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ABSTRACT Multimedia delivery support has recently been added to Wireless Sensor Networks (WSN)
and has led to increased interest in Wireless Multimedia Sensor Networks (WMSN). WMSNs are expected
to be crucial to the success of applications related to the Internet of Things (IoT), such as smart health,
smart surveillance, smart homes, etc. Alongside their improved multimedia capabilities, WMSNs inherit
WSN limitations such as energy and processing constraints. Additionally, WMSNs have significant Quality
of Service (QoS) requirements, since multimedia delivery requires increased network performance in terms
of bandwidth, latency, etc. Balancing energy efficiency and QoS is a fundamental challenge for WMSN users
and operators alike. This paper proposes Reinforcement Learning based Duty Cycle (rlDC), an innovative
learning-based scheme to adjust the duty cycle and contention window of WMSN nodes in order to meet
energy efficiency and QoS targets. By employing rlDC, WMSN sensor nodes intelligently adapt their
operation according to network delivery performance and application requirements. The proposed rlDC
scheme was evaluated under different use cases in a simulation environment, and testing results show it
outperforms other state-of-the-art duty-cycle-based protocols for WMSNs.

INDEX TERMS Wireless Multimedia Sensor Networks, Energy Efficiency, Quality of Service, Duty
Cycle, Reinforcement Learning, Medium Access Control, Internet of Things.

I. INTRODUCTION

THE Internet of Things (IoT) is set to influence signifi-
cantly people lives, including via services which depend

on interconnecting smart devices, sensors, actuators, etc. It
is estimated that in 2021, the number of devices that are
connected to the Internet will be three times higher than
the global population [1]. Increasing number of innovative
services will be enabled by IoT, including those related to
rich media streaming [2], smart surveillance [3], [4], smart
home applications [5], etc.

Highly important for supporting IoT applications are Wire-
less Sensor Networks (WSN) and lately Wireless Multimedia
Sensor Networks (WMSN). In general WMSNs incorporate
a number of multimedia sensor nodes deployed in an area to
acquire video/audio data from the surrounding environment
and deliver it to remote servers for further processing, as
illustrated in Fig. 1. Currently multimedia applications such
as video conferencing, video on demand (VoD), real-time

content delivery dominate Internet communications. They
are expected to generate traffic which should account for
approximately 75% of the overall traffic in 2020, as estimated
in a Cisco report [7]. The same report states that the Internet
traffic generated by video surveillance, one prominent appli-
cation of WMSNs, will increase seven fold between 2017 and
2022. For instance, globally, 3.4% of all Internet video traffic
is expected to be related to video surveillance in 2022, up
from 1.8% in 2017.

In order to efficiently deploy WMSN applications and
enable good performance, some critical aspects must be
addressed. First, augmenting IoT systems with multimedia
capabilities is not straightforward and requires introduction
of additional functionalities and revision of existing ones.
Multimedia transmission is more bandwidth hungry than the
conventional data exchange in WSNs. Furthermore, WMSN
traffic is bursty and has real-time delivery constraints. Sec-
ondly, multimedia sensor devices have limited resources in
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FIGURE 1. A generic Wireless Multimedia Sensor Network.

terms of processing power, memory capacity, and especially
energy, whereas multimedia data requires high processing
capability and timely delivery. Moreover, in many cases,
WMSN nodes are usually powered by battery packs for
a long time without any human intervention. Therefore,
achieving energy efficiency and QoS-awareness are two crit-
ical objectives for WMSN users and operators.

Another concern of WMSN network design is related to
supporting application requirements, e.g.: network lifetime,
throughput, delay, reliability. For example, in surveillance or
target tracking systems, sensor nodes are set up to deliver
data each time an abnormal event occurs. In such a case, the
quality of video streaming is the highest priority and imposes
high throughput requirements. In terms of energy efficiency
awareness, applications in which sensor nodes are required
to perform monitoring and transmit data periodically are an
example where the high priority is saving energy. Such diver-
sity of application requirements is challenging to address in
WMSN design and operation.

An efficient approach to tackle these challenges involves
parameter tuning, that is adaptation of network parameter
values according to application requirements. Despite the
high benefits, such methods suffer from some shortcomings:
i) Due to the unpredictable characteristics of the WMSN
environment, network parameter tuning is both complex
and time-consuming. ii) In many cases, the derived tuning
parameters are not optimal. For example, given a highly
configurable sensor node with many parameters and each
of them can have a range of values, choosing the optimal
combination is highly complex. Additionally, the dynamic
variation of the sensor node’s environment also contributes
to the increased complexity of finding optimal parameters.

In order to facilitate decision making in relation to finding
optimum network parameters, methods based on dynamic
optimization [6] can be used so that sensor networks can
adapt their operations according to application requirements
and environment. Such methods ensure that the sensor net-
works execute the assigned tasks optimally, and their sensor
nodes perform efficiently in the highly dynamic network
environment. Among the dynamic optimization methods,
Markov Decision Process (MDP) is an appropriate solution
for WMSNs [33], where there is a need for optimum decision
making in a highly dynamic environment with fluctuating
wireless channel conditions, variable traffic and important
energy constraints.

Typically, the energy consumption associated with WM-
SNs is dominated by node radio transmission [9]. In wireless
communications, the Medium Access Control (MAC) layer is
responsible for coordinating the radio network access. So, in
order to optimize network lifetime for WMSNs, an effective
way is to focus on energy efficiency at the MAC layer. Duty
Cycle management techniques are among the most efficient
methods to control the operation of radio transmission. Basi-
cally, duty cycle methods periodically turn ON/OFF the radio
transmission of sensor nodes with the aim to conserve energy.
Duty cycle methods are among the "greenest" techniques [10]
and are currently used thoroughly in WSNs, including in
two major operating systems especially designed for WSNs:
Contiki1 and Tiny OS2.

A major issue when employing a Duty Cycle technique is
the potential degradation of QoS, especially in terms of delay
and throughput [10]. Therefore, when integrating Duty Cycle
techniques at MAC layer for energy-aware data delivery over
WMSNs, many research solutions have been proposed to
increase QoS performance [11]- [29]. These solutions differ
in terms of focus and design and are discussed in detail in
section II. One of the critical points for any solution de-
sign is consideration of application diversity and associated
traffic types. For example, streamed multimedia data, node
location or temperature information can be transmitted at
the same time for a specific application. Such applications
which handle traffic of different classes, with diverse require-
ments, make very challenging providing QoS support. This is
particularly difficult for real-time high bitrate data exchange
associated with multimedia delivery.

