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ABSTRACT High-resolution audio-visual virtual reality (VR) technologies currently offer satisfying
experiences for both sight and hearing senses in the world of multimedia. However, the delivery of truly
immersive experiences requires the incorporation of other senses such as touch and smell. Multisensorial
effects are usually manually synchronized with videos and data is stored in companion files, which
contain timestamps for these effects. This manual task becomes very complex for 360° videos, as the
scenes triggering effects can occur in different viewpoints. The solution proposed in this paper aims to
automatically add extra sensory information to immersive 360° videos. A novel scent prediction scheme
using Convolutional Neural Networks (CNN) is proposed to perform scene predictions on 360° videos
represented in the Equi-Angular Cubemap format in order to add scents relevant to the detected content.
Digital signal processing is used to detect loud sounds in the video with a Root Mean Squared (RMS)
function, which are then associated with haptic feedback. A prototype was developed, which outputs
multisensorial stimuli by using an olfaction dispenser and a haptic mouse. The proposed solution has been
tested and it achieved excellent results in terms of accuracy of scene detection, olfaction latency and correct
execution of the relevant effects. Different CNN architectures, including AlexNet, ResNet18 and ResNet50,
were also assessed comparatively, achieving a labeling accuracy of up to 72.67% for olfaction-enhanced
media.

INDEX TERMS Multisensory, neural networks, three-dimensional visualization, immersive video.

I. INTRODUCTION

ADVANCES in visual-based media over the past few
decades have created a massive market for cutting-

edge design and innovation in the delivery of immersive
experiences. However, increasing displays’ pixel density or
improving color contrast does not necessarily increase the
perception of immersion in multimedia experiences [1].

Head-mounted virtual reality (VR) displays like the Ocu-
lus VR series or the HTC Vive are already popular among
users. These displays fill the viewers’ field of view com-
pletely with video content. Infrared cameras and sensors
track the users’ head movements, controlling the orientation
of the display [2]. In conjunction with high-quality surround

sound, VR technology is a big step towards an immersive
and realistic experience. However, other senses such as touch
and smell are also important aspects of immersive systems.
Studies demonstrate that odors stimulate more memories
related to human emotions than other stimulus types [3]. By
adding more senses to existing media, a more stimulating and
memorable experience may be created.

Olfaction devices blow air across smell-producing car-
tridges into the nose of the viewer to mimic scents in a video.
This is an effective way to reproduce scents, and, typically,
the scents are manually programmed to synchronize with the
video [1], [4]. The same issue exists with haptics: vibration
emitters have to be programmed to be executed at specific
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FIGURE 1. CNN-Enhanced Mulsemedia Architecture

points in the video [5], [6]. Synchronizing multiple sensorial
media (mulsemedia) effects with videos is a time-consuming
manual task, especially in lengthy videos. The duration of
each effect must also be carefully adjusted. This synchro-
nization task is even more complex for VR content [7], [8],
which requires the sensorial effects to be activated based on
the entire 360° field of view.

A possible solution to replace manual video tagging is
to record scents and vibrations during production, but this
increases the cost and does not take advantage of the wealth
of existing immersive media items already available. A better
solution involves addition of mulsemedia effects to existing
VR videos; currently this is performed manually and is a very
time-consuming process. The best solution should add mul-
tisensorial effects to existing media without human input and
store the multisensorial-enhanced media data for playback.
Scene recognition is required in this automatic multisensory
media-enhancement process and a possible state-of-the-art
scene recognition solution uses Convolutional Neural Net-
works (CNN) to accurately classify images.

Many challenges, however, need to be overcome while
using CNN architectures for immersive content, as they are
usually designed and trained to make predictions on 2D
images [9], [10]. Pre-trained neural networks need to be
adapted to make predictions on a 360° field of view. A
suitable CNN architecture and a training model must also be
selected based on the accuracy of scene classification. Label

datasets currently do not support olfaction effects, which
means they need to be customized to correlate scenes and
scents. The amount of video frames that must be processed to
generate adequate scents is also another parameter of interest,
as it affects the CNN processing times. Regarding haptics, it
is known that sound can sometimes be an analog for haptic
feedback [11]. This requires a specific approach for audio
processing and detection.

This paper aims to address these challenges, with the
proposal of an innovative mulsemedia platform that performs
scene recognition on immersive 360° content. Two algo-
rithms are proposed, allowing for the automatic generation of
scents and vibrations based on the audio-visual content. The
algorithm for generating olfaction effects adapts different
CNN architectures to support immersive content, using a
tile-based scene recognition approach. An olfaction label
dataset was also created, associating scents to the detected
scenes. The proposed algorithm for generating haptic effects
uses sound analysis. Digital signal processing is employed
to sample the loudness of the signal and determine the
peaks of loudness in the audio. If these peaks exceed a
calibrated threshold, haptic feedback is produced. This is a
novel approach to be integrated to a mulsemedia system, and
increases users’ sense of immersiveness.

A prototype, which includes a mulsemedia 360° player,
was built for the testing of the solution, handling playback
of the automatically generated mulsemedia content and in-
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tegrating the four types of sensory media considered in the
tests: audio, visual, haptics and olfaction. The architecture
is presented in Fig.1, and will be described in details in the
following sections. YouTube’s Equi-Angular Cubemap 360°
structure [12] is used in the player, as it composes VR video
frames using a set of six 2D images. The video frames can be
cropped into manageable sizes and processed by the CNNs.

