach we limit the more expensive vir- tual ma-
chines (i.e. the m4.large instances) to the network
hub, whereas the spokes may rely on cheaper virtual
machines (i.e. t2.micro instances).

In its minimum configuration, the NEWTON cloud
infrastructure relies on the following Amazon AWS
services:

– Between five and eight Elastic Cloud Computing
(EC2) instances.

– Between five and eight EBS volumes allocated for
each EC2 instance.

– Route53 DNS service.
– S3 storage to implement the blobstore for the PaaS

infrastructure.

Table 15 Percentile table of the simulated NEWTON Fab Lab
cloud infrastructure latency

Percentile Latency (in ms)

50% 8000

75% 13.000

95% 26.000

98% 33.000

99% 38.000

100% 49.000

Table 16 Summary of the Data centers performance (250 users
scenario)
250 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North America 1180,232 2166,382 1536,937 1492,192 260,5785

South America 1480,398 2631,942 1862,479 1810,273 287,6596

Europe 512,908 2337,825 1225,211 1229,900 496,164

Asia 1427,063 2573,956 1743,349 1686,752 248,489

2 North America 1174,556 3435,155 1823,345 1636,974 582,893

South America 1473,397 3543,834 2039,604 1793,743 555,022

Europe 517,500 3684,718 1973,901 1941,781 911,460

Asia 1424,840 3605,576 2024,244 1846,611 552,230

3 North America 1167,325 3447,676 2113,145 2018,975 710,833

South America 1478,913 3917,435 2425,339 2256,656 689,243

Europe 511,296 5764,768 2751,802 2660,549 1388,190

Asia 1424,572 3756,265 2380,386 2318,383 688,096

4 North America 1175,352 4589,306 2537,563 2589,849 973,893

South America 1479,510 5110,657 2884,306 2905,342 1007,991

Europe 513,610 6938,318 3545,308 3533,942 1829,079

Asia 1423,269 4872,186 2792,513 2836,489 989,392

5 North America 1176,847 5909,246 2883,455 2792,216 1159,170

South America 1476,370 6457,0 3185,500 3106,307 1159,664

Europe 511,856 8673,179 4331,592 4394,416 2294,913

Asia 1423,586 5972,823 3098,333 2975,666 1156,140

Table 17 Summary of the Data centers performance (500 users
scenario)

500 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North
America

11.171,
216

3248,723 1763,
764

1547,
554

568,527

South
America

11.494,
611

3630,778 2023,
069

1815,
374

550,802

Europe 510,611 3658,985 1932,
185

1916,
536

909,226

Asia 11.423,
006

3880,179 2069,
973

1889,
942

601,366

2 North
America

1167,675 5000,018 2604,
078

2661,
927

992,870

South
America

1481,945 5126,979 2833,
959

2873,
844

985,414

Europe 511,797 6975,213 3545,
902

3545,
941

1830,
686

Asia 1424,863 4998,243 2797,
110

2863,
283

973,237

3 North
America

11.168,
731

6233,630 3286,
802

3075,
798

1413,
408

South
America

1475,709 6303,037 3609,
541

3454,
683

1408,
638

Europe 514,135 10.068,
403

5116,
894

5136,
429

2744,
959

Asia 1426,472 6394,497 3592,
804

3506,
942

1418,
461

4 North
America

1168,662 7388,613 4037,
860

3993,
191

1824,
065

South
America

1477,159 7632,664 4363,
211

4309,
609

1822,
204

Europe 512,533 13.353,
070

6693,
741

6690,
949

3656,
539

Asia 1435,875 7619,449 4360,
002

4294,
972

1826,
796

5 North
America

1176,969 10.096,
916

4870,
046

5050,
873

2308,
716

South
America

1470,213 10.225,
214

5201,
128

5330,
726

2307,
945

Europe 518,839 16.536,
625

8284,
242

8316,
807

4569,
921

Asia 11.421,
508

10.161,
668

5110,
942

5292,
487

2309,
471
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– Optionally, the CloudFront content delivery network
(CDN) service.

