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A B S T R A C T

The centralized architecture of Software-Defined Networking (SDN) reduces networking complexity and
improves network manageability by omitting the need for box-by-box troubleshooting and management.
However, due to both budget constraints and maturity level of the SDN-capable devices, organizations often are
reluctant to adopt SDN in practice. Therefore, instead of migrating to a pure SDN architecture, an incremental
SDN deployment strategy is preferred in practice. In this paper, we consider an incremental SDN deployment
strategy known as hybrid SDN - involving simultaneous use of both SDN switches and legacy switches. The
links connected to an SDN switch are called SDN links, and the rest are called legacy links. An SDN controller
can directly poll the status of the SDN links via the connected SDN switches. At the same time, the status
of the legacy links passes through SDN switches and reaches the controller, causing delay. As a result, the
controller does not have the current status of legacy links in real-time. This delay may lead to undesired
outcomes. For example, it causes network reachability problems due to Access Control List (ACL) policies.
Therefore, to minimize the impact of network-layer failure in hybrid SDN, we propose a Machine Learning (ML)
based technique called PrePass-Flow. PrePass-Flow predicts link failures before their occurrence, recomputes
the locations of ACL policies, and installs the ACL policies in the recomputed locations in a proactive manner.
The main objective of PrePass-Flow is to minimize the ACL policy violations and network reachability problems
due to ACL policies in case of link failures. For the link status prediction, PrePass-Flow uses two supervised
ML-based models: 1) a Logistic Regression (LR) model, and 2) a Support Vector Machine (SVM) model. Testing
results show that the LR model performs better than both the SVM model and an existing approach in terms
of Packet Delivery Ratio (PDR) and ACL policy violations. For instance, the LR model’s accuracy is 4% better,
precision is 5% higher, sensitivity is 10% better, and Area Under the Curve (AUC) is 6% greater than the SVM
model’s corresponding results.
1. Introduction

Software-Defined Networking (SDN) [1,2] has emerged as a re-
sponse to the limitations and complexity of the legacy network man-
agement. The basic idea of the SDN paradigm is that it separates
the control plane from the data plane by offloading control plane
functionalities from all network devices (i.e., routers, switches, and
Access Points (AP)) to a logically centralized controller. However, due
to budget constraints and SDN maturity level, organizations are often
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reluctant to adopt SDN in practice. For example, Google [3] spent about
8 years to replace its data center infrastructure with SDN devices. Some
of the reasons behind the slow migration to an all SDN infrastructure
and its implications are discussed in [1,4]. Instead, the researchers
proposed an incremental approach to deploy SDN, replacing gradually
the legacy devices with SDN-enabled devices. This strategy is termed
hybrid SDN [1] and is a promising avenue that paves the way to a wide
adoption of SDN in practice [4,5].
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A hybrid SDN is comprised of both legacy and SDN devices [6].
The legacy network devices are running the legacy network protocols,
and the SDN devices run SDN protocols. Due to its unique nature,
the hybrid SDN approach offers several challenges, in terms of traffic
engineering (TE), loading balancing (LB), energy-efficient routing, SDN
nodes deployment, link failure management, and implementation of
access control list (ACL) policies [7–16].

ACL is a filter mechanism deployed at switches’ (or routers’) inter-
faces and end-system firewalls in order to enforce security. ACL filters
the data flows based on predefined rules. One or more predefined
ACL rules define the flow matching provisions based on some packet
header values (e.g., source/destination IP addresses, transport layer
port number, and transport protocol value). Based on the implemented
ACL policy, a switch discards or forwards the flow. Moreover, ACL
policies enable filtering of unauthorized flows early and adequately
protecting the core services. Efficient implementation of ACL policies
at switches’ interfaces also helps increase network throughput, reduce
end-to-end delay for data flows, and effectively distribute the flows at
the edge and backbone network, contrary to other ACL (i.e., end-system
firewalls) [17].

Existing approaches have addressed different challenges by propos-
ing various alternative solutions to implement the ACL policies in
hybrid SDN efficiently and correctly. Some of these challenges are
summarized next.

i. ACL policies disclosure: In a SDN architecture, policies can be de-
clared either by general-purpose or domain-specific languages,
e.g., Frenetic [18] and Pyretic [19]. These languages allow
operators of diverse types, i.e., parallel and sequential, to make
ACL policies. A parallel operator checks the same set of pack-
ets against multiple ACL policies simultaneously. In contrast, a
sequential operator reviews one ACL policy at a time.

ii. Overlapping and conflict in ACL policies: At the controller, de-
clared ACL policies in a network may lead to unforeseen ACL
policy violations [20,21], network reachability problem, packet
loss [22,23], and overlaying and conflict in ACL policies [24]
due to different network administrations or even under the same
administrator over time.

iii. Storing ACL policies at controller: ACL policies can be held at the
controller using various methods, like PGA [21]. PGA uses a
graph to keep network ACL policies. When a packet arrives, PGA
traverses through the graph and generates flow rules from the
predefined ACL rules. Additionally, PGA detects redundancy and
identifies conflicts among the ACL policies declared at the SDN
controller.

iv. Where to deploy?: To minimize the unwanted traffic in the net-
work, the ACL policies can be installed as flow rules at the differ-
ent sets of switches using various criteria. Rashid et al. [13,14]
implement the ACL policies at optimum locations (i.e., switches’
interfaces) in the network such that it minimizes the total num-
ber of both implemented ACL policies and unwanted transmis-
sions.

v. Proactive or reactive ACL policies installation: The controller can
install the ACL policies in either a proactive or reactive manner
[25]. In proactive manner, the controller installs the ACL policies
for all users, active or passive, leading to the Ternary Content
Addressable Memory (TCAM) memory problem. In contrast, in
a reactive way, the controller installs the ACL policies only
for active users. Therefore, the reactive approach uses more
efficiently the limited TCAM memory at the switches.

We believe that the existing approaches still have limitations. For
xample, Rashid et al. [13] state that when a link fails, the SDN
ontroller recomputes the locations for the implementation of ACL
olicies placements to ensure the network behaves correctly. They have
2

ssumed that the link failure was received in real-time to the controller c
n hybrid SDN, which is often not the case in such settings when legacy
ink failures are considered. The links connected to legacy switches
re called legacy links, while the links connected to SDN switches
re called SDN links. SDN controller directly gets the real-time link-
tate information from SDN switches. However, using a legacy routing
rotocol like OSPF [1,6], the legacy switches periodically broadcast
heir link-state information to all the nodes, including the SDN switches
n the network.

When an SDN switch receives the link-state information of legacy
witches, it sends them to the SDN controller. Thus, it takes a long
ime to send legacy links information to the SDN controller [4,6,7,26]
nd the legacy link failure information may not be received at the
DN controller in real-time. When a legacy link, which is far away
rom a SDN switch, fails and the link failure causes incorrect network
ehavior (i.e., either a violation of ACL policies by the network traffic
r a network reachability problem due to implemented ACL policies on
evices’ interfaces) then the network behavior will persist for a longer
ime until the SDN controller receives the link failure notification and,
ubsequently, recomputes and implements the ACL policies according
o the updated network topology. We attempt to address this problem
y predicting the link failure before its occurrence, computing and
mplementing ACL policies, link failures.

To the best of the authors’ knowledge, the state-of-the-art litera-
ure for hybrid SDN (e.g., [13,14,21,27,28]) overlooks the ACL policy
onfiguration in advance for the case of legacy link failures. This
aper proposes the use of Machine Learning (ML) algorithms to predict
ink failure and, subsequently recompute the ACL policy configuration
onsidering the link failure. More particularly, we propose the use of
wo ML algorithms (i) Logistic Regression (LR) [29], (ii) Support Vector
achine (SVM) [30] to enable high resiliency to link failure and reduce

he number of ACL policy violations. Recent studies show that ML
echniques are resilient, flexible, and applicable in the communication
etwork. They can be employed to manage critical issues such as
ault management, traffic predication, traffic routing, and network
ecurity [31–34].

The main contributions of this paper are summarized as follows.

• In a hybrid SDN, the SDN controller receives legacy links failure
information with delay, creating inconsistency at the SDN con-
troller. The inconsistency leads to network reachability and ACL
policy violation problems. PrePass-Flow is proposed to address
these problems.

• In order to minimize the impact of a link failure in hybrid
SDN, PrePass-Flow uses historical link information and predicts
the potential link failure. The prediction module in PrePass-
Flow employs two supervised ML algorithms, called Logistic
Regression (LR) and Support Vector Machine (SVM).

