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Abstract—Recently, Fabrication Laboratories (Fab Lab) have
been shown to have a great impact on learners’ academic and
personal progress. As a result, an increasing effort is being put
to integrate Fab Labs into schools’ curricula. Yet, owing to the
high cost of setting-up and maintaining Fab Labs as well as
the lack of sufficient funding for most schools and universities,
only a limited number of institutions can afford them. In this
paper, we propose a new concept called Fabrication-as-a-Service
(FaaS) that uses Internet of Things to democratize access to
Fab Labs via enabling a wide learning community to remotely
access these computer-controlled tools and equipment over the
Internet. It employs a two-tier architecture consisting of a hub,
deployed in the cloud, and a network of distributed Fab Labs.
Each Fab Lab interacts with the hub and other digital labs via
a Fab Lab Gateway. This is to support scalability and high
availability of fabrication services as well as ensure system’s
security. FaaS also adopts an innovative master-slave approach
that uses inexpensive external hardware to monitor and control
the activity of expensive fabrication equipment. The paper also
describes FaaS deployment in the context of the European Union
Horizon 2020 NEWTON project. Multiple scenarios have been
deployed to fully illustrate the benefits of FaaS architecture and
to assess the performance of its communication protocol stack.

Index Terms—Fabrication-as-a-Service, Remote education, In-
ternet of Things, Machine to Machine Communication, Fabrica-
tion Labs.

I. INTRODUCTION

AFab Lab is a small-scale workshop that offers personal-
ized digital fabrication using a set of flexible computer-

controlled tools and machines (e.g. 3D printers, laser cutters,
computer numerically-controlled (CNC) machines, printed cir-
cuit board millers and other basic fabrication tools). It endorses
a new learning approach that considers technology as a key
material to promote concepts such as learning by doing and
enjoying while learning [1], [2].

Numerous studies [3]–[12] have demonstrated the great
impact of Fab Lab technologies on students’ academic and
personal growth. These studies have contributed to the global
increase in the number of Fab Labs, estimated at 1186 in 2017.
For example, SCOPES-DF [13] is a project developed by
FAB Foundation1 to promote the use of digital fabrication in
Science, Technology, Engineering and Mathematics (STEM).
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It consists of a network of Fab Labs, approximately 1000,
located in more than 78 countries. They provide various
resources that are used to develop lesson plans aligned with the
U.S. national education standards. AuLAB [14] is a Spanish
project developed by LABoral2 Art Center in collaboration
with the Ministry of Education of Asturias. It targets primary,
secondary and vocational education students. It aims at adapt-
ing education to the needs and peculiarities of each educational
level. In Ireland, two projects are worth mentioning: Fab Lab
Limerick [15] and WeCreate [16]. Both offer cultural and
educational programmes for students, designers, crafters and
entrepreneurs, bridging the gap between these technologies
and creatives from all disciplines.

Yet, owing to the high costs of setting-up and maintaining
Fab Labs, most public schools and universities worldwide are
unable to afford them. Though, providing Fab Labs with ubiq-
uitous access and implementing resource sharing mechanisms
would eventually contribute to overcome the price barrier. This
has motivated us to propose Fabrication-as-a-Service (FaaS),
an innovative approach that enables remote access to Fab Labs
as a Web-based service. It endorses the use of subtle concepts
such as Internet of Things (IoT) and Industry 4.0 in the context
of Fab Labs. The novelty of FaaS is the fact that it enables
various schools and universities to access remotely existing
Fab Labs, deployed in different geographical locations, instead
of investing in expensive digital fabrication equipment. To
the best of the authors’ knowledge, there is no work in the
literature that has proposed something similar. We believe that
FaaS is a necessary evolution of Fab Labs, allowing them to
become available to a wider community over the Internet and
not to be exclusive to elite schools and universities. We also
believe that FaaS can be an integral part of the twenty-first
century teaching and learning paradigm as it is dynamic and
user-centric.

The rest of this paper is organized as follows. Section II
reviews some related work regarding the impact of Fab Lab-
based learning on students’ performance. Section III describes
the proposed FaaS architecture. Section IV presents the com-
munication protocol stack. Section V describes FaaS use cases.
Section VI outlines FaaS real-time deployment as part of the
NEWTON project and includes the results of FaaS Fab Lab
performance testing. Finally, Section VII concludes the paper.