The EC2 instances that form the PaaS infrastructure
are configured to be autoscaled, according to the plat-
form load, between three and five instances. This, in
turn, requires setting-up other two AWS services:

1. CloudWatch to monitor platform metrics and
trigger the autoscaling.

2. CloudFormation, to dynamically build and deploy
new instances of the PaaS platform.

CloudWatch has a free tier. Each month, AWS
customers receive 10 met- rics (applicable to detailed
monitoring for Amazon EC2 instances or custom
metrics), 10 alarms, 5 GB of log size, 5 GB of ar-
chived log size, 3 dash- boards and 1 million API re-
quests at no charge. This should be sufficient for
NEWTON cloud infrastructure to operate safely

Table 18 Summary of the Data centers performance (750 users
scenario)

750 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North
America

1175,
323

3613,718 2158,182 2060,206 711,077

South
America

1471,
626

3799,482 2382,724 2290,250 694,333

Europe 512,374 5395,883 2755,394 2693,572 1381,
900

Asia 1423,
913

3663,194 2346,690 2238,775 693,801

2 North
America

1172,
743

6278,292 3300,360 3159,586 1415,
019

South
America

1477,
621

6518,006 3613,126 3387,920 1411,
306

Europe 510,556 10.057,
942

5126,439 5124,844 2743,
735

Asia 1423,
959

6364,076 3524,265 3298,141 1397,
511

3 North
America

1167,0 8739,862 4457,050 4280,026 2105,
332

South
America

1494,
241

8798,478 4788,303 4603,014 2094,
380

Europe 510,893 15.066,
760

7514,584 7579,007 4123,
679

Asia 1429,
732

8884,784 4709,620 4473,359 2089,
531

4 North
America

1173,
982

11.618,
174

5659,145 5495,860 2770,
957

South
America

1469,
465

11.726,
603

5921,329 5746,921 2767,
179

Europe 522,423 19.676,
806

9884,481 9856,960 5483,
591

Asia 1424,
430

11.488,
317

5915,910 5762,363 2768,
129

5 North
America

1167,
232

13.775,
325

6827,577 6696,749 3443,
016

South
America

1468,
453

13.898,
253

7153,114 7028,202 3446,
978

Europe 513,170 24.697,
910

12.229,
817

12.217,
353

6851,
544

Asia 1440,
265

14.065,
678

7064,582 6923,347 3445,
429

Table 19 Summary of the Data centers performance (1000
users scenario)

1000 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North
America

1171,
136

4887,449 2556,444 2580,298 994,054

South
America

1472,
501

5142,524 2825,733 2892,494 991,247

Europe 512,577 6855,542 3553,108 3539,474 1828,
057

Asia 1429,
187

4993,068 2765,425 2803,539 985,154

2 North
America

1169,
397

7367,370 4098,073 4074,747 1824,
888

South
America

1472,
420

7745,987 4361,977 4252,880 1830,
804

Europe 510,569 13.585,
021

6723,106 6655,481 3663,
718

Asia 1427,
607

7727,416 4340,800 4298,857 1825,
396

3 North
America

1177,
190

11.172,
216

5646,872 5499,010 2773,
816

South
America

1473,
585

11.392,
782

5947,959 5746,377 2776,
434

Europe 510,513 19.789,
497

9882,745 9854,009 5484,
550

Asia 1429,
102

11.589,
270

5909,831 5771,280 2776,
009

4 North
America

1171,
093

13.847,
935

7234,182 7271,314 3659,
537

South
America

1480,
613

14.689,
572

7519,840 7549,322 3664,
371

Europe 511,234 25.996,
804

13.032,
524

12.992,
126

7307,
489

Asia 1439,
476

14.127,
798

7449,772 7465,053 3658,
360

5 North
America

1167,
513

17.653,
102

8857,674 8962,031 4589,
180

South
America

1484,
247

18.188,
886

9105,656 9215,848 4580,
161

Europe 512,915 32.815,
339

16.223,
798

16.217,
442

9147,
449

Asia 1421,
054

17.958,
587

9056,173 9142,675 4586,
524
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without incurring extra costs. Conversely, CloudFor-
mation is a free service.
Table 22 summarizes the running costs (VAT not in-