Three CNN architectures were evaluated for the proposed
solution: AlexNet, ResNet18 and ResNet50. The proposed
algorithm for olfaction based on scene detection expands the
field of view of these CNN architectures to support 360°
content. When applying ResNet18 to the solution, a top-
1 accuracy of 61.35% was achieved in scene classification.
This accuracy corresponds to correct image detection ob-
tained with the test dataset described in Section V.B. The
proposed approach using ResNet18 also outperformed two
other current works in terms of scene classification accuracy.
Ultimately, testing the different setups led to a refined solu-
tion which provided an olfaction labeling accuracy of 72.67%
on a test set consisting of 10,000 equi-angular cubemap
frames from ten different 360° videos.

The remaining sections of this paper are organized as
follows. Section II presents related works on the topics of
mulsemedia, CNNs and immersive video processing. Section
III discusses the solution design, including the architecture
and the proposed algorithms for the generation of olfaction
and haptic effects. Section IV describes the prototype devel-
oped for the testing of the proposed solution and Section V
presents results related to olfaction latency, achieved accu-
racy and comparisons with other state-of-the-art approaches.
Conclusions and directions for future work end this paper in
Section VI.

II. RELATED WORK
A. MULTISENSORY MEDIA
The term mulsemedia has recently been used in the literature
to describe media that engages three or more senses [5], [13].
There have been a number of works proposing mulsemedia
solutions for 2D and 3D videos [4], [5]. Some mulseme-
dia solutions synchronize extrasensory data with multimedia
content using the MPEG-DASH or MPEG-V standards [14].

The solution presented in [4] uses a smartphone-based
headset and Arduino powered actuators to display 360°
mulsemedia content, including scents and wind. The ap-
proach focuses on the subjective assessment of mulsemedia
combined with 360° videos, and a prototype is used for
the tests. Results indicate that the solution increases user’s
quality of experience.

The authors of [15] introduce an innovative server-based
adaptive multisensorial media delivery solution to adjust the
content to dynamically match the network capacity available.
Researchers in [6] focus on the synchronization between
multiple sensorial components, during mulsemedia content
delivery, aiming to achieve high user perceived quality. The
solution described in [14] introduces a client-based MPEG-
DASH-based adaptation algorithm for multisensorial content

distribution, which improves user quality of experience. The
authors of [16] discuss the advantages and limitations of
adaptive content delivery in MPEG-DASH, 2D, omnidirec-
tional (360°) and multisensorial solutions. A solution that
integrates scents and the video game Minecraft is proposed in
[17], combining olfaction with audio-visual cues. The web-
based mulsemedia player proposed in [5] performs 2D video
mulsemedia playback over a network using MPEG-DASH to
stream the video content with integrated scents and haptics.

Haptic feedback is an integral part of mulsemedia VR
experiences. In VR gaming, the Oculus Rift provides haptic
feedback to users, making game interactions more immer-
sive. The work presented in [11] suggests that haptic effects
can be linked to loud noises in audio-visual experiences. The
authors also propose a haptic device called “HapticHead”,
which aims to increase realism in VR experiences by playing
haptic events synchronized with loud noises and explosions.
The Root Mean Squared (RMS) function is one of the most
used solutions for detecting loud noises in sounds, as it
finds the strength of the signal based on the amplitude [18].
Therefore, the automatic execution of sound-based haptic
feedback can be based on an RMS threshold. Audio and
haptics are also used in combination in a navigation tool for
cyclists [19]. The vibrations, however, are executed together
with every sound, without a threshold.

Unfortunately, these proposed solutions do not support
neural networks, automatic detection of scenes and objects,
and do not provide haptic effects based on audio signal
features.

B. CONVOLUTIONAL NEURAL NETWORKS

Since the publication of Krizhevsky and Sutskever [9] in
2012, the potential of CNNs has been realized. Over the
past decade CNNs revolutionized the fields of computer
vision and machine learning. By training a network over
a large dataset, the network recognizes patterns in images
belonging to the same category. In the classification setting,
the output of the final layer of the network forms a vector
that has the same number of dimensions as there are possible
labels/categories. This vector is softmax normalized to a
probability distribution indicating the predicted category of
the input. Common operators in convolutional networks are
kernel convolution, max pooling, ReLU activations, softmax
and batch normalization [20], [21], as outlined in the follow-
ing subsections .

1) Kernel convolution

Kernel convolution is an operator that passes an n × n
weighted kernel over an image, multiplying the correspond-
ing weights with the array contents and summing the result.
The result of each convolution is placed in the corresponding
location in an output array. The weights in the kernel are
initialized randomly. Using stochastic gradient descent com-
bined with a backpropagation algorithm, which calculates the
gradients of the parameters of the network with respect to a
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loss function, the weights are iteratively adjusted to reduce
the loss. This is called learning [21].

2) Max Pooling
Max pooling is used to gradually reduce the spatial dimen-
sion of the inputs to layers in CNNs. This reduces the number
of parameters in subsequent fully connected layers and also
decreases the computational complexity of subsequent con-
volutional layers. Max pooling passes a 2× 2 window across
an array and sets the value for that area of the array as the
max value contained in the window [21], [22].

3) Rectified Linear Units
The Rectified Linear Unit (ReLU) is an activation function
commonly used in CNNs. The function leaves positive values
unchanged and sets negative values to zero, i.e.

f(x) = max{0, x}.

This is usually applied to all values between convolutions
to break linearity. Networks that use ReLU activations con-
verge faster than other activation functions like tanh and the
sigmoid function [9], [23]. They are also less affected by
the vanishing gradient problem as larger inputs do not tend
towards a horizontal asymptote as they do with tanh or the
sigmoid [24].

