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Performance of Reliable and Time-sensitive Flows in

Hybrid SDN-based FC IoT Systems
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Abstract—The integration of SDN into legacy networks causes
both operational and deployment issues. In this context, this paper
proposes a novel approach, called An Intelligent Solution for
Improved Performance of Reliable and Time-sensitive Flows in
Hybrid SDN-based Fog Computing IoT Systems (IHSF). The pro-
posed IHSF approach has three solutions: (i) a novel algorithm to
deploy SDN switches between legacy switches to improve network
observability. (ii) A K-Nearest Neighbor Regression algorithm to
predict in real-time the reliability of legacy links at the SDN
controller based on historic data; this enables the SDN controller
to make timely decisions, improving system performance. (iii) A
Reliable and Time-sensitive Deep Deterministic Policy Gradient al-
gorithm (RT-DDPG), which optimally computes forwarding paths
in hybrid SDN-F for time-critical traffic flows generated by IoT
applications. The simulation results show that our proposed IHSF
solution has a better performance than the existing approach in
terms of network observability time, number of disturbed flows,
end-to-end delay, and packet delivery ratio.

Index Terms—Hybrid SDN, Link Failure, FC, IoT, Machine
Learning

I. INTRODUCTION

INDUSTRY 4.0 and particularly Industrial Internet of Things
(IIoT) rely on the interconnection of heterogeneous smart

devices such as actuators, machines, sensors, and controllers, in
order to provide Internet connectivity for diverse industrial re-
sources [1], [2]. These smart IoT devices have communication,
storage, computing, and sensing capabilities, albeit limited, and
produce pervasive sensing data about the industrial environment.
For example, the Remote Intelligent Monitoring System (RIMS)
dynamically controls the industrial environment through these
IoT devices in such a way that it reduces costs and/or increases
the execution speed of the production process. IoT also connects
the means of production and products via the standard Internet
Protocol stack. In order to make the IoT devices virtually
limitless in terms of computing, energy, and storage, integration
of IoT devices with cloud was performed. Although cloud
computing supports the execution of processor-intensive tasks, it
does not provide support for reliable communications with low
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latency to the delay-sensitive applications of smart industries
and smart cities. To address these issues, Fog Computing (FC)
[3] is employed in the context of IoT.

In FC-based IoT, fog nodes are deployed near IoT devices
and end-users. A fog node can be any device (e.g., a router,
a switch, or a wireless access point) that provides storage,
communication, and computing services at the network edge to
IoT devices. The closer proximity of fog nodes to IoT devices
reduces end-to-end delay, minimizes bandwidth usage, and also
decreases congestion in the backbone network.

In the context of the Fifth-Generation (5G) smart applica-
tions, managing and controlling ultra-dense distributed Internet-
connected smart devices, and synchronizing their operations
with a remotely-located cloud is a challenging task [4]. To
overcome this problem and meet the QoS requirements of
logically unified FC, a new model, called Software-Defined
Networking (SDN) based FC (SDN-F), is proposed by com-
bining the benefits of two emerging technologies: SDN and
FC for IoT applications [4]. The core idea of the SDN is to
decouple the control plane from the data plane by delegating
the control plane from all network devices (i.e., router, switch,
and APs) to a logically centralized controller [5]. In SDN, the
data and control planes use the standard south-bound API, e.g.,
OpenFlow protocol, for communication.

Despite its numerous advantages, the organizations are often
reluctant to replace their legacy networks with SDN-based
solutions due to several reasons, especially economic-related,
as discussed in [6]. Instead, a new hybrid SDN architecture
is proposed which deploys SDN devices (including switches)
incrementally among the legacy devices in the IoT network,
to improve network performance [7]. Although organizations
like Google [8] have adopted such an incremental approach to
deploying SDN in their data-centers over several years, to date,
this approach has not been considered in the context of IoT.

This paper proposes an Intelligent Solution for Improved
Performance of Reliable and Time-sensitive Flows in Hybrid
SDN-based FC IoT Systems (IHSF). IHSF solves several prob-
lems related to task offloading from IoT devices in a multi-
hop hybrid SDN-F network context. To the best of authors’
knowledge, this is the first proposal of a solution for reliability
and time-aware data forwarding in hybrid SDN-F, including
during critical events such as link failures. The contributions
of this paper are as follows:
• An innovative algorithm for deployment of SDN switches

among legacy switches, which considers the combined
values of switch degree (i.e., a number of links that are
incident to the switch) and a number of flows passing
through the switches. This algorithm enables the SDN
controller to improve network observability and predict
link reliability more accurately.
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• A K-Nearest Neighbor Regression algorithm to predict
in real-time the reliability of legacy links at the SDN
controller based on historic data. In hybrid SDN, legacy
switches share their link-state information, including re-
liability, with the SDN switches using traditional routing
protocols (e.g., OSPF). SDN switches pass on this infor-
mation to the SDN controller, introducing a delay. This
algorithm enables the SDN controller to have information
about both SDN links (real) and legacy links (estimated)
in real-time.

