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Abstract: Fabrication as a Service (FaaS) is a new concept developed within the framework of the
NEWTON Horizon 2020 project. It is aimed at empowering digital fabrication laboratories (Fab Labs)
by providing hardware and software wrappers to expose numerically-controlled expensive fabrication
equipment as web services. More specifically, FaaS leverages cloud and IoT technologies to enable
a wide learning community to have remote access to these labs’ computer-controlled tools and
equipment over the Internet. In such context, the fabrication machines can be seen as networked
resources distributed over a wide geographical area. These resources can communicate through
machine-to-machine protocols and a centralized cloud infrastructure and can be digitally monitored
and controlled through programmatic interfaces relying on REST APIs. This paper introduces
FaaS in the context of Fab Lab challenges and describes FaaS deployment within NEWTON Fab
Labs, part of the NEWTON European Horizon 2020 project on technology enhanced learning. The
NEWTON Fab Labs architecture is described in detail targeting software, hardware and network
architecture. The system has been extensively load-tested simulating real use-case scenarios and it
is presently in production. In particular, this paper shows how the measured data has been used
to build a simulation model to estimate system performance and identify possible bottlenecks. The
measurements performed show that the platform delays exhibit a tail distribution with Pareto-like
behaviour; this finding has been used to build a simple mathematical model and a simulator on top
of CloudSim to estimate the latencies of the critical paths of the NEWTON Fab Lab platform under
several load conditions.

Keywords: Fabrication as a Service (FaaS); cloud architectures; spoke-hub architecture; Internet of
the Things (IoT); microservices; Pareto and tail distributions; CloudSim simulator

1. Introduction

Most developed countries are presently experiencing a negative trend as regards the interest of
the young generation to pursue a scientific education. For instance, in Europe alone, the proportion of
graduates specializing in science, technology (e.g., computing), engineering and mathematics (STEM)
has reduced from 12% to 9% since 2000 [1] and consequently Europe is facing a concrete shortage
of scientists.

There is strong evidence that young people disengagement from the STEM subjects starts during
secondary education [2]. The disengagement is mainly due to two factors: Students perceive scientific
subjects as difficult, and they regard science-related careers as not so attractive in terms of job
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quality–pay level balance. Many efforts are put worldwide trying to reverse this process, including
large European Union projects such as NEWTON (NEWTON Website: http://newtonproject.eu).
The most interesting and effective approaches to tackle the problem of the lack of interest in science
and technology involve acting as early as possible (e.g., in secondary schools) and making use of
the latest innovative technologies and solutions. Using Fabrication Laboratories or Fab Labs [3] is
an innovative solution which is both attractive for students and highly effective in terms of STEM
teaching and learning.

A Fab Lab is a small-scale workshop with a set of flexible computer-controlled tools and machines
such as 3D printers, laser cutters, computer numerically-controlled (CNC) machines, printed circuit
board millers and other basic fabrication tools which, usually, are not easily accessible. It is the perfect
place to develop teaching practices based on "learning by doing" because all the tools to bring a product
to realization are within reach and the users get to take part in all the phases of the fabrication process.
This is why a Fab Lab attracts students as they can experiment and materialize their ideas in engaging
and stimulating ways.

Surprisingly, all the research efforts put to date in the digital fabrication area have been aimed at
demonstrating the effectiveness of Fab Labs in education [4] and at incorporating digital fabrication in
the curricula [5–7]. However, to the best of authors’ knowledge no attempt has been made to address
the challenges faced enhancing the Fab Lab functionality by providing support for pervasive and
ubiquitous Internet access. The main factor that is actually limiting a wider diffusion of the Fab Lab
concept is the lab set up cost. Fabrication machines and materials are expensive and not all educational
institutions, especially in primary and secondary education streams, may afford the costs to start and
especially maintain a Fab Lab. This paper introduces Fabrication-as-a-Service (FaaS), an innovative
method and associated solutions to enable remote access to Fab Labs as a Cloud-based service, with a
particular emphasis on system modelling, simulation and performance evaluation. FaaS is a necessary
evolution of Fab Labs, allowing them to become available to a wider community over the Internet.
FaaS opens new opportunities by providing students with the means to perform design and testing
in a remote experimental environment and come up with innovative solutions to concrete problems.
FaaS is seen as an integral part of the 21st century teaching and learning paradigm, is dynamic and
student-centered, and helps attract students to STEM education. We have analyzed the impact on
STEM education of the NEWTON Fab Lab platform in several pilot tests and the results are reported
in [8–10]; conversely, the hardware and software architecture as well as the communication protocols
design and implementation are addressed in [11]. This paper, instead, extends our previous work
described in [11] by providing a comprehensive treatment on the modelling and simulation aspects
behind the cloud deployment of the NEWTON Fab Labs platform.

The paper is structured as follows: System architecture, including an overview of the cloud
infrastructure and of the communication protocols is described in Section 2. The measured experimental
data has been used to design and implement a simple simulation model of the platform infrastructure
in order to estimate the performances under a wider number of cloud and load configurations as
described in Section 3. Section 4 summarizes the research results, whereas in Section 5 we analyze and
discuss our findings. Finally, in Section 6 we draw up some conclusions and propose new possible
research lines related to the work presented in this paper.

2. System Architecture

As mentioned earlier in this paper, one of the major limitations of current Fab Labs infrastructure
is their lack of external connectivity. This shortcoming is one of the principal barriers to a wider Fab
Lab adoption in education, especially at secondary and primary-school levels, since the minimum start
up costs for a basic infrastructure may easily exceed $ 200,000.

The proposed architecture overcomes this limitation by providing a simple but effective way to
implement resource sharing of expensive digital fabrication resources allowing remote access through

http://newtonproject.eu
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simple web interfaces and seamless integration into third-party applications or infrastructure through
a set of REST (REpresentational State Transfer) APIs (Application Program Interfaces).

We leverage cloud technologies to implement a spoke-hub architecture where several Fab Labs
(i.e., the spokes) are interconnected through a central hub deployed on cloud premises. The hub keeps
the status of all the interconnected Fab Labs into a registry server; when a client issues a fabrication
requests, the hub business logic queries the registry server to detect the Fab Lab that is geographically
closer to the client and that has availability of machines and materials and forwards the fabrication
requests to it.

NEWTON Fab Lab architecture and communication protocols have been extensively described
in [11]. More specifically, NEWTON Fab Lab infrastructure relies on a set of software and hardware
wrappers that:

• enable resource sharing among interconnected Fab Labs through a set of loosely-coupled
microservices, and

• allow system scaling (by increasing the number of interconnected Fab Labs) over a wide
geographical area by leveraging cloud technologies and infrastructure.

Our set-up provides Fab Labs with an abstraction layer that wraps the underlying hardware
infrastructure into a programmatic interface which consists of a set of Application Programming
Interfaces (API) that offer the Fab Lab as a Web Service to third-party applications. The APIs implement
the following functions:

1. Fab Lab equipment remote control and configuration;
2. Inter-Fab Lab communication and task synchronization using a publish/subscribe protocol;
3. Intra-Fab Lab communication and task synchronization using a publish/subscribe protocol.

These features allow remote monitoring and automatic synchronization of the machines involved
in a fabrication batch with minimum human intervention, and enable support for new scenarios in
which any complex design can be implemented in a distributed fashion by splitting it among several
networked Fab Labs.

The communications among the hub application and the fabrication machines are managed
by a Fab Lab gateway. The Fab Lab Gateway decouples the centralized server from the fabrication
equipment, controls the inbound traffic among the machines and the outbound traffic to the server
in the cloud premises. In addition, the gateway also implements security and API rate limit policies
and share with the cloud servers the responsibility to route the end-to-end traffic between the client
application and the remote fabrication machine. The communication infrastructure relies on on a
double message broker architecture which decouples communications in two categories:

1. Inter-Fab Lab communications, managed by the centralized broker on the cloud premises, and
2. Intra-Fab Lab communications, managed by the Fab Lab Gateway in the Fab Lab Virtual Private

Network (VPN).