2http://www.laboralcentrodearte.org/en
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Fig. 1. Fabrication-as-a-Service (FaaS) architecture with cloud inter-networking

II. RELATED WORKS

All the research efforts put to date in the digital fabrication
area have been aimed at demonstrating the effectiveness of Fab
Lab-based learning on students’ performance. For instance,
Berry et al. [3] suggested that teaching Mathematics, Science
and Engineering via tasks that make use of digital fabrication
can help students learn faster and be more engaged. Tesconi
[14] showed that by using digital fabrication, students can
develop their critical thinking skills used when dealing with
problems and making decisions. Johnson et al. [4] highlighted
that having Fab Lab-based learning in primary and secondary
schools can decrease school absenteeism. It can also improve
students’ performance in subjects such as Mathematics and
Science. Angello et al. [5] reported that using Fab Lab-based
learning in primary schools can enhance students’ experience
by adding fun while learning. Chu et al. [6] also showed that
integrating Fab Labs in primary schools’ curricula can have a
great impact on students’ self-efficacy and self-identification.
Bang-Hee et al. [7] found that incorporating Fab Labs in
high school curriculum helps students develop skills such as
creativity, problem-solving, collaboration and communication.
Harron et al. [8] reported that digital fabrication can prepare
students, including those with special needs, for their future
carriers by increasing their confidence through hands-on ac-
cessible activities. Finally, Eversmann [9] reported that the
realization of large-scale prototypes in architecture using dig-
ital fabrication technologies made university students keener
to self-learning.

Yet, to the best of authors’ knowledge, no studies could
be found in the literature that propose to enhance the Fab Lab
functionality by providing support for pervasive and ubiquitous
Internet access. This has motivated the authors to propose
FaaS, a new fabrication methodology inspired by Industry
4.0 and IoT concepts to provide users with the possibility
of remotely accessing the digital fabrication equipment to
control fabrication activities. The main goal of FaaS is to
ensure a democratic access to these workshops, enabling a
wide community to benefit from them.

III. FAAS ARCHITECTURE

FaaS architecture provides Fab Labs with an abstraction
layer that wraps the underlying hardware infrastructure into
a programmable interface. This latter consists of a set of
Application Programming Interfaces (APIs) that enable third-
party applications to access Fab Labs as a Web service. These
APIs perform the following functions:

1) Remotely controlling and configuring Fab Lab equip-
ment;

2) Ensuring Inter and Intra-Fab Lab communication along
with task synchronization.

Using these APIs, remote monitoring and automatic synchro-
nization of the machines involved in a fabrication batch can be
done with minimum human intervention. They also enable the
partitioning of complex designs into small pieces that will be
dispatched to different networked Fab Labs. Furthermore, they
facilitate the implementation of Education-to-Education (Ed-
to-Ed) scenarios in which partner institutions can share expen-
sive fabrication equipment. Connecting multiple Fab Labs is
very challenging. Indeed, several issues have to be addressed,
including system interfacing, scalability, security, quality of
service as well as real-time and non-blocking communications.
In addition, the possibility to manage collaborative and dis-
tributed fabrication batches with little or no human supervision
can be a potential cause of equipment’s failure. This in turn
entails the development of a monitoring software and hardware
infrastructure to guarantee safe equipment operation and fault
tolerance. In the following subsections, we describe how all
of the aforementioned issues are addressed by FaaS.

A. Design Goals and Problem Statement
The major design goals are as follows:
1) Develop a distributed and modular infrastructure to

enable interconnection and communication of several
Fab Labs spread over a wide geographical area.

2) Create software and hardware wrappers to expose the
fabrication machines to the Internet as web services
through a set of REST (REpresentational State Transfer)
APIs.
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3) Design the communication protocol that enables remote
access, monitoring, and resource sharing among Fab
Labs.

These objectives must be accomplished while:

1) Complying with the security restrictions imposed by the
network administrators of the institutions in which the
Fab Lab infrastructure is deployed.

2) Limiting the deployment costs by leveraging a minimal
cloud infrastructure and inexpensive off-the-shelf micro-
controllers to implement machine and Fab Lab wrappers.

3) Limiting the number of vendor-specific cloud services
in order to ease the migration to different Infrastructure
as a Service (IaaS) providers and to enable the imple-
mentation of multi-cloud architectures.

4) Providing software interfaces to easily plug the Fab
Lab infrastructure in third-party infrastructure or appli-
cations.

The problem of infrastructure costs and scaling has been
thoroughly addressed in [17]. A minimal deployment on
Amazon AWS public cloud requires (beside virtual machines
and storage) just the following services:

1) The DNS (Domain Name System) service to translate
logical names into IP addresses;

2) A distributed storage system to implement the blob-
store3.