• A new Reliable and Time-sensitive Deep Deterministic
Policy Gradient (RT-DDPG) algorithm which optimally
computes a forwarding path in hybrid SDN-F for time-
critical traffic flow generated by IoT applications is pro-
posed.

The remaining paper is organized as follows. We present the
problem statement in Section II and our proposed solution in
Section IV. Section V includes the performance evaluation of
the proposed IHSF solution. The state-of-the-art is reviewed in
Section III and conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

This section focuses on SDN switch deployment and link
failure management in hybrid SDN-F for IoT. The time-critical
applications of IoT devices are adversely affected if flows are
dropped or delayed due to link failures. In practical networks,
typical failures determine links going down for almost 30
minutes, severely affecting performance, and this needs to be
avoided [9]. Next, the problem is divided into two stages:

A. Network Observability

In a hybrid SDN, let network observability time refer to the
time for the SDN controller to collect link statistics, including
link failure notification. Noticeably, the network observability
time (especially for legacy links) depends on the number
and location of SDN switches. The researchers have proposed
the Compressive Traffic Monitoring (CTM) model [7], which
assumes a fixed threshold value for the number of flows on
important links (a subset of all the links). The SDN controller
gets in real-time information about most flows by polling
directly the SDN switches related to load information on the
important links.
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Fig. 1: Showing the placement of SDN switches

To clarify the problem statement, consider we have a network
such as the one in Fig. 1. If SDN switches are placed based on
the CTM definition of the important links, then LS1, LS10,
and LS15 are replaced, and the controller gets directly statistics
about four links only (and no info on the legacy links is
forwarded). These links carry 189 flows. If we consider all links
as SDN links (connected to the SDN switches) in the CTM

model, then the SDN controller gets directly statistics related
to eight links that transfer 312 flows. Instead, an optimum
placement (i.e., based on combined switch importance and a
number of flows) of SDN switches (i.e., LS4, LS6, and LS11)
results in the SDN controller getting directly information about
486 flows and statistics from 18 links, as shown in Fig. 1. This
work focuses on the problem of placement of the SDN switches
such as the SDN controller receives information directly from
the largest number of links and flows. In this way, the network
observability time can be minimized.

B. Estimating Path Reliability of Legacy Links and Computing
Reliable Path in Hybrid SDN

In a hybrid SDN, a legacy switch periodically broadcasts
link status information in the form of Link State Packets
(LSP) to all switches, including the SDN switches. When the
SDN switches receive LSP information from legacy switches,
then they forward this information to the SDN controller. As
information is not passed directly, in case of a legacy link failure
[9], [10], [11], the SDN controller might not get the link down
status in real-time. Therefore, it is critical to be able to collect
at the controller, the most up-to-date information about the
legacy links and based on it to compute a reliable path for the
time-critical applications. This work focuses on two additional
problems. The first issue is predicting the current reliability of
legacy links from their historical reliability information at the
controller. Based on this, the controller problem is to identify a
reliable path for any flow based on current reliability values of
SDN links, and current predicted reliability values of the legacy
links.

III. RELATED WORK

In this section, we classify the existing literature into three
avenues, which are discussed in the following subsections.
Section III-A addresses the SDN-F architecture for IoT appli-
cations. The approaches related to hybrid SDN are explained in
Section III-B. Section III-C describes the ML-based routing in
SDN.

A. Approaches Related to SDN-F for IoT Systems

Currently, SDN is considered a viable solution for orchestrat-
ing and managing IoT applications, and FC [12], [13], [14] is
an important avenue. In [12], the authors proposed the SDN-F
architecture to improve the performance of IoT applications.
The architecture consists of geo-distributed fog nodes and
provides scalability and flexibility to IoT applications. In [13],
the authors highlighted the end-to-end QoS requirements in
heterogeneous IoT infrastructure and proposed a SDN-F middle-
ware architecture for the wireless domain to minimize end-
to-end delay, load balancing, and traffic engineering [14]. In
both [14] and [15], the authors discussed the advantages of the
integration of SDN and IoT architectures.

