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Abstract—Given the shortcomings of traditional networks,
Software-Defined Networking (SDN) is considered as the best
solution to deal with the constant growth of mobile data
traffic. SDN separates the data plane from the control plane,
enabling network scalability and programmability. Initial SDN
deployments promoted a centralized architecture with a single
controller managing the entire network. This design has proven
to be unsuited for nowadays large-scale networks. Though multi-
controller architectures are becoming more popular, they bring
new concerns. One critical challenge is how to efficiently perform
path computation in large networks considering the substantial
computational resources needed. This paper proposes HiDCoP, a
distributed high-performance control plane for path computation
in large-scale SDNs along with its related solutions. HiDCoP
employs a hierarchical structure to distribute the load of path
computation among different controllers, reducing therefore the
transmission overhead. In addition, it uses node parallelism to
accelerate the performance of path computation without generat-
ing high control overhead. Simulation results show that HiDCoP
outperforms existing schemes in terms of path computation time,
end-to-end delay and transmission overhead.

Index Terms—SDN, hierarchical control plane, path computa-
tion, large-scale networks

I. INTRODUCTION

With the widespread adoption of smartphones and global
endorsement of 3G/4G technologies, mobile data traffic has
skyrocketed. According to Cisco Visual Networking Index
[1], the global mobile data traffic grew from 4.4 exabytes
per month in 2015 to 7.2 exabytes per month in 2016 and
is expected to reach 49 exabytes per month by 2021. Given
the inherent characteristics of nowadays networks (i.e., ex-
tremely expensive, manually configured and lacking dynamic
scalability), handling the constantly growing data traffic while
ensuring high service quality is becoming complex and very
laborious.

Software-Defined Networking (SDN) is a concept that was
proposed to improve network performance and management. It
decouples the control plane from the data plane to enable their
independent evolution [2], [3]. This separation brings about
numerous advantages, including high flexibility, programma-
bility and high scalability. The first proposed SDN systems
(e.g., NOX [4] and Floodlight [5]) deploy a single centralized
entity, called the controller, responsible for managing traffic
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flows and monitoring switches of the entire network. Despite
their simplicity and ease of implementation, these systems
have failed to meet the performance requirements of nowadays
large-scale networks [6]. The reason is twofold: 1) with the
increase of data traffic, the centralized controller will even-
tually get overwhelmed, leading to performance degradation;
and 2) any minor disruption to the controller’s activity may
jeopardize the availability of the entire network.

Various techniques have been proposed to mitigate these
shortcomings. For instance, [7] and [8] used multiple cores to
enhance the Input/Output performance and enabled parallelism
to support large networks. [9] and [10] redistributed part of the
flow requests among switches to alleviate the controller’s load.
Alternatively, having a physically-distributed control plane is
the approach gaining ground among the SDN research commu-
nity. It consists of partitioning the network into multiple areas,
each of which is managed by a distinct controller. ONIX [11],
ONOS [12], Google’s B4 [13] and Espresso [14] are examples
of SDN multi-controller architecture.

In a distributed control plane, each controller maintains
topology information, including the set of switches assigned
to it (i.e., association information), the set of links between
them (i.e., link view) and the paths between all-pairs of
these switches (i.e., path view). Failing to synchronize this
information, namely link and path views, among all controllers
may lead to inconsistent path computation results. This is
referred to as the synchronization problem [15]–[17]. Yet,
solving the synchronization problem in large-scale SDNs,
particularly when topology changes are frequent or even
moderate, puts computational pressure on the controllers and
introduces high overhead due to the large number of control
messages to be exchanged [18]. This impacts the efficiency
of path computation, which in turn affects the performance of
various SDN applications such as traffic engineering solutions
[19], [20].

This paper proposes HiDCoP, a distributed control plane,
and its related solutions that address the aforementioned prob-
lems while enhancing the performance of path computation in
multi-controller SDNs. The paper has five contributions:

1) a hierarchical architecture that partitions the network into
multiple domains, each of which is subdivided into several
areas. Each area/domain is managed by a distinct controller;

2) a path computation mechanism that takes advantage of
the hierarchical architecture along with the abstracted link
views to construct routing paths between hosts, based on the
locations of the communicating entities. This is to ensure rapid



and scalable path computation without generating high control
overhead;

3) a path update procedure that updates the pre-computed
path views to reflect changes in switches/links status. This is
to avoid computing the path views from scratch, alleviating
the computational burden on the various controllers;

4) a failover mechanism that is deployed to reinforce the
system availability in case of controllers failure, enabling
service continuity; and

5) a dual theoretical and simulation-based analysis to assess
the feasibility and effectiveness of the proposed solution.

The rest of this paper is organized as follows. Section II
surveys some related work. Section III presents HiDCoP’s
overall architecture along with the control plane components.
Section IV describes the proposed hierarchical mechanisms
for path computation and path update. Section V presents the
recovery mechanism to cope with controllers’ failure. Section
VI describes the simulation settings and results while section
VII concludes the paper.

II. RELATED WORK

In this section, we first survey the hierarchical control planes
that were proposed to tackle the problem of scalability in SDN;
then, we review the existing approaches that aim at enhancing
the performance of path computation in SDN.

A. Hierarchical Control Plane

Many approaches have been proposed to address the prob-
lem of scalability in SDN for different applications and
from different perspectives. For instance, Phemius et al. [21]
proposed DISCO, a distributed SDN control plane for WANs
and overlay networks where each SDN controller is in charge
of an SDN domain and exchanges aggregated network-wide
information with other controllers. This information includes
reachability (a list of reachable hosts in controllers domain),
connectivity (path view), and monitoring (the status, latency
and bandwidth of peering links). The exchange of such infor-
mation is carried out using an agent-based architecture where
agents publish and consume messages to ensure system’s con-
sistency. De Oliveira et al. [22] proposed spotled, a distributed
control plane architecture for software-defined wireless sensor
networks. It consists of using cluster-head nodes as local
controllers and deploying a centralized controller responsible
for keeping the overall network view as well as managing the
entire network (i.e., with the help of the local controllers).