cluded) of the hub node of the Fab Lab cloud infrastructure.
Amazon AWS also offers to its cus- tomers dedicated in-
stances and dedicated hosts. These solutions isolate your
infrastructure from that of the other customers, leading to a
more stable and controllable behaviour. Deploying a dedi-
cated instance on AWS will incur an additional cost of $2
/h. This means that the monthly running costs of an EC2 in-
stance will increase by $1440 if we want that instance to be
dedicated. Conversely, the monthly cost of a dedicated host

of m4 type in the eu-central-1 region (Frankfurt) is $2366,
09. The spoke node infrastructure is very simple and is
formed by one to three autoscaled t2.micro EC2 instances.
This in- frastructure must be deployed in all the spoke
nodes of the NEWTON Fab Lab network: eu-east-1 (N. Vir-
ginia), sa-east-1 (Sao Paulo) and ap-southeast-1 (Singapore).
Tables 23, 24 and 25 report the running costs of the in-

frastructure for each one of the AWS regions in which the
spoke nodes must be deployed.
Finally, Table 26 summarizes the overall monthly costs

necessary to run the whole NEWTON Fab Lab

Table 20 Summary of the Data centers performance (1250
users scenario)
1250 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North
America

1168,
807

5990,312 2876,910 2743,357 1159,302

South
America

1474,
293

6375,177 3165,298 3047,148 1165,926

Europe 513,218 8613,021 4336,019 4387,896 2292,202

Asia 1424,
089

6061,012 3146,115 3056,760 1146,670

2 North
America

1169,
894

10.258,
725

4842,052 5044,035 2310,552

South
America

1468,
813

10.014,
356

5189,009 5362,495 2301,200

Europe 513,172 16.439,
809

8284,986 8308,629 4571,405

Asia 1424,
638

9968,666 5090,413 5271,267 2311,859

2 North
America

1169,
881

13.640,
871

6829,948 6719,621 3446,874

South
America

1471,
867

14.117,
636

7102,421 6923,207 3452,216

Europe 513,005 24.674,
150

12.222,
647

12.187,
487

6848,966

Asia 1424,
383

14.002,
326

7098,344 6981,502 3453,672

4 North
America

1166,
968

17.759,
198

8773,415 8903,102 4581,530

South
America

1468,
582

18.080,
272

9089,953 9191,358 4578,566

Europe 513,564 32.370,
166

16.209,
872

16.219,
660

9131,963

Asia 1423,
792

17.693,
691

9057,596 9166,
4877

4575,629

5 North
America

1176,
324

21.753,
523

10.756,
178

10.621,
747

5713,241

South
America

1470,
207

21.818,
354

11.077,
179

10.974,
044

5716,199

Europe 510,669 40.258,
084

20.166,
823

20.220,
370

11.435,
147

Asia 1427,
863

21.577,
503

11.023,
771

10.844,
046

5713,246

Table 21 Summary of the Data centers performance (1500
users scenario)
1500 users scenario

Reqs.
per
user

Data center Latency (ms)

min max avg. median std. dev.