In this paper, we study the problem of efficient content
delivery in WMSNs and we solve it from the perspective of
machine learning, which enable network nodes to learn how
to perform the best from their own experience (e.g. runtime
statistics data). We formulate the delivery problem by making
use of the Markov Decision Process (MDP) framework as
a decision maker. The problem is then solved by using Q-
Learning [31], one of the best-known model-free reinforce-
ment learning technique.

This paper introduces rlDC, an innovative machine
learning-based scheme to adjust the duty cycle and transmis-
sion contention window of sensor nodes in order to balance
energy efficiency and QoS. rlDC acts at MAC layer in the
context of WMSNs and focuses on issues related to energy
consumption, and performance-aware MAC-layer parameter
tuning for sensor nodes in order to meet the input require-
ments of applications.

The contributions of this paper are as follows:

• An overall system architecture design for WMSNs that
handles a wide range of application requirements in
terms of traffic types is introduced. WMSN users or
operators can manage the performance by setting the

1contiki, http://www.contiki-os.org/
2tinyos, http://www.tinyos.net/
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priority weighting factors for system requirements (in
terms of QoS-focus or energy-related metrics).

• A MAC-based solution for sensor nodes is introduced
with the aim to optimize the energy usage and achieve
QoS targets. The use of a duty cycle-based method and
MAC-related parameter tuning is combined in order to
meet this objective.

• A reinforcement learning-based algorithm deployed at
sensor node level which is at the core of rlDC. By
employing such a model-free solution, the sensor node
chooses suitable actions in terms of its duty cycle and
transmission contention window values in order to meet
system requirements and optimize its long term reward.

• Evaluation of the proposed solution in a NS-3 simula-
tion environment under a wide range of traffic types and
its bench-mark against other similar novel solutions.

The rest of this paper is organized as follows: section
II discusses some notable works in the research literature.
Section III presents the technical background including MDP
and Reinforcement Learning (RL) techniques used in this
work. The proposed solution is described in detail in section
IV. Simulation-based testing setup and scenarios are provided
and testing results are discussed in section V and section VI,
respectively. Finally, the paper is concluded and future works
are mentioned in section VII.
II. RELATED WORKS
This section discusses some important works that target
energy efficiency and QoS at MAC layer for wireless com-
munications in general and WSNs/WMSNs in particular.

Due to the associated benefit in terms of conserving en-
ergy, duty cycle techniques have received much attention
from the research community. Duty cycle adjustment is
considered one of the most effective solutions for "green"
communications and was already deployed in some operating
systems designed for WSNs such as Contiki and Tiny OS.

In principle, based on synchronization between nodes,
the duty cycle-based approaches can be classified into three
main types: i) synchronous, ii) semi-synchronous, and iii)
asynchronous.

In the synchronous category, WSNs must maintain a
common time reference and sensor nodes are required to ex-
change synchronization information to achieve and keep the
necessary degree of synchronization throughout the network.
Synchronization method classification includes: i) rendez-
vous methods, where all nodes turn ON/OFF their radio at
the same time, or ii) skewed/staggered, where sensor nodes
schedule their wake up in a ladder pattern according to their
depth in a tree-like topology. The first type of synchroniza-
tion is usually employed in Time-Division Multiple Access
(TDMA)-based MAC schemes, such as: RT-ink [19] and
Traffic Adaptive MAC protocol (TRAMA) [20]. Both RT-ink
and TRAMA incorporate a Global Positioning System (GPS)
receiver for clock synchronization. For these two schemes,
the energy efficient objective can be achieved by eliminating
collisions and putting nodes that do not participate in the
communications into a sleep mode. The main drawback of

synchronous methods is the high cost of maintaining global
clock synchronization and overhead messaging for control.

Semi-synchronous-based schemes overcome such dis-
advantages by grouping nodes into synchronized clusters.
Among these, Sensor-MAC (SMAC) [11] is among the most
important duty cycle adjustment schemes for WSNs. Sensor
nodes with SMAC form loosely synchronized virtual clusters
that are created spontaneously as each node broadcasts its
schedule to the neighbors. SMAC provides high energy effi-
cient improvements in comparison to the classic IEEE Power
Save Mode (PSM). However, the critical drawback of SMAC
is the sacrifice of QoS due to its high duty cycle (of around
20%), and fixed and long sleep/active periods that lead to
high latency. TMAC [12] improves SMAC’s drawback by
using adaptive radio turning ON/OFF and shows better per-
formance in terms of energy saving and delay decrease.

Asynchronous approaches have been proposed in order
to reduce the relative high cost of keeping synchronization
in multi-hop wireless networks, so the nodes do not need
to agree on a time reference. This category of duty cycle
solutions makes use of preamble sampling or Low Power
Listening (LPL) with the aim to reduce idle listening by
transferring the energy consumption cost to the single sender
from the potentially many receivers. The two examples of
such a method are BMAC [21] and Wise MAC [22]. These
schemes allow every node to switch to the sleep mode asyn-
chronously and wake up periodically to check for channel
activity. Since every frame is preceded by a long preamble -
longer than the duration of active and sleep times combined
- any node will have time to wake up, detect the preamble
transmission, and stay awake to receive the incoming frame,
if necessary. Alternatively, the wake-up/sleep time of the
sensor nodes can be dynamically adjusted according to the
network load conditions, i.e., number of active neighbor
nodes, as in [23]. To reduce the energy waste due to idle
listening, the On-Demand wake-up [24] leverages a low
power radio (called "wake-up radio") that listens to the wake-
up signal and sends an interruption to the CPU. In response,
CPU activates the primary radio. However, such a method
substantially increases the design complexity.