Genge et al. [23] proposed a two-tier hierarchical control
plane for network traffic optimization in Industrial Control
Systems (ICS). The network is partitioned into several do-
mains, each of which is managed by a controller (i.e., bottom-
tier). These controllers are managed by a centralized Open-
Flow controller (i.e, top-tier), which updates the forwarding
rules and exposes a communication interface that can be
used to implement specially-tailored network traffic control
strategies. Similarly, Zhao et al. [24] proposed a three-tier
hierarchical control plane to meet traffic engineering appli-
cations’ requirements. Using this architecture, the network
is partitioned into two-level domains. The low-level domains

are managed by local controllers, which are supervised by
top-tier domain controllers. These latter are managed by the
root controller, responsible for routing coordination across
domains.

Koshibe et al. [25] proposed a multi-tier hierarchical control
plane to increase service flexibility in SDN by distribut-
ing functionalities between multiple controllers. It endorses
a client-server relationship between controllers at different
tiers while enabling interconnection among controllers at the
same tier. Yeganeh et al. [26] proposed Kandoo, a two-level
hierarchical control plane to enable load balancing in the
control plane without modifying OpenFlow [27] switches. The
bottom-layer contains local controllers which are not intercon-
nected and are responsible for handling events received from
the data plane. The top-layer contains a logically centralized
controller which maintains a network-wide view and is respon-
sible for managing local controllers. Likewise, Xu et al. [28]
proposed a 2-tier control plan architecture for load balancing
and scaling of the control plane. The bottom-tier contains local
controllers responsible for processing requests received from
a middle plane, which plays the role of proxy between the
control plane and the data plane. The top-tier includes the
global controller which is responsible for managing the local
controllers. Finally, Shah et al. [29] proposed Cuttlefish, a
2-tier hierarchical SDN architecture that enables traffic and
computation offloading from root controllers to local ones.
It uses developer-specified input to identify control messages
that can be correctly processed at local controllers, and makes
offloading decisions based on the cost of synchronizing the
offloaded data across controllers.

Although they have demonstrated a great ability in dealing
with the problem of SDN scalability, most of these schemes
(i.e., [21]–[25], [28], [29]) enable communication between
controllers in the same tier in order to share topology infor-
mation, yielding high control overhead that might hinder the
performance of several applications (e.g., traffic engineering).
This has motivated us to propose HiDCoP, a distributed three-
tier hierarchical control plane that only supports communica-
tion between controllers in different tiers to reduce control
overhead (i.e., like [26], controllers at the same tier are not
interconnected).

B. Path Computation

Few approaches have been proposed to optimize the perfor-
mance of path computation in SDN. For instance, Kouicem et
al. [30] proposed a path computation algorithm for centralized
SDNs to optimize flow transmission in WAN environment.
It deploys BGP-LS [31] to collect information regarding the
underlying WAN (e.g., link states and traffic information) and
forward it to the centralized controller. Based on a client-server
architecture, the centralized controller uses the received infor-
mation to respond to applications’ path computation requests.
Synchronization between the controller and the applications
is carried out via exchanging report messages. Cho et al.
[32] described a cloud-based approach that enables SDN
controllers to delegate the task of path computation to an
application, which can be part of a controller or installed



Fig. 1. HiDCoP’s architecture. The control plane is made of 3-tiers: core controllers (CC), domain controllers (DC) and edge controllers (EC).

on an external server. This application collects, maintains
and updates network information within its corresponding
domain. When a path is to be established among multiple
domains, each application computes the shortest path within
its respective domain and shares it with the other applications
of the involved domains. The shortest path is then computed
using the backward recursive technique (i.e., path computation
starts from the destination and goes backwards till the source
node is reached).

Qui et al. [15] proposed ParaCon, a parallel control plane
that seeks to scale up path computation in SDN. It adopts a flat
architecture and endorses a strong consistency synchronization
for association and link view information (i.e., all controllers
must share this information immediately whenever a topology
change has occurred). However, it deploys an eventual con-
sistency policy (i.e., allowing for a delay in synchronization)
along with an asynchronous parallel algorithm to synchronize
path view information among all controllers. This is to reduce
message transmission for path computation, minimizing there-
fore the overall synchronization overhead and enhancing the
path computation performance. Fu et al. [33] proposed Orion,
a hybrid control plane that combines the advantages of flat and
centralized hierarchical control planes to address the problems
of computational complexity and path stretch. Orion is a two-
tier layer architecture. The bottom layer is made of the area
controllers, responsible for collecting link view information
while the top layer contain the domain controllers, each of
which managing several area controllers and keeping track of
the global network topology. Path computation is performed by
area or domain controllers, depending on where the destination
switch is located, and path views are synchronized among the
domain controllers. Backup paths for each pair of switches are
also computed and stored at different controllers to quickly
handle links’ failure.

Despite their performance, these solutions have different
limitations. While [30] suffers from the bottleneck and single
point of failure problems, [15], [32], [33], might still incur
high control overhead due to their flat architecture (i.e., con-

trollers should maintain and synchronize the global topology
information), especially in large-scale networks where path
requests are recurrent. In addition, Orion [33] computes path
views from scratch whenever topology changes occur and
no mechanism for fault tolerance was provided in case all
controllers have the “Equal” role. This has motivated us to
propose HiDCoP, a distributed and hierarchical control plane
that aims at improving the scalability and the performance of
path computation via: 1) endorsing a three-tier hierarchical
architecture to reduce the control overhead due to path view
synchronization; 2) enabling parallel path computation at the
level of controllers in the same or different tiers to accelerate
the computation process; 3) carrying incremental adjustments
over pre-computed path views to reflect topology changes,
further reducing the control overhead; and 4) proposing a
resiliency strategy to protect the system from potential failures
and attacks (i.e., unlike [26], [33]).