In Amazon AWS, the DNS service is called Route53,
whereas the distribute storage system is called S3 (Simple
Storage Service). Thus, the Fab Lab Cloud Hub application has
no vendor lock-ins since it does not directly rely on specific
services managed by the cloud provider and can be easily
migrated to any private or public cloud.

Because of its significant benefits compared to a point-to-
point interconnection, the spoke-hub architecture, illustrated
in Fig. 1, was adopted to interconnect the distributed Fab
Labs. In a point-to-point architecture, Fab Labs could directly
communicate with each other. This means that the commu-
nication overhead and costs increase exponentially according
to

(
n
2

)
= n(n−1)

2 , where n is the number of interconnected
Fab Labs. Thus, 4 interconnected Fab Labs would require 6
connections, 8 Fab Labs would require 28 connections, and
so on. Conversely, a spoke-hub model scales better while
maintaining a consistent architecture and is more affordable
in long term.

Moreover, the software architecture is organized as a set
of loosely-coupled microservices accessible through a set
of REST APIs. Each microservice can run and scale in-
dependently; this makes the implementation of the use-case
scenarios very easy. Given that our design is cost-constrained,
we tried to find the right balance between affordable costs
and acceptable performance. To date, a simulator of our
cloud infrastructure [18] was implemented to investigate the
cost-performance trade-offs and to identify potential system
bottlenecks as the infrastructure scales.

3A blobstore is a data store for large files in BLOB (Binary Large OBject)
format. In the context of FaaS architecture, it is used to keep backups of the
cluster deployed on cloud premises.

B. Cloud-based Architecture

The overall FaaS architecture is illustrated in Fig. 1. FaaS
employs a two-tier architecture consisting of a hub and a
network of distributed Fab Labs. Each Fab Lab interacts with
the hub, deployed in the cloud, and other labs via a Fab Lab
Gateway. Instead of the devices processing the data themselves
as in [19], we opted for a standard approach that processes all
the data in the cloud. This is because the amount of data to
be processed (i.e., the Fab Lab status) is not large enough to
justify the deployment of a middleware layer between Fab
Labs and the Cloud hub. The Service Oriented Architec-
ture (SOA) guarantees the inter-operability of the different
system components, regardless of the used implementation
technology, while supporting a smooth system scalability.
The service registry acts as a centralized communication hub
among service providers and subscribers.

FaaS enables two types of communication: Inter-Fab Lab
communications and Intra-Fab Lab communications. The for-
mer is managed by the centralized broker on the cloud
premises and denotes the outbound traffic of the Fab Lab
network. The latter is managed by the Fab Lab Gateway in
the Fab Lab VPN and designates the local network inbound
traffic. This architecture reduces the load on the centralized
broker considerably, whose task is simply relying short high-
level commands from the source to the destination gateway.
The gateway acts as a relay for the Fab Lab inbound traffic,
routing the incoming command to the target machine accord-
ing to specific policies (e.g. machine availability, type and
complexity of the fabrication batch, etc.).

Each Fab Lab has at least one public IP address eAddr:ePort
and can only be accessed through a Fab Lab Gateway. This lat-
ter maps the inbound traffic into a private address pAddr:pPort
by means of a Network Address Table (NAT) and a Port
Address Table (PAT). The Fab Lab Gateway performs the same
task on the outbound traffic The message flow between the
cloud application and the networked Fab Labs is managed by a
cloud-deployed Message Queue Telemetry Transport (MQTT)
broker [20]. The employed publish-subscribe messaging pro-
tocol requires the message broker to distribute messages to
only clients who are subscribed to a certain topic.

C. IoT Wrapper and Command Interface

FaaS employs an innovative master-slave approach (i.e. see
Fig. 2) that uses inexpensive external hardware to monitor and
control the activity of expensive fabrication equipment. The
master unit (MU) is basically an off-the-shelf micro-controller
unit (MCU) with basic Ethernet and wireless connectivity
along with a USB and a General Purpose Input Output (GPIO)
port. The USB port is used to communicate with the digital
fabrication machine (slave) while the wireless interface is used
to communicate with other Fab Lab networked equipment.
The status of the fabrication machine (i.e. switched-off, idle or
busy) is monitored by a non-invasive current transformer (CT)
sensor that measures the AC current drawn by the equipment.
To do so, the CT sensor is linked to the GPIO digital interface
via a high-resolution analog-to-digital converter (ADC) and a
simple signal conditioning circuit.
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Fig. 2. Fabrication equipment interfacing