• Following failure prediction, PrePass-Flow recomputes the opti-
mum locations for ACL policies considering the link failure and
installs the ACL policies such that the network behaves correctly
as the link fails.

The remaining paper is organized as follows. The related work is re-
iewed in Section 2. We present the problem definition and challenges
n Section 3 and our proposed PrePass-Flow in Section 4. Section 5
escribes the performance evaluation of the proposed PrePass-Flow
olution and conclusions are drawn in Section 6.

. Related work

This section classifies the related work into three categories. The
irst category in Section 2.1 describes the current literature related to
he network-layer failure problem. The second category in Section 2.2
ncludes recent studies about ACL policy violation in a hybrid SDN
rchitecture. The third category in Section 2.3 discusses some appli-

ations of ML-based algorithms for improving network performance.
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2.1. Approaches related to network-layer failures

Recent studies reveal that network-layer failures, e.g., a switch
failure or a link failure, frequently happen and show that such outages
are disruptive [7–9,35–42]. Furthermore, link failures can last for about
30 min [43] and the average convergence times to recover from the
link failure is normally more than 30 s [35,44]. The root causes of a
link failure can be device deployment (change), OS reboot (incident),
OSPF convergence (network connection), software (BIOS upgrade),
hardware (power supply or line card replacement), and configuration
(VPN tunneling or IP/MPLS routing) [38,45]. In [35,44], the authors
proposed mechanisms to reduce the convergence time after outage
in the network. V. Liu et al. also explain that switch or link failures
impact 40% traffic in a network, except when the underlying network
is designed to be resilient to such failures [41].

In modern heterogeneous network architectures, ML-based models
can play an essential role in managing the network faults, including link
failure [31]. Zhilong et al. [33] proposed a ML-based model to predict
device failures in a SDN-based optical network. The researchers com-
bined Double Exponential Smoothing (DES) [46] and SVM [30] models
to forecast the risk of a device failure proactively. Moreover, studies
show that almost 62% of network failures occur due to human error
and maintenance such as when a network admin manually configures
the legacy switches in a hybrid SDN. Additionally, about 80% of an
Information Technology (IT) budget is required for network operation
and management [24,47].

In a hybrid SDN, configuring the ACL policies on both SDN and
legacy switches from the logically centralized SDN controller at run-
time are now possible because the SDN controller has an abstract
network view [48]. Furthermore, failure of a switch or link can cause
network wide negative effects in terms of ACL policies violations and
network reachability problems [13,14,49,50]. The research commu-
nity [13,14,17] suggested new methods to minimize ACL policy vio-
lations in case of network faults in a network. However, in the case of
hybrid SDN, it is still an open question to predict failures of legacy
links, and recompute the location and reconfigure the ACL policies
before a link fails. The current studies, e.g., [13] recompute the location
of ACL policies and reconfigure the ACL policies after link failure
and its detection at the SDN controller. Unfortunately, these current
solutions may cause network congestions, ACL policy violations, packet
loss, and network reachability problems due to ACL policies. In this
work, the PrePass-Flow uses ML-based models to predict network-layer
failure, compute the alternative ACL policies location proactively, and
implement the ACL policy on the alternative locations (i.e., switch
interfaces) before link failure occurs. This proactive way reduces both
the reachability problem due to ACL policies and ACL policy violations
in case of link failure.

2.2. Approaches related to ACL policy violation

In a communication network, ACL policies play a significant role
in providing security, network reachability (connectivity), and reliabil-
ity. Network devices such as routers or switches are configured with
ACL policies. The primary purpose of ACL is to filter the unwanted
traffic as early as possible and increase network performance (reduce
bandwidth consumption and increase throughput [14,51]. Currently,
ACL policies are widely installed in the network. However, the network
size, complexity, and end-users’ demands are growing day by day.
Thus, maintaining ACL policies across the communication network
such that the network runs correctly and efficiently is a challenging
and complicated task for network operators [51]. Even a single ACL
policy configuration may lead to network reachability problems due
to ACL policies, service disruptions, and violations of ACL policies.
In [17], the authors proposed a system that automatically updates
ACL configurations according to network operator intent. The proposed
3

system, based on a Language for ACL Intents (LAI) and a LAI model,
automatically generates an ACL policies plan according to the require-
ments. For performance evaluation, the LAI model has been deployed in
Abibab’s global WAN. SecGuru [52] also proposed a model to confirm
the accuracy of the ACL policies declared at the firewall in the network.
However, these models do not consider the accuracy of the ACL policies
distributively implemented at many switches’ interfaces in the network.

It is a tedious task for the network operator to manually configure,
manage, and monitor the ACL policies in all network devices (like
switches’/routers’ interfaces) in case a new link is added and/or a
link fails. Such a case may lead to packets violating the ACL policies
and to network reachability problems due to ACL policy. For example,
in case of a topology change following link failure, an AutoConfig
Model [13] was proposed to detect the forwarding device interfaces
where the implemented ACL policies can cause ACL policies violations
and network reachability issues. The proposed model uses a graph
difference technique [53] to detect changes in the network topology. It
is an NP problem to compute the locations (i.e, the switches’/routers’
interfaces) for implementing the ACL policies in the network based on
some performance parameters [51], such as for example, to minimize
the amount of unwanted traffic generated in the network [14]. To solve
this optimization problem, Rashid et al. used a decision-tree and K-
partite graph for computing the optimum locations for implementing
the ACL policies in a hybrid SDN architecture [14]. In [54], the authors
proposed a model to minimize the inconsistency behavior between the
already installed flow rules in SDN switches and new rules using a
hybrid mechanism which is a combination of reactive and proactive
mechanisms.

Automatic Test Packet Generation (ATPG) [55] is a debugging tool
used to find the network wide issues, including ACL policies violations.
ATPG generates testing packets and traverses through the network
configuration. The authors of [56,57] proposed a model to detect con-
flict among the ACL policies before and after a network administrator
updates the ACL policies at the controller, by using a multi-attribute
graph matching algorithm [53]. If conflict is found in both policies,
the controller removes those flow rules installed in the switches that
violate the updated ACL policies. Their proposed model minimizes the
number of packets violating ACL policies. PGA [21] declares the ACL
policies at high abstract level and detects conflicts among the ACL
policies declared by different network operators and at different times
at the controller. Object Oriented SDN Framework (SDNSOC) [58] uses
the object-oriented concept of the programming language to detect the
conflicts among the flow rules generated by the controller as per ACL
policies and network topology.

From the above discussion it is clear that link failures can affect the
correctness and efficiency of ACL policies’ implementation in hybrid
SDN. Moreover, none of the existing approaches predict link failure in
order to recompute the locations of ACL policies and then reconfigure
the ACL policies at the new locations such that the network operates
correctly and efficiently as intended by the network operators through
the ACL policies.

2.3. Applications of ML-based prediction algorithms in networking

A ML algorithm receives data from the network, learns the pattern,
and decides action based on the received data. In general, a ML
algorithm includes the following steps (i) a preprocessing phase, in
which data is filtered (ii) a training phase, in which the algorithm learns
how to make decisions based on input data and (iii) a testing phase
which verifies the correctness of algorithm decisions. ML algorithms
can be based on unsupervised or supervised learning models. Unsuper-
vised learning models use unlabeled training data, whereas supervised
learning models employ labeled data for training purposes [59]. In a
previous work [16], we have used the K -Nearest Neighbor Regression
algorithm [60] to predict the reliability level of the legacy links.
After the prediction phase, an unsupervised ML learning algorithm,

called Reliable and Time-sensitive Deep Deterministic Policy Gradient
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algorithm (RT-DDPG), was proposed to compute the path based on
constraints, e.g., bandwidth, delay, and reliability. For a hybrid SDN,
Tracy et al. [6] proposed to use a Linear Regression (LR) algorithm at
the SDN controller to predict the current traffic load at legacy links by
using both historical traffic load of legacy links and current load of the
SDN links.

In the routing optimization process, traffic prediction in a network is
vital and is an important research topic [61–65]. The main objective of
traffic prediction models is to predict the traffic intensity from historical
statistics. After the prediction, the SDN controller reroutes the traffic
proactively or reactively on alternative paths. These proposed models
are used in SDN to predict different QoS parameters, e.g., traffic,
routing and network delay. Unlike them, in this work we consider
a hybrid SDN architecture and predict link failures to minimize the
network reachability and ACL policies’ violation problems.