More recent works [4], [12], [16] have focused on offloading
the traffic related to IoT devices in the context of a SDN-
F architecture. In [4], the authors proposed a greedy-heuristic
scheme to minimize energy consumption and reduce the delay
by considering dynamic networks (i.e., SDN rule-capacity, link
utilization). This is as ubiquitous computing is difficult to
achieve using classic approaches and involves increased costs.
Therefore, the proposed work considers a multi-hop topology.
In [16], the authors employ a SDN-F architecture-based solution
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to minimize latency and enable efficient resource utilization. In
[12], the authors proposed a SDN-F architecture for IoT that
can support a high level of scalability, mobility, and real-time
data delivery. In [3], the authors proposed a fog-based approach
for IoT applications, which involves the selection of the most
appropriate fog node and channel for the applications. The
channel must satisfy both bandwidth and delay constraints. The
authors identified two problems in terms of Single-Application
Provisioning (SAP) and Multi-Application Provisioning (MAP)
and proved these problems as NP-hard. In [17], the authors
described a queuing analysis algorithm for tasks offloading for
both mobile devices to the fog server and fog server to the data
center (cloud). Based on the matching theory, the authors of [18]
suggested a distributed algorithm used by a user to select the
appropriate fog node/server based on computing time, transmis-
sion delay, and queue delay for the task offloading process. In
[19], [20], the authors proposed a hierarchical architecture and
solution for the IoT-fog-cloud task offloading process, which
minimizes the overall service delay and maximizes the Quality
of Experience (QoE).

All the approaches described above have been proposed for
pure SDNs (i.e., networks with all devices SDN-enabled). How-
ever, these approaches are not applicable to hybrid SDNs [6],
[21]. Some approaches suitable for hybrid SDNs are described
in the next section.

B. Approaches Applicable to Hybrid SDNs

In the hybrid SDN, it is a challenging task to deploy a given
number of SDN switches among legacy switches [5], [6], [7],
[22], [23] in such a way to increase the performance of the
network. It is particularly challenging to improve the efficient
usage of links’ bandwidth and to provide more alternative paths
for the flows in case of link failure. For example, Hong et al.
[22] replace the legacy switches by the SDN switches based
on the highest throughput value. To replace a legacy switch
with an SDN switch, the authors in [23] decide based on two
parameters: 1) maximum passing traffic through the switch, and
2) dynamical control of the maximum paths. In [5], the authors
used a heuristic algorithm for the deployment of SDN switches
among legacy switches. Their selection criteria are based on four
parameters: 1) switch with the highest degree, 2) link weights,
3) a node that frequently appears in the paths, and 4) switch
with the highest traffic volume.

In [7], the authors used a CTM model to compute the
important links in the network, and then place the minimum
number of SDN switches in such a way that all the important
links are SDN links. The important links are the subset of the
links, through which a large number of flows are passing. The
authors used a linear regression algorithm to estimate the current
traffic load of legacy links based on both the historical traffic
load of legacy links and the current traffic load of SDN links. To
minimize the budget constraint, the authors of [24] proposed to
place the SDN switches in such a way that the SDN controller
would be able to control the flows with maximum traffic
volume. However, the performance of the proposed approach
is based on a given traffic matrix of the network. The authors
of [25] placed the SDN switches in such a manner that every
flow from a source to a destination should pass through at
least one SDN switch, and a single SDN switch is sufficient to
enforce traffic load balancing and end-to-end network policies.
The proposed idea used a solitary confinement tree mechanism
(based on a spanning tree). However, the flows in the proposed

idea may be affected by increased latency because they may be
diverted to longer paths.

In hybrid SDNs, efficient traffic engineering depends on
having a global network view in real-time at the controller. The
global network view includes information about the status of
all links, such as traffic load on links, reliability of the links,
utilization of the links. Therefore, it is necessary to monitor the
global link status in real-time and accurately [9], [10], [25]. The
link failure is an important problem in hybrid SDNs and needs
to be solved. Existing literature [9], [10], [25] collects real-
time links’ information for the network and splits the flows
on alternative paths. In [10], the authors proposed a model
called Hybrid-Hei to achieve fast rerouting and load balancing
in a hybrid hierarchical SDN in case single link failure occurs.
This proposed solution deals with the link failure in intra-
Autonomous Systems (AS) and inter-AS. However, this leads to
high overhead in terms of configuration and computation time.
However, to the best of our knowledge, the existing literature
overlooked the parameter of link reliability while placing the
SDN switches. Moreover, existing works have not predicted the
current reliability of legacy links at the controller from their
historical reliability values.