The MU is responsible for decoding and translating an
incoming message into a set of commands comprehensible
to the slave machine. These operations are performed by the
set of software modules depicted in Fig. 3. While module
communications rely on asynchronous event-driven callbacks
that are managed by an event loop, commands dispatched
to the slave machine are handled synchronously. Command
execution is supervised by a controller, whose state diagram
is presented in Fig. 3. In each state, an event is generated.
The generated events are captured by other software modules,
triggering the execution of specific callback functions. For
instance, the command Interpreter integrates an event listener
that captures the new_command event, emitted by the com-
mand Queue, and the status event, emitted by the Controller.
It then schedules the execution of several event-dependent
callbacks, as illustrated in the following pseudo-code snippet:

var queue = require (’queue’);
var controller = require (’controller’);
var cq = queue.connect;
var ctrl = controller.connect;
cq.on(’new_command’, function decode(){

//on new_command event start decoding
});

ctrl.on(’error’, function abort(){
//on error event abort command
});

. . .

In case an error event is emitted by the Controller, a call-
back that aborts decoding is executed. When a new command
is executed, the Controller starts monitoring the current drawn
by the equipment, building a current pattern for every executed
command and saving it to the local data store.

D. Scalability

To support scalability and high availability of the fabrica-
tion services, FaaS deploys a two-level parent-child broker
architecture (see Fig. 6), individual command pooling and
a cluster of brokers. The parent (on the cloud server) and
the child broker (on the Fab Lab Gateway) share the re-
sponsibility of routing the end-to-end traffic between clients
and remote machines. This is beneficial to the cloud server
as the number of publishing nodes will be limited to Fab
Lab Gateways only. Moreover, the use of a pool of gateway-
specific message queues instead of a unique centralized queue
allows for the deployment of smart message passing protocols.
These protocols are capable of routing traffic towards specific
subscribers only (e.g. according to geographic proximity)
instead of continuously broadcasting incoming messages to all
subscribers. Finally, clustering the parent broker, by replicating
the number of broker instances, will provide high availability
and better fault tolerance.

E. Security

The proposed architecture in Fig. 1 implements a spoke-hub
set-up in which the networked Fab Labs communicate through
a centralized hub on the cloud premises. In this scenario, the
security concerns are related to:

1) Fab Lab to Hub communications.
2) Intra-Fab lab (i.e. machine to gateway) communications

Therefore, security is reinforced at three different levels:
1) Network level: by encapsulating brokers and clients into

Virtual Private Network (VPNs) to provide a trustworthy
connectivity.

2) Transport level: by deploying encryption-based proto-
cols such as Secure Socket Layer (SSL) or Transport
Layer Security (TLS) to provide confidentiality.

3) Application level: by employing the MQTT protocol that
provides a client identifier and credentials which can be
used to authenticate devices. These properties can be
used by the broker to define authorization levels for each
connected device/application.

Note that we address secure Fab Lab to Hub communi-
cations at the network level. This is the standard approach
for applications where, like in our case, a gateway is con-
nected to fabrication machines on one side and to the cloud
communication hub on the other. Indeed, the Spoke and the
hub nodes form a Virtual Private Network (VPN) in which
the Fab Lab gateway and the virtual machine instances, on
cloud premises, communicate securely over the Internet using
private IP addresses over an IPSec (IP Secure) tunnel. Within
a Fab Lab, security can be enforced both at transport (through
SSL/TLS transport encryption to ensure confidentiality) and
application level (through device credentials that allow to im-
plement authorization and authentication policies). However,
since the Fab Lab network is a private and trusted network
accessible only through the VPN tunnel, implementing these
security levels is not strictly necessary. It is noteworthy to
mention that since the transport level encryption may add
a significant overhead, payload encryption at the application
level can be a valid alternative.
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Fig. 3. Machine wrapper: software architecture and machine state controller

(a) (b)

Fig. 4. Machine wrapper web interface: (a) dashboard and b) machine parameters panel

F. User Interfaces

As already stated, the system software architecture relies
on a loosely-coupled set of microservices that implement the
machine wrapper, Fab Lab gateway and cloud hub routing
logic. Each microservice provides a set of APIs which are fully
compliant with Swagger 2.0 (now OpenAPI) specifications.
The Swagger UI has been integrated into the microservices
to provide end users with web interfaces to test the APIs and
program the system. In addition, the Fab Lab Gateway and
the machine wrapper also provide additional user interfaces.
Indeed, the Fab Lab Gateway has a command line interface
that allows gateway configuration. This includes setting up the
API rate limiting policies, managing the certificates, configur-
ing alarms and accessing the geolocation API. The machine
wrapper has a web administration interface that provides full
access and control of the underlying hardware, as shown in
Fig. 4.