Alessandro et al. introduced a ML-based model called Framework for
building a failure prediction model to predict abnormal conditions that are
upposed to happen [66]. In the proposed model the Remaining Time
o Failure (RTTF) of applications is predicted using various ML algo-
ithms. Additionally, the proposed model allows the user to customize
t according to the requirements. Other performance models are also
sed to predict system performance in terms of resources consumed and
orkload design [67–69]. These performance models can be divided

nto two categories: (a) white-box performance models, also called
nalytical models, and (b) black-box performance models [67]. White-
ox performance models use system contexts, e.g., service request
nd workload intensity, to predict the system’s performance. In con-
rast, black-box performance models take the system as a black-box
nd use ML or statistical models to predict a system’s performance.
lack-box models generally require no knowledge about the system’s

nternal behavior and can predict the system performance while the
ystem is under field operation [68]. Didona et al. [67] predicted
he performance in two case studies: a NoSQL datastore and a Total
rder Broadcast (ToB) service. The proposed prediction model relies
n analytical modeling and ML algorithms. Similar to this model,
he author proposed a model to predict the accuracy of the system
ased workload and configuration parameters rather than hardware
ata, e.g., network and CUP [69]. Sanzo et al. proposed a ML-based
rediction model to self-tune the running configuration of applications
n single and multiple cloud regions [70–72]. However, the proposed
odels’ primary intention is to increase performance rather than de-
endability and availability. The proposed work [66–70] is based on
L’s particular usage since they provide performance prediction tools

hat cannot support what-if analysis in the wide — for example, exam-
ning the consequence of notable workload shifts outside the workload
omain used during the ML training. Therefore, the proposed predic-
ion tools stay bound to a specific scenario. Unlike these prediction
odels, our proposed PrePass-Flow approach predicts the network

ailure and proactively takes the necessary action to minimize the
mpact of network-layer failure, regardless of the scenario.

. Problem definition and challenges

In a communication network, network-layer failures, including link
ailures, happen frequently [7–9,35,37–40,42] and have a considerable
mpact on the overall network performance [41,50]. The network-
ayer failures affect specifically network reachability and increase the
nd-to-end delay. Furthermore, the network performance in terms of
CL policies [13–15,17] is also severely affected. For example, if a

ink is down or its status is changed, the data flows passing through
he failed/changed link may violate the ACL policies (which, in turn,
llows the network traffic to pass to an unlawful sub-network) and may
esult in dropping data flows (which causes the network reachability
roblem), as discussed in [13,16,73]. To better illustrate this point, we
4

iscuss a case study based on a real-life campus network next.
3.1. Case study: ACL policy violation and network reachability problem in
a campus network

Suppose we have a campus network, as shown in Fig. 1(a). It is a
hybrid SDN because only R5 is a SDN switch and the rest are legacy
switches. We can see that the campus network consists of four sub-
networks (or subnets). Additionally, subnet-1 and subnet-4 only consist
of servers, where subnet-1 provides its services to subnet-2, and subnet-
4 provides its services to subnet-3. We assume the following network
scenario.

An administrator of the campus network implemented an ACL
policy that subnet-1 (servers) can only be accessed from subnet-2,
while subnet-4 can only be accessed from subnet-3. Also, subnet-2 and
subnet-3 can communicate with each other. That is, subnet-2 cannot
access subnet-4, and subnet-3 data traffic is not allowed to access
servers of subnet-1. Particularly, interfaces i1.1 and i1.2 of switch R1
are configured with ACL policies to drop all flows originated from
subnet-3. Furthermore, interfaces i5.1 and i5.3 of R5 are configured
to drop all flows originated from subnet-2, as shown in Fig. 1(a).
Additionally, other subnets can send traffic to each other.

Now let us consider the path R4 to R2 via R3, carrying tens of
thousands of flows from subnet-3 to subnet-2 and vice versa. Suppose
the link (R4, R3) suddenly fails, as shown in Fig. 1(b). After the link
is down, the routing protocol will find an alternative path (i.e., R2–
R1–R5–R4) to send the data from subnet-2 to subnet-3. But, when
the data from subnet-2 arrives at the interface i5.3 of R5, the data
will be discarded due to the ACL policy (i.e., the administrator has
imposed the ACL policy to discard the data originated from subnet-2,
as already explained). Similarly, R1 will drop the data flows originated
from subnet-3 and destined to subnet-2 following the path R4–R5–
R1–R2. This causes the problem of network reachability. The physical
topology has the path from subnet2 to subnet-3, but the subnet-2 and
subnet-3 cannot communicate due to the ACL policy. It is a challenging
task to detect such a network reachability due to ACL policy in a
large network and may be unnoticed for a long time. Similarly, the
ACL policy violation can also occur due to link failure as discussed
in [13,73]

3.2. Limitations in current state-of-the-art

To minimize both ACL policy violation by packets and network
reachability problem due to ACL policies, a mechanism is proposed
in [13], based on recomputing the locations of ACL policies once the
legacy link failure has occurred. The authors assume that the legacy link
failure notification is received in real-time (i.e., instantly) at the SDN
controller. In a hybrid SDN, the SDN controller can detect SDN link
failure timely; however, it takes considerable time to detect legacy link
failures at the SDN controller depending on the distance between the
legacy link and the closest SDN switches. This is as the legacy switches
use legacy protocols (like OSPF [6]), and they share their link state with
the SDN switches using such legacy protocols. Then the SDN switches
pass on this information to the SDN controller, as explained in [1,6,16].
This involves a long time, and so it takes to detect legacy link failure
at the SDN controller.

For experimental validation of this concept, we have employed the
publicly available GEANT topology1 [74] with available traffic matrices
to monitor the legacy links information concerning the incremental
deployment of SDN switches, as shown in Fig. 1(d). We use the Mininet2

network emulator with the POX controller3 in this experiment. The
opology consists of 74 links and 23 legacy switches. We have randomly
elected a legacy switch in the GEANT topology and have observed how

1 http://www.geant.net/upload/pdf/Topology_Oct_2004.pdf.
2 http://mininet.org.
3
 http://github.com/noxrepo/pox.

http://www.geant.net/upload/pdf/Topology_Oct_2004.pdf
http://mininet.org
http://github.com/noxrepo/pox
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Fig. 1. A campus network (a) and (b) contains servers and users. (c) shows the GEANT topology. (d) shows legacy links information collection time (s) vs. No. of SDN switches.
long it takes to obtain the information of all its links at a node (because
we can connect the SDN switch with the SDN controller through an
out-band communication link [75]). Each legacy switch operates using
the OSPF protocol and periodically broadcasts its link-state information
to neighbors every 5 s. By incrementally replacing legacy switches
with SDN switches, the legacy links’ information collection time at the
SDN controller decreases as the number of SDN switches increases, as
shown in Fig. 1(d). Furthermore, we have observed that the controller
does not have any update information about the network-layer failures,
particularly legacy switches and legacy links. Thus, in a hybrid SDN, it
takes a significant time to detect a far away legacy link failure at the
SDN controller, to recompute the locations of ACL policies, and then to
configure/implement the ACL policies at the newly computed locations.
This confirms it will take significant time for a new ACL policy to be
effective in case of a far away legacy link failure in hybrid SDN. This
creates two basic problems.

1. Network reachability problem: packets will continue to be
dropped until the legacy link state information is received at the
SDN controller, the controller recomputes the locations of ACL
policies and the ACL policies are implemented/installed at the
new locations, as already discussed (and shown in Figs. 1(a) and
1(b)).
5

2. ACL policy violation problem: the controller will violate the
ACL policies until the legacy link state information is received
at the SDN controller, the controller recomputes the locations
of ACL policies and the ACL policies are implemented/installed
at the new locations, as already discussed (and reported in [13,
73]).

The current literature does not address these two problems associ-
ated with link failures [13,14,21,27,28]. Therefore, the main focus of
our proposed approach PrePass-Flow is to address these two problems
by predicting legacy link failures at the SDN controller before they
occur. After this failure prediction, the SDN controller recomputes the
locations of ACL policies and then installs them in advance at the new
locations, saving valuable time and reducing the negative effects of link
failures.

4. PrePass-Flow

This section presents and discusses the proposed technique, PrePass-
Flow, which is used to reduce the effects of ACL policy violations and
network reachability problems (as discussed in Section 3) due to link
failures in a hybrid SDN. PrePass-Flow employs a ML algorithm and
predicts the legacy links’ status (i.e., fail or functional) from historical

data.
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Fig. 2. ML based link’s failure prediction model and reroute the flow.
Specifically, PrePass-Flow deploys ML-based prediction models in
the SDN controller, as shown in Fig. 2. The controller systematically
communicates with the SDN switches using the OpenFlow protocol,
and the SDN switches interact with the legacy switches to receive Link
State Parameters (LSP) including link failure information about legacy
links using a traditional (i.e., legacy) protocol (e.g., OSPF protocol [6]).
The SDN switches then pass on LSPs received from the legacy switches
to the SDN controller. The controller acquires the status of the legacy
links from the LSPs forwarded by the SDN switches. The ML algorithms
are trained with the received links’ information. When a failure is pre-
dicted, the PrePass-Flow initiates protection measures by recomputing
the locations of ACL policies and implementing the ACL policies at the
recomputed locations (if necessary) to avoid ACL policies violations by
the packets and flow disturbances. Furthermore, the controller sends
control messages to SDN switches about the detour flows.