After obtaining/predicting the reliability, end-to-end delay,
traffic, and bandwidth utilization information of the data plane,
the SDN controller in existing approaches computes the path
for a flow based on these parameters. Since the non-linearity
of computing the path based on these parameters, it is an
optimization problem and is hard to solve. In the quest to solve
this problem, we discuss some existing related approaches for
pure SDN in the following section.

C. ML-based Routing in SDN

In modern heterogeneous network architectures, ML-based
models can play an essential role in managing fundamentals
problems in networking, such as fault management, traffic
prediction, and network security [26], [27], [28], [29]. For fast
traffic classification, Li et al. [29] have used a multi-machine
learning approach to optimize the routing process. In this
approach, to extract flow features (i.e., protocols or application
type), clustering algorithms (Gaussian mixture model and K-
means) is used. A supervised learning mechanism (i.e., Extreme
Learning Machine) is then used to estimate traffic demand.
Finally, an adaptive multi-path routing method based on the
investigative hierarchy process is proposed to deal with elephant
flows according to the weights of different constraints factors.
In their proposed model, the controller installs the learned
classification results in switches to achieve fast identification.
In contrast to our proposed IHSF solution, the authors did not
forecast the path reliability in their proposed model.

Fast reactions to fault management is a critical task in
traditional networks as compared to a centralized and controller-
based network such as SDN. Zhilong et al. [30] proposed a ML-
based model to predict device failures in SDN-based optical net-
works. The authors combined Double Exponential Smoothing
(DES) and Support Vector Machine (SVM) models to forecast
proactively the risk of a device failure. In contrast, our proposed
work considers a hybrid SDN in which the controller does
not have updated information about the underlying network,
particularly about the legacy devices. This, in turn, creates
inconsistency in the controller. Therefore, it is a challenging task
to predict the legacy links status in real-time. Additionally, our
model not only predicts the reliable path for time-sensitive for
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the FC IoT systems but also computes reliable paths based on
IoT requirements like delay and bandwidth using the proposed
RT-DDPG algorithm.

To optimize the SDN routing performance intelligently, there
are several proposed Machine Learning-based algorithms [31],
[32], [33]. Parsaei et al. proposed a new heuristic algorithm [31]
to compute the Constraint Shortest Path (CSP) for telesurgery in
the SDN. The authors used an Ant Colony Optimization (ACO)
algorithm to handle the CSP’s NP-completeness and linear
programming problem. To improve the quality of the received
video in an operation room, the proposed model computes the
optimum path based on delay and link utilization. In their work,
the authors also considered a pure SDN architecture and did
not take into account link failure scenarios. In such delay-
sensitive applications, e.g., telesurgery, path’s reliability level
is a paramount parameter. Our proposed IHSF model provides
a reliable path for time-sensitive applications in a hybrid SDN.
Additionally, the proposed heuristic algorithm only works for
a specific problem (telesurgery) and has scalability issues. For
instance, when the network state changes, the parameters of
the proposed algorithm are readjusted by executing the whole
process again.

The authors of [32] proposed intelligent end-to-end adaptive
HTTP streaming in an SDN architecture. The proposed model
based on both Partially observable Markov Decision and Q-
learning optimized QoE. Deep Reinforcement Learning (DRL)
is an alternative solution to optimize the routing process and
handle dynamic network behaviour. DRL can optimize the
throughput, routing process, and achieves low latency. The
proposed model’s main purpose is to achieve fairness band-
width allocation to all end-users based on users’ demands and
reward function. However, the authors did not address the path
reliability problem in the proposed model, and they consider
pure SDN. The traditional Q-learning algorithms require mas-
sive storage space to store Q-table data. The data contains
the following pieces of information: network states, action,
and rewards. Consequently, the lookup time of Q-tables also
increases with the data size. To handle the aforementioned
Q-learning problems, in [33], the authors proposed a neural
network and Deep Q-Networks (DQN) to optimize the routing
process in a SDN architecture. However, the basic algorithms
for Deep Reinforcement Learning (DRL) like DQN only work
under discrete-time control and are not suitable for continuous
problems [34]. Thus, the underlying network needs a ML
algorithm that can learn from experience rather than an accurate
mathematical model. Additionally, the DRL-based DQN has a
limited action space. Therefore, we proposed RT-DDPG which
extends the DDPG algorithm [35] and works well for continuous
problems [34].