The authors of this paper have also introduced the Uplink
Adaptive Multimedia Delivery (UAMD) solution [25], which
makes use of a utility function and takes into account both
energy consumption and throughput requirements for video
streaming services. By dynamically adapting the duty cycle
of sensor nodes, both energy saving and throughput oriented
objectives are balanced in a better way than other state-of-
the-art solutions. Another approach for implementing duty
cycle technique for wireless mesh network is proposed in
[26]. The duty cycle based solution is combined with an
energy-aware routing protocol at network layer with the
goal of balancing between energy consumption and QoS
for mobile devices. The simulation results showed that such
cross-layer design decrease energy consumption whereas
also improve content delivery in comparison to IEEE 802.11s
MAC protocol.
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Another approach to improve the performance of sensor
networks is to exploit historical data by using machine
learning algorithms. In [27], Zhenzhen et. al. proposed RL-
MAC which uses RL in the adaptive adjustment of the duty
cycle in WSNs. RL-MAC reduces energy usage and increases
throughput by optimizing the duty cycle of the network
nodes. Similar to SMAC [11] and TMAC [12], RL-MAC
synchronizes nodes’ transmission on a common schedule in
a frame-based structure. RL-MAC adapts the slot length,
duty cycle, and transmission active time according to the
traffic load and transmission channel bandwidth. In [28], Chu
et. al. introduces a novel MAC protocol for WSNs named
ALOHA-QIR that combines slotted ALOHA and a model-
free reinforcement learning technique, Q-Learning.

ALOHA-QIR inherits the features of both ALOHA and
Q-Learning and benefits from a simple design, low resource
requirements and low collision probability. During trans-
mission process, nodes broadcast their future transmission
allocation such that the nodes not involved directly in data
exchange can sleep during the reserved frame transmission
period. The authors of this paper have proposed previ-
ously eAMD [29] which also employs Q-Learning in an
application-layer systematic approach to improve the trade-
off between video streaming quality and energy efficiency.
eAMD performs duty cycle adjustment only.

By conducting a survey of many state-of-the-art MAC
designs for WSNs, we note a lack of solutions that ad-
dress specific issues related to multimedia delivery. Most
proposed schemes focus on small data packets and have low
bandwidth requirements for scalar sensor types. Besides, the
breakthrough in hardware industry in recent years opens new
opportunities to employ highly required processing power
machine learning algorithms in small and low cost sensor
motes. In this paper, we aim to bridge the gap between these
fields in order to propose a novel adaptive duty cycle design
for WMSNs.

III. MARKOV DECISION PROCESS - BACKGROUND
This section presents MDP background information and de-
scribes how we employ the MDP framework in our solution.

A. MARKOV DECISION PROCESS FRAMEWORK
MDP refers to a classical formalization of sequential decision
making in terms of a number of episodes, where chosen
actions influence not only immediate rewards, but also sub-
sequent situations, or states, through future rewards [30]. A
decision maker in MDP is defined as an agent. In a sensor
network, MDP is used to model the interaction between a
sensor node (i.e., an agent) and its surrounding environment
in order to achieve some objectives e.g. data aggregation and
routing, sensing coverage, target tracking, etc. [33].

In general, MDP relies on a tuple 〈S,A,P,R, γ〉, where:

• S denotes State Space, a finite set of all possible states
of the system.

• A denotes Action Space that is a finite set of all possible
actions that the agent can choose from.

• P refers to transition probability matrix, that includes
entries such as the probability that the agent to move
from state s to s

′
after choosing action a, normally

abbreviated as Ps
′

s,a = P[St+1 = s
′ |St = s,At = a].

• R is a reward function,Ras = E[Rt+1|St = s,At = a]
• γ denotes the discount factor, γ ∈ [0, 1].
A policy π is a distribution of actions given the states:

π(a|s) = P[At = a|St = s] (1)

The returnGt is the total discounted reward in time-step t:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (2)

The state value function vπ(s) gives the long-term value
of state s, is the expected return starting from state s:

vπ(s) = Eπ[Gt|St = s] (3)

The action-state value function qπ(s, a) is the expected re-
turn starting from state s, taking action a, and then following
the policy π:

Qπ(s, a) = Eπ[Gt|St = s,At = a] (4)

The optimal state-value function v∗(s) is defined as the
maximum value function over all policies:

V∗(s) = max
π

vπ(s) (5)

The optimal action-value function q∗(s, a) is the maximum
action-value function over all policies:

Q∗(s, a) = max
π

Qπ(s, a) (6)

The optimal value function specifies the best possible
performance in the MDP. An MDP is "solved" when we know
the optimal value function.

B. MODEL-FREE REINFORCEMENT LEARNING
In many cases, an MDP is considered "unknown" or model-
free due to the unavailability of the probability transition
matrix or lack of a system transition model. In such a case,
the agent "learns" or optimizes the value function through
episodes of experience. Such a method is called "Reinforce-
ment Learning" (RL) and enables the agent (e.g., a sensor
node) to learn by interacting with its environment. The agent
learns and decides to take the best actions that maximize its
long-term rewards through its gathered experience.
Q-Learning [31] is one of the best-known model-free rein-

forcement learning technique and is widely used in wireless
communications [16] [17]. Fig. 2 illustrates the interaction
between the agent and the environment. The figure shows
how an agent updates its state to a new state st+1 and re-
ceives a reward r(at, st) following action at taken in current
state st. The action-value function in Q-Learning is updated
iteratively as follows:

Q(st, at)← Q(st, at)+α[Rt+1+γQ(st+1, a
′
)−Q(st, at)]

(7)
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FIGURE 2. Q-Learning method principle

IV. REINFORCEMENT LEARNING-BASED DUTY CYCLE
ADJUSTMENT MAC LAYER TECHNIQUE FOR WMSNS
This section describes the details of the proposed RL-based
duty cycle adjustment MAC layer technique, rlDC. First, the
system architecture that shows the general design of our solu-
tion in terms of block diagram is presented. Then, the design
objectives are discussed and the problem and solution are
formulated using MDP and Q-Learning as decision maker
for sensor nodes.

The critical features of rlDC are summarized next:

• Propose an overall system design for WMSNs that
includes essential functions for feeding input system
requirements.

• Calculate optimal duty cycle or wake-up/sleep duration
for sensor node in order to prolong network lifetime.

• Due to the nature of CSMA/CA based protocol, rlDC
also derives the optimal transmission contention win-
dow for sensor nodes so that high QoS-related perfor-
mance is achieved.

A. SYSTEM ARCHITECTURE
Fig. 3 presents the block diagram of the proposed system
architecture. The solution design has the following three
major blocks and components:

1) WMSN APPLICATION is located at the remote
server. The WMSN Application module relates to the
use cases by building specific profiles for each of them
in Application Profile module. Then, a set of appli-
cation metrics and tunable parameters (i.e. weighting
factors) denoting the priority of system performance
(that could be energy efficiency or QoS)) are derived in
the Parameters Tuning module.

2) WMSN GATEWAY is responsible for receiving the
requirements from network user/operator via the re-
mote server. The Application Profile keeps such in-
formation and exchanges it with the QoS Monitor
module in order to guarantee they match. Data Ag-
gregation is responsible for collecting and aggregating
all data received from sensor nodes in the gateway’s
neighbourhood.