The proposed prediction model is shown in Fig. 2. The figure shows
how the SDN controller obtained historical link status information from
time t − 6 to t, inputs it into the prediction module 𝑃 (.) and the model
predicts the link failure status at time t + 1 (i.e., fail = 0, functional
= 1). If the prediction module 𝑃 (.) predicts the potential link failure, it
initiates a proactive protection measure to reduce ACL policy violations
and network reachability issues. PrePass-Flow uses the panopticon [48]
model for the SDN switches deployment. In the panopticon model, the
authors deploy the SDN switches among the legacy switches so that
every flow between source and destination pair traverses through a
SDN switch. Therefore, a single SDN switch is sufficient to enforce
the end-to-end ACL policy. Consequently, the proposed model enables
customized flow forwarding if a flow passed through multiple SDN
switches. For computing the optimum locations of ACL policies in a
hybrid SDN, we use the AutoConfig [13,14] model. The details of
PrePass-Flow’s components are given in the following subsections.

4.1. Network model

Consider that a hybrid SDN network, 𝐺 = (𝑁,𝐸), consists of a set of
switches 𝑁 and a set of interconnected links 𝐸. Suppose in 𝐺, 𝑆 ⊂ 𝑁
indicates a set of SDN switches, and 𝐿 = 𝑁 ⧵ 𝑆 is the set of legacy
switches. In PrePass-Flow, each link 𝑒 ∈ 𝐸 is associated with the link
prediction 𝑃 (𝑒) module. This prediction module predicts the status 𝑠 of
the link being either functional or down (e.g., 𝑠 = 0, or 𝑠 = 1).

𝐺 consists of a set of paths 𝑋 =
{

𝑥𝑧
}

, where a path 𝑥𝑧 may be
multi-hop and can be represented as follows:

𝑥 = (𝑒 , 𝑒 ,… , 𝑒 ), (1)
6

𝑧 𝑠 𝑙 (|𝑥𝑧|)
where are the SDN links and 𝑒𝑙 are the legacy links in the path 𝑥𝑧, as
shown in Eq. (1). The prediction module 𝑃 (.) assigns a state to each link
𝑒 ∈ 𝐸, i.e., functional = 1 or fail = 0 based on attributes. The attributes
can be link change, software or hardware upgrading, and configuration,
as shown in Table 1. These attributes refer to external conditions 𝑘 ⊂ 𝐾,
which influence the link state at the given time slot 𝑡 ∈ 𝑇 , as shown in
Eq. (2),

𝑃𝑡(𝑒|𝐾) = 1 −
∑

𝑘∈𝐾
(1 − 𝑃 (𝑒|𝑘)), (2)

𝑠.𝑡., 𝑃𝑡(𝑒|𝐾) ∶ 𝑘𝑒 → [0, 1],∀𝑒 ∈ 𝐸,

where 𝑃𝑡(𝑒|𝑘) ∶ 𝑘𝑒 → [0, 1] indicates the existing state of a link at time
𝑡. Eq. (2) shows the existence prediction of a link 𝑒 in a set external
conditions 𝑘 ⊂ 𝐾.

As specified in Section 3, in a hybrid SDN, the SDN controller does
not have the current link failure information of legacy links 𝑒𝑙 ∈ 𝐸 in
a given time 𝑇 ∗ ⊆ 𝑇 . 𝑃 (.) computes the status of all links as follows:

𝑃𝑒∈𝐸 (𝐾𝐺∕𝑇 ∗) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑒𝑙∈𝐸𝐺𝐿

(𝑃𝑒𝑙 (𝐾𝑒𝑙∕𝑇
+))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(b) Legacy links

+

∑

𝑒𝑠∈𝐸𝐺𝑆

𝑃𝑒𝑠 (𝐾𝑒𝑠∕𝑇
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(a) SDN links

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑤ℎ𝑒𝑟𝑒 𝑇 + > 𝑇 ∗, (3)

𝐺𝐿 = (𝑁𝐺𝐿
, 𝐸𝐺𝐿

), 𝐺𝑆 = (𝑁𝐺𝑆
, 𝐸𝐺𝑆

), (𝐺𝐿 ∪ 𝐺𝑆 ) ⊆ 𝐺,

(𝐸𝐺𝐿
, 𝐸𝐺𝑆

) ⊆ 𝐸, 𝑇 + > 𝑇 ∗, ∀𝑒 ∈ 𝐸,

where Eq. (3) shows that 𝑃 (.) computes the status of 𝑒𝑠 ∈ 𝐸𝐺𝑆
directly

(i.e., in time 𝑇 ∗). However the controller does not have any updated
link failure information about the 𝑒𝑙 ∈ 𝐸𝐺𝐿

in time 𝑇 ∗. This problem
creates inconsistency/uncertainty at the controller. The controller may
forward the flows on a broken link or may violate ACL rules during the
flow installation process or may have a network reachability problem
due to ACL policies. PrePass-Flow’s goal is to reduce the violation of
ACL policies by the packets and network reachability problems due to
ACL policies during network-layer failures. Consequently, in a hybrid
SDN, PrePass-Flow uses ML models to predict the status of 𝑒𝑙 ∈ 𝐸 and
𝑒𝑠 ∈ 𝐸 in advance.

4.2. ML models for link failure prediction

In order to evaluate the performance of PrePass-Flow, we have used
the realistic parameters of network-layer failure mentioned in Table 1.
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Fig. 3. Total failure ratio vs. total downtime ratio to the major causes.
Table 1
Major causes of network-layer failure.

Failure Cause of failure

Network connection OSPF convergence
Configuration Modifying primary-backup routing
Software IOS upgrade
Power Power/UPS failure
Hardware Replacement of power supply/line card
Incident event OS reboot
Other Unreported or DoS attack

Moreover, Fig. 3 shows the impact of major causes of link failure, and
compares the failure ratio and downtime ratio. In Fig. 3 the sum of
values is less than 100% because it includes only cleaned syslog data,
following filtering out data of any transient events or multiple entries.
For instance, multiple down messages generated for the same link
within a close time interval are grouped, and the earliest start and end
times for the failure is saved only. The filtered out data accounts for the
remaining percentage to 100%. We can see from Fig. 3 that the network
connection, hardware, software, and configuration issues significantly
impact on the link failure. The link downtime ratio is more in case of
hardware issues followed by network connection and software. Other
causes affect less the downtime ratio, which means links are down
for a short time. However, link failure for a short time also creates
problems in a hybrid SDN network. PrePass-Flow considers all types
of link failures, e.g., for a short or long duration, and predicts link’s
status to minimize the link failure’s impact on the network reachability
and ACL policy violation.

PrePass-Flow assumes the history of any 𝑒𝑖 link represented by
as 5-tuple: 𝑒𝑖 = (𝐷𝑎𝑦𝑡𝑖𝑚𝑒, 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, 𝑙𝑖𝑛𝑘𝑢𝑝𝑡𝑖𝑚𝑒, 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,
𝑙𝑖𝑛𝑘𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑟𝑒𝑎𝑠𝑜𝑛). 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 represents the occurrence time of link
failure; 𝑙𝑖𝑛𝑘𝑢𝑝𝑡𝑖𝑚𝑒 is the time when the link has recovered or has
become operational again; 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 measures how many times
the specific link was down, and 𝑙𝑖𝑛𝑘𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑟𝑒𝑎𝑠𝑜𝑛 indicates the link
failure reason (i.e., power, configuration, hardware, and software), as
mentioned in Table 1. The total down duration of a link is 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 =
𝑙𝑖𝑛𝑘𝑢𝑝𝑡𝑖𝑚𝑒 - 𝑙𝑖𝑛𝑘𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡.

