
1

An Energy-Quality Utility-based
Adaptive Scheduling Solution for Mobile Users

in Dense Networks
Pasquale Scopelliti∗, Angelo Tropeano∗, Gabriel-Miro Muntean§, and Giuseppe Araniti∗,

∗DIIES Department, University Mediterranea of Reggio Calabria, Italy,
e-mail: {pasquale.scopelliti, araniti}@unirc.it

§Performance Engineering Laboratory, School of Electronic Engineering, Dublin City University, Ireland,
e-mail: gabriel.muntean@dcu.ie

Abstract—There is an important trend in terms of user expec-
tations of ubiquity in relation to rich media services and increase
in number and range of devices with high specifications which
enable access to such services, with very ambitious technical
requirements. Providing this support is a very challenging issue,
especially in urban dense network environments (DenseNet).
Diverse solutions have been proposed, including deployment of
femtocells in conjunction with the existing infrastructure, but
there is still need for new approaches to balance resources and
quality in current competitive market. This paper proposes an
innovative three-phase adaptive scheduling solution (EQUAS),
which performs trade off between service quality and energy
efficiency when allocating network resources to mobile users
in a DenseNet. Resource allocation is performed according to
a utility function that takes into account throughput, device
energy consumption and user mobility. Furthermore, adaptive
reallocation is applied to increase network coverage and avoid
dropping service. Testing results show how EQUAS outperforms
two competitive approaches in terms of energy consumption and
efficiency, data throughput and estimated user satisfaction.

Index Terms—Network Selection, HetNets, DenseNets, Energy
Saving, Adaptive Scheduling.

I. INTRODUCTION

THe increasing number of smart user mobile devices
and growing demand for video-centric applications (e.g.,

video on demand, video games, live video streaming, video
conferencing, video surveillance, etc.) accessed via existing
network infrastructure make provisioning of services at high
quality very challenging. Long Term Evolution-Advanced
(LTE-A) [1] is a promising cellular solution in the emerging
fifth generation (5G) network space that will be able to
provide high quality of service levels for such applications
and support increased amount of traffic at good operational
costs, as demanded by the market.

The deployment of several femtocells within a macrocell
served by a Base Station (BS) provides better coverage, either
indoor or in the coverage holes, and guarantees an increase
in system capacity by offloading some of the macrocell’s
traffic. Furthermore, edge-cell users connected to a femtocell
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should benefit from higher data rate, low latency, and improved
Quality of Service (QoS) and corresponding service Quality
of Experience (QoE) levels. the adoption of advanced Radio

In such a dense environment, the adoption of advanced
Radio Resource Management (RRM) procedures are necessary
in order to increase the system performance and to efficiently
exploit the available spectrum. Thus, RRM plays an important
role in optimizing network performance by using different
scheduling solutions at Medium Access Control (MAC) layer.
Packet scheduling mechanisms are responsible for choosing,
with fine time and frequency resolutions, how to distribute
radio resources among different stations, taking into account
channel condition and QoS requirements. This goal should
be accomplished by providing, at the same time, an optimal
trade-off between spectral efficiency and fairness.

Our research focuses on a DenseNet deployment scenario
characterized by overlapping of an LTE-A macro cell and LTE-
A small cells (i.e., femtocells). In this scenario, mobile users
access video content and desire to have high user QoE levels
and low energy consumption. In addition to increased cover-
age, user capacity and higher throughput, the deployment of
small cells reduces the transmission power for the user mobile
devices, as they are located closer to BSs/APs. Energy/power
management as well as user mobility management are key
challenges in the next generation mobile multimedia networks.
Various research teams have proposed solutions based on
innovative network selection strategies [2], economic models
[3], heuristic adaptation algorithms [4], power and quality-
oriented utility functions [5] or other mechanisms focused on
energy-performance trade-off [6].

In this context, there is a need for a resource allocation
mechanism to provide the highest available performance to the
largest number of users possible. Generally, the methodology
of resource allocation is to model it as an optimization problem
whose objective function and constraints are determined by
user requirements and network specifications. The objective
function is usually referred to as a utility function which
characterizes user satisfaction when allocated some resources
[7] [8].