4) Fully connected layers
Fully connected (or dense) layers are matrix multiplications.
To apply such operations to the outputs of layers with spatial
extent, the spatial extents must be removed in some way.
Typically, this is done either by concatenation of spatial
dimensions (as is done in the VGG and AlexNet networks)
or by some form of global pooling (as in the ResNet net-
works). The last parametric layer in a CNN is usually a fully
connected layer that projects the features to a space with the
number of dimensions equal to the number of classes C.

5) Softmax
The output z ∈ RC of the final fully connected layer is
generally not a categorical distribution over the classes. To
convert it into a distribution, it must be normalized resulting
in zi ∈ [0, 1] and zT1 = 1. The softmax function is typically
used for this:

softmax(z)i =
e
zi∑C

j=1 e
zj
. (1)

6) Batch normalization
The weights of deep neural networks are randomly initial-
ized, typically by independent sampling from a zero-mean
Gaussian with small variance. This is designed to keep the
feature distribution at each layer approximately zero mean
and unit variance. As the network gets trained, however, there
can be a “covariate shift” in which the distribution of input
features shifts away from a zero-mean Gaussian. This can
substantially increase training times. Batch normalization,

a technique in which the outputs of convolution layers are
normalized achieving a zero mean and unit variance across
the batch, is often used to mitigate this issue. Batch normal-
ization also includes learnable weight and bias parameters to
restore the representative power of the previous layer [25].

7) AlexNet and Residual Networks
Two of the main CNN architectures currently available are
AlexNet and Residual Networks (ResNets). AlexNet [26]
is one the first large scale CNN architectures with good
performance on the ImageNet dataset classification. AlexNet
outperformed previous non-deep learning-based models with
significantly improved results. The AlexNet architecture con-
tains eight layers: five convolutional layers, two fully con-
nected hidden layers, and one fully connected output layer.

ResNets are more recent than AlexNet, achieving even
better results. Input in ResNets not only passes through each
layer of the architecture but is also able to bypass one or
more layers to be summed directly with the output. This
was developed by He et al. [27], for the creation of deeper
networks. ResNet18 contains 17 convolutional layers, one
average pooling, and a fully connected layer with an ad-
ditional softmax layer. ResNet50 contains 49 convolutional
layers with a fully connected layer at the end of the network.
The problem with adding extra layers to classic CNNs is that
the accuracy can saturate early due to gradient vanishing in
the earlier layers. The ResNet architecture allows more layers
to be added before this becomes an issue. This makes the
ResNet a state-of-the-art architecture: it won the ILSVRC
2015 classification competition with a top-5 error rate of
3.57% on the ImageNet dataset.

C. IMMERSIVE VIDEO PROCESSING
Immersive videos in VR platforms, including the Google
Cardboard and YouTube 360, are streamed in 360° video
formats, such as the Equi-Angular Cubemap. These videos
are normally encoded in high resolutions and are converted
to the 3D space by a VR video player. The picture is split
into a 3× 2 grid which make up the faces of a cube as shown
in the Fig. 2 [28]. Each frame is cropped and converted to a
3D image by a VR player. The player projects each face onto
a cube rendered in the 3D space and interpolation smooths
out the cube edges. The VideoJS-VR player supports this
format and is employed in the proposed solution of this paper
[29]. The cube faces of frames can be processed by a neural
network individually, resulting in separate predictions. The
Equi-Angular Cubemap format provides an even distribution
of pixel density and homogeneous picture quality for VR
headsets. The pixels in this format are more evenly spread
than other common projections [12].

Neural network architectures vary depending on the prob-
lem that is being solved. CNNs have high accuracy on image
recognition and have been applied to 2D video classification
[30]–[32], saliency prediction [33] and depth estimation [34],
but to the best of authors’ knowledge not for detection and
synchronization of multisensorial with audio-visual content.
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The work proposed in [35] introduces a learnable graph
neural network (GNN) for scene recognition trained on mul-
tiple datasets, including Places365, SUN397 and MIT67.
The authors in [36] combine the use of CNN pre-trained
models and a Layout Graph Network (LGN), enhancing the
representation of spatial structures in the scene recognition
process.

In the scheme proposed in this paper, different CNNs are
tested to classify images after being trained on a dataset. A
dataset in this context consists of a large set of images with
labels that classify the images into certain categories. The two
datasets initially considered for the tests were ImageNet and
Places365. Both have previously been used to train CNNs
with high levels of accuracy [9], [37]. Even though the
ImageNet dataset has a broad set of labels, most do not fit
correctly with scent categories. The Places365 dataset has
365 separate categories of scenery that can be related to
multisensory feedback.

The current state-of-the-art accuracy on the ImageNet
dataset of 300 million images with weak supervision is
88.5%, which was achieved by Facebook AI research in 2020
[38]. Evidently, image recognition on 2D images has reached
high levels of accuracy with refinements to the standard CNN
design. Several projects have extended this to 2D video [31],
[32]. However, there has been a lack of research in employing
CNNs for VR video.

III. SOLUTION DESIGN
The works discussed in the previous section have demon-
strated that multisensorial stimuli, including olfaction and
haptic effects, enhance user immersiveness during content
delivery. However, the synchronization of mulsemedia ef-
fects with videos is a time-consuming, manually-performed
task, especially difficult for long videos. This is because
correct olfaction and haptic effects need to be released or
executed at the right moments for appropriate durations. This
synchronization task is even more complex in 360° videos,
which contain relevant content for mulsemedia in a much
larger visual field. Therefore, using CNNs to identify content
in videos helps much by automatizing the generation of
relevant olfaction effects, accelerating the process of creat-
ing new multisensorial experiences. A similar approach for
automatic haptic feedback can be based on audio cues that
trigger the effects. Loud noises, such as explosions, can be
used to trigger vibrations via a controller or haptic mouse,
increasing immersiveness, as users feel the impact with an
additional sense.