III. HIERARCHICAL DISTRIBUTED CONTROL PLANE

HiDCoP is a distributed control plane that seeks to improve
the scalability and performance of path computation in multi-
controller SDNs. This section covers HiDCoP’s overall archi-
tecture along with the components of the control plane.

A. The overall Architecture

Fig. 1 illustrates HiDCoP’s architecture. It has two major
components: the control plane and the data plane.

The control plane is physically distributed over three tiers,
each of which is in charge of performing specific tasks.
The lower tier is made of multiple Edge Controllers (EC)
that are deployed near end users to enhance the quality of
service of various applications. Instead of relaying application
requests to remotely deployed controllers, edge controllers
can process them locally, enabling therefore quick response
time while reducing the computational overhead. Each edge
controller is responsible for managing its own area. This
includes maintaining and updating topology information and



updating flow tables of its assigned switches. Domain Con-
trollers (DC) make the middle tier of HiDCoP’s control plane.
They are responsible for managing their respective domains.
This includes supervising edge controllers and computing
inter-area paths when requested. To do so, each domain
controller constructs the path view of its respective domain
based on path views received from its corresponding edge
controllers. It also maintains the list of inter-area gateways
that keeps track of the switches connecting neighboring areas
(see Fig. 1). Finally, the top tier contains one controller named
the Core Controller (CC). It is responsible for supervising the
domain controllers and computing inter-domain paths when
requested. To do so, the core controller constructs the path
view of the entire network using the path views received
from all domain controllers. It also maintains the list of inter-
domain gateways that keeps track of the switches connecting
neighboring domains (see Fig. 1).

The data plane represents the physical network infrastruc-
ture (i.e., switches and links). When a switch needs to forward
a data packet to another switch, it sends a path request to its
respective edge controller. Based on the destination’s location,
the edge controller can: a) compute the shortest path and
update the flow table of the source and all the switches in the
computed path; or b) forward the path request to the domain
controller.

B. Control Plane Components

Fig. 2 depicts the various components of the control plane.
There are six components, each of which is responsible for a
specific task. The dashed arrows represent the communication,
in steps, between the various components.

When an edge controller ECi receives a path request via
the path request module (step 1), it instructs the device
management module to gather information about devices that
are within its area (step 2) using the Link Layer Discovery Pro-
tocol (LLDP) (step 3). This information includes the switches’
IP addresses, their type (gateway, non-gateway) and the IP
addresses of the switches to which they are connected, and
is used by the link view module to build the link view of
ECi’s area (step 4). Note that whenever a switch becomes
unavailable, the device management module informs the link
view module in order to update the area’s link view. The path
view module in ECi makes use of the built link view (step
5) to create and maintain the area’s path view in order to
select the shortest path between the source and the destination
switches. In case the source and the destination are within
ECi’s area, the shortest path is sent to the concerned switches
through the southbound interface using the OpenFlow protocol
(step 6). Otherwise, the path request is forwarded by ECi’s
path request module to the domain controller DCj via the
vertical communication channel (step 7). This channel is
established via a TCP connection and is used to forward device
information, path requests and path views between controllers
as well as to distribute rules to update flow tables.

Once DCj receives the path request, it checks the infor-
mation in the device management module (step 8) to verify
whether the destination is within its domain. This information

Fig. 2. Components of the control plane

is an aggregation of the device information received from
all edge controllers managed by DCj (step 9). The gateway
management module uses this information to maintain the
inter-area gateway table (IAGT) which keeps track of the
switches connecting neighboring areas (step 10). Each entry in
IAGT includes the switch’s address, its status (i.e., normal or
special, described in Section V), the set of inter-area gateways
to which it is connected and the address of the edge controller
to which it is assigned (i.e., the area). The path view module
uses IAGT (step 11) along with the received path views from
its respective edge controllers (step 12) to construct the path
view of DCj’s domain. In case the source and the destination
are within DCj’s domain, the shortest path is sent to the
concerned switches through the appropriate edge controllers
(step 13). Otherwise, the path request is forwarded to the
core controller (step 14). This latter uses the information in
the device management module (step 15), received from all
domain controllers (step 16), to identify the domain where the
destination is located. It then uses the inter-domain gateway
table (IDGT) that contains the list of switches connecting
neighboring domains (step 18) along with the path views
received from the domain controllers (step 19) to construct the
path view of the whole network and sends the shortest path
to the concerned switches (step 20) through the corresponding
domain and edge controllers. Steps 21 and 22 are carried out in
case of a failure of an edge or a domain controller respectively



and are covered in more details in Section V.
Note that HiDCoP’s architecture discussed in this paper is

designed to be deployed in a single autonomous system (AS).
Nevertheless, to support routing between different autonomous
systems, HiDCoP can integrate, at the level of the core
controllers, the inter-SDN domain routing component [34]
which implements a routing protocol that is based on BGPs
most important features with some architectural differences
to meet SDN requirements. Hereof, HiDCoP will first select
inter-AS paths based on local preferences. In case two AS have
the same local preference, path’s length is then considered.
To enable communication between the various instances of
the inter-SDN domain routing component, TCP connections
will be established between neighboring core controllers. This
is similar to sessions created by BGP routers to exchange
reachability information.

IV. HIDCOP’S PATH COMPUTATION AND UPDATE

In order to reduce the transmission overhead due to path
computation and to alleviate the computational burden on the
different controllers in case of topology changes, two mecha-
nisms are proposed: Hierarchical Path Computation (HPC) and
Hierarchical Path Update (HPU). This section first introduces
some key notations and then describes both HPC and HPU
in more details. Finally, it presents the cost analysis of both
mechanisms.