This paper proposes the Energy-Quality Utility-based Adap-
tive Scheduling solution (EQUAS), an innovative schedul-
ing approach that takes into account mobility aspects when
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performing the trade-off between quality and device energy
consumption when delivering video in a DenseNet. The aim
of this paper is to provide an efficient RRM solution, which
achieves high performance in terms of received datarate and
device energy consumption, while guaranteeing good network
performance (i.e., user coverage).

EQUAS considers the estimated energy consumption of
the mobile device when running real-time video applications,
estimated network conditions, speed of users and cell loading.
It involves three phases, which allocate resources efficiently
to the users in distributed manner. After a first sensing
phase, during which each user collects measurement from
all neighbor cells and sends AdmissionRequest to the nearest
cell, in phase 2, EQUAS schedules users to be servedand
decides which resources to assign them, for each cell. The
scheduling is performed according to the mobility-aware and
quality-energy trade-off based utility function (eq. 1). Users
with highest utility function are first served, until resources
are available. However, some cells may not support this in
a dense heterogeneous environment and then, in phase 3 the
adaptation is performed. This adaptation involves switching
user allocated resources from one network (i.e., cell) to another
such as the utility associated to the users remains high, while
also maintaining efficient use of network resources.

The main contributions introduced by this paper are listed
below:

• introduction of an energy efficient scheduling technique;
• achieving good performance in terms of both datarate and

device energy consumption;
• benefit introduced by adaptive user reallocation;
• extended coverage in terms of number of served users.
The remainder of this paper is organized as follows. In

Section II, major literature research proposals related to this
work are discussed. The reference system model is described
in Section III, and the proposed EQUAS, its three phases and
the utility function it employs are presented in Section IV.
Performance evaluation is performed and analyzed in Section
V, whereas conclusive remarks are summarized in Section VI.

II. RELATED WORK

On one hand, the 5G DenseNet environment will provide
increasing coverage and system capacity with respect to the
current cellular networks. On the other hand, the DenseNet’s
associated higher complexity exacerbates problems of inter-
ference coordination, power consumption, RRM and mobility
management. In such a DenseNet scenario, there is a need
for proper resource allocation in order to meet both 5G
requirements and user and market expectations in terms of,
high QoE levels, increased power saving, reduced cost, etc.
State-of-the art related to our research is discussed next. As
the proposed EQUAS relies on a utility function, the focus in
this related work section is on utility-based solutions.

Often the problem of resource allocation has been solved
by employing a utility maximization framework. The network
performance utility function, a concept well known in the
literature, is used as an indicator of user level of ”satisfaction”
and is computed based on different factors including channel

quality, experienced delay and/or other QoS parameters. In
[9] the authors have proposed utility-based resource allocation
algorithms to perform three tasks: resource allocation between
hard and soft QoS traffic; resource allocation between best ef-
fort and soft QoS traffic and resource allocation between hard
QoS traffic, best effort, and soft QoS traffic. These algorithms
take into account traffic type, total available resources and
users’ channel quality levels.

In a similar manner, [10] proposed a utility-based resource
allocation algorithm for the uplink OFDMA Inter-cell Inter-
ference (ICI) limited cooperative relay network. This paper
focuses on two main objectives: guaranteeing the minimum
data rate requirements and maximizing the total achievable
data rate. This is achieved through relay selection, subcarrier
allocation and power allocation algorithms.

Load balancing has been also accomplished through utility-
based network selection, as in [11] and [12]. In [11] authors
take into account the real-time global traffic load on each
network and different classes of traffic, when performing
an adaptive real-time multi-user access network selection.
Whereas, the solution proposed in [12] considers a MEW
utility function that combines several inputs such as power
of the received signal, throughput, packet delay, cost-per-user,
the requested type of traffic, and type of device.

The trade-off between QoE and energy saving is a funda-
mental issue in wireless networks that use opportunistic radio
resource allocation. This is addressed in [13], where authors
propose an Utility-based Energy eFficient Adaptive Multime-
dia Mechanism (UEFA-M) over the LTE HetNet Small Cells
environment. They exploit a utility-based approach to adapt
the multimedia stream in order to provide a seamless QoE to
the mobile user and energy savings for their mobile devices.