The current state-of-the-art CNNs provide accurate and
timely scene recognition for 2D videos. The 360° Equi-
Angular Cubemap video format combines six 2D faces to
form a 3D scene, as shown in Fig. 2. The novel solution
described in this section employs this format when perform-
ing CNN-based scene recognition on the 360° content and
analyzes each 2D cubemap face separately. This increases the
accuracy of the recognition process, reducing the distortion
normally present in 360° content and helps generate relevant

FIGURE 2. YouTube VR Equi-Angular Cubemap projection.

olfaction effects. Advances in digital audio signal processing
also provide the audio cues needed for the generation of
haptic effects in loud or impactful events of the video.

This section describes the proposed architecture and the
two algorithms for the automatic generation of olfaction
and haptic effects. Different CNN architectures, including
AlexNet, ResNet18 and ResNet50, were assessed compara-
tively to evaluate the performance of the olfaction solution.
A dataset containing customized labels for olfaction is pro-
posed, associating scents to scenes. A prototype employs
the proposed architecture and is evaluated in terms of scene
classification and olfaction accuracy, and frame sampling
rate, which is related to CNN processing times.

A. ARCHITECTURAL DESIGN
The proposed VR mulsemedia solution includes two main
algorithms that automatically add olfaction and haptic effects
to existing VR videos synchronized with the relevant audio-
visual content. The multiple sensorial media generated by
these algorithms is (dis)played to users by a mulsemedia
player that synchronizes sensorial effects with 360° videos
and employs a VR headset, an olfaction dispenser and a
haptic device.

CNNs, in the context of olfaction prediction, are trained
with the use of a labeled image dataset to distinguish features
from unseen images. The pre-trained networks employed
for the image recognition task accept 2D images as inputs.
To allow VR video frames to be categorized using a 2D
image pre-trained network, the proposed algorithm adapts the
360° imagery to be classified by the CNN. This algorithm is
responsible for the pre-processing of the 3D images into 2D
images, and also for combining the outputs of the different
image fragments.

The proposed solution employs the YouTube’s Equi-
Angular Cubemap projection, which encodes VR video in 2D
video formats with minimal distortion. Due to the minimal
distortion, the proposed algorithm crops the cubemap image
into the constituent faces and yields six 2D images suitable
for input into a pre-trained network. Inputting these images
individually generates six output vectors. Once the output
has been combined into a single vector, the largest dimen-
sion of the vector indicates the output category. The output
categories from the pre-trained network are not directly as-
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FIGURE 3. The process of automatically generating olfaction and haptic effects in 360° videos.

sociated with sensory information. The dataset Places365,
however, contains labels for objects and scenery. These labels
are customized with the relevant scents, which are associated
to each scene.

Once the CNN is pre-trained, sampling of Equi-Angular
Cubemap images from an input video must take place. The
selection of the sample rate is described in Section V. The
scene recognition process is executed in each of the sampled
images, and once ten seconds of sensory data has been
produced, the data is then written to a JSON file for playback
following the sensory data storage convention created by Bi
et al. [5].

The second algorithm produces haptic sensory data based
on the audio input from the VR videos. Loud noises trigger
the haptic feedback. The algorithm divides the audio in ten-
second snippets, and then the digital signal is processed for
the identification of the loudest noises. The algorithm detects
the times and durations of audio bursts, based on a calibrated
threshold, and associates haptic feedback to these periods.

The process of generating haptic and olfaction effects
is summarized in Fig. 3, and the details of the proposed
algorithms employed in this process are described in the fol-
lowing two subsections. In order to facilitate reproducibility,
the source code for deployment of the solution is available on
GitHub [39].

A prototype was also created for the testing of the ap-
proach. The prototype follows a client-server architecture
and includes a web-based mulsemedia player that synchro-
nizes the 360° videos with the olfaction and haptic effects
described in JSON files, in a client-server architecture. The

prototype uses an Oculus1 Rift VR headset, an Inhalio2

SBi4v2 olfaction dispenser and a SteelSeries3 Rival 700
haptic mouse. The VR headset, olfaction dispenser and the
haptic mouse are connected to a computer via HDMI and
USB, as appropriate. The prototype implementation details
are described in Section IV.

B. CNN-BASED ALGORITHM FOR THE GENERATION
OF OLFACTION EFFECTS

The cloud-based programming platform Google Colab4,
which provides GPU support, was used for the deployment
of the algorithm that generates olfaction effects, as shown
in 3. The file VideoPrediction.ipynb contains the
algorithm and can be executed on Google Colab.

This section details the process for the generation of
olfaction effects. The machine learning algorithm for the
generation of olfaction effects starts by processing MPEG-4
YouTube Equi-Angular Cubemap videos. Frames are sam-
pled from the video and cropped into six smaller images
(i.e. the faces of the cubemap, as seen in Fig. 2). Predictions
on the separate faces are made by the pre-trained CNNs.
Finally, the six prediction vectors are combined to form a
single prediction for that 3D image.

1Oculus: https://www.oculus.com
2Inhalio: https://www.inhalio.com
3SteelSeries: https://www.steelseries.com
4Google Colab: https://colab.research.google.com
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1) Using Pre-Trained CNN Models and Labels
The pre-trained CNN model (e.g. AlexNet, ResNet18,
ResNet50) on Places365 is loaded into the PyTorch5 open
source machine learning library. PyTorch loads in the model
architecture and the relevant weights directly from these files,
without the need of a model class definition. Once the model
states are loaded, the model is placed into evaluation mode.
This turns off back propagation and training no longer occurs.
After that, the network is set for making predictions. The
device was set to run with CUDA, an API for Nvidia graphics
chipsets which allows the model to run on GPUs, speeding up
the processing time of the neural network. The CUDA API is
also supported by Google Colab.