A. Key Notations and Assumptions
Let S denote the set of switches with |S|= n and let E

designate the set of edge controllers with |E|= m. Each edge
controller ei maintains Mei , the set of switches within its
respective area and Oei , the set of switches in its correspond-
ing domain, excluding Mei , used for fault-tolerance purposes.
In addition, let D denote the set of domain controllers with
|D|= r. Each domain controller di maintains Ndi

, the set of
edge controllers within its respective domain and N ′di

, the set
of switches within its respective domain.

We define the network topology as a graph G(S,L) where
S denotes the set of switches and L designates the set of links
connecting them. Each element in L is a pair (x, y), x, y ∈ S.
We represent the link view as the adjacency matrix L′ with
L′x,y denoting the weight of the link between x and y. If
L′x,y = −1, x and y are not connected. Moreover, we define
the path view as the weighted graph G′(S,W ), where W is
the weights of the best paths between the switches, and we
represent it as the adjacency matrix P , with Px,y denoting the
weight of the best path between x and y. The notion of best
path can be defined based on the application’s requirements
(e.g., shortest path, shortest delay, highest bandwidth). In this
paper, best path means shortest path.

We assume that each switch can be managed by only
one edge controller. Each switch has a forwarding table that
contains the forwarding rules received from its corresponding
edge controller. This includes the next hop of the best path to
other switches as well as the IDs of the flows passing through
that particular switch, represented as pairs (SrcIP, DstIP) where
SrcIP denotes the IP address of the source switch while DstIP
designates the IP address of the destination switch.

B. Hierarchical Path Computation (HPC)

HPC defines three path computation scenarios, depending
on the location of both the source and destination switches:
intra-area, inter-area and inter-domain. They are described in
the following subsections.

1) Intra-area path computation: both the source and desti-
nation are within the same area. In this case, the source sends
a path request to the area’s edge controller. This latter gets the

Algorithm 1: Path Computation Algorithm
Data: Src, Dst, Mei , G(Mei , Lei)
Result: Path between Src and Dst
if Src ∈Mei and Dst ∈Mei then

// Intra-area path computation
G′(Mei ,Wei) = Moore(G(Mei , Lei))
Get Path from Src to Dst
for (xi, yi) ∈ Path do

Install flow entry (Src, Dst)

else
// Src ∈Mei and Dst /∈Mei

if Dst ∈Mej and Mei ,Mej ∈ Ndk
then

// Inter-area path computation
dk ← path request from ei
d(ei,ej) ←path view request from dk
for eu ∈ dei,ej do

G′(Meu ,Weu) = Moore(G(Meu , Leu))
dk ← G′(Meu ,Weu)

Md = Mei ∪ ... ∪Mej ∪ ga(ei,ej)
Wd = Wei ∪ ... ∪Wej ∩Wga(ei,ej)

G′(Md,Wd) = Moore(G(Md, Ld))
Get Path from Src to Dst
for eu ∈ d(ei,ej) do

for (xi, yi) ∈ Path|(xi, yi) ∈Meu do
Install flow entry (Src, Dst)

else
// Inter-domain path computation
cc← path request from dk
c(dk,du) ← path view request from cc
for dz ∈ c(dk,du) do

for ev ∈ Ndz
do

G′(Mev ,Wev ) = Moore(G(Mev , Lev ))
dz ← G′(Mev ,Wev )

G′(Mdz
,Wdz

) = Moore(G(Mdz
, Ldz

))
cc← G′(Mdz ,Wdz )

Mc = Mdi ∪ ... ∪ ...Mdu

Wc = Wdi
∪ ... ∪Wdu

∩Wgd(di,du)

G′(Mc,Wc) = Moore(G(Mc, Lc))
Get Path from Src to Dst
for dz ∈ c(di,du) do

for ev ∈ Ndz
do

for (xi, yi) ∈ Path|(xi, yi) ∈Mev do
Install flow entry (Src, Dst)



source and destination IP addresses from the request message
and checks Mei to make sure that the destination is within its
area. Then, it uses G(Mei , Lei), stored in the link view module
to construct P using an optimized version of the Bellman-Ford
algorithm [35]. Lei contains all the links in the area except
the inter-area links (see Fig. 1). Finally, it installs the flow
entry in the flow tables of all the switches in the selected path
between the source and destination.

2) Inter-area path computation: the source and destination
are within the same domain, but in different areas. In this
case, the source sends a path request to its respective edge
controller. This latter gets the source and destination IP
addresses from the request message and checks Mei . Given
that the destination is not within its respective area, the edge
controller forwards the path request to the domain controller.
When received, the domain controller checks N ′di

in the device
management module to make sure that the destination is within
its domain and to identify the area in which it is located. The
domain controller then requests the set of edge controllers
managing the areas between the source and the destination,
denoted as d(es,ed), to construct and transmit their path views
(i.e., this is done in parallel). Once received, it combines them
with ga(es,ed), the set of inter-area gateways connecting the
areas between the source and the destination, to construct the
path view between the source and the destination. Finally,
with the support of the involved edge controllers, the domain
controller updates the flow tables of all the switches in the
selected path between the source and the destination.

3) Inter-domain path computation: the source and the
destination are located in different domains. In this case, the
source sends a path request to its respective edge controller,
which forwards it to the domain controller. Given that the
destination is not within its corresponding domain, the domain
controller forwards the path request to the core controller.
When received, the core controller gets the destination IP
address from the message request and checks the device man-
agement module to identify the domain in which it is located.
It then requests the set of domain controllers managing the
domains between the source and the destination, denoted
as c(ds,dd), to construct and transmit their path views (i.e.,
by combining IAGT information with path views received
from their respective edge controllers). This is also done in
parallel. The core controller combines the received views with
gd(ds,dd), the set of inter-domain gateways connecting the
domains between the source and the destination, to construct
the path view between them. Finally, with the support of
the involved domain and edge controllers, the core controller
updates the flow tables of all the switches in the selected path
between the source and destination.