3) WMSN NODE is associated with a sensor node, re-
sponsible for collecting data according to system re-
quirements. Sensor nodes communicate with the Gate-
way through the Wireless Communication Interface
module. They are also responsible for monitoring two
key parameters: i) energy, and ii) QoS. These are then
fed into the Reward Function to calculate the reward
value associated with the chosen action. At the heart

TABLE 1. Notations & Definitions

Parameter Meaning
MDP Markov Decision Process

RL Reinforcement Learning
S State Space
sk state s at episode k
A Action Space
cw Contention Window
τ Duty Cycle
wE Weighting factor for Energy
wD Weighting factor for Delay
wT Weighting factor for Throughput
γ Discount Factor
α Learning Rate

of a sensor node is the proposed rlDC scheme that is
built based on the RL technique. The Decision Making
rlDC calculates iteratively the optimal action in terms
of duty cycle and contention window.

B. PROBLEM AND SOLUTION FORMULATION
In this paper, we assume that WMSNs are deployed in an
ad-hoc mode with CSMA/CA scheme as the Medium Access
Control (MAC) protocol. This assumption is made in order to
reduce the complexity of synchronization (e.g., in a TDMA-
based system) and decrease the message overhead required
to maintain time synchronization. Additionally, estimated
information about the state of the network is assumed to be
available at the sensor node at any time.

We denote s and a as the network state and the corre-
sponding action, respectively, at the sensor node. The state
s is comprised of the triplet composed of estimated Energy-
Throughput-Delay (E, T,D) and action a is a combination
between the decision of turning ON/OFF the radio transmis-
sion during duty cycle adjustment and setting the optimal
contention window for accessing radio channel. Fig. 4 shows
an illustration of the operation of a sensor node, combining
tuning of the duty cycle and setting the contention window.
In this example, a sensor node aiming to transmit data (de-
noted as TX) calculates its wake-up duration and optimal
contention window based on the QoS requirements of the
traffic. A sink/gateway node receives data (denoted as RX)
and acknowledges it with an ACK frame. Other sensor nodes
(Non-RX) in "active" states are listening to the channel until
it is free. When the "active" time ends, these Non-RX sensor
nodes switch to a "sleep" state and turn off their radios.

The main objective of our paper is to determine an opti-
mal decision policy that tackles the energy-throughput-delay
trade-off at the sensor node level.

Next, we present how the proposed solution rlDC is
formulated by using the MDP framework. The notations used
in this section are summarized in Table 1.

1) State Space

The state space S is modeled as a triplet 〈E, T,D〉, where:
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FIGURE 3. rlDC Block Diagram design

FIGURE 4. An example of using Duty Cycle in sensor networks

• E refers to energy consumption in terms of depletion
rate (Joules/s)

• T denotes the estimated throughput (Mbps)
• L denotes the estimated latency/delay (seconds)

For example, in each episode k, the state sk specifies the
energy consumption, estimated throughput and delay in k.

2) Action Space

The action space A represents all possible actions that the
agent (i.e. sensor node) can take in a specific state. In rlDC,
A consists of a tuple 〈τ, cw〉, where:

• τ denotes the value of duty cycle.
• cw refers the contention window value.

It is assumed that S and A spaces do not vary in time.

3) Reward Function

The reward function is used to calculate the reward value
which evaluates how Good/Bad an action is in a specific state.
Equation (8) shows the formula for calculating the reward
value when sensor node performs action ak in state sk in
episode k.

U(sk, ak) = wEUE(sk, ak)+wTUT (sk, ak)+wLUL(sk, ak)
(8)

where:

• UE(sk, ak), UT (sk, ak), and UL(sk, ak) denote utility
functions for energy consumption, throughput, and de-
lay, respectively.

• wE ,wT , andwL are weight factors (i.e. refer to the rela-
tive importance of diverse metrics) for energy, through-
put, and latency, respectively. Note wE+wT +wL = 1.

The reward function is stored at the level of application
block and can be changed over time due to changes in
application requirements or changes in the network. Such
changes can be made by varying the weight factors wE , wT ,
and wL, or the utility function for each component. Next,
each utility function used in equation (8) is presented.

If E denotes the depletion rate of a sensor node, the
Energy utility function is formalized by employing a min-

6 VOLUME 7, 2019



Bao Trinh et al.: A Reinforcement Learning-based Duty Cycle Adjustment Technique

max normalization as follows:

UE(sk, ak) =


0 if E > EMax

EMax−E
EMax−EMin if EMin ≤ E < EMax

1 otherwise

(9)

In equation (9), EMax and EMin are two constants defin-
ing upper and lower bound depletion rate of sensor node.

Using a similar method, the delay utility function [35]
is derived as in equation (10), where DMax and DMin

refer to maximum and minimum delay requirement for the
application (they are different for various use cases).

UD(sk, ak) =


0 if D ≥ DMax

DMax−D
DMax−DMin if DMin ≤ D < DMax

1 if 0 < D ≤ DMin

(10)

Finally, the utility function for throughput [36] is described
in equation (11), where Th is the estimated throughput.

UT (sk, ak) =


0 if Th < ThMin

1− e
−α×Th2
β+Th if ThMin ≤ Th < ThMax

1 otherwise

(11)

In equation (11):

• ThMin and ThMin refer to the minimum and maximum
throughput requirements.

• α and β are two positive constants that determine the
shape of the utility function.

4) Optimality Equation
Denote π(a|s) = P

[
At = a|St = s

]
as the policy or a

distribution over actions given state, the Bellman expectation
equation for action value function can be derived as follows:

Qπ(s, a) = E
[
Rt+1 + γQπ(St+1, At+1)|St = s,At = a

]
(12)

where Rt+1 refers to the reward value achieved at the next
time step t+ 1.

The ultimate goal of an MDP is to find the optimal action-
value function Q∗(s, a) that is the maximum action-value
function over all policies:

Q∗(s, a) = max
π

Qπ(s, a) (13)

The optimal action is chosen accordingly:

a = argmax
a∈A

Q∗(s, a) (14)

C. Q-LEARNING BASED DUTY CYCLE AND
CONTENTION WINDOW ADAPTATION ALGORITHM
This section describes rlDC, the proposed algorithm for
adjustment of duty cycle and contention window for a sensor
node. We employ Q-Learning, a model-free RL technique,
to find the optimal action value function in an iterative way.
Based on this, the sensor node chooses the optimal action.