In PrePass-Flow, this 5-tuple is chosen as an input or independent
variable to the ML models which predict the status (output or de-
pendent variable) of the link. For example, when a new link-down
event occurs, 𝑒 = (𝐷𝑎𝑦 , 𝑙𝑖𝑛𝑘 , 𝑙𝑖𝑛𝑘 , 𝑙𝑖𝑛𝑘 ,
7

𝑥 𝑡𝑖𝑚𝑒 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 𝑢𝑝𝑡𝑖𝑚𝑒 𝑑𝑜𝑤𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑙𝑖𝑛𝑘𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑟𝑒𝑎𝑠𝑜𝑛), based on the historical statistics of link 𝑒𝑥, the SDN
controller uses the ML models to predict the status 𝑠 of the link
𝑒𝑥. Let 𝑍 =

{

(𝑒1, 𝑠1), (𝑒2, 𝑠2),… , (𝑒𝑛, 𝑠𝑛)
}

∈ (𝑒, 𝑠)𝑛 be the data on
𝑛 (5-tuple) independent variables, where the random pairs (𝑒𝑖, 𝑠𝑖), 𝑒𝑖
represent an instance in a D-dimensional feature space of the link like
𝑒𝑖 =

[

𝑒𝑖1, 𝑒𝑖2,… , 𝑒𝑖𝐷
]

and 𝑠𝑖 is the dependent variable/output of each
associated link 𝑒𝑖. The objective of ML models is to predict the status 𝑠
for a new link-down events 𝑒𝑥 = [𝑒𝑥1, 𝑒𝑥2,… , 𝑒𝑥𝑛] using learn function
𝑃 ∶ 𝑒 → 𝑠. In PrePass-Flow, we suggest two different algorithms
of binary classifications of ML, i.e., the Logistic Regression (LR) and
Support Vector Machine (SVM) models, to classify the link’s status,
(i.e, functional s = 1 or down s = 0), as described in the following
subsections.

4.2.1. Logistic regression model
Logistic Regression (LR) [29] is a statistical model, which is one of

the most commonly used supervised ML-based models for two-class (bi-
nary) classifications. In PrePass-Flow, we use LR model as the baseline
for binary classification problem, i.e., link 𝑒 is either functional (𝑠 = 1)
or fail (𝑠 = 0). Furthermore, an LR model predicates and describes the
correlation between one output/dependent binary variable (e.g., 0 or
1) and independent/input variables. In PrePass-Flow, 0 and 1 represent
the status 𝑠 of the link 𝑒. LR model uses logit function to predict the
occurrence probability of a binary event:

𝑙𝑜𝑔𝑖𝑡 =
𝑝(𝑒)

1 − 𝑝(𝑒)
, (4)

where logit shows the ratio of the probability that a link failure event
occurs to the possibility that it does not happen. Suppose the condition
of the probability 𝑝(𝑠 = 1|𝑒 = 𝑝(𝑒)), where 1 represents the class.
For this, PrePass-Flow uses a logistic or sigmoid function, as shown in
Eq. (5a), where Eq. (5b) shows the sigmoid function curve equation.

𝑝(𝑒) = 1
(1 + 𝑒𝑥𝑝−𝛼𝑒)

, (5a)

𝛼𝑒 = 𝑙𝑜𝑔
𝑝(𝑒)

(1 − 𝑝(𝑒))
. (5b)

Parameter prediction in LR model: In PrePass-Flow, the goal of
learning in the LR model is basically to predict the occurrence probabil-
ity of a link failure event 𝑝(𝑒). In the model, the equation parameters in
the LR two-class classification are provided as

⏞⏞⏞
𝛼 vector, as a logit

equation. For parameter prediction, LR uses the Maximum Likelihood
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method. Using Maximum Likelihood method, we label the data-set M
amples either 0 or 1.

• Samples with label 1: the goal of the LR model is to predict
⏞⏞⏞

𝛼

such that
⏞⏞⏞
𝑝(𝑒) is as close as possible to 1.

• Samples with label 0: the LR model should predict
⏞⏞⏞

𝛼 such

that
⏞⏞⏞
𝑝(𝑒) is as close as possible to 0 or predicts

⏞⏞⏞
𝛼 such

that 1 −
⏞⏞⏞
𝑝(𝑒) is as close as possible to 1.

Mathematically, for every sample M with label 1, LR estimates
⏞⏞
𝛼 , such that the product of all class 1 samples are supposed to

e as close to 1 as possible, as given below.
∏

∈𝑠𝑖=1
𝑝(𝑒𝑖). (6)

Similarly, for the group sample with 0, the LR predicts the
⏞⏞⏞

𝛼 ,
uch that the product of complement conditional probability is sup-
osed to be as close to 1 as possible, as given below,
∏

𝑠∈𝑠𝑖=0
(1 − 𝑝(𝑒𝑖)), (7)

here Eq. (7) uses the maximum value of
⏞⏞⏞

𝛼 , and 𝑠𝑖 represents the
tatus of link 𝑒𝑖.

Combining these requirements, in the proposed PrePass-Flow, we
efine the data parameters such that the product of both these product
is maximum over all elements of the data-set, as shown in Eq. (8):

𝐿𝐹 (𝛼) =
∏

𝑠∈𝑠𝑖=1
𝑝(𝑒𝑖) ×

∏

𝑠∈𝑠𝑖=0
(1 − 𝑝(𝑒𝑖)), (8)

here function in Eq. (8) is called Maximum Likelihood Function (MLF)
nd here we need to optimize the MLF, as shown in Eq. (9) :

= argmax
𝛼

𝑀𝐿𝐹 (𝛼), (9a)

𝐿𝐹 (𝛼) =
𝑚
∑

𝑖=1
𝑠𝑖𝛼𝑒𝑖 − 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝𝛼𝑒𝑖 ). (9b)

Note that the main objective of Eq. (9a) is to find the value of 𝛼 to
aximize MLF and Eq. (9b) shows the simplest form of MLF that needs

o be optimized. Consider Eq. (9b), which contains log and exponen-
ial components; such transcendental equations cannot be computed
recisely; however, a numerical method can be used for finding an
pproximation solution. Therefore, in the proposed PrePass-Flow, we
se the Newton Raphsin Approach (NRA) to find a good approximation
uickly, as shown in Eq. (10a).

𝛼𝑀𝐿𝐹 (𝛼) = ▽𝛼𝑀𝐿𝐹 (𝛼†) +
(

𝛼 − 𝛼†
)

▽𝛼𝛼𝑀𝐿𝐹 (𝛼†), (10a)

𝑡+1 = 𝛼𝑡 −
▽𝛼𝑀𝐿𝐹 (𝛼𝑡)
▽𝛼𝛼𝑀𝐿𝐹 (𝛼𝑡)

. (10b)

here, Eq. (10b) represents the t-iteration of NRA and it is also called
Newton Raphsin Equation (NRE). After t-iteration, then 𝛼 will eventu-
lly converge into an approximate coefficient vector. The NRE (see
q. (10b)) involves computing gradients w.r.t ▽𝛼 . For this, let deter-

mine the gradients, as shown in Eq. (11):

▽𝛼𝑀𝐿𝐹 = ▽𝛼

𝑚
∑

𝑖=1
𝑠𝑖𝛼𝑒𝑖 − 𝑙𝑜𝑔 (1 + 𝑒𝑥𝑝𝛼𝑒𝑖 ) , (11)

where we compute the MLF gradients. To compute the denominator
terms of NRE (see Eq. (10b)), which is also called Hessian Matrix, we
convert the gradient vector into a matrix representation, as shown in
Eqs. (12) and (13):

▽𝛼𝑀𝐿𝐹 = 𝐸𝑇 (𝑠 − 𝑝). (12)
▽ 𝑀𝐿𝐹 = −𝐸𝑇 𝑝 (1 − 𝑝 )𝐸. (13a)
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𝛼𝛼 𝑖 𝑖 (
▽𝛼𝛼𝑀𝐿𝐹 = −𝐸𝑇 𝑌 𝐸. (13b)

where Eqs. (12) represents the matrix notation. Additionally, we also
represent Eq. (13a) in a matrix Y notation, where Y is a diagonal n × n
matrix and the status of the 𝑖th link in the matrix is equal to 𝑝𝑖(1 − 𝑝𝑖),
s shown in Eq. (13b).