4) Proof: Algorithm 1 depicts the path computation process
considering the three scenarios. The correctness of our algo-
rithm can be proved by contradiction. Indeed, we can prove
that the shortest path computed by HPC is the shortest path in
the physical network. To do so, we first assert the following
Lemma: a shortest path is made of multiple shortest sub-paths.
Let SPAB be the shortest path between switches A and B
computed by HPC. Assume that there is another path SP ′AB

between A and B that is shorter than SPAB . This means that

Algorithm 2: Path Update Algorithm
Data: Link View, Qu

Result: Path view
while Qu not empty do

x← Qu.head()
if path weights can be optimized by including x then

Update weights in path view matrix
Qu ← x’s neighbors

x← Qu.head()

SP ′AB contains one or more shorter sub-paths that are not
included in SPAB . Since SPAB is the minimal length path
that covers all possible links from A to B, it includes all the
shortest sub-paths between A and B. This is a contradiction.
Therefore, the shortest path computed by HPC corresponds to
the shortest path in the physical network.

It is noteworthy to mention that for the sake of clarity,
Algorithm 1 assumes that path views are not pre-computed.
However, when deploying HiDCoP, path views will be pre-
computed and stored in the path view module. This is to reduce
the transmission overhead. In case of a topology change, only
incremental changes to the path views will be carried out, as
will be explained in the next subsection.

C. Hierarchical Path Update (HPU)

In case of topology changes (e.g., a link between two
switches becomes unavailable or its weight has changed),
HPU is deployed to only update path views to reflect the
topology changes rather than computing them from scratch.
HPU identifies three update scenarios: intra-area, inter-area
and inter-domain.

1) Intra-area path update: when the link between switches
S3 and S4 becomes unavailable (see Fig. 3), the edge con-
troller EC1 is notified. Indeed, one of the switches (i.e., in
this case S3) sends a status message to EC1, informing it that
the link (S3, S4) is down. EC1 first updates the link view to
reflect the change in (S3, S4) status and proceeds to update
the path view of its respective area. To do so, it executes
Algorithm 2, which is based on the centralized algorithm in
[15]. EC1 maintains a queue, labeled QEC1 , that stores the
switches that need to be checked for path weight update (i.e.,
S3 and S4). It starts by dequeuing S3, the node at the head of
the queue, and checking whether the total weights of existing
paths can be optimized if passed through S3. If yes, S3
neighbors (i.e., S1) are added to the queue; otherwise, EC1
dequeues S4 and repeats the same process. This continues
until the queue becomes empty.

Once the path view is updated, EC1 forwards it to the
domain controller DC1, which will also update the path view
of its domain. To do so, it first obtains the inter-area gateways
connecting Area 1 and Area 2. It then adds S2, S4, S5, S7
to the queue QDC1 and executes Algorithm 2 as previously
described. When finished, DC1 sends the updated path view
to the core controller, which will get the inter-domain gateways
and executes Algorithm 2 by adding S8, S9 and S10 to the



Fig. 3. Hierarchical path update in case of intra-area, inter-area and inter-domain link failure

queue QCC in order to update the path view of the whole
network. Once done, CC, with the help of the domain and
edge controllers, will update the flow tables of all the switches
involved in the path view update process.

2) Inter-area path update: when the link between inter-
area gateways S12 and S14 becomes unavailable (see Fig. 3),
S12 and S14 notify their respective edge controllers EC3 and
EC4, respectively. Both EC3 and EC4 notify DC2 about the
change in (S12, S14) status. DC2 adds S12 and S14 to the
queue QDC2

and executes Algorithm 2. when finished, DC2
sends the updated path view to the core controller. This latter
will add the inter-domain gateways S8, S9 and S10 to the
queue QCC and executes Algorithm 2 in order to update the
path view of the whole network and eventually restore, with
the help of the domain and edge controllers, the flow tables
of all switches involved in the path view update process.

3) Inter-domain path update: When the link between inter-
domain gateways S8 and S9 becomes unavailable (see Fig. 3),
the core controller CC gets notified through DC1 and DC2
(i.e., which are informed by EC2 and EC3, respectively). CC
adds S8 and S9 to the queue QCC and executes algorithm 2 to
update the network path view. Once finished, it updates, with
the help of the domain and edge controllers, the flow tables
of all the switches involved in the path view update process.

D. Cost Analysis

Assume that there are Kd domains, each of which is
made of Ka areas and each area has Ksi switches (i.e., for
simplicity, we assume Ksi = Ks). Let d′ be the average
number of links of each switch to other switches. Let M
denotes the number of inter-area gateways per area and let
M ′ be the number of inter-domain gateways per domain. Also,
assume m is the number of inter-area links per area and m′

is the number of inter-domain links per domain.

1) Communication cost: there are three types of commu-
nication costs. They are as follows:

Path view transmission cost: path views are sent in case
of inter-area and inter-domain path requests. In case of an
inter-area path request, edge controllers managing the areas
between the source and the destination construct and transmit
their path views to the domain controller. Let u be the number
of areas involved. Therefore, the total path view transmission
cost, Tp, in this case is:

Tp = u

(
Ksd

′ − Mm

2

)
(1)

In case of an inter-domain path request, domain controllers
managing domains between the source and the destination
compute and send the path view of their respective domains
to the core controller. This includes the transmission of path
views of all the edge controllers belonging to these domains.
Let u′ be the number of domains involved. Therefore, the total
path view transmission cost in this case is:

Tp = u′
[
Ka

(
Ksd

′ − Mm

2

)
− M ′m′

2

]
(2)

Path request transmission cost: a path request is made
of four fields: source MAC (6 bytes), source IP address (4
bytes), destination MAC (6 bytes) and destination IP address
(4 bytes). In case of an intra-area path computation, the path
request is sent once (i.e, the source switch sends a path
request to the edge controller). In case of an inter-area path
computation, the path request is transmitted twice: from the
source switch to the edge controller and then forwarded to
the domain controller. Finally, in case of an inter-domain
path computation, the path request is transmitted three times:
first to the edge controller and then forwarded to the domain
controller, which will forward it to the core controller.