The above-cited works mainly aim to maximize the utility
in terms of ”quality” metrics, whereas energy efficiency is
becoming increasingly important and should be considered
in resource allocation as well. In this regard, [14] investi-
gates proportional-fair energy-efficient radio resource alloca-
tion problem for the uplink transmission of OFDMA smallcell
networks.

Most of the works in literature deal with energy efficiency
focused on network-side approaches. An energy-efficiency
user-side solution was considered in [15]. In this work the
authors proposed a novel Utility-based Priority Scheduling
(UPS) algorithm which considers device differentiation when
supporting high quality delivery of multimedia services over
LTE networks. The priorities of service requests are computed
by a multiplicative utility function based on device classi-
fication, mobile device energy consumption and multimedia
stream tolerance to packet loss ratio. In [16], an adaptive
and generic scheduling scheme (AGSS) proposed a generic
resource allocation procedure that enables the implementation
of state-of-the-art scheduling policies and also proposed an
opportunistic PDOR aware (OPA) scheduling approach that
optimizes the use of radio spectrum while providing the
required quality to users.

This paper introduces EQUAS, an innovative adaptive
scheduling approach that takes into account mobility aspects
when performing the trade-off between quality and device
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Fig. 1. EQUAS deployment scenario: a dense heterogeneous network with a macro-cell and several small cells.

energy consumption when delivering video in a DenseNet.
Such a trade-off is achieved through a utility function that
takes into account estimated network conditions, speed of
users and user energy consumption.

III. SYSTEM MODEL

We consider a wireless network scenario where different
types of small networks (the term cell is also used in this
paper) (e.g., femtocells) are deployed in an uncoordinated
manner within a macro cellular coverage, as shown in Fig.
1.

We denote with U = {ui|i = 1, . . . , n} the set of Users.
C = {Cj |j = 1, . . . , c} is the set of all cells of the scenario,
where C = M∪F and each cell Cj is supported by a Base
Station (BS) BSj . In particular, M = {M1,M2, . . . ,Mm}
and F = {F1, F2, . . . , Ff} are the sets of available LTE-
macrocells (Macro) and LTE-femtocells (Femto), respectively.
τ is the time interval (TTI) in between regular system

updates. Each i-th UE ui collects measurements from all
cells which it is able to sense. Hence the following set of
available cells is created Aui = {A1,ui , A2,ui , . . . , Aa,ui},
where Aui ⊆ C. The useful received power by the user
ui at a generic distance d from BSj can be expressed as
PRj,i

(d) = PTj,i
· hj,i(d), where PTj,i

is the transmitted
power from BSj and hj,i(d) is the channel gain from BSj to
user ui located at distance d. In the channel gain coefficient
are included all the losses due to the path loss attenuation,
shadowing and other factors such as fading and multipath.
Resource allocation is accomplished through computing of
a utility function Φ (section III-A) that takes into account
the energy consumption of the mobile device when running
real-time video applications, estimated network conditions
and speed of users. Adaptation is performed based either on
resource reallocation, in order to increase the amount of users
served during each TTI, or according to the Datarate Quality
Mapping Table, which includes the datarates brl required to

receive the video content at l-th Quality Level (QL). Table II
is an illustration of such a table, which has five quality levels.

A. Utility Function

The utility function is defined for each Radio Access
Network (RAN) RANj in eq. (1) [17]:

Φj = φωq
qj ∗ φ

ωe
ej ∗ φ

ωs
sj (1)

where j represents the candidate network, Φj is the
overall score function for RANj and φq , φe, φs are the
utility functions defined for video service quality, device
energy consumption and user speed, respectively. ωq , ωe,
ωs are weights for the considered criteria, representing
the importance of the associated parameter in the decision
algorithm, where ωq + ωe + ωs = 1.

1) Quality Utility φq: The zone-based quality sigmoid
utility function introduced in [18] and presented in eq. (2)
is used to map the throughput to user satisfaction.