In pure SDNs, the controller has status information about
the network in real-time, but in hybrid SDNs, the controller
does not have updated status information about the network
in real-time [7]. Compared to the existing literature, e.g. [31],
[32], [33], our proposed ISHF model provides a reliable path
for time-sensitive flows in a hybrid SDN-based FC IoT system
in a scenario where the links can fail due to any reason. The
logically unified controller in a hybrid SDN has inconsistent
status information about the network, particularly about the
legacy switches and legacy links. To minimize the inconsistency
problem in the controller, first, we deploy the SDN switches on
the optimum location to minimize the network observability
time. Secondly, the K-NNR module is used to predict the status

of the legacy links. Third,we propose the RT-DDPG algorithm
to compute a reliable path based on IoT traffic demands such
as bandwidth and delay.

Table I summarises the existing literature on task offloading
in FC IoT systems in terms of major aspects. A detailed analysis
of the existing literature shows that there is a research gap
for reliable and time-sensitive flows in hybrid SDN-based FC
IoT systems, and there is a need to take into account link
reliability, multi-hop paths, and dynamic network conditions
such delay and bandwidth. Therefore, our proposed solution
addresses these concerns and outperforms existing approaches,
as demonstrated in Section IV.

IV. INTELLIGENT SOLUTION FOR IMPROVED
PERFORMANCE OF RELIABLE AND TIME-SENSITIVE FLOWS

IN HYBRID SDN-BASED FC IOT SYSTEMS (IHSF)

This section describes the Intelligent Solution for Improved
Performance of Reliable and Time-sensitive Flows in Hybrid
SDN-based FC IoT Systems (IHSF). IHSF addresses both
problems described in the previous section: placement of SDN
switches in a hybrid SDN-based FC IoT context and path
computation for reliable and time-sensitive flows.

Consider we have a legacy network represented by an undi-
rected graph G(V,E). In the graph G, V describes the set of
switches (i.e., V = {v1, v2, ..., vn}), and E represents the set of
links connecting those switches (i.e., ei(vi, vj)), such that vi,
vj ∈ V , and vi 6= vj . IHSF has three stages, as follows.

A. Placement of SDN Switches

In a hybrid SDN-F, the placement of SDN switches is a
non-trivial optimization problem. As already mentioned, our
proposed algorithm selects legacy switches to be replaced by
SDN switches according to both switch importance and their
degree values.

For the selection process of important switches, we extend
the concept introduced by the CTM model [7] to consider joint
switch and flow importance. First, we compute the importance
values for switches. A switch importance is assessed in terms
of the number of flows passing through it. The importance
values are stored in the set impval = {imp1, imp2, ..., impn},
such that impi represents the importance value of switch
vi ∈ V . Next, the degree values for all switches are com-
puted. The degree of a switch is defined as the number
of links that are incident to the switch. The degree distri-
bution for the switches is represented by the set degval =
{deg1, deg2, ..., degn}, where degi is the degree associated with
switch vi ∈ V . Then we compute the normalized importance
values and degree values of the switches using a linear normal-
ization method, as shown in Eq. (1) and Eq. (2), and represent
the normalized important values of the switches through the
set norm − impval = {normimp1 , normimp2 , ..., normimpn},
where normimpi represents the normalized importance value
of switch vi ∈ V . Further, the normalized degree values of
the switches are represented by the set norm − degval =
{normdeg1

, normdeg2
, ..., normdegn}, where normdegi is the

degree associated with switch vi ∈ V .

normimpi =

 impi
max
i

(impi)

 , (1)
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TABLE I: Existing Literature: Summary

Existing Literature Hybrid SDN SDN Link Failure Multi-hop Delay Path Reliability ML Bandwidth FC IoT Systems
Sendra et al. [33] × X × X X × X X ×
Parsaei et al. [31] × X × X X × X X ×
Jiang et al. [32] × X × X X × X X ×
Misra et al. [4] × X × X X × × X X
Yousefpour et al. [20] × × × × X × × × ×
Cheng et al. [7] X × × X X × X X ×
Yu et al. [3] × × × X X × × X X
Zhilong et al. [30] × X X X × X X × ×
Khakimov et al. [16] × X × X X × × × X
Chang et al. [17] × X × X X × × × X
Chiti et al. [18] × X × X X × × × X
Chu et al. [9] X × X X X × × X ×
Caria et al. [11] X × X X X × × X ×
Xu et al. [36] X × × X X × × X ×
Proposed Solution (IHSF) X × X X X X X X X

normdegi =

 degi
max
i

(degi)

 , (2)

The joint switch importance-degree is computed as follows:

Ji =
w1 ∗ normdegi + w2 ∗ normimpi

w1 + w2
, (3)

w1=w2 is considered here for equal relevance of switch degree
and importance. We rank the switches according to Ji values
and based on the ranks, we select the subset of M number of
important switches with highest ranks, ψ ⊂ V .