Path update transmission cost: instead of involving all or
most of the controllers whenever a topology change occurs
(i.e., the case of [15] and [32]), HiDCoP implicates only
few controllers, depending on the link type whose status got
altered. In case of an intra-area link failure, HiDCoP incurs
three path update transmissions. In case of an inter-area link
failure, HiDCoP incurs two path update transmissions. Finally,
in case of an inter-domain link failure, HiDCoP incurs only
one path update transmission.

2) Storage space: The control plane stores switch informa-
tion and link information. Switch information has three fields:
MAC address (6 bytes), IP address (4 bytes) and type (1 byte).
Link information consists of physical and abstract links (i.e.,
link and path views). Physical links are of three types: intra-
area, inter-area and inter-domain. Intra-area links are twelve
bytes long, including SrcSwitch IP address (4 bytes), SrcPort
(2 bytes), DstSwitch IP address (4 bytes) and DstPort (2 bytes).
Inter-area links are thirty-two bytes long, including SrcSwitch
IP address (4 bytes), SrcPort (2 bytes), SrcEC MAC address
(6 bytes), SrcEC IP address (4 bytes), DstSwitch IP address
(4 bytes), DstPort (2 bytes) DstEC MAC address (6 bytes)
and DstEC IP address (4 bytes). Inter-domain links are fifty-
two bytes long, including SrcSwitch IP address (4 bytes),
SrcPort (2 bytes), SrcEC MAC address (6 bytes), SrcEC IP
address (4 bytes), SrcDC MAC address (6 bytes), SrcDC IP
address (4 bytes), DstSwitch IP address (4 bytes), DstPort (2
bytes), DstEC MAC address (6 bytes), DstEC IP address (4
bytes), DstDC MAC address (6 bytes) and DstDC IP address
(4 bytes). The abstract links are fourteen bytes long, including
SrcSwitch IP address (4 bytes), DstSwitch IP address (4 bytes),
nexthop (4 bytes) and weight (2 bytes).

The information stored in edge controllers includes: switch
information, physical links, intra-area links and abstract links.
Let qi be the number of inter-area gateways in the ith area
with i = 0, ...,Ka and q0 + ... + qKa = M . Therefore, the
total storage cost (in bytes) in each edge controller is:

CEC = Ks ∗ 11 +
(Ks − qi)d

′

2
∗ 12 + (Ks − qi)

2
∗ 14 (3)

The information stored in domain controllers includes, switch
information, inter-area links and abstract links. Therefore, the
total storage cost (bytes) in each domain controller is:

CDC = KaKs ∗ 11 +Kam ∗ 32 +
KaKs −M ′

2
∗ 14 (4)

The information stored in the core controller includes, switch
information, inter-domain links and abstract links. Therefore,
the total storage cost (bytes) in the core controller is:

CCC = KdKaKs ∗ 11 +Kdm
′ ∗ 52 + KdKaKs

2
∗ 14 (5)

3) Computation complexity: There are three types of path
computations:

a) intra-area path computation, computed in O(K3
s );

b) inter-area path computation, which can be computed in
O(M3 +K3

s )) as edge controllers can compute path views of
their respective areas in parallel;

c) inter-domain path computation, which can be computed
in O(M

′3+M3+K3
s ) by exploiting the parallel computation

capability at the level of the domain and edge controllers.

It is noteworthy to mention that in order to ensure consis-
tency in path views along with service continuity and network
availability, HiDCoP should deal with situations where some
edge or domain controllers may fail. This implies constructing
link views of certain areas and updating their path views as
well as the path views of their respective domains. This can
incur additional transmission cost, as will be explained in the
next section.

V. HIDCOP FAILOVER

In order to mitigate the problem of isolated areas/domains
due to edge/domain controllers’ failure (i.e., hardware faults
or security attacks), HiDCoP deploys a mechanism that is
fully compliant with OpenFlow. Indeed, OpenFlow enables
switches to be connected to multiple controllers using different
connection roles (i.e., master, slave or equal). In HiDCoP, edge
controllers of a particular domain are connected to all the
switches within that domain, and domain controllers are con-
nected to all switches of their neighboring domains. Switches
in a specific area designate the edge controller managing that
area as a master controller and the edge controllers of the same
domain as slave controllers.

A. Edge Controller Failure
When the edge controller EC2 (see Fig. 4) becomes

unavailable, the domain controller DC1 assigns Me2 , the
switches of Area 2, to either EC1 or EC3 or both. To do
so, it first compares the size of both areas z1 and z3. If
z1 > z3 + Me2 , all switches in Me2 will be assigned to
EC3 whereas if z3 > z1 + Me2 , all switches in Me2 will
be assigned to EC1. This is to balance the load between
the two edge controllers. In case z1 < z3 or z3 < z1, DC1
executes Algorithm 3 which uses I1 and I3, the set of inter-
area gateways from Areas 1 and 3 that are connected to Area
2, to compute F1 and F3, the set of switches to be assigned
to EC1 and EC3. It starts by adding all switches in I1 to F1

and all switches in I3 to F3. For each non-gateway switch s
in Me2 , it checks whether it has neighbors in F1 or F3. In
case s has only neighbors in F1 or in F3, s is added to either
F1 or F3, respectively. If s has neighbors in both F1 and F3,
the shortest path between s and these nodes are computed and
their weights are compared, based on which s is assigned to
either F1 or F3. Once the assignment process is completed,
EC1 and EC2 update their link views to accommodate the
new switches and compute a new path view for their respective
areas while DC1 updates IAGT to include the new inter-area
gateways.