1 North
America

1172,
602

6201,578 3250,876 3007,663 1409,262

South
America

1468,
782

6420,360 3547,880 3342,392 1413,062

Europe 511,590 10.116,
975

5141,081 5161,956 2745,820

Asia 1432,
446

6489,250 3613,515 3431,313 1409,002

2 North
America

1168,
346

11.009,
267

5635,724 5441,535 2765,070

South
America

1479,
789

11.355,
910

5935,456 5768,266 2769,903

Europe 510,911 19.685,
758

9885,291 9843,100 5484,076

Asia 1426,
433

11.560,
509

5896,648 5686,227 2778,442

3 North
America

1171,
132

16.264,
901

8021,550 7892,738 4122,120

South
America

1472,
863

16.665,
376

8328,963 8224,289 4118,070

Europe 510,498 29.339,
209

14.625,
964

14.636,
666

8229,702

Asia 1421,
031

16.499,
796

8216,100 8120,433 4127,858

4 North
America

1168,
941

20.467,
475

10.364,
651

10.350,
762

5487,605

South
America

1474,
235

20.578,
946

10.649,
506

10.621,
718

5475,815

Europe 511,554 38.978,
878

19.366,
372

19.314,
133

10.974,
799

Asia 1421,
042

20.671,
320

10.569,
847

10.530,
086

5474,997

5 North
America

1169,
889

25.564,
183

12.780,
111

12.824,
483

6855,084

South
America

1479,
238

25.730,
540

13.029,
206

13.108,
996

6841,808

Europe 521,420 48.981,
090

24.132,
694

24.212,
509

13.710,
501

Asia 1424,
061

26.015,
435

13.039,
662

13.085,
229

6865,385
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infrastructure. Thus, the infrastructure running costs of a
minimum deployment may vary between $1386,33 and
$1811,89 per month (VAT not included).

Fab labs impact in education
The NEWTON project Fab Labs, as small workshops
offering flexible remote digital fabrication, were
tested in an educational context. The goal of these
tests was to establish the degree of success of the
proposed new learning paradigm learning by doing
in terms of both student learning outcome, and most
importantly their degree of satisfaction. Students
from two schools: Saint Patricks Boys National
School in Dublin, Ireland and CEU Monteprincipe
School in Madrid, Spain were exposed to NEWTON
Fab Labs as part of the NEWTON education initia-
tive. The 39 students, aged between 10 and 13, were
asked to model 3D ceramic vases using a third-party
design software, prepare the digital files and send
them over the Internet to the Fab Lab be printed.
Following the usage of the NEWTON Fab Lab tech-
nology, the students were asked to fill a usability
questionnaire. Fig 10 illustrates the average scores
obtained after processing the results of the question-
naire. 87% of the participants from both schools re-
ported that they had fun using the NEWTON Fab

Table 22 NEWTON Fab Labs hub node monthly running costs
on AWS infrastructure
Cloud Hub node monthly running costs (Frankfurt)

Service Details Allocated resources Monthly costs
(USD)

min. max. min. max.

EC2 m4.large 3 5 $263,
52

$439,
20

m3.medium 2 2 $115,
66

$115,
66

EBS 800 GB SSD 3 3 $274,
89

$458,
15

8 GB SSD 2 2 $0,00 $0,00

Subtotal: $654,
07

$1013,
01

Data
transf.

Data transfer in N/A N/A $0,00 $0,00

Data transfer out 1000 GB 1000 GB $88,
65

$88,65

VPC peering data transfer 1000 GB 1000 GB $10,
00

$10,00

Subtotal: $98,
65

$98,65

S3 Storage PUT/ COPY/ 100 GB 100 GB $2,32 $2,32

POST/LIST reqs. 106 106 $5,38 $5,38

GET/SE-LECT reqs. 106 106 $0,42 $0,42

Data transfer in N/A N/A $0,00 $0,00

Data transfer out to
CloudFront

N/A N/A $0,00 $0,00

Subtotal: $8,12 $8,12

Route
53

Hosted zones 4 4 $2 $2

Policy records 1 1 $50 $50

Standard queries 106 106 $0,40 $0,40

Subtotal: $52,
40

$52,40

ELB Number of network LB 1 1 $19,
77

$19,77

Avg. connection/s/ LB 1000 1000 $5,49 $5,49

Data processed per LB 1000 GB/
month

1000 GB/
month

$0,53 $0,53

Subtotal: $25,
79

$25,79

Cloudfr. Data Transfer out 500 GB 500 GB $54,
95

$54,95

Grand
total:

$893,
98

$1253,
92

Table 23 NEWTON Fab Labs eu-east-1 spoke node monthly
running costs on AWS infrastructure

Spoke node monthly running costs (N. Virginia)

Service Details Allocated resources Monthly costs (USD)

min. max. min. max.