The dashboard provides an interface to directly access the
machine wrapper as depicted in Fig. 4(a). It has three main

panels: a fully-featured VT-100 terminal that allows access
to all resources of the machine wrapper, a panel with real-
time gauge charts that show the CPU load of each individual
processor core as well as the server up-time, and a panel
with the general wrapper system information (i.e. architecture,
operating system, number of cores, core frequency, etc.). These
panels enable editing machine configuration and settings,
including machine logical name, type and vendor. Moreover, it
is also possible to set up the threshold current to indicate that
the machine is working/busy and to configure the ADC device
connected to the machine wrapper GPIO port. Indeed, the
user can select a specific ADC device (only Texas Instruments
ADS1x15 devices are supported so far), program its sampling
rate, and define the time window of a software low-pass
filter that averages the measured samples to provide some
noise immunity. The user can also configure the baud rate
of the communication channel between the machine wrapper
and the connected digital fabrication machine. Finally, this
panel also allows the possibility to edit the default fabrication
parameters of the connected machine as illustrated in Fig. 4(b).
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Fig. 5. Simplified sequence diagram and detailed message passing to support MQTT QoS 2 communications

Last but not least important, the dashboard also provides an
interface to launch a local fabrication job on the selected
machine. The interface allows uploading a design file on the
selected machine and configure it via defining the material
used, the material-dependent fabrication parameters, and by
configuring the initial position of the machine head. A more
detailed review of all the provided features and functionalities
is available on the NEWTON Fab Lab page hosted on GitHub
(https://gcornetta.github.io/gwWrapper/).

IV. FAAS COMMUNICATION PROTOCOL STACK

Fig. 5 depicts a simplified timing diagram that describes
the communication between client applications and remote
Fab Labs. It relies on a protocol stack that includes the
MQTT protocol. The message exchange has four stages: link
establishment, topic subscription, communication and discon-
nection (not illustrated for the sake of simplicity). Once the
TCP/IP connections (i.e. between the client and the broker on
one side, and between the Fab Lab Gateway and the broker
on the other side) are established, both end nodes subscribe
to topics they are interested in. For example, the client in Fig.
5 is interested in getting the status of machine number 10 of
Fab Lab number 1 while the Fab Lab Gateway is interested in
receiving commands from the broker regarding Fab Lab num-
ber 1. Once subscribed, end nodes start exchanging messages.
The broker first sends a command to the Fab Lab Gateway
asking for the status of machine number 10. The Gateway
pings the machine and forwards the status information to the
broker which in turn forwards it to the client.

To guarantee successful command delivery to end nodes,
we make use of the highest QoS level supported by MQTT,
namely QoS2. The QoS2-compliant messaging triggers on
both the publisher’s and broker’s sides a number of operations,
as illustrated in Fig. 5. More specifically, the broker acknowl-

edges the receipt of a QoS2 Publish with a Pub REC (receive)
message, stores a reference to the packet identifier and pub-
lishes the incoming message. When the sender receives the
Pub REC, it discards the initial publish request and responds
with Pub REL (release). When the broker receives the Pub
REL, it discards the stored reference and sends Pub COMP
(complete). Note that the level of the required QoS is specified
in the message body exchanged by the communicating nodes.

Fig. 6 illustrates the two-level hierarchical architecture
deployed to support inter- and intra-Fab Lab communications.
Labels (1) to (9) identify the sequence of operations that take
place from the moment a remote client issues a fabrication
machine status request until receiving a reply from the system.
The dual broker architecture decouples the remote client from
the Fab Lab, adding an extra layer of security. Broker-to-
broker message forwarding is managed by the MQTT bridge
running on the cloud server.

Note that FaaS Fab Lab instantiation relies on a reliable
communication stack (e.g. TCP, SSL), which is highly suitable
for most fabrication services. This is because the remote
fabrication time is anyway several order of magnitude longer
than the time required for network communication. However,
there exists some control services in industrial environments
which require extremely fast reactions. In this case, alternative
communication approaches should be considered. For instance,
non-reliable transport layer protocols can be used for transmis-
sion. Another approach would be to replace SSL with payload
encryption, as indicated in Section II.E.