The images inputted into the CNN must be cropped
and converted into a tensor before evaluation takes place.
The network produces an output vector with 365 dimen-
sions, each corresponding to the probability that the input
image belongs in the corresponding category. To match
the list of probabilities with a corresponding output la-
bel, an ordered list of the labels is loaded into the script.
Categories_places365.txt is the text file containing
the 365 labels which are outputted by the CNN. This file
has been customized to associate a scent to each label and
is available on GitHub [40].

Once a detection is made on a frame, the output from the
algorithm is a number between 1 and 365, representing a
label of the Categories_places365.txt file. Beside
each label, a letter represents a scent which should be played
when that scene is detected. For example, the row “/f/forest
120 o”, indicates that ‘forest’ is the 120th label of the file
and the letter “o” stands for the scent ‘oak’, which will be
dispensed by the olfaction device when a scene with a forest
is detected. A sample of the labels file and the scent encoding
convention (in yellow) can be seen in Fig. 4.

2) Frame Processing
Before CNN predictions, the equi-angular cubemap videos
must be processed with an OpenCV-based Python script.
The frame processing script is available in the file
ConvertVidsToImg.py. Videos are converted into
cv2.VideoCapture objects, which have the functionality
to parse video frames at specified times in the video. Once a
video is loaded, the frames per second and frame count of the
video are used to calculate the exact duration of the video.
The script takes a frame from the input video every second
and send it to the prediction function, which determines the
scene content and the correspondent scent.

3) The Prediction Function
Each equi-angular cubemap frame selected for processing
must be cropped into its six constituent cube faces, so a
prediction can be made on the separate faces. Frames are
cropped into images of size w×h with the use of nested ‘for’

5PyTorch: https://www.pytorch.org

FIGURE 4. The scent encoding (left) and a sample of
categories_places365.txt with the scent labeling convention (right).

loops, which iterate through each face of the cubemap. For in-
stance, if a frame has a resolution of 1800px horizontally and
1200px vertically, 6 smaller images will be created by cutting
the main image at 600px and 1200px on the horizontal axis
and 600px on the vertical axis. Each face is processed by the
selected neural network and added to an accumulation vector
that combines the prediction of all faces. Once all faces are
predicted for that frame, a softmax is applied resulting on a
probability distribution vector of the 365 categories. AlexNet,
ResNet18 and ResNet50 were the CNN architectures tested
for the prediction process.

During testing it was noted that using only four of the cube
faces (i.e. the front, back, left and right faces) yielded an in-
crease of 23.85% in olfaction accuracy instead of using all six
faces (see Section V.C). It was also noted during testing that
performing the softmax after combining the vectors together
yielded better accuracy than performing the softmax on each
vector individually before adding the vectors together (see
Section V.D).

The top result from the vector returned from the prediction
function determines the olfactory reading for that second of
video, based on the labels presented in Fig. 4. The resulting
scents are then added to the olfaction list.

4) Generating Olfaction Data
Once the olfaction list contains data for each ten seconds
of video, the list is sent to the function writeOlfJSON. This
function determines which scent is the most common during
each ten-second period, and the starting time and the duration
of the effect.

After that, the most common scents, their starting times
and durations are written to JSON files, in the ‘Olfaction’
folder directory. These files are later read by the mulsemedia
player (i.e. mulse.js) for playback.

C. ALGORITHM FOR THE GENERATION OF HAPTIC
SENSORY DATA
The generation of haptic sensory data is based on the correla-
tion of audio bursts and vibration, described in [11]. The al-
gorithm, available in the file VideoPrediction.ipynb,
uses digital signal processing for locating the key noises in
ten-second periods. If a noise exceeds the calibrated noise
level, the haptic device vibrates.
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1) Parsing VR Audio into 10-Second-Long .wav Files
Audio must be processed separately from the video for the
generation of haptic effects. The library MoviePy is used to
parse audio tracks and store them in .wav files. The audio
is then cropped into ten-second snippets using the Pydub
library. The ten-second snippets are saved separately for
digital signal processing.

2) Using RMS to Find Loudest Part of the Sound Signal
Once each ten-second snippet is ready to be processed, it is
possible to predict where haptic feedback should be played,
as the algorithm can now find the loudest noise in each
snippet. This is done via the Root Mean Squared (RMS) func-
tion available in the Python Librosa library. The input audio
files are sampled at 40,000 samples per second, resulting in
400,000 samples in each ten-second snippet of audio. The
RMS function calculates the RMS of every 4,000 values and
moves through the data in hop lengths of 4,000 samples. This
returns an RMS value for every 0.1 seconds of audio. The
following function is used to calculate the RMS to find the
loudest noise every ten seconds:

RMSj =

√√√√4000∑
i=1

|xij |2
4000

, (2)

where xij is the ith sample in the jth frame.

3) Calibrating the Noise Threshold
The RMS array returns 100 values corresponding to a 0.1s
period of audio. The maximum value in each ten-second
period is compared with a threshold value of 0.51. This
threshold value is calibrated to output haptic feedback for
loud noises. This value was calibrated using sample audio
signals, starting out lower and being increased until an ade-
quate level of noise was reached.

4) Generating Haptic Data
The haptic effects starting times and durations are sent to the
function writeHapJSON, which formats the data into JSON
files. These JSON files are read by the mulsemedia player
and are stored in the “Haptic” folder directory, ordered by
their creation times.