In order to be able to compute the shortest paths from s1 and
s3 to s, DC1 needs to have the link view of area 2. HiDCoP
compels inter-area gateways with the status field set to special
to maintain the link view of their respective areas. When an
edge controller becomes unavailable, the domain controller
will use IAGT to reach one of these gateways to retrieve the
link view of the disconnected area. Note that edge controllers
send updated link views to these gateways whenever a change
in topology occurs. Note also that when DC1 updates IAGT,
it selects new inter-area gateways to keep track of the link
views of their corresponding areas.



Fig. 4. HiDCoP failover mechanism when EC2 becomes unavailable

Algorithm 3: Failover Algorithm
Data: Me2 , the set of inter-area gateways connecting

areas 1 and 2 (I1), and the set of inter-area
gateways connecting areas 2 and 3 (I3)

Result: The set of switches to be assigned to area 1 (F1)
and area 3 (F3)

// add every element in I1 to F1

for s1 ∈ I1 do
F1 ← s1

// add every element in I3 to F3

for s3 ∈ I3 do
F3 ← s3

Me2 ←Me2 ∩ F1 ∩ F3

// for each non-gateway switch
for s ∈Me2 do

if s has neighbors from F1 only then
add s to F1;

else
if s has neighbors from F3 only then

add s to F1;
else

// s has neighbors s1 and s3
from both F1 and F3, compute
the shortest paths and
compare their weights

if Ws,s1 < Ws,s3 then
add s to F1;

else
add s to F3;

B. Domain Controller Failure

In case a domain controller becomes unavailable, the core
controller uses IDGT to reach the edge controllers within
the disconnected domain and to retrieve the path views of

their respective areas. These areas are then assigned to one or
multiple domain controllers, using Algorithm 3, allowing for
load balancing between different domains. The core controller
along with the involved domain controllers will update IDGT
and IAGTs, respectively, to accommodate the new inter-
domain and inter-area gateways. By doing so, HiDCoP can
ensure service continuity while strengthening the system’s
availability.

C. Cost Analysis

Assume that we have a domain containing Ka = 3 areas,
as illustrated in Fig. 4, each of which has Ksi switches (i.e.,
i = 1, 2, 3). For simplicity, let’s assume that Ksi = Ks. let d′

be the average number of links of each switch to other switches
in an area. Let Mi be the number of inter-area gateways in each
area and let mi be the number of inter-area links connecting
areas Ki and Ki+1. The total failover cost in case of EC2
failure can be expressed as:

Tf = Ksd
′ +

(
2Ksd

′ − M1m1 +M2m2

2

)
(6)

where Ksd
′ represents the cost of transmitting the link view

of area 2 from the inter-area gateway with status set to
special to DC1 while the remaining component describes the
transmission cost of path views from EC1 and EC3 to DC1.

Assume that the domain controller DC1 in Fig. 4 fails. In
this case, area 1 and area 3 will be assigned to domain 2,
managed by DC2. Therefore, the total failover cost can be
expressed as:

(7)
Tf =

(
2Ksd

′ − M1m1 +M2m2

2

)
+

(
Ka+2Ksd

′ − Md2
md2

2

)
−

M ′1,2m
′
1,2

2

where Md2 is the number of inter-area gateways in domain 2,
md2 is the number of inter-area links in domain 2, M ′1,2 is
the number of inter-domain gateways between domains 1 and



(a) (b) (c)

Fig. 5. Performance evaluation of the the three HiDCoP variants in terms of: a) path computation time; b) path setup latency; and c) average end-to-end
delay

2 and m′1,2 is the number of inter-domain links connecting
domains 1 and 2. The first component of Eq. 7 represents the
cost of transmitting path views of areas 1 and 2 to the core
controller while the second component designates the cost of
transmitting path views of the areas within domain 2 to the
core controller.

VI. PERFORMANCE EVALUATION

This section presents a simulation-based evaluation of HiD-
CoP. HiDCoP’s performance is compared to the state of the art
solutions: POX [36], a widely used controller in the SDN re-
search community that uses a centralized architecture, ONOS
v1.3 [12] and ParaCon [15], which use a flat architecture, and
Orion [33] which deploys a 2-tiers hierarchical architecture.

A. HiDCoP Implementation

HiDCoP was implemented by setting up virtual machines
(VM) on Dell OptiPlex 7050 (Intel Core i5 CPU 2.71 GHz
with 8GB RAM). There are 10 VMs, each of which is used
as a controller. Three HiDCoP variants were implemented:
• HiDCoP-One: consists of one domain and eight areas.
• HiDCoP-Two: consists of two domains, each of which

contains two areas. Both domains are managed by one
core controller.

• HiDCoP-Three: consists of three domains. The first has
one area, the second has two while the third has four
areas. All domains are managed by one core controller.

The data plane topology for each area is provided by Mininet.
Each controller is based on a modified POX, where we replace
the model of the path computation by our proposed path
computation mechanism.

B. Simulation Results and Analysis

Fig. 5 depicts the performance evaluation of the three
variants of HiDCoP with respect to path computation time,
path setup latency and average end-to-end delay. We observe
that HiDCoP-Three outperforms the remaining variants as it
incurs the shortest path computation time, the shortest path
setup latency and the lowest end-to-end delay. This is because
HiDCoP-Three deploys more controllers than HiDCoP-One

and HiDCoP-Two and balances the load efficiently among
them. Unlike HiDCoP-Three, HiDCoP-One takes the longest
time to compute and setup paths as the load on the domain
controller is very high. Finally, as HiDCoP-two has the highest
number of switches per domain, domain controllers take more
time to compute the path view of their respective domains,
yielding high path computation and path setup times.