Algorithm 1: PrePass-Flow Logistic Regression
Input: Matrix 𝐸 contains 𝑀 samples, status 𝑠𝑖, threshold value

𝑡𝑣, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 𝑛
Output: status 𝑠𝑖 prediction of a link 𝑒𝑖
// constant complexity time (𝑐)

1 Function PrePass_Flow_LR(𝐸, 𝑠𝑖, 𝑡𝑣, 𝑛)
// initial value for 𝛼 and difference

2 𝛼 = rep(0, ncol(𝐸)) // (𝑐)
3 difference_value = DV // (𝑐)

// iterations-counter
4 iterations-counter = 0 // (𝑐)
5 while (𝐷𝑉 > 𝑡𝑣) do // (𝑛)
6 p = vector(Function(E, 𝛼)) // (𝑛2 + 𝑐)

// compute diagonal matrix of weights Y
7 Y = diagonal_mat(p(1-p)) // (𝑛2 + 𝑐)

// 𝛼 value at 𝑡
8 𝛼(𝑡) = compute (t(E)YE)) t(E)(s-p) // (𝑛2 + 𝑐)

// 𝛼 updation
9 𝛼 = 𝛼 + 𝛼(𝑡) // (𝑛 + 𝑐)
10 DV = sum(𝛼(𝑡)2) // (𝑛 + 𝑐)
11 iterations-counter+=1
12 if (iterations-counter > 𝑛 ) then stop // (𝑛)
13 return
14 Function (𝐸, 𝛼)
15 𝛼 = vector(𝛼) // (𝑐)

16 return 𝑒𝑥𝑝𝐸⋅𝛼

1+𝑒𝑥𝑝𝐸⋅𝛼 // (𝑐)

17 return 𝛼

After obtaining the matrix representations, we put Eqs. (12) and
(13) in the Newton Raphsin Equation (NRE) (see Eq. (10b)) to obtain
the final optimization form, as shown in Eq. (14):

𝛼𝑡+1 = 𝛼𝑡 +
(

𝐸𝑇 𝑌 𝑡𝐸
)−1 𝐸𝑇 (𝑠 − 𝑝), (14)

where we execute Eq. (14) t times iteratively (Newton update) to
predict the status of s. In each iteration p and Y will be updated, as
we recompute it by using an updated 𝛼. After t iterations, we can get
the full converged coefficient value also called maximum likelihood
estimator 𝛼, as shown in Algorithm 1.

In Algorithm 1, we set the initial value of 𝛼 for quicker convergence
and threshold value 𝑡𝑣. The threshold value uses to check whether the
PrePass-Flow Logistic Regression (LR) Algorithm is converging or not.
After 𝑡 iterations, the value of 𝛼 drops below the threshold value 𝑇𝑉
because it will become smaller and smaller in each iteration. In Algo-
rithm 1, the 𝛼 in each iteration moves closer to its highest likelihood
value. In case the value of 𝛼 does not drop below the threshold value,
then the algorithm terminates as it does not converge. To handle this
problem, we initialize a counter to count the iterations and terminate
the algorithm. Once the coefficient is predicted, then we put the values
in Eq. (5), to obtain the status of a link: either 0 or 1. For optimization
process, we use the following filter mechanism:

𝑝(𝑒𝑖) =
{

𝑠𝑖 = 1 ⟺ 𝑝(𝑒) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
𝑠𝑖 = 0 ⟺ 𝑝(𝑒) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

,

o chose the threshold. Here a value above the threshold means the link
s functional and a below threshold value means the link is down.

.2.2. Support vector machine
Another supervised ML approach, called Support Vector Machine
SVM), used for binary classification [30] is employed in PrePass-Flow.
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We use the historical data of link failure to train the support vectors of
SVM to make intelligent predictions about the link status (e.g., either
functional or down). To differentiate between the status of the link, we
used a Maximal Margin Classifier (MMC) in the SVM model. MMC uses a
yperplane line for optimal binary classification, and the mathematical
epresentation for this hyperplane is:

(𝑒) = 𝛼𝑇 ⋅ 𝑒 + 𝑎,

here e indicates the link (input parameter) also known as feature
ector, and the hyperplane of MMC is defined by vector 𝛼 and a bias
alue a.

In the SVM model, we assume that the training sample consists of
=
{

𝑒𝑖, 𝑠𝑖
}

, where i = 1, 2, 3, . . . , m, and m represents the total number
of links. The status of a link 𝑠𝑖 can be −1 or 1, (i.e., 𝑠𝑖 ∈ {−1, 1}),
where 𝑠𝑖 = 1 means p(e) > 0 and 𝑠𝑖 = −1 shows that p(e) < 0. For
the vector 𝛼 and bias a values, the SVM model finds the closest points
to the hyperplane; therefore, the perpendicular distance from 𝑒𝑖 to the
hyperplane can be mathematically expressed as:
|

|

|

𝛼𝑇 ⋅ 𝑒𝑖 + 𝑎||
|

∕ ‖𝛼‖ = 𝑠𝑖 ⋅
(

𝛼𝑇 ⋅ 𝑒𝑖 + 𝑎
)

∕ ‖𝛼‖ .

The prime objective of the SVM model is to get the values of a and
which maximize the distance, as shown in Eq. (15):

argmax
𝛼,𝑎

{

2
‖𝛼‖

min
𝑖

[

𝑠𝑖 ⋅
(

𝛼𝑇 ⋅ 𝑒𝑖 + 𝑎
)]

}

, (15)

where for an optimum hyperplane, the values of ‖𝛼‖ and bias a should
be optimized in Eq. (15), as shown in Eq. (16).

argmin
𝛼,𝑎

{1
2
‖𝛼‖2

}

. (16)

In order to get the optimum hyperplane, the 2
‖𝛼‖ is replaced with

he equivalent factor 1
2 ‖𝛼‖

2. In the SVM model, if the data contains
the non-linear distribution, then a positive slack variable 𝜀 is used
in the optimization process, (i.e., 𝜀𝑖, where i = 1, . . . , q). By using
the slack variable 𝜀, we can optimize the binary classification of SVM
and minimize the non-linear distribution, as shown in Algorithm 2.
Algorithm 2 is an optimized status 𝑠𝑖 classifier algorithm for SVM model
n sample 𝑍 =

{

𝑒𝑖, 𝑠𝑖
}

, where 0 < 𝜀𝑖 < 1 means that data is classified
correctly and if the value of 𝜀𝑖 > 1, then data is classified incorrectly. In
SVM, if 𝜀𝑖 > 1 (i.e., data is perfectly separable) leads to an overfitting
problem.

Algorithm 2: SVM Classifier
Input: sample 𝑍 =

{

𝑒𝑖, 𝑠𝑖
}

, slack variable 𝜀𝑖, where i = 1, ... , q
Output: status 𝑠𝑖 of a link 𝑒𝑖
// constant complexity time (𝑐)

1 𝜀 ← 0 // (𝑐)
// hyperplane-upper bound of all the sum of 𝜀

2 hyperplane = H // (𝑐)
3 for 𝑖 = 1 to 𝑛 do // (𝑛)
4 𝜀 = 𝜀 + 𝜀𝑖 // (𝑐)
5 H ≥ 𝜀 // Eq. (18) // (𝑐)

6 if 𝜀 ≤ 𝐻 then // (𝑐)

7 𝑝(𝑒𝑖) =
{

𝑠𝑖 = 1 ⟺ 𝛼 ⋅ 𝑒𝑖 + 𝑏 ≥ 1 − 𝜀𝑖
𝑠𝑖 = −1 ⟺ 𝛼 ⋅ 𝑒𝑖 + 𝑏 ≤ −1 + 𝜀𝑖

8 else if 𝜀 > 𝐻 then // (𝑐)
// use radial kernel function K(.)
// Eq. (19)

9 else // (𝑐)
10 overfitting problem
11 return 𝑠𝑖

To handle the overfitting problem, Soft Margin Classifier (SMC) [76]
s used in SVM. SMC optimizes the non-linear distribution, as shown in
9

Eq. (17):

max𝑁
𝛼1, 𝛼2,… , 𝛼𝑚, 𝜀1, 𝜀2,… , 𝜀𝑞 ,

(17)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑚
∑

𝑖=1
𝛼2𝑖 = 1,

𝑖(𝛼0 + 𝛼1𝑒𝑖1 +⋯ + 𝛼𝑚𝑒𝑖𝑚) ≥ 𝑁(1 − 𝜀𝑖),

𝑖(𝛼0 + 𝛼1𝑒𝑖1 +⋯ + 𝛼𝑚𝑒𝑖𝑚) ≥ 𝑁(1 − 𝜀𝑖),

𝑞
∑

𝑖=1
𝜀𝑖 ≤ 𝐻, 𝜀𝑖 ≥ 0, (18)

here N represents the margin width and 𝜀 represents the slack
ariables allowing observations that data is not perfectly separable/
lassified. The main objective of SMC is to increase the margin width
s much as possible. While H is the hyperplane, is in fact the upper
ound of the sum of all 𝜀 values, as shown in Eq. (18). A large value
f H shows a large margin width and low value denotes less tolerance
f miss-classifications [30].