IV. PROTOTYPE IMPLEMENTATION
Once the extra sensory data has been produced and stored in
JSON files, the next step is to produce synchronized playback
of the video, audio, haptic and olfaction data. The setup of
the hardware can be seen in the Fig. 5. Audio and video
are played through the Oculus headset, while scents are
produced by the Inhalio olfaction dispenser placed in front
of the user. The dispenser contains four scent cartridges and
the SteelSeries haptic mouse provides haptic feedback. The
VR videos and the mulsemedia content are hosted on a web
server that also contains the mulsemedia player. The source
code is available in [39]. The playback of mulsemedia con-
tent was tested on a client PC running the Firefox browser,

FIGURE 5. A prototype setup of the mulsemedia playback environment.

with 16GB RAM, Intel Core i7 processor and Windows
10. This section details the details for implementing the
prototype, including the mulsemedia player developed for
testing the solution.

A. SERVER-SIDE CONFIGURATION
As described in Section III, the ‘Haptic’ and ‘Olfaction’
directories both contain JSON files with their respective
types of multisensory data. These files are requested by
the client PC running the web-based mulsemedia player
available in the mulse.js JavaScript file and its compan-
ion HTML file. The HTML page of the web application
contains the embedded libraries for VR video playback:
video.js, video-js.css and videojs-vr.js,
which are contained in the primary directory. The VR video
RedwoodsWalkAmongGiants.mp4 is the 360° video
used for testing the prototype.

All JavaScript files on the server side are included in the
web application web page. JQuery is also included as it is
used to send HTTP GET requests to the APIs for haptics and
olfaction control. The ‘video’ HTML tag defines the video
source and provides the functions for the actions to take when
the video plays, pauses or ends.

VideoJS-VR converts the standard video tag to a VR
player with the YouTube Equi-Angular Cubemap set as the
projection type of the VR player. VideoJS-VR automatically
detects VR head-mounted displays using the WebVR API
built into the Firefox web browser.

B. JAVASCRIPT MULSEMEDIA PLAYER
IMPLEMENTATION
The mulsemedia player synchronizes the mulsemedia effects
with the VR video as soon as the video starts to play.

The function JSONfunc requests the olfaction JSON files
from the server and parses the data from each file. The
duration and fan number are passed to the play_olfaction
function, which interacts with the Inhalio scent dispenser API
via HTTP requests. Provided the video is still playing, the
function is recursively called every ten seconds. The process
restarts and it requests the subsequent JSON file.
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TABLE 1. Table of all readings taken during the olfaction experiment (in seconds).

1.901 2.013 2.088 2.312 1.747 1.873 2.011 1.607 2.033 1.722
1.821 2.137 1.902 2.102 2.231 1.487 1.605 1.816 1.799 2.738
2.314 2.201 1.653 1.891 1.605 1.400 1.908 1.635 1.893 2.385
2.801 1.802 1.893 1.791 1.608 1.462 1.517 1.713 1.491 1.576
2.523 1.921 1.972 1.764 1.533 2.356 2.063 3.200 1.959 1.875
2.741 2.203 2.024 1.678 2.098 1.685 1.613 1.868 1.480 1.920
1.801 2.304 2.118 2.197 1.586 1.683 1.951 1.819 1.584 1.873
1.901 1.696 1.991 1.898 1.998 1.783 1.665 2.230 2.121 1.989
1.779 1.702 2.301 1.881 1.638 2.151 1.833 2.348 1.533 1.453
1.701 2.124 2.101 1.674 1.917 2.233 2.360 1.462 2.312 1.717

The Inhalio olfation devices are connected to clients via
USB. The devices are controlled via a dynamic linked library
that provides multiple functions to control the olfaction fans.
One of these functions takes an input string containing the
fan number, duration, and fan intensity, which are needed for
the execution of the olfaction content.

The play_olfaction function uses string concatenation to
parse the fan number into a “SCENT_x” string. This string
along with the duration of the effect is required for the in-
teraction with the olfaction dispenser API. The API consists
of a local Java servlet, which controls the hardware. Once
the string has been created, it is sent to the port 4000 on the
localhost address using JQuery. JQuery sends the string via
a HTTP GET request and once the API receives the request
it generates the desired scent by activating the selected fan
containing the scent cartridge.

The USB-based SteelSeries haptic mouse produces haptic
feedback via an API provided by the manufacturer. The
API is based on HTTP requests, with functions used to
trigger the mouse vibrations. The functions included are
send_game_event, bind_game_event and do_post. During
video playback, the JSONfuncHaptic function requests and
parses the JSON files containing the times that haptic effects
should be executed. After that, the function calls the mouse
API with POST requests at the times retrieved from the JSON
file.

V. RESULTS AND DISCUSSION

The prototype was employed in a number of tests that demon-
strate the feasibility of the solution for automatic generation
of mulsemedia effects for 360° content. First, an investigation
of the lingering effect of the scents is provided. The results of
this study were used to define how often frames of the videos
in the test dataset should be classified by the CNNs. Next,
another experiment focused on determining which faces of
the cubemap videos must be processed for the most accurate
results. The effects of the softmax layer on the 360° content
was also examined, as well as the performance of differ-
ent CNN architectures. Finally, state-of-the-art approaches
were also compared against the proposed solution, and the
accuracy of classifying the cubemap faces separately versus
classifying them as one image was measured.

FIGURE 6. Setup of the olfaction sampling rate experiment.