V. FAAS PRINCIPLE AND USE CASES

FaaS is a new fabrication methodology which is inspired
by the basic concepts found in the Industry 4.0 philosophy
[21]. In Industry 4.0, machines are inter-connected, have the
ability to co-operate and provide service interfaces to third
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Fig. 6. Overview of the inter and intra-Fab Lab messaging flow
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Fig. 7. NEWTON FaaS Fab Lab use cases: (a) remote co-operation, and (b) assembly line sharing

parties. FaaS focuses on improving the fabrication efficiency
and flexibility via integrating the fabrication process within
an Internet of services framework. However, the main goal
is improving the use of Fab Labs in an educational context.
This is to facilitate machine and knowledge-sharing as well as
reinforcing teacher-student cooperation.

In order to illustrate the benefits of the FaaS approach,
two use cases in the context of the NEWTON Fab Labs are
discussed next. The first use case describes the use of FaaS
within a remote educational context, where several groups of
students along with their teachers collaborate on the same
project. In the second use case, FaaS is used to share a
small electronics assembly line for surface mounting devices
between two labs.

A. FaaS for Remote Cooperation

Fig 7(a) depicts the first use case where three teams at three
different locations will collaborate in the context of a common
project. The three teams have remote access to NEWTON Fab

Labs and should fabricate a robot which has the ability to
climb stairs. The mechanical part of the robot has to be built
using basic plate material which can be handled by a laser
cutter and basic structures which can be implemented using a
3D printer. The electric driver part consists of small stepper
motors while the electronic steering part is implemented using
an Arduino platform and a motor-driver. The electronic parts
and the motor driver are further integrated into a single Printed
Circuit Board (PCB). To this end, team A will design the
mechanical parts, team B will focus on the implementation
of the printed circuit boards for electronics integration while
team C will focus on the firmware creation.

The Fab Lab setup consists of a laser cutter machine,
a 3D printer, a programmer for the Arduino boards and a
PCB-milling machine. All the machines and the Arduino
programmer are locally inter-connected with the local gateway
and each machine registers its fabrication services and status-
information at the cloud server. The status-information of each
registered machine informs the user about the availability
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of the machine, the quality of service (QoS) which can be
delivered and the required fabrication time. The QoS-indicator
is a tuple reflecting the production quality and production
reliability. Those two values are estimated by means of a Naive
Bayesian Estimator which uses measurable system parame-
ters like machine quality, production throughput, production
latency, network reliability and sensor reliability.

During the design and prototyping phases, each team reg-
isters their design and sends it for fabrication. FaaS will
distribute the fabrication tasks to the machines at the three
different locations such that each team has similar fabrication
outputs within a given time-frame (as if they were at the same
premises). An important aspect to deal with is the potential
differences in fabrication quality between the various Fab
Labs, mainly due to differences in machines. Based on the
received QoS value, the sender of the fabrication task and
the receiver of the fabrication output will be able to predict
the similarity between the original design and the locally
fabricated copy.

B. NEWTON FaaS Fab Lab for Assembly Line Sharing

Fig 7(b) depicts the second use case. It demonstrates the
capability of electronic assembly line virtualization within a
single Fab Lab that does not avail from the inter-connected Fab
Lab capabilities. Such an assembly-line consists typically of a
Solder Paste Machine, a Pick and Place Machine and a Reflow
Oven. In an industrial setup, the machines are physically inter-
connected by means of a conveyor, detectors and a control-
system to automate the transfer of the printed circuit board
from one machine to another. In a Fab Lab setup, we have
experimented with off-the-shelf low-cost table-top machines
to create a similar semi-automatic electronic-assembly line.
Yet, these low-cost alternatives cannot be easily integrated
as a full automatic assembly line. This implies that some
manual interactions are still required. Consequently, these
machines should be handled individually, implying that users
are required to have a good understanding of the assembly line
setup along with the subsequent fabrication steps.

With FaaS, it is possible to address this issue by representing
the electronic assembly line as a single fabrication task. The
server will redistribute the single assembly line task to a set
of subsequent fabrication labs. This is done while taking into
account the availability of the different machines as well as
the availability of the Fab Lab technicians.