Inter-Fab Lab communications determine the outbound traffic of the Fab Lab network, whereas
Intra-Fab Lab communications determine the local network inbound traffic. This architecture
drastically reduces the load of the centralized broker, whose task is just to relay simple and short
high-level commands from the source to the destination gateway. The gateway acts as a relay for
the Fab Lab inbound traffic, routing the incoming command to the target machine according to
specific policies that may include machine availability, type and complexity of the fabrication batch,
etc. Thus, NEWTON provides the hardware and software infrastructure to enhance the capabilities
of a conventional Fab Lab, empowering the pre-existing infrastructure with a message passing
interface that, in turn, would allow the networked machines to operate with minimum or no human
interaction. The centralized servers in the cloud will particularly benefit from this approach since the
number of publishing nodes will be limited to the Fab Lab Gateways and not to all the networked
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fabrication equipment. In this new context, a NEWTON Fab Lab is a local network of digital fabrication
machines. The network connectivity and the ability to control a machine is provided by an external
and inexpensive machine wrapper connected to the "slave" digital fabrication equipment. The machine
wrapper performs the following tasks:

1. decode an incoming message;
2. translate the received message in a set of commands understandable by the slave machine;

Finally, the Fab Lab gateway also keeps a real-time detailed snapshot of the Fab Lab status
(i.e., fabrication jobs status, machines status, etc.). Gateway-to-Machine and gateway-to-hub
communication protocols are fully asynchronous; thus, when the gateway is notified by a machine
that a job has terminated, it immediately forwards the notification to the hub application that updates
the service registry accordingly and informs the client that the fabrication process has ended.

As mentioned before, the NEWTON Fab Lab platform has been designed as a set of loosely
coupled microservices deployed both on premises and on the cloud as depicted in Figure 1.

Figure 1. NEWTON Fab Lab platform microservices.

All the microservices that form the Fab Lab infrastructure communicate and interact through a
set of REST APIs. Each microservice is relatively small and hence is easier to understand, develop, test
and maintain.

Digital fabrication machines have no network connectivity; thus, in order to make them available
over the internet as web services, we added an extra hardware and software layer (the machine
wrapper) to provide each machine with external connectivity and communication protocols to interact
with the Fab Lab gateway.

Both the Fab Lab gateway and the machine wrapper implementation rely on inexpensive
off-the-shelf microcontrollers. The only restriction that applies to hardware choice is the capability to
run a unix-like operating system and Node.js (https://nodejs.org/) support. In fact, lately Node.js has
become a de facto industrial standard for the development of real-time distributed embedded system
and IoT applications [12–14].

In the case of the NEWTON platform, Fab Lab gateway and machine wrappers have been
implemented using Raspberry Pi embedded computers, for this reason we will refer to them also as
Pi-Gateway and Pi-Wrapper, respectively.

https://nodejs.org/
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In the following subsections we will describe in depth all the principal hardware and software
components that form the NEWTON Fab Lab platform.

2.1. Cloud Infrastructure

As stated earlier, the NEWTON Fab Lab platform implements a spoke-hub architecture in which
the hub node, located on cloud premises, acts as a router forwarding the fabrication requests to the
selected Fab Lab. Figure 2 shows the simplified Fab Lab network architecture.

Figure 2. NEWTON Fab Lab cloud inter-networking.

The NEWTON Fab Labs employ a two-tier architecture composed of a hub and a network of
distributed Fab Labs. Each Fab Lab interacts with the hub and other labs via a Fab Lab Gateway.
While some novel Internet of Things architectural paradigm exists, in which some data processing is
performed at the edge of the network by the devices themselves [15], we have preferred a standard
approach with all the data to be processed directly in the cloud. This is because the amount of data to
be processed (i.e., the Fab Lab status) is not large enough to justify an extra middleware layer between
the Fab Labs and the Cloud hub.

Each Fab Lab is exposed as services to the Internet through REST APIs that provide Create,
Read, Update and Delete (CRUD) methods to manipulate the underlying data model as well as
communication primitives to publish and subscribe to services over the Web. The Service Oriented
Architecture (SOA) guarantees the inter-operability of the different system components, regardless
of the implementation technology and allows easy system scalability. The service registry is held on
cloud hosting premises and keeps the status of all the interconnected Fab Labs.

Spoke and hub nodes form a Virtual Private Network (VPN) in which the Fab lab gateway and
the virtual machine instances on cloud premises communicate securely over the internet using private
IP addresses though an IPSec (IP Secure) tunnel.

IPsec is a suite of protocols for managing secure encrypted communications at the IP Packet
Layer. IPsec also provides methods for the manual and automatic negotiation of security associations
(SAs) and key distribution. A security association is a unidirectional agreement between the VPN
participants regarding the methods and parameters to use in securing a communication channel.
Bidirectional communications require one SA for each direction. Through the SA, an IPsec tunnel can
provide the following security functions:
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1. Data privacy (through encryption)
2. Content integrity (through data authentication)
3. Sender authentication and—if using certificates—non repudiation (through data origin

authentication)

The router/gateway maps the inbound traffic into a private address pAddr:pPort by means of
a Network Address Table (NAT) and a Port Address Table (PAT). Similarly, the router performs
the same task on the outbound traffic by forwarding it to the default gateway or by redirecting the
requests for a private address to the private network. The message flow between the cloud application
and the networked Fab Labs is managed by a cloud-deployed message broker that implement a
publish/subscribe protocol.

2.2. Infrastructure Architecture and Modelling Challenges

Figure 3 depicts the simplified cloud infrastructure diagram of the NEWTON Fab Labs. For the
sake of simplicity, the infrastructure necessary to connect the Cloud Hub to the Fab Lab network
is not shown on the diagram. Analyzing the diagram of Figure 3 leads to the conclusion that
deploying a redundant implementation of the NEWTON Fab Labs cloud hub requires up to six levels
of AWS services. This, in turn entails several challenges tied to infrastructure and application set-up,
administration, and behaviour predictability. On one hand, the promise of scalability, redundancy
and on-demand service deployment makes a cloud implementation a very appealing solution. On the
other hand, all these advantages come at the price of several issues that can make cloud application
development and management a challenging task.

Figure 3. NEWTON Fab Lab cloud infrastructure and interaction with Amazon Web Services (AWS)
services: Route 53 Domain Name Server (1), CloudFront Content Delivery Network (2), S3 Cloud
Storage (3), Elastic Load Balancing (4), Elastic Cloud Computing virtual machine instances (5), and
Autoscaling (6).

More specifically, the issues with cloud deployment are related to the following impact factors:

1. Performance. Performance can become an issue in cloud development when it comes to disk
IO. In a cloud infrastructure, the network and the underlying storage are shared among several
customers. If, for example, another customer performs many IO operations, an application may
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experience slowdowns and its latency becomes unpredictable. Moreover, also the network is
shared among customers, so one can experience bottlenecks there too.

2. Transparency. Transparency and simplicity are key factors when debugging either an application
or an infrastructure. Unfortunately, cloud services are, in many cases very opaque and tend to
hide underlying hardware and network problems. Cloud infrastructure is a shared service, and,
for this reason, cloud users may experience issues that do not occur in dedicated infrastructure:

• Impact of other users on your workload. In a cloud infrastructure, you share the underlying
hardware resources with other customers. This includes CPU, RAM, disk and network.
Cloud software attempt to isolate the resources allocated to each customer; unfortunately,
the isolation is not perfect, and, in some cases, a single user can saturate a local compute node.

• Service outage due to hardware errors. The software wrappers that expose the underlying
infrastructure as a service may hide hardware failures that can only be confirmed by
migrating an instance to another physical node. While cloud makes this migration
straightforward, underlying physical failures can complicate the debugging process due to
the lack of transparency.

AWS offers some solutions such as dedicated instances and dedicated hosts to improve the
isolation from the infrastructure of other AWS customers and the latency of your cloud
infrastructure; however, these services incur extra costs that it is not always worth assuming.

3. Complexity and scalability. Figure 3 gives an idea of the complexity of the cloud architecture
that has been deployed to ensure NEWTON Fab Labs connectivity. This entails the interaction
of up to six different AWS service layers that require expertise for set-up and configuration.
Moreover, Elastic Load Balancing and scalability are not straightforward in AWS and require the
deployment and configuration of additional services (namely, CloudWatch and CloudFormation)
that incur extra costs and complexity.

2.3. Global Infrastructure Deployment

Each Data Center of the NEWTON Fab Lab Network is connected to a Fab Lab through an IPSec
tunnel as depicted in Figure 4.

On the cloud end, the IPSec tunnel is managed by a VyOS (https://vyos.io) that acts as the bridge
between the public and the virtual cloud subnetworks forwarding all the incoming packets to a reverse
proxy/load balancer that eventually delivers the incoming request to the cloud hub application. Both
VyOS and the reverse proxy run on dedicated m3.medium EC2 instances.