A. OLFACTION LATENCY TESTING
Human vision and audio senses have a very high sample
rate. Video and audio capture is only effective with very high
sample rates (i.e. standards rates are 24Hz-30Hz for video or
44.1 kHz for sound [41], [42]). It was initially assumed that
a high sample rate for olfaction should be used, which means
that every video frame would be processed by the CNN. The
high sample rate, however, resulted in poor performance of
the olfaction algorithm, which took long periods of time to
execute even in short videos. Therefore, a minimum adequate
sample rate needs to be determined, considering how quickly
a person can detect a transition in scents dispensed by the
olfaction device.

To measure the average time a change in scent is detected,
a simple experiment was devised. In this experiment, viewers
sit fifty centimeters away from the olfaction device, blind-
folded, and wearing ear protectors to reduce the effect of
any external factors. The scent dispenser is loaded with two
different scents (e.g. diesel and tea tree). A scent is dispensed
for 5 seconds, and immediately afterward another scent is
dispensed. Once the second scent starts getting dispensed,
a timer is started. When the viewer notices a difference in
smell, the timer is stopped. Fig. 6 presents the experiment
setup.

A hundred readings were taken for the experiment, as
detailed in Table 1, and the results showed an average of
1.924 seconds for olfaction transition. These results aided the
decision for the sampling rate of CNN-based scene detections
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FIGURE 7. Screenshots of the videos used in the testing process.

for olfaction predictions. A sampling rate of one frame per
second was decided upon, meaning that one cubemap frame
is processed by the neural network per second of video. This
is approximately twice the average scent change frequency
of 1.924s detected in the experiment.

B. TEST DATASET
To test the pre-trained CNN network, a dataset of equi-
angular cubemap images was created from ten separate
videos downloaded from YouTube, as seen in Fig. 7 [28],
[43]–[51]. Each video was parsed into a thousand frames,
creating a dataset of 10,000 images.

The selection of the frames in each video was spread
equally through the video duration (i.e. the number of frames
in the video ÷ 1000 = sampling interval. One frame is
selected per sampling interval). Each image of the dataset
contains all six faces of the 360° view, and they receive a
label, manually annotated. These labels are then compared
against the label returned by the automatic detection, so the

accuracy of detection can be determined.

C. INTRODUCTION OF NOISE BY CERTAIN FACES OF
THE CUBEMAP

While developing the olfaction generation algorithm, it was
noted that the algorithm had a high probability of returning
labels such as “sky” and “catacomb” during video predic-
tions. These would sometimes appear in the top prediction
erroneously, resulting in an incorrect output for olfactory

TABLE 2. Effect of the number of faces of the equiangular cubemap used in
prediction accuracy.

Architecture No. of faces
used for pre-
diction

Top-1 Accu-
racy

Top-5 Accu-
racy

Olfaction
Accuracy

ResNet18 4 61.35% 86.67% 72.67%
ResNet18 6 36.37% 85.18% 48.82%
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FIGURE 8. The four softmaxes setup (left) and the one softmax setup (right).

content. To discover what was causing these errors, the
outputs for each face of the cubemap were examined individ-
ually. It was found that the upward face of the cubemap was
often being classified with the “sky” label and the downward
face receiving the label “catacomb”, most likely due to the
color of the ground.

It was hypothesized that making predictions on the top and
bottom faces of cubemaps was adding levels of noise into
the prediction process, decreasing accuracy. To investigate
whether this hypothesis is accurate, the dataset of equi-
angular cubemap images described in Section V.B was used
for the tests. Each of the ten videos was parsed into a
thousand frames, resulting on a dataset of 10,000 images. The
accuracy of using all six faces for predictions versus using
the four horizontal faces is tested using this dataset. Results
are displayed in Table 2. The tests were carried out using the
ResNet18 architecture with a single softmax applied after all
predictions have been combined.

The results from this test showed a 23.85% increase in
correct scent prediction while only using the four horizontal
faces, with a top-1 accuracy of 61.35% for scene recognition
and 72.67% accuracy in scent prediction accuracy. The top
and bottom faces affected the top-1 accuracy significantly
(a decrease of 24.98%), while the top-5 accuracy was only
slightly reduced (a decrease of 1.49%). Scent predictions
are associated with the top output of the algorithm, and for
this reason, a high top-1 accuracy is a better metric than
top-5, in relation to scent prediction. It is concluded from

this experiment that using the four horizontal cubemap faces
yields a better accuracy than using all six faces. Further tests
use this setup as a result.

D. SOFTMAX AND VECTOR ADDITION

When combining the predictions of separate faces, the result-
ing vectors are added together to form a probability distri-
bution. Output vectors are converted to a vector probability
distribution by using the softmax function. Initially, when
using the pre-trained network, a softmax was applied before
the four vectors were added together resulting on an output
vector with a magnitude of four. The output vector can be
divided by four to become a normalized 365-dimensional
vector that sums to 1. Another possible configuration, which
can potentially offer a better separation between outputs, is
to add the four vectors and perform a single softmax on the
output vector. The layouts of the two setups are illustrated in
Fig. 8.

The results from Table 3 contain the accuracy comparison
of the four softmaxes before addition versus the one softmax
after addition. The accuracy is measured based on the dataset
described in Section V.B.

The results show a substantially higher accuracy when
performing a single softmax as the final operation. The
final softmax setup produces an olfaction accuracy 12.64%
higher than using four softmaxes before addition. The single
softmax configuration is employed due to the higher yielded
accuracy indicated in the tests.
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TABLE 3. Performance testing of the two softmax setups.

Architecture No.
Softmaxes
Performed

Top-1 Accu-
racy

Top-5 Accu-
racy

Olfaction
Accuracy

ResNet18 1 61.35% 86.67% 72.67%
ResNet18 4 48.27% 82.72% 60.03%

TABLE 4. Accuracy testing of different CNN architectures.