Algorithm 1 Q-Learning based Duty Cycle and Contention
Window Adaptation
procedure rlDC
Input 〈UE , UD, UT 〉 & 〈wE , wD, wT 〉 & 〈EMax, EMin〉 &
〈DMax, DMin〉 & 〈TMax, TMin〉
Output Duty cycle τ and contention window cw values
〈τ, cw〉
Initialize Q〈s, a〉 to 0 for all ∀s ∈ S, a ∈ A(s) and
Q〈S∗, .〉 = 0

for each episode k do
Initialize s = 〈E, T,D〉

for each step of episode do
Choose action a = 〈τ, cw〉 from s using ε-greedy policy
Take action a
Observe reward value feedback r and next state s

′

UpdateQ〈s, a〉← Q〈s, a〉+α[r+γmaxaQ(s
′
, a)−Q(s, a)]

s← s
′

Until no further improvement

Algorithm 1 is initialized by setting the input requirements
in terms of utility function used for energy/throughput/delay,
weight factors which specify the priority of each parameter,
and threshold (i.e., Min and Max values). These depend
on the applications targeted, however default values can also
be used. A Q table that specifies the Q values for each pair
(State, Action) is initialized with 0.

In each episode, the state of sensor node is specified by the
currently estimated throughput, delay and energy. An action
(i.e. duty cycle and contention window settings) associated
to the state is chosen accordingly. In order to keep the trade-
off between the exploration and exploitation problem of
Reinforcement Learning, we employ the ε-greedy strategy as
follows: in each step, the best action of the current state is
chosen with probability of (1-ε) (exploitation), or else any
other action is implemented with probability ε (exploration).
The ε-Greedy exploration policy [30] can be summarized as
follows:

π(a|s) =

{
ε/m+ 1− ε if a∗ = argmaxa∈AQ(s, a)

ε/m otherwise

(15)

The utility function in equation (8) is used to calculate
the feedback reward after each action is chosen and im-
plemented. The Q-table for the (State, Action) pair is then
updated by using equation (7). An episode is considered
as terminal when no signification improvement in the total
reward is achieved.
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V. SIMULATION-BASED TESTING SETUP
This section describes how the performance of the proposed
scheme is assessed via simulation-based testing. The simula-
tion setup and test use cases are described next, as well as the
QoS metrics employed for evaluation.

The WMSNs considered in the simulation-based testing
using Network Simulator 3 is illustrated in Fig. 5. A number
of both multimedia and scalar sensor nodes are deployed
randomly surrounding the Gateway; they communicate via
WiFi. The effect of the routing protocol is not considered in
this paper being left for future work. Table 3 summarizes the
simulation configuration for the tests.

The performance of rlDC is evaluated in four use cases
with different traffic types as follows [34]:
• Event-driven (E) The sensor nodes report and deliver

data to the Gateway only if an event occurs. In gen-
eral, when an event occurs, a large number of packets
are generated and need to be delivered reliably. For
such applications (e.g., surveillance, target tracking),
the priority of throughput is set highest, so that content
delivery is most important.

• Query-driven (Q) Query-driven applications share
some similarities to event-driven model, except one
critical point: data is requested by the sink/gateway
node. Besides, data delivery in this model is two-way
traffic that consists of requests from the sink/gateway
and responses from sensor nodes. Low latency and
high throughput must be guaranteed in order to achieve
QoS performance. Examples of query-driven model are
habitat monitoring and environmental control.

• Continuous (C) In this type of application, data orig-
inated from sensor nodes is collected and delivered
at periodic intervals. Continuous class can be seen as
the basic model for traditional monitoring applications.
The energy conservation is considered as the highest
priority whereas real-time data delay and loss can be
tolerated. Examples of continuous traffic types include
surveillance, and reconnaissance.

• Hybrid (H) This use case considers a mixture of
applications and therefore the priority of all utilities
is considered equal. Examples of hybrid model in-
clude surveillance application that senses and deliv-
ers both periodical temperature/humidity and event-
triggered video streaming.

The parameters in the four use cases used in this
simulation-based study are summarized in Table 2.

Modeling and simulation-based testing was performed
in Network Simulator NS-3 [38] and rtDC performance
was benchmarked against other three solutions: AWP [23],
SMAC [11], and eAMD [29].

Note that the key point in the proposed solution is the capa-
bility of dynamic adaptation according to various application
requirements in comparison to other non-learning solutions
like AWP or SMAC. The results of these two schemes only
change slightly when switching between various configura-
tions.

TABLE 2. Parameters setting for the different use cases

Test cases Notation wE wT wD

E.1 0.05 0.9 0.05
Event-driven E.2 0.25 0.5 0.25

E.3 0.25 0.75 0.0
E.4 0.0 0.75 0.25
C.1 0.9 0.05 0.05

Continuous C.2 0.5 0.25 0.25
C.3 0.75 0.25 0.0
C.4 0.75 0.0 0.25
Q.1 0.05 0.05 0.9

Query-driven Q.2 0.25 0.25 0.5
Q.3 0.25 0.0 0.75
Q.4 0.0 0.25 0.75
H.1 0.33 0.33 0.33

Hybrid H.2 0.5 0.5 0.0
H.3 0.5 0.0 0.5
H.4 0.0 0.5 0.5

FIGURE 5. Network topology for testing

TABLE 3. Simulation setup

Parameter Value
Simulation Length 10,000 seconds
No. of WMSN sensor nodes 40
No. of scalar sensor nodes 10
Cell layout Single cell; Radius - 50 meters
WiFi Mode IEEE 802.11n 2.4 GHz
Antenna Model Isotropic Antenna Model
Initial Energy 1,000 (Joules)
Data rate for WMSN Nodes 2.0 Mbps
Data rate for Scalar sensor Nodes 150 Kbps
Learning Rate α = 0.5
Discount Factor γ = 0.5

SMAC and AWP schemes are designed to operate with
scalar sensor type (such as humidity, temperature, etc.) with
low network resource requirements. In particular SMAC
results are of interest. Although the remaining battery levels
are always high after simulations (approximately 44%), it
shows poor performance in terms of throughput and delay.
Related to AWP, sensor nodes adapt the duty cycle according
to the number of active neighbors. In a densely deployed
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TABLE 4. Parameter values for different application types

Notation Description Event-driven Query-driven Continuous Hybrid
LE Minimum depletion rate (Joules/s) 0.10 0.10 0.10 0.10
HE Maximum depletion rate (Joules/s) 1.14 1.14 0.50 1.14
LT Minimum Throughput (Mbps) 0.8 0.12 0.12 0.12
HT Maximum Throughput (Mbps) 2.0 1.0 1.0 1.0
LD Minimum Delay (ms) 10 100 100 100
HD Maximum Delay (ms) 50 200 200 200

network, this causes high latency as sensor nodes always
reduce their duty cycle due to a large number of neighbors.
eAMD has improved performance in comparison to both
AWP and SMAC as it employs a learning-based scheme
for sensor node. By making decision to adjust the on/off
sensor node time, eAMD shows better adaptation capability
for different application requirements. By adding contention
window adjustment, the scheme proposed in this paper, rlDC,
shows further improvement in terms of QoS, even in compar-
ison to eAMD.