C. Multi Tenancy and Queuing Aspects

The multi-tenancy aspects of the system are taken care of
by message queuing and task distribution mechanisms. Indeed,
each machine has a separate (asynchronous) priority based
task-queue and a generated user-wait list. Each user receives
a dedicated time-slot in which the spawned tasks are executed.
It is only during that time slot that the user also receives the
possibility for remote-access to the machine. For the use-cases
described, RabbitMQ has been used as message broker. By
inducing specific rules, a dedicated priority mechanism has
been implemented to ensure fairness without mitigating the
safety aspect.

As such, each task is provided with the following meta-data:
task-type indicator, user-type indicator and the machine-time
budget. Based on these indicators, sub-priorities are calculated
as follows:

1) User Priority (UP) is defined based on the type of users.
There are three types of users:

a) Fab Lab coordinator (UP=3)
b) Fab Lab technician (UP=2)
c) Fab Lab user (UP=1)

2) Task Type Priority (TTP) is given based on the type of
the task. There are three types of tasks:

a) Emergency (TTP=3)
b) Cancellation (TTP=2)
c) Normal Tasks ( TTP=1)

3) Machine Time Priority (MTP) is calculated based on
the daily-machine-time-budget. In fact, each user has
a certain daily time budget to use the machine. The
priority given for this indicator depends on the remaining
time budget of the user minus the time for the new task.
Note that this indicator can create a negative priority if
the remaining budget is lower than the task-time. The
MTP is calculated as follows:

MTP =
(TotalUserBudget− TaskT ime) ∗ 3

TotalUserBudget
(1)

The total priority of each task is the sum of the three sub-
priorities, with a maximum value of 9.

TotalPriority = UP + TTP +MTP (2)

This method gives high priority to smaller tasks over longer
ones. It also attributes high priority to users with high daily
machine-time budget over users with low daily machine-time
budget. This way, a reasonably fair task scheduling between
the multiple users is embedded in the system architecture with-
out compromising the safety aspect (i.e. due to the scheduling
procedure). Note that tasks with equal priority are processed
on a first come first serve basis.

VI. FAAS REAL LIFE DEPLOYMENT

FaaS real life deployment was performed as part of the EU-
funded Horizon 2020 NEWTON project [22]. The NEWTON
project has designed and deployed innovative technology-
enhanced learning technologies, including support for virtual
and Fab Labs [23], adaptive and personalised rich media deliv-
ery [24], gamification [25] and game-based learning [26]. The
Fab Lab prototype has been deployed at CEU Madrid, Spain
and tested remotely from both Ireland [27] and Spain [28].
This deployment has helped gain significant insights on several
design and implementation aspects, including hardware design
and interfacing, system monitoring and cloud deployment, data
security as well as service deployment and orchestration.

In order to assess FaaS performance, a modern load testing
framework called Locust was used to test the system infras-
tructure along with the various APIs. It allows to simulate
users’ behavior using Python scripts. Three scenarios were
designed to stress all the Fab Lab APIs. They involve a
variable number of concurrent users (50, 100 and 150) with
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(a) 50 users

(b) 100 users

(c) 150 users

Fig. 8. Completion time with respect to the percentage of the various
completed requests

a fixed hatch rate of 5 users/sec. Each scenario is run for
a duration of 2 minutes during which users perform multiple
operations, including GET the available Fab Lab status, POST
a job to the available Fab Lab, GET the status information of
the submitted job, DELETE the submitted job, and GET the
information of the jobs running in the available Fab Lab.

Fig. 8 depicts the percentage of requests completed in a
given time interval for the three scenarios. We observe that the
completion time increases with the increase in the number of
concurrent users. For instance, 90% of the incoming requests
are served on average in less than 910 ms in the 50-users
scenario (Fig. 8(a)) and 3970 ms in the 150-user scenario
(Fig. 8(c)). It is also observed that POST requests incur longer
service time (e.g. 9141 ms in the case of 150 concurrent users).
This is because POST requests are time-consuming as they
involve different steps: uploading the fabrication job on the
cloud hub; sending it to the Fab Lab Gateway that will deliver
it to the target fabrication machine; and finally, updating the
jobs queue in the fabrication machine. Still, these results are
excellent considering that the Fab Lab infrastructure has been
deployed on inexpensive Raspberry Pi III boards.