The SVM model uses kernel functions K(.) for linear separation of
ata. The kernel function reduces the computational power as well as
oes the faster calculations. In the PrePass-Flow, we use a radial kernel
odel, as shown in Eq. (19):

(𝑒𝑖, 𝑒𝑖′ ) = 𝑒𝑥𝑝

(

−𝛾
𝑞
∑

𝑖=1
(𝑒𝑖𝑗 − 𝑒𝑖′𝑗 )2

)

, (19)

here 𝛾 is the tuning parameter of the kernel function K, which controls
he variance of the model. A low value of 𝛾 leads to high variance [30].

.3. Complexity analysis of LR and SVM algorithm

Suppose we have M samples (training samples) in the dataset. The
ndependent variables are 𝑒1, 𝑒1, . . . 𝑒𝑛, and each independent variable is
ssociated with a value of the dependent variable (output) represented
y s. In the LR and SVM algorithms, s is either s = 1 or s = 0. LR
lgorithm 1 consists of statements and while loop to compute LR
oefficients 𝛼 after the n iterations. The statements take constant time
(𝑐). Subsequently, Step 6, Step 7, and Step 8 involve computing the
alues in the matrix. The complexity is (𝑛2 + 𝑐). Therefore, the worst-
ase complexity of Algorithm 1 is: ((𝑐) + (𝑛 + 𝑐) + (𝑛2 + 𝑐)) ≈ (𝑛2).
imilarly, Algorithm 2 consists of statements and a loop. Therefore, the
orst-case complexity of Algorithm 2 is: ((𝑐) + (𝑛)) ≈ (𝑛).

. Performance evaluation and results

.1. Experimental setup

To evaluate the performance of PrePass-Flow, our test-bed includes
races of a real-life network.4 The dataset consists of 516 links and 38
witches. For evaluation, we constructed a hybrid SDN topology, using
random topology generator [77], in which we increased the network

ize. For simulation, we have used the Mininet5 network emulator with
OX6 controller. The simulation was carried on Intel core-i7 PC with
.40 GHz CPU and 12 GB of RAM, running 64 bits Ubuntu 16.04 LTS
S having Linux kernel version 4.4.

The Python library (NetworkX) is used to implement the net-
ork topology in Mininet. In hybrid SDN, we assume that Open-
low switches are the subset of legacy switches in a network. In
ininet, an OpenFlow Switch can act as a legacy switch by setting the

4 COMSATS University Islamabad (CUI), Attock Campus, Pakistan, https:
/attock.comsats.edu.pk/.

5 http://mininet.org.
6
 http://github.com/noxrepo/pox.

https://attock.comsats.edu.pk/
https://attock.comsats.edu.pk/
http://mininet.org
http://github.com/noxrepo/pox
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OVS mode as standalone and disconnect it from the SDN controller.
Legacy switches run the OSPF protocol [6], and SDN switches use
the OpenFlow protocol.7 Upon session establishment, the controller
hould send an 𝑂𝐹𝑃𝑇 _𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆_𝑅𝐸𝑄𝑈𝐸𝑆𝑇 message after 10 s.

The switch responds with an 𝑂𝐹𝑃𝑇 _𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆_𝑅𝐸𝑃𝐿𝑌 message.
long with other information, the capabilities field is a bitmap that
ses a combination of the different flags, like 𝑂𝐹𝑃𝐶_𝐹𝐿𝑂𝑊 _𝑆𝑇𝐴𝑇𝑆,
𝐹𝑃𝐶_𝑃𝑂𝑅𝑇 _𝑆𝑇𝐴𝑇𝑆, and 𝑂𝐹𝑃𝐶_𝐹𝐿𝑂𝑊 _𝑀𝑂𝑁𝐼𝑇𝑂𝑅𝐼𝑁𝐺. When
link or a port down. Then the SDN switch sends 𝑂𝐹𝑃𝑃𝐶_𝑃𝑂𝑅𝑇

_𝐷𝑂𝑊𝑁 and 𝑂𝐹𝑃𝑃𝑆_𝐿𝐼𝑁𝐾_𝐷𝑂𝑊𝑁 to the controller. In hybrid
SDN, the centralized controller is capable of modifying the routing
table on both legacy and OpenFlow switches, using the Telekinesis
module [78]. We specified the ACL policies at the POX controller.
POX controller installs the ACL policies for a flow at SDN switches.
The controller obtains the link status information from the network
regularly. This is referred to as a time slot (i.e., 10 s). We randomly
selected different percentages (%) of SDN switches e.g., 5%, 10%, 15%,
and 20%. Furthermore, we allowed every switch to receive randomly
generated flows (from 2 to 15) from an end-host having a delay in
[2, 15] ms interval. Additionally, for each flow, the link bandwidth
demand was also generated randomly in the [5, 15] Mbps interval. To
place the ACL policies on optimum interfaces in a hybrid SDN, we used
the concept introduced by the [14].

5.2. Training LR and SVM models

For training and testing the machine learning models, i.e., Logistic
Regression (LR) [29] and Support Vector Machine (SVM) [30], we have
utilized the real network dataset discussed in Section 5.1. The dataset
consists of links’ failure statistics of about 1 year, from April 15, 2019
o March 25, 2020.
Dataset: The main file of the dataset (syslog file) contains an event

og that includes data about the type of network element experienced,
ype of event, small descriptive text, and ID of the event. These events
ere detected by SNMP monitoring on the interface of the switches.
fter cleaning the syslog data, we filtered out all failure events such
s switch failure and link failure. The resultant filtered set consisted
f 79% actionable events in about 810,000 events per hour and was
sed to analyze and train the LR and SVM models. As the filtered set
s not large enough, we have used the leave-one-out cross-validation
pproach [79]. Additionally, we divided the dataset into two subsets:
0% training dataset and 30% testing dataset. In the training and
esting phases, the Scikit-learn library is used. After the training phase,
e generate synthesized traffic to test the proposed model.

.3. Validation and evaluation of LR and SVM models

To train and evaluate the outcome of the two models, we split
he dataset into training (70%) and testing (30%) sets. We evaluate
he performance using a confusion matrix approach, which is a useful
ethod to demonstrate the prediction results of ML models such as LR

nd SVM. In Confusion Matrix (CM), s = 1 represents a link is functional
nd s = 0 shows that it is down, as shown in Table 2. From the CM
alues, distinct performance parameters can be computed.

To evaluate the prediction interval of both LR and SVM, we have
onsidered four parameters: (i) accuracy, (ii) precision, (iii) sensitivity,
nd (iv) Receiver Operator Characteristics (ROC) and Area Under the
urve (AUC). We selected these parameters because they are broadly
sed in binary classification models.

7 https://opennetworking.org/wp-content~/uploads/2014/10/openflow-
witch-v1.5.1.pdf.
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Table 2
Confusion matrix.

Predicted link status

1 0

Actual link status 1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)

Table 3
LR and SVM model results comparison.

Model Accuracy Precision Sensitivity

LR 0.87 0.74 0.81
SVM 0.83 0.69 0.71

• Accuracy: It is referred to how correctly (in %) a model classi-
fied all samples. However, accuracy does not show positive and
negative classifications. It is appropriate when the observations
distrusted reasonably between the two classes.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

• Precision: It shows the ability of a model to find all appropriate
occurrences. This means the % of links predicted to down that
actual town.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

• Sensitivity: It is known as the Recall or true positive rate because
it refers to how well the model classifies true values. It is the
proportion of entries with the target condition and gives positive
test results.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝐹𝑁 + 𝑇𝑃

• Receiver Operator Characteristics (ROC) and Area Under the
Curve (AUC): For model performance, the ROC and AUC met-
rics are used. The higher value of AUC shows that the model’s
performance is excellent and lower means the model is not good
enough.

The PrePass-Flow examines the sensitivity and precision parameters
long with accuracy. However, the accuracy parameter does not always
ndicate the actual results, mainly when dealing with a non-linear
ataset. Therefore, we also compute the precision and sensitivity of
he proposed PrePass-Flow. Table 3 shows the computed values of
arameters for both models. We can see that the LR model performs
etter in terms of accuracy, precision, and sensitivity. The accuracy of
he LR model is 87%, while the SVM model’s accuracy is 83%. The
R model has a much higher precision score than the SVM model.
he precision parameter indicates that the precision of true positive
r negative was high in LR. Moreover, the LR also performs better in
he sensitivity evaluation.

Furthermore, in Fig. 4, the ROC plot of the outcome of both models
re shown. We can see that LR’s AUC (0.79) is higher than the SVM
0.73). The AUC curve of LR shows that at 0.5 False Positive Rate,
he True Positive Rate is almost 1 compared to the SVM model. From
he above results and analysis, we can conclude that the LR model can
redict the link status, e.g., s = 0 or s = 1 more accurately than the SVM

model.