VI. TESTING RESULTS AND DISCUSSION
A. EVENT-DRIVEN USE CASE
In the event-driven use case, sensor nodes report and deliver
data only if some events occur. Surveillance and target track-
ing are two examples of this application type. The application
performance is dependent on the quality of the observation
and reliability of the information about the detected event. In
such a case, for instance video streaming should be captured
at acceptable level, so the weight factor for throughput (wT )
is set higher than that for energy (wE) and delay (wD). Fig
6 and Table 5 summarize the results for the event-driven use
cases.

Average throughput of rlDC achieves the highest value of
0.91 Mbps when wT is set to 0.9. This result outperforms
the throughput results of 0.52 Mbps, 0.49 Mbps, and 0.16
Mbps of eAMD, AWP, and SMAC, respectively. Another
interesting observation is related to the effect of weight wT
on the average throughput result. Throughput of rlDC in
usecases E.3 and E.4 when wT is set to 0.75, of about 0.85
Mbps, is higher than the 0.36Mbps obtained when wT is set
to 0.5. eAMD scheme achieves a similar result decreasing
throughput depending on wT value, i.e., 0.6 Mbps and 0.75
Mbps in E.3 and E.4 (with wT is set to 0.75), in comparison
to 0.37 Mbps in E.2 (with wT equal to 0.5). Throughput
of AWP only adapts slightly when varying wT whereas in a
static scheme like SMAC, no change in the result for different
weight factors is noted.

However, improvements noted determine increases in en-
ergy consumption with an average of 0.68 Joules/s of rlDC
(E.1) in comparison with 0.44, 0.43, and 0.27 Joules/s of
eAMD, AWP, and SMAC, respectively. In the remaining
cases, rLDC also suffers from high energy depletion rate
that leads to lower remaining battery levels than when its
counterparts are used. This is considered as a sacrifice of
network lifetime in order to achieve higher QoS. Finally, the

overall performance in terms of the achieved total reward
according to equation (8) is also evaluated. The first four
graphs in Fig. 6 show how rlDC outperforms the other
schemes in terms of the total reward.

B. CONTINUOUS USE CASE
In contrast to the Event-driven use case, in the Continuous
use case, sensor networks are designed to operate for long
time. This is the reason the network lifetime is most impor-
tant. Figure 7 summarizes simulation results with wE set to
0.9, 0.5, 0.75 and 0.75 for continuous use cases C.1, C.2, C.3
and C.4 when testing rlDC.

In the first case with wE set to 0.9, the average depletion
rate of rlDC is 0.22 Joules/s that is lower than that of
SMAC (with 0.27 Joules/s), eAMD (with 0.25 Joules/s),
and much better than that of AWP (with 0.64 Joules/s).
A significant result of rlDC is maintaining acceptable QoS
performance under strict energy consumption requirements.
The average throughput of rlDC in case C.1 is 0.25 Mbps,
better than that of eAMD (0.23 Mbps) and static scheme
SMAC (0.16 Mbps), although lower than that of AWP (0.48
Mbps). In the cases with wE set to 0.5, 0.75 and 0.75 of C.2,
C.3 and C.4, rlDC still shows better performance in terms
of depletion rate in comparison to those of its alternative
solutions. SMAC achieves a low depletion rate (approxi-
mately 0.27 Joules/s) at the expense of low throughput,
that is around 0.16 Mbps for all cases. The AWP scheme,
with no concern about energy saving, achieves an average
0.49 Mbps in all cases, but suffers from extremely high
depletion rate (with more than 0.50 Joules/s) in all cases.
rlDC improves the idea of dynamic duty cycle of eAMD
by adapting contention window based on input requirements.
This leads to rlDC outperforming eAMD in all four cases.

To conclude the discussion in this type of use case, the total
reward illustrated in Fig. 7 is analyzed. rlDC shows slightly
higher reward than eAMD and AWP, and much higher than
that of SMAC. Such observation illustrates rlDC’s ability to
operate and dynamically adapt under different circumstances.

C. QUERY-DRIVEN USE CASE
In this use case, low delay is considered most important
to guarantee. Fig. 8 summarizes performance results when
weight factors for delay wD are set to the highest values. In
order to achieve such an objective, we design the solution
with adaptive contention window to access the channel for
sensor node. By varying contention window intelligently,
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TABLE 5. Comparative performance results for Event-driven Use case

Case wE wT wD Schemes Throughput (Mbps) Depletion rate (Joules/s) Delay (s) %Energy+ Mean Std. Dev 95%CI Mean Std. Dev 95% CI Mean Std. Dev 95% CI

E.1 0.05 0.9 0.05

rlDC 0.91 0.47 (0.81; 1.0) 0.68 0.32 (0.63; 0.76) 0.4 0.32 (0.33; 0.46) 29.12
eAMD 0.52 0.01 (0.47; 0.58) 0.44 0.06 (0.22; 0.25) 0.24 0.06 (0.22; 0.25) 32.88
AWP 0.49 0.02 (0.48; 0.50) 0.43 0.14 (0.41; 0.45) 0.84 0.64 (0.77; 0.85) 25.25

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

E.2 0.25 0.5 0.25

rlDC 0.36 0.17 (0.31; 0.41) 0.32 0.12 (0.27; 0.39) 0.86 0.18 (0.81; 0.89) 45.19
eAMD 0.37 0.11 (0.28; 0.40) 0.33 0.19 (0.26; 0.35) 0.90 0.21 (0.83; 1.03) 44.66
AWP 0.5 0.02 (0.49; 0.51) 0.47 0.08 (0.45; 0.48) 0.74 0.51 (0.69; 0.66) 24.36