In order to examine the performance of different schemes,
a large-scale network with diameter 5 and made of a variable
number of switches was deployed. HiDCoP in the following
figures refers to HiDCoP-Three. Figs. 6(a) and 6(b) show the
path computation time as a function of the number of switches
and the number of requests, respectively. It can be noted
that the path computation time increases with the increase
in the number of both switches and requests. It can also be
observed that HiDCoP outperforms all the remaining schemes
as it incurs the shortest computation time. Indeed, HiDCoP
achieves an average path computation time that is 27%, 55%,
116% and 122% shorter than Orion, Paracon, ONOS and POX,
respectively. While ParaCon and ONOS maintain and synchro-
nize the global topology information among all controllers,
Orion synchronizes the path views among domain controllers
in order to permit each one of them to build the network’s path
view. This makes the path computation performance of these
schemes contingent to the network’s diameter alongside the
number of switches and links in the network. HiDCoP is not
affected by this problem as it allows only the core controller
to build and maintain the path view of the entire network and
distributes traffic load over different controllers according to
the type of the path request (i.e., intra-area, inter-area and inter-
domain). This enables quick path computation while reducing
the transmission overhead.

Fig. 6(c) shows the end-to-end delay as a function of traffic
load. Note how the average end-to-end delay of all schemes
increases with the increase in traffic load. As expected, POX
generates the highest end-to-end delay since it uses a single
centralized controller. Even though Orion, ONOS and ParaCon
are distributed multi-controller architectures, they still incur
high end-to-end delay. In fact, Orion, ParaCon and ONOS
incur an average end-to-end delay that is 51%, 66% and 92%
higher than HiDCoP. The reason is that HiDCoP computes
paths quickly compared to the other schemes as it distributes
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Fig. 6. Path computation time and average end-to-end delay in terms of network density and traffic load
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Fig. 7. Impact of topology changes on the various schemes in terms of: a) path view update time, b) received request rate and c) path setup time

(a) (b)

Fig. 8. Control overhead: a) bandwidth used vs. number of switches in the network and b) average communication frequency vs. number of controller in the
network

traffic load over different controllers according to the type of
the path request and allows for the sharing of path views
with upper-tier controllers only, therefore avoiding network
congestion.

To simulate topology changes, we turned off random
switches for a period of time and evaluated the performance of
the various schemes in terms of path view update time, request
delivery ratio (RDR) and path setup time. Fig. 7 depicts the
results. Note how HiDCoP outperforms all other schemes as
it incurs the shortest update time (i.e., 19% and 31% less than
ParaCon and Orion, respectively), the shortest path setup time
(i.e., 58% and 67% less than Orion and ParaCon, respectively)
and the highest RDR (i.e., 37.5% and 57% more than ParaCon

and Orion, respectively). While Orion computes the path view
from scratch whenever a topology change occurs, ParaCon and
HiDCoP only update the pre-computed path views to reflect
these changes. Still, unlike ParaCon, HiDCoP involves fewer
controllers in the path view update process (i.e., depending
on the type of the unavailable link) and does not need to
synchronize the updated path view among all the controllers
in the network, yielding quicker path view update. Observe
that Orion incurs lower path setup time than ParaCon (see
Fig. 7(c)). This is because Orion computes backup routes for
each routing path to address link failure, but it does not provide
any mechanism to deal with link failure in the backup routes.

Finally, Fig. 8 depicts the communication overhead incurred



at the controllers when scheduling different types of path
computation requests. Fig. 8(a) portrays the control overhead
in terms of bandwidth as a function of the number of switches
in the network. We observe that the control overhead increases
with the increase of the network density. We also observe
that HiDCoP outperforms the remaining schemes as it incurs
an average control overhead that is 57% and 67% less than
Orion and ParaCon, respectively. Indeed, ParaCon adopts a
flat architecture that requires each controller to inquire all
the other controllers in order to construct and maintain the
network’s global topology information. HiDCoP and Orion
adopt a hierarchical architecture where only the controllers
that participate in the path computation process are involved.
However, while Orion still synchronizes the global path view
of the network among all domain controllers, HiDCoP allows
only the core controller to have a network-wide view, further
reducing the transmission overhead between controllers. To
confirm this result, Fig. 8(b) illustrates the average communi-
cation frequency (i.e., how often each controller is solicited
during the path computation process) as a function of the
number of controllers in the network. We observe that the
communication frequency decreases with the increase in the
number of controllers. This is rational since augmenting the
number of controllers implies fewer switches per area/domain.
We also observe that HiDCoP outperforms both Orion and
ParaCon as it incurs an average communication frequency that
is 29% and 56.5% lower than Orion and ParaCon, respectively.

VII. CONCLUSION

This paper proposes HiDCoP, a hierarchical and distributed
control plane that improves the performance of path computa-
tion in large-scale SDN. HiDCoP adopts a 3-tiers architecture
where the network is partitioned into domains, each of which
is subdivided into areas. Each area is managed by an edge
controller and each domain is supervised by a domain con-
troller. All controllers are responsible for maintaining all or
part of the topology information. HiDCoP defines three types
of path computation and identifies the role of each controller in
every one of them. This is to accelerate the path computation
process, using parallelism, and to balance the load (i.e., path
computation request) among all controllers. It also describes a
mechanism to update path views in case of topology changes
along with a failover mechanism to address the problem of
isolated areas/domains. Simulation results show that HiDCoP
outperforms existing schemes in terms of path computation
time, path setup latency and end-to-end delay. This makes
HiDCoP a suitable candidate for large-scale software-defined
networks.
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