5.4. PrePass-Flow: Performance parameters

We evaluate the performance of the proposed technique, PrePass-
Flow, by considering that there are a various number of ACL poli-
cies and switches that change in time. Furthermore, we compare the
performance with a state-of-art model called AutoConfig [13]. For
comparison and simulation, we consider the following parameters.

https://opennetworking.org/wp-content~/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content~/uploads/2014/10/openflow-switch-v1.5.1.pdf
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Fig. 4. ROC and AUC curve for LR vs. SVM model.

Fig. 5. SDN switches ratio vs. PDR.

Fig. 6. Impact of SDN switches (%) on ACL policy violation.

i. Impact of SDN switches (percentage): It is to randomly select the
% of SDN switch (i.e., 5%, 10%, 15%, and 20%) from the total
number of switches.

ii. Impact of links failures (percentage): It is varying the links failure
ratio in the network during simulation, e.g., 1%, 5%, 10%, 15%,
and 20%.

iii. Packets Delivery Ratio (PDR) (percentage): PDR ratio shows the
performance of the model. According to the defined ACL policy,
the ratio between the total number of packets sent from the
source node, and the total number of packets received at the tar-
get node is calculated. The performance of a model is considered
good if its PDR ratio is high.

iv. Packets policy violated (percentage): It is the number of ACL policy
violations in the network. For the ACL rules implementation
in the network, we used the method proposed in [14]. Conse-
quently, we also consider the number of packets dropped due to
11
Fig. 7. Link failure effect on PDR.

Fig. 8. Link failure effect on ACL policy violation.

network reachability problem because it also comes under the
ACL policy violations.

5.5. Simulations and results

5.5.1. Impact of SDN switches on PDR
In the simulation, we kept the links’ failure ratio constant (10%).

From the results, we compare the impact of SDN switches on PDR, as
shown in Fig. 5. We can see that PDR has increased when the number
of SDN switches increases in the network. Furthermore, when the SDN
switches increased to 15%, the PDR of the PrePass-Flow (LR) was 90%,
and the PDR of PrePass-Flow (SVM) was almost 90%. The PDR of the
AutoConfig model was always lower than the two models used in the
PrePass-Flow.

It is worth noting that when the SDN switches ratio was 20%,
the PDR ratio of both models of PrePass-Flow was almost 100%. The
main reason for this is that when the ratio of SDN switches increases,
the controller obtains more efficiently the status of the SDN links.
Therefore, the PrePass-Flow (LR) model can predict the status of the
links early, can compute the alternative path and install the ACL rules
in advance for the affected flows. However, the AutoConfig model
installs the ACL rules once the link failure occurs, which results in low
PDR.

5.5.2. Impact of SDN switches on ACL policy violation
To find the impact of SDN switches on ACL policy violation, we kept

the link failure ratio constant (10%), while varying the SDN switches
ratio from 5% to 20%. The results show that the proposed PrePass-Flow
(LR) and PrePass-Flow (SVM) performed better than the AutoConfig
model, as shown in Fig. 6. Furthermore, it is worth noting that the
number of SDN switches also has an impact on the ACL policy violation
ratio. The main reason is that when the number of SDN switches was
low, the controller had received few updated status info of the legacy
links. Less updated status information of links’ failure determined high
number of ACL policy violations. In Fig. 6, when the SDN switches ratio
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Fig. 9. Impact of network size on PDR (%), ACL policy violation (%), and end-to-end delay (s).
was 5%, the ACL violation in AutoConfig is more than 20%. However,
in the PrePass-Flow (LR) model, the ACL policy violation was only
13%. In the case of the PrePass-Flow (SVM) model, the ACL policy
violation was more than 15%, but lower than the AutoConfig model.
Additionally, when SDN switches ratio was 20%, the PrePass-Flow (LR)
model performs notably well.

5.5.3. Impact of links’ failure on PDR
To find the impact of links’ failure on PDR, we performed a simula-

tion in which we varied the ratio of links failure while the percentage
of SDN switches was kept constant at 10%. The results are shown in
Fig. 7. We can see that the links’ failure ratio drastically decreases the
PDR ratio in the AutoConfig model. However, the proposed PrePass-
Flow (LR) and PrePass-Flow (SVM) model variants achieved high PDR
ratio results. It is worth seeing that PrePass-Flow (LR) model achieved
more than 80% PDR ratio even when the links’ failure ratio was 20%.
Additionally, PrePass-Flow (SVM) model had about 75% PDR ratio. The
main reason for the high PDR ratio of the proposed PrePass-Flow is
accurately predicting the links’ failures and rerouting flows efficiently.
The AutoConfig model underperformed when the links’ failure was
20%, and SDN switches were 10%.

5.5.4. Impact of links’ failure on ACL policy
In a hybrid SDN network, links’ failure has a high impact on the ACL

policy violations. The reason is that the legacy links status information
passes through SDN switches to reach the controller, causing delays.
Therefore, the controller does not have the updated information about
legacy links and may forward the packet on a broken link or cause
a policy violation. The results in Fig. 8 show that increases in link
failure ratio also determine increases in the ACL policy violation. Ad-
ditionally, the proposed PrePass-Flow (LR) can predict more efficiently
than PrePass-Flow (SVM). Therefore, in the PrePass-Flow (LR), the ACL
violation was very low compared to the other two models. However,
PrePass-Flow (SVM) performed better than the AutoConfig model.
12
From the above results, we can conclude that the prediction of a
link failure in a hybrid SDN is a critical parameter because it dramat-
ically affects the PDR ratio. The results show that PrePass-Flow (LR)
performed the best among the compared approaches in terms of PDR
ratio reducing the impact of link failures on ACL policy violation and
network performance.

5.5.5. Impact of network size
To evaluate the PrePass-Flow performance using an extensive net-

work, we have created a hybrid SDN topology and increased the
number of switches from 50 to 250; the results are shown in Fig. 9.
In this scenario, we have considered 10% SDN switches, and the
remaining ones were used as legacy switches. We have kept the fail-
ure ratio fixed at 15%. From the simulation results, we can see that
our proposed PrePass-Flow models performed better than the existing
approach (AutoConfig) in terms of PDR (Fig. 9(a)), ACL policy violation
(Fig. 9(b)), and delay (Fig. 9(c)).

The results plotted in Fig. 9(a) show that as the network size
increased, the PDR decreased in all models. However, in both proposed
models, i.e., PrePass-Flow (LR) and PrePass-Flow (SVM), the effect was
considerably less evident as compared to that of the AutoConfig model.
Additionally, it is worth noting that the proposed models performed
better when the SDN ratio was only 10%, and link failure was 15%.

Furthermore, in Fig. 9(b), the ACL policy violations in the PrePass-
Flow models were considerably fewer compared to the existing ap-
proach. The results show that the AutoConfig model performed rela-
tively well in a small network, but it performed inadequately in a large
network. In the PrePass-Flow (LR), ACL policy violations are 10% lower
than those experienced by the AutoConfig model. Moreover, Fig. 9(c)
shows the results of the end-to-end delay, which is an essential pa-
rameter of the network performance. From the results, we can see that
the intended models had lower end-to-end delay than the AutoConfig
model when the network size reached 250 switches.
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The main reason for the outstanding performance of the proposed
models in PrePass-Flow is the proactive prediction of the outages. After
the prediction the PrePass-Flow proactively computes the alternative
paths and installs the ACL policy (if applicable).

6. Conclusion

In this paper, we proposed PrePass-Flow: an ML-based technique that
reduces ACL policy violations and network reachability problems due
to installed ACL policies on the interfaces, which occur due to network-
layer failures in a hybrid SDN. The PrePass Flow employs two ML
models: Logistic Regression (LR) and Support Vector Machine (SVM).
The PrePass-Flow is deployed into a SDN controller, where the models
are trained and used to predict network-layer link failures. When a
network-layer failure is predicted, the PrePass-Flow initiates protection
measures in advance, rerouting the flows as well as installing ACL
policies (if necessary) on alternative paths to avoid ACL violations,
network reachability problems, and flow disturbances. For performance
evaluation, we have used real-life network traces and computed the
accuracy, precision, and sensitivity parameters. The results show that
the PrePass-Flow (LR) model has 87% accuracy, and the PrePass-Flow
(SVM) model has 83%. Furthermore, the PrePass-Flow (LR) model
outperforms PrePass-Flow (SVM) model and an existing approach in
terms of PDR ratio and number of ACL policy violations. The future
work will include using unsupervised ML models such as clustering or
deep learning for software level failure prediction.
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