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

E.3 0.25 0.75 0.0

rlDC 0.86 0.75 (0.79; 0.87) 0.66 0.53 (0.60; 0.72) 0.44 0.38 (0.38; 0.46) 34.97
eAMD 0.60 0.41 (0.57; 0.62) 0.67 0.66 (0.62; 0.72) 0.45 0.31 (0.39; 0.47) 32.62
AWP 0.49 0.04 (0.48; 0.50) 0.46 0.09 (0.44; 0.48) 0.90 0.81 (0.86; 0.94) 40.38

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

E.4 0.0 0.75 0.25

rlDC 0.85 0.47 (0.82; 0.91) 0.44 0.33 (0.38; 0.46) 0.45 0.38 (0.41; 0.49) 41.23
eAMD 0.75 0.46 (0.71; 0.78) 0.40 0.06 (0.21; 0.24) 0.50 0.41 (0.43; 0.52) 40.91
AWP 0.49 0.04 (0.48; 0.50) 0.46 0.09 (0.44; 0.48) 0.79 0.61 (0.74; 0.84) 30.35

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

FIGURE 6. Event-driven use case with setting values of (wE , wT , wD) (columns from left to right): E.1) (0.05; 0.9; 0.05); E.2) (0.25; 0.5; 0.25); E.3) (0.25; 0.75;
0.0); E.4) (0.0; 0.75; 0.25). The first row: Total reward gained after simulation. The second, third rows: Statistics of network performance in terms of delay (seconds)
and throughput (Mbps). The fourth row: depletion rate (Joules/s) of sensor node.
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TABLE 6. Comparative performance results for Continuous Use case

Case wE wT wD Schemes Throughput (Mbps) Depletion rate (Joules/s) Delay (s) %EnergyMean Std. Dev 95%CI Mean Std. Dev 95% CI Mean Std. Dev 95% CI

C.1 0.9 0.05 0.05

rlDC 0.25 0.17 (0.23; 0.34) 0.22 0.12 (0.18; 0.31) 0.89 0.32 (0.73; 1.06) 45.28
eAMD 0.23 0.02 (0.22; 0.25) 0.25 0.16 (0.24; 0.29) 0.83 0.16 (0.81; 0.85) 43.84
AWP 0.48 0.02 (0.35; 0.50) 0.64 0.11 (0.62; 0.66) 0.82 0.11 (0.78; 0.83) 22.00

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

C.2 0.5 0.25 0.25

rlDC 0.41 0.27 (0.36; 0.45) 0.30 0.22 (0.26; 0.31) 0.80 0.28 (0.75; 0.83) 43.83
eAMD 0.38 0.21 (0.28; 0.40) 0.33 0.17 (0.27; 0.36) 0.84 0.21 (0.78; 0.85) 39.34
AWP 0.49 0.02 (0.48; 0.49) 0.45 0.09 (0.43; 0.47) 0.86 0.01 (0.80; 0.94) 27.84

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

C.3 0.75 0.25 0.0

rlDC 0.38 0.32 (0.32; 0.45) 0.27 0.19 (0.22; 0.37) 0.83 0.08 (0.01; 0.04) 45.28
eAMD 0.37 0.01 (0.07; 0.08) 0.22 0.06 (0.21; 0.24) 0.83 0.01 (0.03; 0.03) 42.66
AWP 0.49 0.02 (0.48; 0.49) 0.50 0.06 (0.49; 0.52) 0.89 0.80 (0.85; 0.94) 23.63

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

C.4 0.75 0.0 0.25

rlDC 0.40 0.33 (0.33; 0.47) 0.30 0.23 (0.21; 0.34) 0.93 0.68 (0.82; 0.95) 44.99
eAMD 0.38 0.21 (0.34; 0.41) 0.31 0.26 (0.27; 0.35) 0.95 0.56 (0.83; 0.99) 42.57
AWP 0.49 0.04 (0.48; 0.50) 0.46 0.09 (0.44; 0.48) 0.79 0.61 (0.74; 0.84) 27.90

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.94; 0.96) 44.01

FIGURE 7. Continuous use case with setting values of (wE , wT , wD) (columns from left to right): C.1) (0.9; 0.05; 0.05); C.2) (0.5; 0.25; 0.25); C.3) (0.75; 0.25;
0.0); C.4) (0.75; 0.0; 0.25). The first row: Total reward gained after simulation. The second, third rows: Statistics of network performance in terms of delay (seconds)
and throughput (Mbps). The fourth row: depletion rate (Joules/s) of sensor node.

sensor nodes with strict delay requirements have higher
chance to gain channel access in order to meet application
requirements.

When wD is set to 0.9, the average delay of rlDC was
about 0.30 seconds in comparison to 0.33, 0.79, and 0.95
seconds of eAMD, AWP and SMAC, respectively. When wD
is equal to 0.5, 0.75 and 0.75 as in Q.2, Q.3 and Q.4, the

results for rlDC vary slightly but still outperform those of
its counterparts. A noticeable performance of rlDC is also
in terms of the energy depletion rate, with approximately
0.38, 0.40, 0.48, and 0.49 Joules/s in Q.1, Q.2 Q.3, and
Q.4 respectively. These results outperform those of eAMD
and AWP although they are still lower than those of SMAC.
The reason of this improvement is the adaptive contention
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TABLE 7. Comparative performance results for Query-driven Use case

Case wE wT wD Schemes Throughput (Mbps) Depletion rate (Joules/s) Delay (s) %EnergyMean Std. Dev 95%CI Mean Std. Dev 95% CI Mean Std. Dev 95% CI

Q.1 0.05 0.05 0.9

rlDC 0.82 0.47 (0.76; 0.83) 0.38 0.22 (0.33; 0.40) 0.30 0.18 (0.25; 0.32) 35.47
eAMD 0.80 0.72 (0.77; 0.82) 0.42 0.36 (0.36; 0.44) 0.33 0.11 (0.26; 0.35) 32.19
AWP 0.50 0.03 (0.48; 0.51) 0.46 0.09 (0.44; 0.48) 0.79 0.20 (0.74; 0.82) 22.21

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

Q.2 0.25 0.25 0.5

rlDC 0.81 0.27 (0.76; 0.90) 0.40 0.23 (0.32; 0.44) 0.34 0.29 (0.31; 0.44) 42.22
eAMD 0.77 0.31 (0.67; 0.88) 0.41 0.27 (0.33; 0.45) 0.36 0.21 (0.33; 0.46) 39.67
AWP 0.49 0.02 (0.48; 0.49) 0.47 0.09 (0.45; 0.49) 0.87 0.81 (0.84; 0.92) 10.9