The cloud hub application and all the related services are deployed on a PaaS infrastructure
implemented by a Flynn (https://flynn.io) cluster formed by three m4.large EC2 instances. All the
applications run in Docker containers. Docker images are stored using AWS S3 cloud storage.

Thus, with this architecture, the latency of a fabrication request can be split into four parts:

1. The latency of the POST request from the client to the spoke or hub (depending on the region in
which the requesting client is located).

2. The latency of the request to the service registry (this delay may vary depending if the request
has been performed from the hub or from a spoke node).

3. The latency of the POST request from the spoke or hub to the selected Fab Lab.
4. The latency of the POST request from the spoke or hub to the client.

This scenario is depicted in Figure 5 that shows how the fabrication requests are routed within the
NEWTON Amazon Web Services (VPC). NEWTON VPC comprises several AWS-supported regions
where hub and spoke nodes infrastructure is deployed.

https://vyos.io
https://flynn.io
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Figure 4. NEWTON Fab Lab to data center connection.

2.4. Some Remarks on Production Deployment

NEWTON Fab Lab network infrastructure under test is distributed over four Data Centers
located in different AWS regions (eu-central-1, us-east-1, sa-east-1, and ap-southeast-1). The network
implements a spoke-hub architecture whose central hub is located in the eu-central-1 region (Frankfurt).
The hub runs the Fab Lab monitoring application and the registry server that keeps track of the status
of all the interconnected Fab Labs.

The spokes run light clients that connect to the central hub to inquiry the registry server and then
forward the fabrication job to the closest Fab Lab in their region. This approach limits the heavy traffic
(i.e., the images with the design to be processed by Fab Labs) only within the AWS region where the
fabrication request is generated.

In our measurements we set-up the Data Centers network using isolated VPCs (Virtual Private
Clouds) communicating through public IP addresses. While this approach is not a concern in a
test environment, it is not advisable in a production set-up. AWS offers the possibility to create
out-of-the-box secure peer connections among different Data Centers forming a VPN (Virtual Private
Network) in which the interconnected Data Centers communicate using private addresses.

The requests are routed by the AWS Route 53 service to the NEWTON data center (either the hub
or a spoke) that falls in the same AWS-supported region of the requesting client (steps 1a and 1b of
Figure 5). If the request is forwarded to a spoke node, the spoke queries the registry server located in
the hub to get the location of the NEWTON Fab Lab that is geographically closer to the requesting
client (step 2b). The hub returns to the spoke the requested information (step 3b) and finally, the spoke
forwards to the selected Fab Lab the fabrication request and the design files (step 4).

If the incoming requests comes from a client within the same Hub node region, the request and
the design files are forwarded to the Hub (step 2a) and it is the Hub business logic that queries the
registry server to get Fab Lab information and then forward the request and the design files to that Fab
Lab (step 3a). With such an approach, we limit the heavy traffic among data centers in different AWS
regions since the design files are always kept in the VPC node closer to the requesting client.
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Figure 5. Fabrication requests routing through NEWTON VPC.

2.5. Communication Protocol

A fabrication job is routed to a networked Fab Lab by the Cloud Hub message broker; however,
the message broker on the cloud side has not direct visibility of the Fab Lab network infrastructure.
Its main task is to connect a client to the Fab Lab infrastructure or to perform inter-Fab Labs message
routing. The networked machines in a Fab Lab can be accessed through the Fab Lab Gateway only.
The gateway main task is routing the outbound traffic to the networked equipment and managing
intra-Fab Lab communications.

The communication between the cloud infrastructure and a networked Fab Lab is performed in
the following for stages:

1. link establishment;
2. topic subscription;
3. communication;
4. disconnection.

Once the TCP (Transfer Control Protocol) links between the machine and the Fab Lab Gateway on
one side, and the Fab Lab Gateway and the Cloud hub broker on the other side, have been established,
both the Gateway and the Hub subscribe to topics they are interested in. The topic string is generated
using the unique name and connection ID sent by the server that initiates the communications to the
destination server during the link establishment. Both the link establishment and the subscription
phases are terminated by an ACK message (Init ACK for the link establishment and Subscription ACK
for the subscription phase).

In other words, the Fab Lab Gateway and the Cloud Hub implement, as mentioned before,
a double broker architecture: The former collects all the incoming messages from the Fab Lab machines
whereas the latter collects all the incoming messages from the networked Fab Lab Gateways. The
double broker architecture allows the implementation of Fab Lab access and security policies and
of custom message filters mechanisms. Once the subscription phase has terminated, the end nodes
start exchanging messages. Each published message can be acknowledged by an optional Publication
ACK message. The use of a Publication ACK is mandatory in those cases when it is necessary to
guarantee the delivery of a message and to implement retransmission mechanisms to increase the QoS
of protocol.
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3. Simulation Model and Data Analysis

The simulation model is of paramount importance to analyze the performance of the NEWTON
Fab Lab platform under different load conditions in order to determine the factors to consider when
scaling the platform infrastructure. Scaling is a necessary action that must be performed in order to
ensure the desired quality of service (QoS) as the system load increases. The number of concurrent
users and the number of submitted jobs per user determine the system load.

Scaling can be either vertical (i.e., by increasing the computing power of each node in terms
of CPU, RAM etc.) or horizontal (i.e., by increasing the number of nodes that form the platform).
NEWTON Fab Lab platform has been designed to scale horizontally by leveraging the autoscaling
service provided by the Amazon Web Services (AWS) cloud infrastructure.

The modelling process goes through two steps:

1. first, we define a set of metrics and then choose only the most relevant ones; namely, those
metrics relative to the technological and workload factors that have the greatest impact on system
performance;

2. then we then design a set of experiments to stress the system performance with different resource
allocations and workloads.

3.1. Cloud Deployment

NEWTON Fab Lab platform is a distributed hardware/software platform formed by several
interconnected Fab Labs exposed to the internet as web services through a Fab Lab Gateway. Inter Fab
Lab communication is managed through a centralized cloud hub that keeps in a service registry the
state information of all the interconnected Fab labs. Moreover, the cloud hub also exposes some APIs
to submit and manage fabrication batches to the NEWTON Fab Lab platform.

The capacity of the platform to scale (i.e., the capacity to manage a high number of interconnected
Fab Labs and users) tightly depends on the scaling capacity and efficiency of the cloud infrastructure.
For this reason, we will target only the scalability issues related to the cloud infrastructure and not
those of an individual Fab Lab. NEWTON Fab Lab platform is formed by a set of distributed nodes in
different Data Centers, each node is a virtual machine characterized by:

1. The number of virtual CPUs.
2. RAM memory.
3. Hard disk size.

Several nodes can be interconnected to form a grid of load-balanced containerized services and
applications. The minimum cluster requirements for a deployment on AWS (Amazon Web Services)
cloud infrastructure are depicted in Table 1. More specifically, Table 1 depicts the minimum hardware
requirements necessary to deploy a Flynn cluster in production.

Table 1. Minimum cluster requirements for the Cloud Hub node.

Parameter Value

Number of EC2 instances 3
Instance type m4.large
Hard disk 80 GB

An AWS m4.large instance has two virtual CPUs 8 GB memory and runs an Ubuntu 16.05 (Xenial)
Linux distribution. NEWTON Fab Lab cloud hub is hosted on an AWS Data Center in Frankfurt
and comprises a set of three load balanced m4.large EC2 (Elastic Cloud Computing) instances with
600 GB disk each. The cloud hub hosts a PaaS (Platform as a Serivice) infrastructure. that allows the
deployment and orchestration of containerized application and services. The deployed application and
services communicate with the remote clients through the internet and with the networked Fab Labs
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with dedicated IPSec tunnels. The traffic between the client and the cloud application and between the
cloud application and the networked Fab Labs is variable and may vary between few hundred bytes
(in the case of a simple API call) and some MBytes (when a design image is submitted for fabrication).

3.2. Available Services

The NEWTON Fab Lab cloud hub runs the following services:

1. Platform orchestration and management services (Docker container orchestration, platform
dashboard, logging system, GitHub connector, databases, etc.)

2. Fab Lab related services (registry server, fab lab APIs)

3.3. Service Containerization and Scaling

All the services running on the allocated virtual machines are deployed in Docker containers
orchestrated by a PaaS (Platform As a Service).

The PaaS infrastructure is deployed on top of Flynn (https://flynn.io). Flynn can be considered as
a grid of Docker containers, rather than a traditional cluster. Each host will run containerized services
and applications that can be deployed and scaled individually. Figure 6 shows a simplified diagram
depicting a Flynn grid deployment across a cluster of three hosts.