φq =


0, for Th < Thmin

1− e
−α ∗ Th2

β + Th , for Thmin ≤ Th < Thmax

1, otherwise

(2)

The minimum throughput (Thmin) is a threshold to
maintain the multimedia service at a minimum acceptable
quality level. Values below this threshold result in
unacceptable quality levels. Threq is the required throughput
in order to ensure high quality levels for the multimedia
service. Whereas values above the maximum throughput
(Thmax) threshold will not add any noticeable improvements
in the user perceived quality. The quality utility has values
in the [0,1] interval and no unit. In order to determine the
exact shape of the utility function the values of α and β need
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to be calculated. Knowing that: (1) for Thmax= 3500 kbps
the utility has its maximum value; (2) Threq = 500 kpbs;
α and β are determined by performing some mathematical
computations of [18] and their values are 1.64 and 0.86,
respectively.

2) Energy Utility φe: The estimated energy consumption
for a real-time application is computed using equation (3), as
defined in [19]:

E = t(rt + Threc ∗ rd) (3)

where t represents the transaction time, which can be
estimated from the duration of the video stream; rt is the
mobile device energy consumption per unit of time (W), Threc
is the received throughput (kbps), rd is the energy consumption
rate for data/received stream (J/Kbyte), and E is the total
energy consumed (J). The two parameters, rt and rd, are
device specific and differ for each network interface. They
were determined by running different simulations for various
amounts of multimedia data (i.e., quality levels) while measur-
ing the corresponding energy levels and then used to define the
energy consumption pattern for each interface/scenario [20].
Based on the estimated energy consumption E, the utility for
the energy criteria ue is computed using eq. (4) [21]:

φe =


1, for E < Emin

Emax − E
Emax − Emin

, for Emin ≤ E < Emax

0, otherwise

(4)

where Emin and Emax are computed considering Thmin

and Thmax, respectively.
3) Speed Utility φs: The mathematical definition of the

speed utility is given in eq. (5):

φs =


1, for S < Smin

Smax − S
Smax − Smin

, for Smin ≤ S ≤ Smax

0, otherwise

(5)

subject to us = 1, if i ∈ CM (6)

where Smin is the pedestrian speed (i.e. 3 km/h) and Smax

is the urban vehicular speed limit (e.g. 50 km/h in many
countries). This utility considers urban dense networks only.
Eq. (6) does not affect the overall utility function if the target
cell is a Macro cell. This is because the cell range is large
and UEs with high mobility should not perceive differences in
their transmissions. The consequence is that fast users (more
than 50 km/h) could connect with the Macro cell, whereas
femtocells accept users with low speed only. Moreover, the
lower the user speed is, the higher is the utility score from the
femtocells.

IV. ENERGY SAVING QUALITY-BASED UTILITY ADAPTIVE
SCHEDULING SOLUTION (EQUAS)

The proposed EQUAS involves three phases as follows (see
Fig. 2):

• (i) sensing phase;
• (ii) scheduling and resource allocation phase and
• (iii) adaptive reallocation phase.
i) During the sensing phase, at every TTI each UE

ui collects measurements from all cells which it is able
to sense. Hence, the set of available cells Aui

=
{A1,ui , A2,ui , . . . , Aa,ui}, where Aui ⊆ C is created.

Next, UEs create the Selection Tables Tui :

Tui
=


A1,ui

Φ1,ui
r1,ui

A2,ui
Φ2,ui

r2,ui

...
...

...
Aa,ui

Φa,ui
ra,ui


Each such Selection Table Tui

is sorted in descending order
according to the Φj,ui

column. In this way the cells with the
best Φ-scores are in the first rows, where 1 and a are the
indexes of the cells with the highest and the lowest value
of Φj,ui , respectively. This table will be used in phase 3 of
EQUAS, as described later on.

Each UE sends an AdmissionRequest message to the
j-th cell ∈ Aui

, from which it senses the most powerful
signal. Additionally, each cell Cj ∈ C collects the received
AdmissionRequest messages and creates the Requests Tables
Rj :

Rj =


u1 Φj,1 rj,1 mcsj,1
u2 Φj,2 rj,2 mcsj,2
...

...
...