Fig. 9 illustrates the response time of the three scenarios in
normal operating conditions as a function of time. We note that

(a) 50 users

(b) 100 users

(c) 150 users

Fig. 9. Response time of the three scenarios in normal operating conditions

the response time increases with the increase in the number
of concurrent users. For instance, the average response time,
obtained by integrating the area under the curve, is 443 ms in
the 50-users scenario (Fig. 9(a)) and reaches 1696 ms in the
150-users scenario (Fig. 9(c). The measured response time is
the average of all the GET, POST and DELETE requests and is
strongly biased by the POST and DELETE operation response
times. Indeed, the delay of a POST request depends on the size
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(a) 250 users

(b) 500 users

Fig. 10. Total requests per second of the two scenarios in peak load conditions

of the image to be uploaded on the server and varies from 3693
ms (50-users scenario) to 9141 ms (150-users scenario) while
the delay of a DELETE request fluctuates between 1119 ms
(50-users scenario) and 4986 ms (150-users scenario).

We also examine the performance of the system infrastruc-
ture in peak load conditions. To this end, two scenarios have
been used with different number of users (250 and 500). The
maximum number of concurrent users is spawned in only 10
seconds and all the users are posting their jobs to the same
machine. Again, each scenario is run for a duration of 2
minutes during which users perform multiple operations as
in the previous scenarios.

Fig. 10 shows the total requests per second as a function of
time for the two scenarios in peak load conditions. We observe
that there is a peak of 20 requests/sec and 40 requests/sec
for the 250-users and 500-users scenarios, respectively. The
average number of requests per second is the integral of the
curves depicted in Fig. 10(a) and Fig. 10(b) which equals to
11 and 13, respectively.

Fig. 11 depicts the response time of both scenarios as a
function of time in peak load conditions. We observe that the
response time increases with the increase in the number of
concurrent users. For instance, the average response time is

(a) 250 users

(b) 500 users

Fig. 11. Response time of the two scenarios in peak load conditions

3900 ms in the 250-users scenario (Fig. 11(a)) and reaches
11604 ms in the 500-users scenario (Fig. 11(b). Recall that
the measured response time is the average time required by
all requests (i.e. GET, POST and DELETE) and is strongly
biased by the DELETE and POST response times. Indeed,
the DELETE request carries out the following operations:
removing the job from the machine’s queue; removing the
job reference from the machine database and signaling the
success of the operation to the Fab Lab Gateway; removing
the job reference from the Fab Lab Gateway and signaling
the success of the operation to the cloud registry server; and
finally, removing the job reference from the Registry server
and notifying the end-user. The POST request, on the other
hand, carries out the following operations: uploading the image
on the cloud hub; sending the image to the Fab Lab Gateway,
sending the image to the target fabrication machine; and
finally, updating the jobs queue in the fabrication machine.
Note that the message drop rate was 2% for the 250-users
scenario and 9% for the 500-users scenario.

To further assess FaaS performance, the two use cases
described in Section IV are considered. The small fabrication
line for electronic assembly was used to discover the typical
difficulties that can arise when a small series of prototypes,
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typically 100 units, are to be manufactured while the manu-
facturing of the stair climbing robot was employed to discover
the typical requirements for remote collaboration and design
sharing. The following figures of merit have been examined:

1) responsiveness of different message brokers;
2) QoS-oriented service composition;
3) multi-parameter machine resource scheduling;
4) state detection and anomaly detection.
Table I summarizes the main preliminary findings. We

observe that the processing time increases linearly with the
increase in the number of requests for services with and with-
out QoS estimator. We also observe that in normal conditions,
FaaS can correctly estimate the state of the machine as well as
detect anomalies in 99% of the cases. Under high loads (i.e.
an occupancy exceeding 70% of the available infrastructure),
the rate of detecting anomalies remains at 99% while the rate
of correctly estimating the state of a machine drops to 90%.
Again, these results are outstanding considering the low-cost
Raspberry Pi boards deployed.

VII. CONCLUSIONS

This paper introduces a novel concept: Fabrication as a
Service (FaaS). FaaS enhances existing Fab Lab capabilities by
providing the digital fabrication equipment with the possibility
to communicate over the Internet in order to remotely control
fabrication activities. Using this approach, the fabrication
facilities are exposed to the Internet as software services,
which may be consumed by third-party applications. The paper
also describes FaaS deployment in the context of EU Horizon
2020 NEWTON Project. Testing results have demonstrated
FaaS high potential in terms of performance and accuracy. We
foresee that FaaS-based Fab Labs will have a huge impact not
only on education, but also on industry, helping to develop new
business models in which fab-less companies may schedule
medium or large-scale fabrication batches hiring third-party
remote fabrication services.
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