Figure 6. Example of Flynn grid deployment across three hosts.

Flynn architecture is split into two layers. Layer 0 provides basic services such as host
management, service discovery and scheduling, whereas layer 1 implements the PaaS business logic
(GitHub interface, Slug Builder, Slug Runner, etc.). Referring to Figure 6, the layer 0 services are:

1. The Host Service (HS) that implements the interface between Flynn services and Docker. The
Host Service is the only one that must run across all the Flynn hosts

2. The Scheduler (S). The scheduler distributes the containers among the instances given the current
state of the grid and the resource allocation in each node.

The layer 1 services are:

1. The GitHub frontend (G). This module accepts Git connections through SSH and Git pushes, then
deploys them in the Flynn grid.

2. The Controller (C) exposes APIs to control the whole infrastructure.
3. The Router (R) is a TCP/HTTP router/load balancer that distributes the incoming requests

through the instances deployed in the Flynn grid. In order to implement a high-availability there
must be several instances of this module across all the Flynn hosts.

4. The Slug Builder (SB) is a module that builds a “slug” starting from a Git push received by
the Flynn Git front-end (G). A slug is a compressed and pre-packaged copy of an application
optimized for distribution to the Flynn PaaS.

5. The Slug Runner (SR) is a module that allocates and instantiates several Docker containers
(depending on the scaling parameters) to deploy and execute the code contained in a slug.

https://flynn.io
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6. The Application (A) is a module that implements the application code (for example, the Cloud
Hub and the Service Registry in our specific case).

While this solution provides seamless scaling and monitoring of all the services running on the
cloud infrastructure as well as GitHub integration that allows the deployment of an application from
a GitHub repository, it also has some drawbacks. The Docker engine is tightly integrated into the
PaaS infrastructure and cannot be accessed through Docker commands but only through the PaaS.
This means that a user has no control on the container structure and the allocated resources, that
are seamlessly managed by the PaaS infrastructure. This, in turn, makes hard to know exactly the
hardware resources that are allocated to a container by the PaaS. Consequently, the only way we
have to estimate the kernel memory allocated to a container is by using the free –m Linux command.
Considering that a m2.large instance has 8 GByte RAM, that Ubuntu 16.05 requires between 1 and 2
GByte memory in order to operate efficiently, and that the free –m command leads to an estimation
of 20 MByte of kernel memory per container, the estimated memory allocation for our containerized
infrastructure is that reported in Table 2.

Table 2. Virtual machine memory allocation.

Resource Details Allocated memory Containers

OS Kernel and basic services 2000MB -

PaaS Orchestration and management 450MB 25
Applications 5550MB up to 275

3.4. Test Infrastructure Set-up

To test the bandwidth among the hub region eu-central-1 (Frankfurt) and spoke regions us-east-1
(N. Virginia), ap-southeast-1 (Singapore) and sa-east-1 (Sao Paulo) we set up the following test
infrastructure:

• One t2.micro test instance in us-east-1 region,
• One t2.micro test instance in ap-southeast-1 region,
• One t2.micro test instance in sa-east-1 region.

To test the bandwidth among the instances in the central hub and the test instances in the spoke
regions we follow AWS recommendations and use iPerf3 (https://iperf.fr) network benchmarking tool.

The virtual machines must allow inbound traffic on port 22 (SSH), TCP traffic on the iPerf3 server
(in our test configuration we run iPerf3 servers on port 80) and, optionally, allow ICMP traffic.

Measurements have been performed ten times at random intervals for all the spoke regions and
within the hub region. At each iteration, we measure the average bandwidth, the median, the variance,
the fastest and the slowest connection bandwidth for both up and downlink connections. The results
are summarized int Section 4.

3.5. Performance Key Factors

So far, we have defined the system features and architecture and identified the services that
run on the system under study. In order to build a simulation performance model and to define the
experiments we want to carry out with it, we must consider application scalability within a cluster,
cluster scalability within a Data Centre, and platform scalability considering the impact of multiple
Data Centres distributed on a wide geographical area.

Application scalability is affected by the number of containers allocated to it; cluster scalability is
affected by the number of virtual machines allocated to a cluster. Finally, platform scalability across
multiple Data Centers if affected by the geographical origin of the service request. The data attached
to a fabrication request can be either a .gcode file (namely, a simple text file with machine commands)
or a .png file (i.e., an image file with the shape to be fabricated). However, in both cases the data

https://iperf.fr
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interchanged during a fabrication request can be considered constant. For the sake of simplicity,
we assume that an image of 5 MB size (i.e., a typical image size for a slightly complex design) is
attached to each fabrication request. The key factors to be evaluated in the study must also reflect the
features offered by the Cloud Infrastructure Provider (Amazon AWS in our case). More specifically,
we want to develop a model that takes into account the Autoscaling and Elastic Load Balancing
features offered by AWS infrastructure. The autoscaling is the capability of dynamically scaling up
or down the computing infrastructure according to the value of a given performance metric. Thus,
the key study factor will be the metric that will trigger infrastructure scaling (either up or down).
In our case, scaling will be triggered by the system workload, i.e., by the number of incoming requests.
Moreover, the cloud infrastructure must ensure that incoming requests are evenly distributed among
Data Centers while ensuring maximum geographic coverage. This, in turn, means that the number of
Data Centers must be constant and encompass all the AWS supported regions. To summarize, we will
keep constant the following parameters:

1. Characteristics of the virtual machines.
2. Size of the transferred data.
3. Number of Data Centres allocated to the global infrastructure.

We will not consider network reliability and packet retransmission due to their extremely low
impact on overall system performances. Today’s network infrastructure is very fast and reliable and the
number of retransmissions due to noise and packet losses is extremely low and close to 0%. In addition,
we will consider data transfer with a fixed size. Thus, the only key parameters in our experiments will
be the:

1. The number of containers allocated to the application.
2. The number of incoming requests.

We will stress system performance varying these parameters under different load conditions
(i.e., varying the number of connected users as well as their geographic origin) while keeping constants
all the other parameters.

3.6. Evaluation Technique

NEWTON Fab Lab platform is a complex distributed infrastructure that relies on many subsystems
deployed both on cloud and on Fab Lab premises in order to allow Fab Lab communications and
integration with third-party applications and infrastructure. During the developments described
in [11] we have deployed a minimum infrastructure and stressed it in real operating scenarios through
several test pilots described in [8–10]. We also performed several load tests under different simulated
load conditions to measure the APIs response times and have a more accurate idea of the overall
system performance. However, these measurements are just a starting point since have been obtained
for a particular deployment. In the future, the number of interconnected Fab Labs and consumer
applications is supposed too scale up which, in turn will imply the allocation of new cloud resource to
manage the new use-case scenarios. For this reason a simulation model of the Fab Lab infrastructure is
necessary in order to estimate how many resources (i.e., virtual machines and docker containers) it
is necessary to allocate in order to ensure the target quality of service; namely, to ensure that system
response times under all the assumable load conditions falls below a given limit established a priori by
the platform administrator. In order to evaluate NEWTON Fab Lab platform performance, we proceed
in two steps:

• We stress the real cluster deployment using a fake client to simulate user behaviour issuing a
fabrication request 10 times at random intervals comprised between 1 and 30 s. The cloud hub
application has been instrumented as depicted in Figure 7 to measure the elapsed time between
the arrival time of a fabrication request and the dispatch time of that request to the selected Fab
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Lab. We perform the measurements under different load conditions generated by n concurrent
users (where n is a power of two included in between 1 and 64) for a variable number c of Docker
containers (where c is a power of 2 with 1 ≤ c ≤ 8) allocated to the Cloud Hub application; then,
we use the measured data to build a simple consistent analytic model of the cluster performance
based on linear regression.

• We use the predictive model built at the previous step to define a mathematical model of a Data
Center; then use this model within CloudSim cloud simulator to evaluate platform scaling and
reliability under different load conditions. The CloudSim software model we have developed
mimics Amazon AWS Autoscaling and Elastic Load Balancing (ELB) features across several
availability zones; thus, the incoming requests are dynamically routed to the Data Center of the
global infrastructure that is closer to the issuer of the request. Furthermore, the resources (i.e., the
number of virtual machines) available in each Data Center are dynamically allocated (either scaled
up or down) depending on the number of incoming requests.

Figure 7. Cloud Hub infrastructure instrumentation.