...
ul Φj,l rj,l mcsj,l


Let be Bj = {uj |j = 1, . . . , l}, with Bj ⊆ U , the set of

users sending a request to the j-th cell. Where l ≤ n is the
number of UEs trying to access the j-th cell Cj . Φj,k and rj,k,
with k = {1, . . . , l}, are the Utility score and resources which
the k-th UE can receive from the cell Cj , respectively. Each
of the mcsj,k values from the last column refers to the MCS
level associated to user k in the downlink channel from cell Cj .

ii) In the second phase of the algorithm, cells perform user
scheduling and resource allocation. Each j-th cell selects
the UEs to serve in order to maximize the Cost Function from
equation (7):

Fj =

l∑
k=1

Φj,k (7)

under the constraint from equation (8):

l∑
k=1

rj,k ≤ BW (j) (8)
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Fig. 2. EQUAS flowchart.

where Φj,ui
= φ

ωq
q ∗ φωe

e ∗ φωs
s , with j = 1, . . . , a, denotes

the Utility score computed by user ui associated to the j-th
cell ∈ Aui

(eq. 1), as described in the section III-A. rj,ui

are the resources that the j-th cell could guarantee to user ui.
BW (j) is the maximum available bandwidth of the j-th cell.

iii) When a user’s AdmissionRequest is rejected, the third
phase of the algorithm (adaptive reallocation phase) takes
place.

Let denote with ur the user whose request is rejected, with
Tur

the Selection Table of user ur and Rj(ur) the Requests
Table of the cell Aj,ur

∈ Aur
, corresponding to the cell to

which ur has sent the AdmissionRequest.
Then, the Adaptive scheduling algorithm tries to reallocate

resources to enable user ur connectivity. Hence, a set of
possible new solutions S is defined. It is composed by a set
of Utility Score-Loss, each referring to a different resource
allocation choice. Let λ be the Loss in terms of Utility score,
computed as the difference between the former and the new
utility score. S is hence created as follows.

Option 1. The algorithm looks for a potential new cell
which connects ur to. The table Tur is skipped until the
first cell Ax,ur

that has got enough resources to assign to
ur is found. This means that the following condition should
be verified:

rx,ur ≤ BW (Ax,ur ). (9)

When the condition (9) is verified, Φx,ur
is the potential

new utility score achieved by the user ur and the x-th cell

Ax,ur of the Table Tur is the potential cell to which connect
ur. Hence, λur

= Φ1,ur
− Φx,ur

is added to S.
Option 2. According to Table II, the datarate required by

user ur is decreased to the lower level until the necessary re-
sources to receive that level are lower or equal to the available
resources of the cell A1,ur . Based of the new accepted datarate,
a new Utility score Φ∗

1,ur
is computed and λ∗ur

= Φ1,ur
−Φ∗

1,ur

is added to S.
Option 3. Let D = {u1, u2, . . . , ud} be the subset D ⊆ Bj

of the users accepted by the cell A1,ur
. For each t-th user ut ∈

D, with t = 1, 2, . . . , d, the algorithm finds in its Selection
Table Tut

a potential second cell Ay,ut
to which it could be

connected, as done in the Option 1. Hence the tables Tut
of

each t-th UE ∈ D are skipped from the second row until the
following condition is verified:

ry,ut
≤ BW (Ay,ut

). (10)

If eq. (10) is verified, Φy,ut
is the new utility score ∀ut ∈ D.

Hence λut
= Φ1,ut

− Φy,ut
, with t = 1, 2, . . . , d are added

to S. This means that the algorithm looks for the possibility
of moving one other user out from the cell Aj,ur

in place of
user ur.

Following the application of the three options, the set of
the new possible solutions is S = {λur

, λ∗ur
, λut

, for t =
1, 2, . . . , d}.

In order to maximize the sum of the utility score, the lowest
value λmin of S is selected. Therefore, the allocation choice
related to λmin is carried out. Although there is a Loss in
terms of Utility scores, it is only a local loss, related to the user
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that is affected by the adaptation or reallocation. Nevertheless,
EQUAS guarantees to serve more users. Therefore, thanks to
the reallocation phase, EQUAS achieves a higher sum of utility
scores, since it avoids users rejections.