EC2 t2.micro 1 3 $8,50 $8,50

EBS 8 GB SSD 1 3 $0,00 $0,00

Subtotal: $8,50 $25,50

Data transf. Data transfer in N/A N/A $0,00 $0,00

Data transfer out 1000 GB 1000 GB $89,91 $89,91

Grand total: $98,41 $115,41

Table 24 NEWTON Fab Labs sa-east-1 spoke node monthly
running costs on AWS infrastructure

Spoke node monthly running costs (Sao Paulo)

Service Details Allocated
Resources

Monthly costs
(USD)

min. max. min. max.

EC2 t2.micro 1 3 $13,62 $40,86

EBS 8 GB SSD 1 3 $0.00 $0.00

Subtotal: $13,62 $40,86

Data transf. Data transfer in N/A N/A $0,00 $0,00

Data transfer out 1000 GB 1000 GB $249.75 $249.75

Grand total: $263,37 $249,75

Table 25 NEWTON Fab Labs ap-southeast-1 spoke node
monthly running costs on AWS infrastructure

Spoke node monthly running costs (Singapore)

Service Details Allocated
Resources

Monthly costs
(USD)

min. max. min. max.

EC2 t2.micro 1 3 $10,69 $32,07

EBS 8 GB SSD 1 3 $0.00 $0.00

Subtotal: $10,69 $32,07

Data transf. Data transfer in N/A N/A $0,00 $0,00

Data transfer out 1000 GB 1000 GB $119,88 $119,88

Grand total $130,57 $151,95
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Lab technologies and indicated that they would rec-
ommend Fab Lab solutions to their friends. This is a
great outcome and demonstrates how Fab Lab can
have a highly positive impact on student increased
satisfaction while learning. Future work will present
in details the results of the deployment of Fab Lab
in education.

Conclusions
FaaS Fab Lab deployment has been performed as
part of the NEWTON plat- form. The platform is
now in production phase and includes the cloud hub
(deployed on an Amazon AWS EC2 cluster) and the
on-premises interface in- frastructure (implemented
with inexpensive Raspberry Pi III boards) that has
been deployed and is presently under test at CEU
Madrid, Spain. This deployment has helped gaining
significant insights on several design and implemen-
tation aspects and trade-offs that include hardware
design and interfacing, system monitoring and cloud
deployment, data security as well as service
deployment and orchestration in a multi-cloud
environment. Several architectural aspects and

implementations have been evaluated and tested so
far, with particular emphasis on:

1. system replicability and scalability;
2. system costs and maintainability;
3. service availability and auto-discovery in multi-

cloud environments;
4. API architecture and design;
5. functional and load tests design.

The next step is setting-up the system staging environ-
ment that involves networking and interfacing to the
cloud hub the Fab Labs at CEU Madrid and Vrije Uni-
versity of Brussels, Belgium. This will enable testing the
sys- tem in a distributed, yet still controlled environ-
ment. FaaS enhances existing Fab Lab capabilities by
providing the digital fabrication equipment with the pos-
sibility to communicate over the Internet in order to re-
motely control fabrication activities. Using this
approach, the fabrication facilities are exposed to the
Internet as software services, which may be consumed
by third-party applications. FaaS practical deployment
strongly relies on IoT and Cloud architectural and soft-
ware paradigms and requires design and development of
specific hardware and software interfaces that allow per-
vasive connectivity. The hardware interface design was
not difficult and has been accomplished by using stand-
ard and inexpensive off-the-shelf components. Con-
versely, firmware and software development were highly
challenging and has involved solving several complex
problems related to equipment monitoring and real time
communications. The paper describes FaaS deployment
in the context of NEWTON next generation Fab Labs;
however, the proposed solution is general, hardware-

Table 26 NEWTON Fab Labs cloud infrastructure overall
monthly running costs

Node Monthly running costs

min. max.

eu-central-1 $893,98 $1253,92

us-east-1 $98,41 $115,41

sa-east-1 $263,37 $290,61

ap-southeast-1 $130,57 $151,95

Total: $1386,33 $1811,89

Fig. 10 Average scores for the Fab Lab usability questionnaire
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independent and targets all those scenarios which in-
volve collaborative fabrications. We foresee that this
capability will have a huge impact not only on education,
but also on industry helping to develop new business
models in which fab-less companies may schedule
medium or large-scale fabrication batches hiring third-
party remote fabrication services.
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