3.7. Cloud Hub Modelling

The measurements performed on the cloud hub application for the configuration described in
Section 3.6 are reported in Tables 3–6.

Table 3. Cloud Hub latency (in ms) with one container allocated to the application.

Users Requests
Latency (ms)

Mean Median Min. Max. Std. Dev. Geometric Mean

1 10 1.815 1.307 513 4.294 1.307 1.424
2 20 1.935 1.448 525 5.132 1.560 1.418
4 40 1.636 1.122 516 5.298 1.388 1.238
8 80 1.592 984 477 5.280 1.386 1.189
16 160 1.368 871 474 6.636 1.184 1.048
32 320 1.302 898 473 6.654 1.073 1.034
64 640 1.273 936 458 5.742 881 1.052



Computers 2019, 8, 47 15 of 29

Table 4. Cloud Hub latency (in ms) with two containers allocated to the application.

Users Requests
Latency (ms)

Mean Median Min. Max. Std. Dev. Geometric Mean

1 10 4.090 618 469 19.187 6.607 1.420
2 20 4.595 615 476 17.288 5.346 1.792
4 40 1.685 538 469 12.560 2.815 868
8 80 2.746 599 458 15.646 3.989 1.178
16 160 3.477 601 447 24.968 5.484 1.015
32 320 1.016 563 448 14.329 1.425 752
64 640 930 540 446 17.391 1.616 684

Table 5. Cloud Hub latency (in ms) with four containers allocated to the application.

Users Requests
Latency (ms)

Mean Median Min. Max. Std. Dev. Geometric Mean

1 10 798 501 477 2.660 757 644
2 20 1.418 527 477 7.521 2.016 816
4 40 1.852 549 478 12.302 2.731 1.002
8 80 2.260 698 443 12.944 3.100 1.153
16 160 2.613 698 465 12.944 3.500 1.251
32 320 1.750 509 446 12.069 2.566 907
64 640 1.190 508 447 14.704 2.081 710

Table 6. Cloud Hub latency (in ms) with eight containers allocated to the application.

Users Requests
Latency (ms)

Mean Median Min. Max. Std. Dev. Geometric Mean

1 10 2.375 764 478 9.162 3.035 1.272
2 20 1.702 678 481 5.553 1.674 1.112
4 40 1.419 756 475 11.542 2.102 935
8 80 1.483 525 448 14.571 2.391 879
16 160 2.226 611 453 19.745 3.727 1.165
32 320 1.550 535 454 14.341 2.429 902
64 640 845 507 436 15.895 1.415 631

Tables 3–6 summarize the statistical distributions of the measured system latencies for several
application set-ups. For each set-up, the mean, median, minimum and maximum value as well as
the standard deviation are reported. The 50% of the incoming requests are served in between the
minimum and the median time; whereas the remaining 50% of the requests are served in between the
median and the maximum time. However, the mean response time is very close to the median and
standard deviation very high, which clearly denotes, as expected, a non-normal tail distribution of the
measured data. In addition, the measured data seems loosely correlated to the number of requests
and the number of containers allocated to the application, which makes very difficult to make reliable
predictions of the Cloud Hub application latency. Lognormal and Pareto distributions are those that
better model server response time [16]; in fact, the measured data matches with very good accuracy
a Pareto distribution. Observing the tables, we note that the minimum and median delay values
decrease as expected (with some outliers) as the number of allocated containers scales up; however,
this is not the case for the maximum values. As highlighted by Downey [16], this is a typical behaviour
of internet applications. In our specific case, this high variability is due to the performance impact
factors of the cloud infrastructure that add an unpredictable latency to cloud-deployed applications as
outlined in Section 2.2. We have performed our measurements at random times explicitly to trigger
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this variable behaviour and the effect of the other Amazon AWS customers application load on the
performance of our infrastructure. However, recall that the impact of the maximum delay on the
overall performance is minimum; since, in a tail distribution the probability of high delay is very low.

We choose to model the server response time with a simple Pareto (type I) probability
density function:

fX(x) =

{
αβα

xα+1 x ≥ β

0 x < β
(1)

where α is the shape parameter and β is the scale parameter of the distribution. An estimation β̂ of the
scale parameter can be computed as:

β̂ = min{xi} (2)

where xi represents the value that can be assumed by the random variable X. In our specific case,
the random variable X represents the server latency and the measurement xi can be considered
as a function of the number of requests r and the number of containers n allocated to the cloud
application; namely:

xi = f (r, n) (3)

A simple estimation x̂i of the minimum latency measurement min{xi} for a given number r of
incoming requests and number n of containers can be obtained using a multiple linear regression on
the measured data set reported in Tables 3–6, leading to:

x̂i(r, n) = 489.29− 0.6r− 2.77n (4)

with 1 ≤ r ≤ 64 and 1 ≤ n ≤ 8.
For practical reasons, we have limited the evaluation space to 1 ≤ r ≤ 64 and 1 ≤ n ≤ 8

respectively. Consider that with this set up we perform 1270 requests to our cloud infrastructure at
random times comprised within 0 and 30 s; this means that, in the worst case, a measurement can take
almost 11 hours. With this approach, we trade simplicity for accuracy since, as outlined before, cloud
customers share hardware and network resources, which makes the latency of the cloud infrastructure
hardly predictable. In fact, the R2 parameter for the simple prediction model x̂i(r, n) is 0.45. The
coefficient of determination R2 is the ratio between the explained variation and the total variation of a
dependent variable; in other words, it is a statistical measure of how close the observed data is fitted
to the regression plane x̂i(r, n). Thus, R2 = 0.45 means that our simple predictive model only covers
the 45% of the observed values. However, the R2 parameter does not indicate whether a regression
model is adequate or not. You can have a low coefficient of determination for a good model, or a high
coefficient of determination for a model that does not fit the data.

An estimation α̂ of the shape factor α can be computed as:

α̂ =
1

ln xi − ln β̂
(5)

where xi represent the geometric mean of the measured values {xi}.
However, β̂ = β̂(r, n) = x̂i(r, n) is a function of the number r of incoming requests and number n

of containers; thus, also the shape factor estimation α̂ is a function of those parameters. This leads to:

α̂(r, n) =
1

ln xi − ln x̂i(r, n)
(6)



Computers 2019, 8, 47 17 of 29

In this case too, the estimation α̂(r, n) can be derived from a multiple linear regression on the
measured data set reported in Tables 3–6, leading to:

x̂i(r, n) = 1.64 + 0.015r + 0.023n (7)

with 1 ≤ r ≤ 64 and 1 ≤ n ≤ 8.
Additionally in this case the coefficient of determination R2 is low (R2 = 0.182, which implies on

an 18.2% coverage of the measured values). We use the estimations of the scale parameter β̂ = x̂i(r, n)
and of the shape parameter α̂(r, n) to generate the cloud servers’ latency for different values of r and n
in our simulations.

Given a uniform random variable U ∈ (0, 1), a latency X(r, n) with a Pareto distribution can be
generated as:

X(r, n) =
x̂i(r, n)

(1−U)1/α̂(r,n)
(8)

Recall, that the proposed scheme does not predict the latency of the cloud-deployed servers; this
would make no sense, since, as stated before in a cloud environment several customers share the same
network and infrastructure which makes very hard to predict the server behaviour in a given instant.
What we do instead, is using the measured data to predict the shape of the Pareto distribution that
models the performance of our cloud infrastructure under different load conditions and number of
allocated containers. We then use this prediction to generate, in our simulator, a random latency with
that Pareto distribution starting from a uniform random variable U using Equation (8).

3.8. Delay Model

In order to build a realistic simulation model we need to estimate communication latency and
bandwidth among the nodes that form the Fab Lab network as well as the maximum concurrency
level that each node can support. This goal is accomplished through the following steps:

1. We estimate the network latency Lcj from client to Data center j and L f j Fab Lab to Data Center
j in the same AWS region. To do this, we use the real measurements provided by RIPE Atlas
network. RIPE Atlas is a public network located in the last mile and formed by more than 16.000
measurement probes capable of measuring connectivity between internet endpoints on demand.

2. We estimate the network uplink and downlink bandwidth between client and Data Center j
(Buplink,cj and Bdownlink,cj respectively) and Fab Lab and Data Center j (Buplink, f j and Bdownlink, f j
respectively) in the same AWS region. To do this, we use the Clouharmony speedtest
service (https://cloudharmony.com/speedtest). However, this service allows measuring the
desired parameters only between the client browser and the target Data Center. This means, that
we are able to track performance only within Europe and must make the simplifying assumption
that the network performances within the same AWS region are approximately the same using
the measurements performed in Europe as the reference values.