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

Q.3 0.25 0.0 0.75

rlDC 0.45 0.35 (0.38; 0.52) 0.48 0.32 (0.73; 0.86) 0.33 0.27 (0.31; 0.38) 42.22
eAMD 0.42 0.31 (0.37; 0.48) 0.81 0.56 (0.76; 0.84) 0.35 0.31 (0.29; 0.39) 40.37
AWP 0.49 0.04 (0.48; 0.50) 0.46 0.09 (0.44; 0.48) 0.83 0.71 (0.79; 0.85) 28.64

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

Q.4 0.0 0.25 0.75

rlDC 0.43 0.39 (0.41; 0.49) 0.49 0.33 (0.71; 0.84) 0.35 0.35 (0.31; 0.40) 41.29
eAMD 0.42 0.41 (0.37; 0.48) 0.59 0.76 (0.71; 0.84) 0.39 0.31 (0.33; 0.43) 39.95
AWP 0.49 0.04 (0.48; 0.50) 0.46 0.09 (0.44; 0.48) 0.82 0.81 (0.78; 0.84) 21.29

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

window adjustment. Sensor nodes, although with low duty
cycle (illustrated by low energy depletion rate) still achieve
low delay due to low adapted contention window.

For Query-driven applications, the total reward achieved
by all four schemes are also compared. By achieving sig-
nificant performance in terms of delay and depletion rate,
rlDC outperforms eAMD, AWP, and SMAC in terms of total
reward as illustrated in Fig. 8.

D. HYBRID USE CASE
Fig. 9 summarizes simulation results when considering the
combined requirements of multiple different applications. In
hybrid use cases, the requirements can be a mixture between
two (by setting two weight factors equal) or three (with all
three weight factors set equal).

In the first case H.1, when all wE , wT , and wD are set to
0.33, rlDC achieves 0.60 Mbps throughput, 0.32 Joules/s
energy consumption rate, and 0.34 seconds for delay. Such
a balanced scheme produces an "average" result for all three
metrics and rlDC is slightly better than eAMD with 0.57
Mbps, 0.41 Joules/s, and 0.39 seconds in terms of through-
put, energy depletion rate, and delay, respectively. AWP and
SMAC achieve the same results as in the previous use cases.

In case H.2, in which energy and throughput are focused
on, AWP outperforms all schemes in terms of throughput
(about 0.49 Mbps), but at the cost of higher energy depletion
rate (0.41 Joules/s) and higher delay (0.60 seconds) in
comparison to rlDC. When wT and wE are the only two
settings of interest in case H.3, rlDC achieves 0.34 seconds
and 0.33 Joules/s for delay and depletion rate, respectively.
These results outperform those of SMAC and AWP although
at the cost of decreased throughput (rlDC achieves 0.38
Mbps in comparison to 0.49 Mbps of AWP).

In the last case, where throughput and delay are focused
on, rlDC has better results (with 0.87 Mbps and 0.4 sec-

onds) than AWP (0.5 Mpbs and 0.84 seconds), and eAMD
(0.78 Mbps and 0.49 seconds). For SMAC, in all setting, the
results do not change significantly due to its usage of fixed
duty cycle and no-adaptation of other parameters.

Finally, the overall performance of our solution is eval-
uated in terms of the total reward and illustrated in Fig.
9. In all four cases, rlDC outperforms eAMD, AWP, and
SMAC in terms of total reward. This indicates the ability
of our solution to perform dynamic adaptation and achieve
better trade-off between QoS and energy consumption than
the other schemes.

VII. CONCLUSIONS
This paper proposed a Reinforcement Learning-based frame-
work for optimizing the performance of WMSNs. The solu-
tion model is built based on MDP and solved by employing
a model free reinforcement learning technique, Q-Learning.
This solution was incorporated in a novel adaptation algo-
rithm rlDC based on which sensor nodes make adjustment
decisions in terms of duty cycle and transmission contention
window. By deploying this algorithm, WMSN nodes can
adapt dynamically their operation according the the require-
ments of applications. The proposed scheme was evaluated in
a simulation environment and its performance was validated
under different use cases that stress the priority of energy,
throughput, and delay, respectively. The simulation results
show how our solution outperforms three other schemes in
four different use cases and diverse scenarios.
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FIGURE 8. Query-driven use case with setting values of (wE , wT , wD) (columns from left to right): Q.1) (0.05; 0.05; 0.9); Q.2) (0.25; 0.25; 0.5); Q.3) (0.25; 0.0;
0.75); Q.4) (0.0; 0.25; 0.75). The first row: Total reward gained after simulation. The second, third rows: Statistics of network performance in terms of delay
(seconds) and throughput (Mbps). The fourth row: depletion rate (Joules/s) of sensor node.

TABLE 8. Comparative performance results for Hybrid Use case

Case wE wT wD Schemes Throughput (Mbps) Depletion rate (Joules/s) Delay (s) %EnergyMean Std. Dev 95%CI Mean Std. Dev 95% CI Mean Std. Dev 95% CI

H.1 0.33 0.33 0.33

rlDC 0.60 0.27 (0.51; 0.76) 0.32 0.12 (0.28; 0.36) 0.34 0.38 (0.29; 0.38) 43.16
eAMD 0.57 0.16 (0.51; 0.59) 0.41 0.12 (0.39; 0.44) 0.39 0.41 (0.33; 0.43) 42.26
AWP 0.49 0.02 (0.48; 0.49) 0.48 0.08 (0.47; 0.50) 0.94 0.51 (0.90; 0.99) 21.51

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

H.2 0.5 0.5 0.0

rlDC 0.40 0.27 (0.34; 0.42) 0.32 0.22 (0.29; 0.34) 0.87 0.39 (0.81; 0.94) 44.06
eAMD 0.38 0.11 (0.30; 0.42) 0.34 0.17 (0.29; 0.35) 0.87 0.41 (0.83; 0.93) 41.67
AWP 0.49 0.03 (0.48; 0.49) 0.41 0.1 (0.39; 0.43) 0.78 0.60 (0.73; 0.84) 28.96

SMAC 0.16 0.01 (0.15; 0.17) 0.27 0.01 (0.26; 0.27) 0.95 0.15 (0.93; 0.96) 44.01

H.3 0.5 0.0 0.5
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