Algorithm 1 Energy saving Quality-based Utility Adaptive
Scheduling algorithm (EQUAS) - 2nd Phase
EQUAS - Phase 2

1: Define: Bj = {ui|i = 1, . . . , l}, with l = number of users
sending admission request to j-th cell;

2:
3: Scheduling and Resource Allocation phase:
4: for (j = 1→ c) do
5: Determine: Bj ;
6: Compute: maxFj , according to (7) and (8);
7: for (i = 1→ l) do
8: j sends AdmissionResponse to ui;
9: end for

10: end for

V. PERFORMANCE EVALUATION

An extensive numerical evaluation is conducted using Mat-
lab. The performance analysis is performed following the
guidelines for the LTE system model in [22]. The main
simulation parameters are listed in Table I. The parameters
for the LTE system are set according to [1].

In the considered scenario (Fig. 1) several small cells
are deployed within the coverage of a LTE macrocell. The
coverage area of the Macrocell is 500x500 m. The number of
the small cells within the macrocell is set to 50. An example
of the simulation area could be found in Fig. 3.

TABLE I
MAIN SIMULATION PARAMETERS

Parameter Value
MacroCell Radius 500 m
Frame Structure Type 2 (TDD) [1]
TTI 1 ms
Cyclic prefix/Useful signal frame length 16.67 µs/66.67 µs
Macrocell TX Power 46 dBm
Femtocell TX Power 20 dBm
Macrocell Downlink Channel Bandwidth 20 Mhz
Femtocell Downlink Channel Bandwidth 5 Mhz
Noise power -174 dBm/Hz
Path loss (macrocell) 15.6 + 35 log(d), dB
Path loss (femtocell) 38.46 + 20 log(d), dB
Target Bit Error Rate 10 x 10−5

Simulation Time 3 mins
Number of Macrocells 1
Number of Femtocells 50
Number of Users [50:10:200]
Users’ speed [3-60] km/h

A dense urban scenario was considered where users’ speed
values are uniformly distributed from 3 km/h to 60 km/h. The
simulations are carried out in a time interval of 3 minute,
with users downloading a real-time video. Video features are

Algorithm 2 Energy saving Quality-based Utility Adaptive
Scheduling algorithm (EQUAS) - 3rd Phase
EQUAS - Phase 3

1: Define: R = {ur|r = 1, . . . , s}, with s = number of users
receiving a Rejection message;

2: Define: Sur
the set of possible new solutions for ur-

Rejection message;
3: Define: D = {ut|t = 1, . . . , d},where D ⊆ Bj , with d =

number of user accepted by the cell that has rejected the
r-th user ur;

4:
5: Adaptive Reallocation Phase:
6: for (r = 1→ s) do (Skip Set R)
7:
8: Option 1:
9: for (j = 1→ a) do (Skip Table Tur )

10: if (rj ≤ BW (j)) (9) then
11: Compute: λur

= Φ1,ur
− Φj,ur

;
12: Add λur

to Sur
;

13: break;
14: end if
15: end for
16:
17: Option 2:
18: Determine: new br = datarate of the (l-1)-th level

(Table II);
19: Compute: new Φ∗

ur
, according to (1);

20: Compute: λ∗ur
= Φ1,ur − Φ∗

1,ur
;

21: Add λ∗ur
to Sur

;
22:
23: Option 3:
24: for (t = 1→ d) do (Skip Set D)
25: for (j = 1→ a) do (Skip Table Tut )
26: if (rj ≤ BW (j)) (10) then
27: Compute: λut

= Φ1,ut
− Φj,ut

;
28: Add λut

to Sur
;

29: break;
30: end if
31: end for
32: end for
33:
34: end for
35:
36: Find: min {Sur};
37: Allocate resources according to the solution: min {Sur};

TABLE II
QUALITY LEVELS TABLE

Video Codec Quality
Level

Screen Resolution
[pixels]

Datarate
required

[kbps]

H.264
/MPEG-4

AVC

QL1 240p 250
QL2 360p 500
QL3 480p 1000
QL4 720p 2000
QL5 1080p 3500
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described in Table II. According to the datarate of the selected
cell, a corresponding QL for the video delivery is used.