3. We measure the Data center i to Data center j network latency Lij using ping and traceroute.
Traceroute is even better than ping since it allows testing the response time of each network
segment along the path. Therefore, this tool can not only measure but also locate the latency
across the routers that form the packets path.

4. We measure the Data center i to Data center j uplink and downlink bandwith (Buplink,ij and
Bdownlink,ij respectively) using iPerf3 tool.

The delay D of the system response after a fabrication (POST) request has been issued is computed
as follows:

https://cloudharmony.com/speedtest
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D = Lcj + tuplink,cj + Ljk + tuplink,jk + Lkj + tuplink,kj+

Lj f + tuplink,j f + L f j + tuplink, f j + Ljc + tuplink,jc (9)

where j denotes a Data center located in a spoke node, whereas k denotes the Data center located in
the hub node. The delay D of a response is hence the packet round-trip time necessary to follow the
path the goes from the client to the spoke node, from the spoke to the hub node and then to the spoke
again, from the spoke to the selected fab lab and then to the spoke again, and finally to the client.

Observe that the data transfer time tij between nodes i and j in Equation (9) is computed as:

tij =
Sij

Bij
(10)

where Sij and Bij represent, respectively, the number of bytes transmitted and the measured bandwidth
between nodes i and j.

3.9. Concurrency Level

We use Apache Benchmark (https://httpd.apache.org/docs/2.4/programs/ab.html) to estimate
the maximum concurrency level that can be effectively borne by a node of the NEWTON cloud
infrastructure. This allows us to estimate the maximum number of concurrent requests that can be
served by the cloud infrastructure and to configure suitably the simulator that models NEWTON Fab
Lab infrastructure.

The Cloud Hub APIs provide a root (‘/’) endpoint that supports both HTTP and HTTPS protocols
and returns a response with a 200 status code and a body with an empty JSON (JavaScript Object
Notation) object. We use this endpoint to ping the Cloud Hub sever; however, we can also use the
same endpoint to perform simple load tests on our infrastructure. Nonetheless, you have to keep
in mind that the result obtained in this way are optimistic since the authentication server and the
underlying data base are not stressed. While Apache Benchmark tool generates very detailed reports,
we are only interested in detecting which is the maximum number of concurrent requests that breaks
our server leading to a timeout error. In order to do this, we stress our server during a prolonged
period with an increasing number of concurrent requests until it breaks.

Table 7 summarizes the percentiles measured when a minimum cloud deployment (with only one
container allocated to the cloud hub application) is stressed by 20,000 requests with concurrency levels
10, 50 and 100 respectively.

Observing the percentiles of the measurements, we note that in all the scenarios under test the
response delays exhibit a tail distribution. In addition, increasing the concurrency level of the incoming
requests leads to larger tail delays, being 100 the maximum concurrency level that can be supported
by the cloud configuration under test. However, the measurements carried out are qualitative and
are only useful to set-up our simulation model with reasonable values. In fact, the measurements
performed have been carried out just for a short period of time, thus they do not take into account the
delay variability of the cloud infrastructure as pointed out previously. Moreover, the measured times
refer to the response latency for a simple API endpoint that returns a 200-OK response; consequently,
they do not take into account the extra latency to access to the underlying data base to retrieve the
Fab Lab information. For all the aforementioned reasons, it seems reasonable to assume that, in a real
deployment, the Fab Lab infrastructure can support without problems up to 50 concurrent accesses
and manage approximately 1000 requests per second (by scaling up the number of containers allocated
to the cloud application).
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Table 7. Summary of the response times (in ms) for 20.000 incoming requests.

Percentile
Concurrency Level

10 reqs. 50 reqs. 100 reqs.

50% 45 44 46

66% 46 45 48

75% 46 47 49

80% 47 48 51

90% 49 51 57

95% 64 60 64

98% 74 70 71

99% 80 74 85

100% 234 476 851

3.10. Simulator Architecture

We have built a simulator on top of CloudSim [17] in order to estimate the Fab Lab Network
performance in several operating scenarios. We use the mathematical model developed in Section 3.7
to estimate the latency of the cloud infrastructure and the delay model described in Section 3.8
to estimate latency and bandwidth for Data-center-to-Data-center and Data-center-to-Fab-lab
communication channels.

The simulation software has been built according to the the following hypothesis:

1. The CPU load of each instance of the cluster must not exceed the 50%.
2. The requests are evenly distributed among the cluster instances.
3. The incoming requests are evenly distributed within a given instance among blocks of 8 Docker

containers, being 64 the container scaling threshold (This design choice is due to the fact that our
prediction functions are defined for 1 ≤ r ≤ 64 requests and 1 ≤ n ≤ 8 containers. In addition,
consider that Flynn does not natively support the container autoscaling feature implemented
by our simulator. In order to enable container autoscaling you should use other container
orchestration platforms such as DC/OS or Rancher instead of Flynn, provided you may afford
higher deployment costs.).

4. The cluster minimum configuration can manage up to 50 concurrent accesses.

The pseudo-code snippet depicted in Listing 1 describes the block allocation and latency
estimation process implemented by our simulator:
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Listing 1. Algorithm for estimation of cluster delays.

cluster_latencies = []
for (each instance in cluster) {
if (total_requests mod 64 != 0) {
allocate total_requests/64 +1 container blocks
} else {
allocate total_requests/64 container blocks
}
allocated_requests = total_requests/allocated_blocks
for (all the allocated blocks) {
compute Pareto scale param as β̂(allocated_requests,8)
compute Pareto shape param as α̂(allocated_requests,8)
cluster_latencies.push(compute_block_latency,(α̂, β̂))
}
}

CloudSim simulator has a multi-layer architecture depicted in Figure 8. The simulation layer
provides classes and methods for simulation and modelling of virtualized cloud architectures. This
includes dedicated management interfaces for Virtual Machines, memory, storage and bandwidth.

Figure 8. CloudSim simulator architecture (figure adapted from [17]).

This layer also provides support for modelling Data center operation, such as Virtual machine host
provisioning, application life cycle management, and system state dynamic monitoring. In addition,
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the simulation layer also exposes those functionalities that, like in our specific case, a Cloud application
developer can extend to perform complex workload profiling and application performance study.
CloudSim can be easily customized by implementing an extra software layer on top of the simulation
layer. The User Code layer exposes basic entities for hosts (number of machines, their specification,
and so on), applications (number of tasks and their requirements), virtual machines, number of users
and their application types, and broker scheduling policies.

The User Code layer can be designed and configured in order to perform the following activities:

1. Generate a mix of workload request distributions, applications and configurations.
2. Model Cloud resources availability scenarios and perform robust tests based on custom

configurations.
3. Implement custom application provisioning techniques for cloud infrastructure.

IaaS (Infrastructure as a Service) cloud infrastructure can be simulated by extending the Center
class. The Data Center class is used by CloudSim to manage the host entities. Each host entity is
assigned to one or more virtual machine according to the policies established by the Cloud Service
Provider. More specifically, a virtual machine policy refers to all those operation and control policies
related to a virtual machine life cycle within a Data Center. This includes virtual machine provisioning,
creation, migration and destruction. In other words, a Data Center can manage several hosts that in
turn manage several virtual machines during their whole life cycles. A Host is a CloudSim class that
models a physical server (either single or multi core). Each host is characterized by its processing
performance (expressed in millions of instructions per second or MIPS), as well as its memory and
storage capability. A Host is also characterized by a provisioning policy to decide how many processor
cores must be allocated to a given virtual machine. The allocation policy takes into account several
hardware characteristics such as the number of available CPU cores, the CPU share and the amount
of memory that is assigned to a given virtual machine. The core allocation operation is managed
by a Scheduler component that implements by default either space-shared or time-shared allocation
policies. The Scheduler class can be extended in the user program in order to implement custom CPU
core allocation policies.

We have extended CloudSim to model and evaluate the performance under different load
conditions of the NEWTON Fab Lab cloud infrastructure. More precisely, we modified the following
CloudSim classes and configuration files:

• Main class. We have defined the loops that run the tests and the simulation variables. In each
iteration we call the runExperiment method. This method properly initializes all the CloudSim
internal variables and classes. We do this through the following steps:

1. First, we initialize the CloudSim package.
2. Second, we create a set of four Data Centers: Datacenter_NorthAmerica,

Datacenter_SouthAmerica, Datacenter_Europe, and Datacenter_Asia.
3. Third, we create a broker for each of the four Data centers. A broker is the CloudSim entity

in charge of distributing virtual machines and cloudlets within the hosts of a Data center.
A cloudlet is a representation of a task in CloudSim.