Architecture Top-1 Accuracy Top-5 Accuracy Olfaction
Accuracy

ResNet18 61.35% 86.67% 72.67%
ResNet50 47.97% 86.53% 61.11%
AlexNet 56.65% 84.71% 71.52%

TABLE 5. Comparison of scene recognition accuracy with state-of-the-art
networks trained with the Places365 dataset.

Method Top-1 Accuracy Top-5 Accuracy

SE-GNN [35] 55.21% 80.42%
LGN [36] 56.50% 86.24%
Ours (ResNet18) 61.35% 86.67%

TABLE 6. Effects of processing cubemap faces separately and combined.

Setup Top-1 Accu-
racy

Top-5 Accu-
racy

Olfaction
Accuracy

Developed Algorithm with
cropping method

61.35% 86.67% 72.67%

ResNet18 without cropping
method

27.85% 58.53% 54.38%

E. ACCURACY COMPARISON OF CNN
ARCHITECTURES
The accuracy of three different CNN architectures employed
in the image detection solution was compared. The AlexNet,
ResNet18 and ResNet50 architectures were trained on the
Places365 dataset. All three architecture configurations were
tested using the dataset presented in Section V.B and the
results are shown in Table 4.

The results from the experiment presented in Table 4 indi-
cate that the accuracy obtained by ResNet18 is higher than
AlexNet and ResNet50 by a significant margin. ResNet18
achieved a top-1 accuracy 13.38% higher than ResNet50 and
4.7% higher than AlexNet.

Even though ResNet50 has been reported to achieve a
higher accuracy than ResNet18 when trained on the Im-
ageNet dataset [52], the authors in [53] also verified that
ResNet18 can outperform ResNet50, when trained on the
Places365 dataset. The olfaction accuracy, which is depen-
dent on the scene classification accuracy is also the highest
when employing ResNet18.

Based on these results, the ResNet18 network is the rec-
ommended architecture to be used in the implementation of
the algorithm for the generation of olfaction effects for 360°
content. The higher accuracy in scene detection provided by

ResNet18 results in more accurate olfaction effects being
dispensed to users.

The proposed scene recognition approach using ResNet18
also performed well in comparison to two other recent net-
works [35], [36] trained in the Places365, in terms of top-
1 (an increase of 6.14% and 4.85%, respectively) and top-
5 (an increase of 6.25% and 0.43%, respectively) scene
recognition accuracy. The results are presented in Table 5.
These networks were also trained with the Places365 dataset
to perform scene classification. The gain in our approach
comes from the fact that multiple faces of the cubemap
are processed, increasing the accuracy of the classification
process.

F. PROCESSING CUBEMAP FACES SEPARATELY OR
COMBINED
An additional test was performed to measure the increase in
accuracy achieved by the designed olfaction algorithm (i.e.
cropping the cubemap faces of the selected frames and pro-
cessing them separately) versus classifying the entire equi-
angular cubemap frames with the ResNet18 network using
resize and center crop (i.e. keeping all cubemap faces in one
image and resizing it to fit the ResNet18 input size). The
results can be seen in Table 6.

The results indicate a large increase in accuracy while
using the algorithm, since cropping the faces of the cubemap
reduces frame distortion. Combining the outputs from the
cropped frames together yields an increase in scene detection
accuracy from 27.85% to 61.35%, when compared with
processing entire video frames directly into the network.
This represents a 33.5% increase for top-1 accuracy and an
18.29% increase for olfaction accuracy.

VI. CONCLUSION AND FUTURE WORK
This paper presented the design, implementation and testing
of an innovative CNN-based mulsemedia solution, which au-
tomates the process of adding sensorial effects to immersive
videos. Two algorithms were proposed to generate olfaction
effects using scene classification techniques on 360° videos
and haptic effects based on audio cues. Different CNN archi-
tectures were evaluated in the scene classification process:
AlexNet, ResNet18 and ResNet50. These architectures have
been adapted to process 360° content, handling the different
areas of equi-angular cubemap videos separately, provid-
ing an accurate final recognition. A suitable approach for
processing the immersive videos was achieved after exper-
iments were performed to test the solution in terms of frame
sampling, accuracy and cubemap faces selection. Olfaction
effects were more accurate with scene recognition being
performed on the four horizontal faces of the cubemap frame.

A label dataset for olfaction effects was also proposed,
correlating different scents to a variety of scenes. A proto-
type containing a VR headset, an olfation dispenser and a
haptic mouse was built, combining audio, immersive video,
olfaction, and haptic feedback. The prototype also contains
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a 360° player that synchronizes the automatically generated
mulsemedia effects with videos.

Tests indicated that the accuracy of the proposed approach
for olfaction correctly generated scents 72.67% of the time,
when ResNet18 was employed. Moreover, a top-1 accuracy
of 61.35% for scene recognition in 360° videos was achieved,
proving the feasibility of using CNNs and ResNet18 for im-
age detection in immersive videos. Most pioneering detection
algorithms have notably been considered successful while
yielding similar results. This was also demonstrated by the
approach outperforming two other state-of-the-art solutions.

Future work directions include optimizing the use of ma-
chine learning algorithms for real-time predictions, as this
is computationally expensive. Other neural networks and
training models that detect actions and human behavior can
be considered for the generation of a larger variety of mulse-
media effects. The sensorial effects can also be applied to
guiding users experiencing 3D content, providing additional
directional cues. Finally, standardized libraries and datasets
exclusive to mulsemedia experiences could also be proposed.
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