The proposed EQUAS algorithm performance was com-
pared with a classic scheduling algorithm denoted ”Propor-
tional Fair” (PF), and with a Adaptive Generic Scheduling
Scheme (AGSS) [16]. PF aims to provide data-rate distribution
among users in a fair way.
The following simulation metrics have been considered:

• Aggregate Data rate (ADR): the sum of the throughput
of the users among overall system;

• Average Throughput: the average quality of transmission
accomplished to users;

• User Satisfaction: the estimated satisfaction perceived by
users measured in terms of the ratio between the datarate
received and the datarate required by each user;

• estimated Device Energy Consumption: the estimated
energy consumption of the devices when downloading
a video flow;

• Energy Efficiency: the energy efficiency is defined as the
aggregate bit rate that is achievable over 1 Hz nominal
bandwidth while consuming a given power - thus mea-
sured in bits per second per Hertz per kilowatt [23].

• Percentage of coverage: the percentage of users served
among all users within the system.

Fig. 4 shows the aggregate data-rate of the system. As it can
be noted, EQUAS achieves greater aggregate datarate than PF
and AGSS. Even though the gain seems negligible with few
users in the system, it linearly increases when increasing the
number of users within the system. This results in enhanced
load balancing.

The results provided by ADR are confirmed by the average
throughput analysis (Fig. 5). Indeed, the average throughput
received by users decreases when increasing the number of
users. It could be expected because of the resource contention.
Average throughput improves of 1% when employing EQUAS
in comparison with the cases when the other two algorithms
are used. This is thanks to the resource allocation carried out
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by EQUAS, which allows users to be served by the cell that
guarantees better performance in terms of throughput-energy
consumption trade-off. Moreover, the resource allocation guar-
antees to the users data rates closer to the target of their service
requirements. Although the advantage introduced by EQUAS
in terms of average throughput seems numerically poor, the
proposed approach results in higher estimated user satisfaction.
As illustrated in Fig. 6, it is shown a gain between 2% and
3% with respect to AGSS, whereas this gap reaches the 8%
when comparing EQUAS with the PF algorithm.

Next, considerations about energy consumption are pre-
sented. According to eq. 3, a higher received data rate corre-
sponds to higher device energy consumption. It is worth noting
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Fig. 9. System coverage.

that the device power consumption depends on receive (Rx)
and transmit (Tx) power levels, uplink (UL) and downlink
(DL) data rate, and RRC mode [24]. Uplink transmit power
and downlink data rate greatly affect the power consumption,
while uplink data rate and downlink receive power have little
effect. In this work, we deal with the downlink side, so we
focus only on the power consumption contribution related to
the down link datarate. Therefore, the energy consumption
defined by eq. (3) refers only to the downlink data-rate energy
consumption.

Nevertheless, the trade-off between data-rate achieved and
device energy consumption is represented by the energy effi-
ciency shown in Fig. 8. EQUAS achieves until to 10% gain

with respect to classic PF algorithm, thanks to the smart load
balancing which both considers throughput and device energy
consumption when performing the resource allocation. A slight
gain is still achieved also with respect to AGSS. Indeed, since
the energy efficiency formula takes into consideration also the
wasted bandwidth, figure 8 well represents the benefits intro-
duced by EQUAS. That is a resource allocation strategy well
performing a trade-off between throughput and device energy
consumption, while guaranteeing a good user satisfaction and
bandwidth utilization.

Finally, the system coverage is illustrated in Fig. 9. As it
can be seen, EQUAS achieves a gain between 8% and 9%
with respect to AGSS in all traffic load conditions, whereas
the gain with respect to PF ranges from 2% in low traffic
conditions to 8% in high traffic conditions. This is thanks to
the phase 2 of the algorithm, which performs the re-allocation
of users. Hence, users that could suffer from out-of-service
situations are re-allocated to other cells, or take the place
of other users just reallocated. Although some users are re-
assigned to cells which do not represent their first choice, the
proposed algorithm maintains good performance in terms of
both average throughput and estimated user satisfaction.

VI. CONCLUSIONS

This paper introduced EQUAS, a three-phase energy-quality
adaptive scheduling solution, which performs network re-
source allocation in order to achieve trade-off between energy
consumption and service quality in a dense network environ-
ment. Extensive testing involving a simulation environment
which consists of a LTE macro-cell and several femtocells
with increasing number of mobile users were performed.
Comparison-based testing showed how EQUAS outperforms
two other competitive approaches in terms of throughput,
energy consumption and efficiency, and estimated user sat-
isfaction with the service.
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