4. Fourth, we create a pool of virtual machines for each Data center and assign it to the Data
center broker. The pool size varies dynamically between three and five depending on the
number of incoming requests and mimics the AWS autoscaling function.

5. Fifth, we create a pool of four cloudlets (i.e., the CloudSim task) to manage the incoming
requests and assign a cloudlet to each Data center broker. The cloudlets implement the
pseudocode described in Listing 1.

6. Sixth, we define the cloud infrastructure topology that models the NEWTON Fab Labs and
assign the CloudSim entities to each node of the networked Data centers.
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• CloudletScheduler. This class controls the distribution of the requests (managed by the cloudlets)
in every virtual machine and estimate the time in which these jobs are accomplished. We calculate
the execution times using the delay model described in Section 3.8. To do that, we had to
modify two methods of this class: updateVMProcessing and getEstimatedFinishTime. The former
calculates the fraction of a job that is performed at a given clock tick, whereas the latter estimates
the time remaining to complete this job.

• DatacenterBroker. This class distributes the virtual machines among the hosts of a Data Center.
This class has been suitably modified in order to deploy all the virtual machines managed by a
given broker in its corresponding Data center.

• Topology.brite. This is the file where the network topology is defined. In our specific case,
the network has eight nodes (four Data centers and four brokers) and the edges that connect the
nodes (six edges in our case: Three to connect the Data centers and three to connect the brokers).
This file also specifies the distance between nodes and the bandwidth and delay that must be
associated to each edge.

3.11. Design of the Experiments

Experiments have been designed to analyze the behaviour of the NEWTON Fab Lab infrastructure
with the following users’ distribution: 250, 500, 1000, 1250, and 1500. Each user can issue from one
to five requests; moreover, for each load configuration, the number of containers allocated to the
application will scale as multiples of 8 from 8 to 128 (for a total of 16 possible configurations). These
choices are basically driven by the need to reduce the number of iterations and hence the overall
simulation time. Finally, the simulated infrastructure must cover requests from four AWS availability
zones (Europe, North and Central America, South America and Asia-Pacific) in order to ensure a
globally optimal service to all the world regions. Table 8 summarizes the experiments’ configurations.
The variable simulation parameters are the number of users, the number of requests per user, and the
number of containers allocated to each instance of the cluster. All the other parameters are fixed. This
means that for each possible user configuration 80 experiments must be performed (i.e., the number of
requests per user times the number of possible container configurations). For the sake of simplicity, we
also assume a uniform user distribution among different AWS regions.

Table 8. Experiments configuration.

Number
of Users

Req. per
User

Scaling
Threshold

AWS
Zones

Data
Transfer

Virtual
Machines

Num. of
Allocated
Containers

Num. of
Experiments

250 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80
500 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80
750 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80

1.000 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80
1.250 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80
1.500 1 to 5 1.024 4 5MB 3 to 5 8 to 128 80

TOTAL: 480

Threshold is set to 1024 requests, i.e., the request count per target of each Elastic Load Balancing
(ELB) target group must be kept as close as 1024 for the autoscaling group. More specifically, assume
that you have configured an autoscaling group with a minimum of three instances (i.e., the minimum
PaaS cluster configuration) and a maximum of six instances within an ELB group of a given AWS region.
Setting a threshold of 1024 means that each instance of your cluster should receive approximately
1024 requests. If the overall number of incoming requests is larger, the number of instances should
be scaled up to match the target threshold as close as possible. For example, if the cluster has three
instances and the number of incoming requests is, say 3800, the system should scale up by one instance
(i.e., from three to four), so that each instance handles 3800 / 4 = 950 requests. Finally, note that with
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the simulation set up depicted in Table 8, the maximum number of incoming requests from a given
region does not exceed 5000; thus, with a threshold of 1024 it makes no sense to have more than five
virtual machines in the autoscaling group.

4. Results

Prior to running all the experiments, we have to make sure that the mathematical model we
have developed for the cloud application behaves as expected. To do this we simply check that the
simulated latency of the NEWTON cloud infrastructure matches a Pareto distribution. After running
all the simulations whose set-up is detailed in Table 8 we obtain the Pareto-like distribution of the
response latency depicted in Figure 9.

Figure 9. Distribution of the response latency for NEWTON Fab Lab infrastructure.

Recall that, as detailed in Table 8, our simulation scenario assumes fabrication requests with a 5 MB
attachment (since this is the typical image file size of a design submitted for fabrication). In addition,
we have also assumed that the users (and hence the service requests) are evenly distributed among
all the Data centers that form the NEWTON Fab Lab cloud infrastructure. Table 9 represents the
percentiles for the distribution in Figure 9.

The figure shows the simulation results for the set-up described in Section 3.11, the configurations
reported in Table 8 and a deployment over 4 AWS regions and represents a simple histogram that
groups the system responses with the same delay. In addition, Figure 9 also demonstrates that the
simulator behaves as expected since it matches with very good approximation a Pareto distribution.

The experimental results depicted in Figure 9 are represented in tabular form in Table 9.
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Table 9. Percentile table of the simulated NEWTON Fab Lab cloud infrastructure latency.

Percentile Latency (in ms)

50% 8.000

75% 13.000

95% 26.000

98% 33.000

99% 38.000

100% 49.000

Observe that 50% of the requests are served within 8.000 ms and 99% of the requests within
38,000 ms, being 49,000 ms the worst case simulated delay. These are indeed excellent results
considering that:

• As highlighted earlier in this paper, cloud infrastructure is shared among many customers, leading
to very variable delays.

• The simulated latency also includes the transmission time of the design file (assumed to be
5 MB) attached to a request (that must go from the client to the spoke or hub node of NEWTON
infrastructure and finally to the target Fab Lab).

• In the worst-case scenario the communication delay depends on the following path:
Client–spoke–hub–spoke–Fab Lab–spoke–client. Thus, the latency of a response can be very
high due to the communication overhead introduced by each node in the communication path.

Observing the simulation results we can easily infer that the cloud system infrastructure behaves
as expected since:

1. The response delay increases with the number of requests.
2. The Europe Data center is the one that exhibits the longest delays because it is the hub of our

infrastructure and must always process all the incoming requests.
3. The Data center latency exhibits a high variability, which reflects the performance fluctuations

of the cloud infrastructure due to resource and network sharing with other customers as
outlined previously.

4. The response latency exhibits a Pareto-like distribution, which is typical of internet
networked systems.

5. Discussion

FaaS Fab Lab deployment has been performed as part of the NEWTON platform. The platform is
now in production phase and includes the Cloud Hub (deployed on an Amazon AWS EC2 cluster) and
the on-premises interface infrastructure (implemented with inexpensive Raspberry Pi III boards) that
has been deployed and is presently under test at CEU Madrid, Spain. This deployment has helped
gaining significant insights on several design and implementation aspects and trade-offs that include
hardware design and interfacing, system monitoring and cloud deployment, data security as well as
service deployment and orchestration in a multi-cloud environment. Several architectural aspects and
implementations have been evaluated and tested so far, with particular emphasis on:

1. system replicability and scalability;
2. system costs and maintainability;
3. service availability and auto-discovery in multi-cloud environments;
4. API architecture and design;
5. functional and load tests design.
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The next step is setting-up the system staging environment that involves networking and
interfacing to the cloud hub the Fab Labs at CEU Madrid and Vrije University of Bruxelles, Belgium.
This will enable testing the system in a distributed, yet still controlled environment.

FaaS enhances existing Fab Lab capabilities by providing the digital fabrication equipment with
the possibility to communicate over the Internet in order to remotely control fabrication activities.
Using this approach, the fabrication facilities are exposed to the Internet as software services, which
may be consumed by third-party applications.

As described in [11], FaaS practical deployment strongly relies on IoT and Cloud architectural
and software paradigms and requires design and development of specific hardware and software
interfaces that allow pervasive connectivity. More specifically, a standard fabrication machine is
enhanced by wrapping it with software interfaces running on an external inexpensive microcontroller
that acts as the machine ”master”. These interfaces provide a software abstraction layer that enable
communication through lightweight machine-to-machine protocols, machine status monitor through
current sensors that allow to detect the machine status (either busy, idle or off-line) by measuring the
current consumption and machine virtualization through REST APIs. A Fab Lab gateway provides an
access point to the machines of a Fab Lab and implements security and rate limiting policies to ensure
a fair access to the fabrication resources.

The hardware interface design was not difficult and has been accomplished by using standard and
inexpensive off-the-shelf components. Conversely, firmware and software development was highly
challenging and has involved solving several complex problems related to equipment monitoring
and real time communications. A minimum cloud deployment on one AWS region and with just
one container allocated to the application was load tested for different workloads and the results are
reported in Table 10.

Table 10. Summary of system performance measured in [11] (values are in milliseconds).

API Call
50 Users 100 Users 150 Users

Median Min Max Avg. Median Min Max Avg. Median Min Max Avg.

GET fablabs 220 137 2.990 313 220 137 3.515 347 280 138 3.786 478

GET job info 205 139 664 246 212 137 623 256 285 141 3.679 504

DELETE a job 438 285 3.508 546 568 285 4.803 800 3.750 320 7.600 3.164

GET all jobs 210 139 3.370 354 210 138 3.211 282 230 140 2.948 372

POST a job 560 374 3673 801 830 398 5.233 1.158 3.900 502 9.141 3.883

Table 10 depicts the APIs response time when the system is loaded by 50, 100 and 150 concurrent
users, respectively. Observe that the distribution of the measured delays has “tail” behaviour with
a large variability between the minimum (namely, 137 ms) and the maximum (namely, 9141 ms)
measured value. The outputs of our simulator, reported in Section 4, exactly match this “tail” behaviour.
As highlighted before, this large variability of the response times is due to the fact that many cloud
customers are sharing the same hardware and network infrastructure, which makes a cloud application
very sensitive to other users’ workloads. Despite the intrinsic shortcomings of the cloud infrastructure,
the measured response times are excellent. Our simulator allows the estimation of system performance
at a larger scale, increasing considerably the number of concurrent users and considering a more
complex deployment over several AWS regions. Simulation results are summarized in in Section 4: The
response times exhibit Pareto distribution and a high variability ranging from few hundred ms to 49,000
ms (however, 99% of the requests are served within 38,000 ms) in the case of 1500 concurrent users.

This paper describes FaaS deployment in the context of NEWTON next generation Fab Labs;
however, the proposed solution is general, hardware-independent and targets all those scenarios which
involve collaborative fabrications. We foresee that this capability will have a huge impact not only on
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education, but also on industry helping to develop new business models in which fab-less companies
may schedule medium or large-scale fabrication batches hiring third-party remote fabrication services.

NEWTON has been the opportunity for the whole research team to gain particular insight on
the impact of the technology on the way we teach and learn. On one hand we had to investigate
new teaching techniques and contents to make STEM subject education more appealing for younger
generations, on the other, we had to select those technologies that were more suitable to deliver those
contents to a wide audience. We think that Fab Labs are a powerful tool to develop informal teaching
activities in which the learning process is based on prototyping and experimentation; however, a Fab
Lab is expensive and its deployment costs cannot be afforded by all the institutions, especially the
primary and secondary schools that are targeted by the NEWTON project. In this context, cloud and
IoT technologies have been proven to be very effective to implement resource sharing and remote
access to distributed fabrication equipment. NEWTON has entailed several challenging tasks for us
both as engineers and as educators due to the the broad and interdisciplinary nature of the project.
However, the whole process from design to development and deployment in production has been
productive and enriching and has allowed us to get a better understanding on several cutting-edge
technologies (cloud infrastructure architecture and design patterns, IoT technologies, distributed and
real time programming, simulation, etc.) and how to integrate them into a working platform that has
been battle-tested in several pilot tests. However, the technology developed within NEWTON project it
is not an end in itself, but serves a well defined purpose: To foster passion for STEM education through
younger generation through the development of innovative technology-enhanced teaching techniques.
Under this point of view, the results obtained so far are very encouraging. The test pilots we carried
out [8–10] showed a high degree of satisfaction among the surveyed students which encourages us to
follow this path in our future research.

6. Conclusions

In this work we have introduced the concept of Fabrication as a Service (FaaS) in the context of
NEWTON Fab Labs. While, as stated earlier, this concept is broad and general and has many potential
applications in several different areas, we have analyzed its impact in education by implementing
a resource sharing mechanism that enables remote access and monitoring of expensive digital
fabrication equipment. The impact of this technology on the learning outcomes and students’
satisfaction has been assessed through many test pilots whose results have been reported in [8–10]. The
proposed architecture relies on a complex distributed containerized infrastructure of loosely coupled
microservices running both on the cloud an on the Fab Lab premises. The design, deployment and
testing of this infrastructure has been thoroughly described in [11]. More specifically, [11] targets several
important aspects of the platform design including: The design of the fabrication machine hardware
wrappers and interfacing, the architecture of the software wrappers and of the cloud-deployed services,
the implementation of the security policies and of the communication protocols and the load test of the
platform under several load conditions. The tests performed in [11] helped us to gain more insight on
platform behaviour and performance; however, they where carried out only for the deployment that is
presently in production and don’t provide information on system performance as it scales over a wider
geographical area to interconnect a larger number of Fab Labs. To overcome this limitation we have
used the measured data to build a simulation model that allows to estimate system performance under
a wide number of configuration and loads. A platform simulator tool is of paramount importance not
only to evaluate system performance in a variety of possible scenarios, but also to make the correct
design decisions, to detect possible bottlenecks and to allocate the suitable number of cloud resources
to cope with users’ demand and target Quality of Service (QoS). In this work we have presented the
algorithms we have used to build a simulator of the NEWTON Fab Lab platform. More specifically we
have: Introduced the architecture of the hardware and software infrastructure of the NEWTON Fab
Lab platform, discussed the modelling challenges and issues of cloud infrastructure, built a simple
mathematical model based on multiple linear regression on the measured data, described the simulator
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architecture and defined a set of experiments to estimate system performance over a wide cloud
deployment covering several Amazon AWS regions. The behaviour of the simulated outputs matches
exactly the behaviour of the real system; however, our simulator allows the possibility to analyze and
evaluate the performance of complex deployments under a broad range of system loads, detecting
possible system bottlenecks and architectural flaws.

Cloud, containerization and IoT technologies are enabling a wide range of new applications
and business models. FaaS strongly relies on those technologies to implement a novel distributed
Fab Labs architecture in which the underlying hardware is wrapped by a software service accessible
through APIs. Distributed systems have been around for decades; however, the main driver for the
transition from monolithic to loosely coupled distributed architectures has been the widespread and
rapid acceptance of the new containerization technologies. Container technologies have allowed the
development and rapid deployment of new stacked distributed design patterns [18,19] in which the
underlying IT infrastructure is clearly decoupled from the application. More specifically, quoting
Brendan Burns’ words [20]:

“From the beginning of the container revolution two things have become clear: First,
the decoupling of the layers in the technology stack are producing a clean, principled layering
of concepts with clear contracts, ownership and responsibility. Second, the introduction of
these layers has enabled developers to focus their attention exclusively on the thing that
matters to them — the application.”

In the specific case of the NEWTON Fab Lab platform presented in this paper, containerization and
cloud technologies have enabled the possibility to deploy a set of loosely coupled microservices
that allow seamless communication and interaction of digital fabrication services. On the other
hand, IoT technologies provide the possibility to wrap the underlying digital fabrication hardware
with a software abstraction layer transforming a conventional machine into a smart object with the
capability to interact with other objects of the NEWTON infrastructure through a cloud hub and
machine-to-machine communication protocols.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
AWS Amazon Web Services
CNC Computer Numerically_Controlled
CPU Central Processing Unit
CRUD Create, Reade, Update, Delete
EBS Elastic Block Storage
EC2 Elastic Compute Cloud
ELB Elastic Load Balancing
FaaS Fabrication as a Service
HTTP HyperText Transfer Protocol
IaaS Infrastructure as a Service
ICMP Internet Control Message Protocol
IoT Internet of the Things
IP Internet Protocol
IPSec IP Secure
JSON JavaScript Object Notation
MIPS Million Instructions Per Second
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NAT Network Address Table
PaaS Platform as a Service
PAT Port Address Table
QoS Quality of Service
RAM Random Access Memory
REST REpresentational State Transfer
SA Security Association
SB Slug Builder
SR Slug Runner
SOA Service Oriented Architecture
STEM Science, Technology, Engineering and Mathemathics
TCP Transmission Control Protocol
VPC Virtual Private Cloud
VPN Virtual Private Network
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