B. Network configuration and Path Computation for a Flow

After selecting the set of important switches M , we replace
these legacy switches with SDN switches. The SDN switches
communicate with the SDN controller via an out-band model
[37]. When a controller receives a request for path computation
for a flow from the data plane, the controller computes the
path based on link bandwidth utilization Bu, delay d, and
reliability of link <e in the network by using our proposed
IHSF for Hybrid SDN-F as discussed in Section IV-D. In
IHSF, SDN controller gets the current traffic passing through
SDN links directly, and computes the traffic of legacy links
using an approach like the linear regression algorithm [7]. SDN
controller gets the reliability of SDN links directly in real-time,
and the reliability of the legacy links is estimated as described
in Section IV-C. To get the bandwidth utilization of Bu, we
subtract the current traffic load from the link bandwidth (MB).
In IHSF, we consider a multi-hop network scenario. Therefore,
the cost function of delay d consists of flow installation delay
(I), transmission delay (T), propagation delay (P), and queuing
delay (Q). Thus, the delay d of a path can be represented as
dp =

∑
hx

(Ifnhx
+ T fnhx

+ P fnhx
+Qfnhx

), where hx and fn refer
to the IoT device and fog node, respectively.

C. Prediction of Legacy Links’ Reliability Levels

In a hybrid SDN-F, the SDN controller may not have the
current reliability values of legacy links. Therefore, in the
second stage of IHSF, we introduce an algorithm to compute
an estimated reliability level of the legacy links from historical
legacy links’ status.

Consider a graph denoted by a quadruple, G = (V , E, δ, <),
where V represents the set of n nodes, E is a set of e edges
(E ⊆ V × V )), and δ are external conditions that influence
the edge reliability. Formally, in-network, external condition δ

usually has the following possibilities: data link layer the in-
terface configuration problems; network protocol configuration,
or communication congestion problems.We hereinafter refer to
such external conditions as the edge’s failure and downtime δe
probability. Additionally, the reliability of edge <e : Ee → (0, 1]
is a function that assigns a reliability level to each edge in the
specific time slot (ti ∈ T ), as shown in Eq. (4),

<e(δe/ti) = 1−
∑
ti∈T

(1−<e(δe/ti)), (4)

where <e(δe/ti) represents the reliability’s level of the edge e
that gives an edge is more or less reliable in the given time slot
(ti).

Lemma 3.1: In hybrid SDN, the SDN controller does not
have up-to-date information about the legacy links reliability in
a given time T− ⊆ T .

THEOREM 3.1: Based on Lemma 3.1, this problem creates
an uncertain graph Gu produces 2e deterministic graphs Gu ⊆
G in the time T−, (i.e., Gu ⊆ G|T−).

Analysis: The reliability of all links (SDN link and legacy
links) in graph G can be calculated as follows, as shown in Eq.
(5),

<e∈E(δGu/T−) =
∑

es∈EGu

<es(δes/T
−)︸ ︷︷ ︸

(a) SDN links

+
∑

el∈E EGu

(<el(δel/T ∗))︸ ︷︷ ︸
(b) Legacy links

,

(5)
where Gu = (V, EGu), EGu ∈ E, and T ∗ < T−. In Eq.
(5), the SDN controller computes the reliability level of SDN
links directly. Still, computing the reliability level of the legacy
links is a critical task in time T−. In the intended solution,
we would like to predict the reliability level of the legacy
links <el(δel/T ∗) as much as closer to the <el(δel/T−) in
a given time T−. Therefore, the K-NNR module predicts the
reliability level of legacy links <el based on their historical
failure statistics. Note that <el ∪ <es ⊆ E.

The history of any ei link is represented as 5-tuple like ei =
(Daytime, linkdowntimestart, linkuptime, linkdownfrequency,
linkfailurereason). In the proposed work, this 5-tuple
is chosen as an independent variable to the K-NNR
algorithm is to predict the reliability level of the link.
Let Z = {(e1, r1), (e2, r2), ..., (en, rn)} ∈ (e, r)n show
that the data on n (5-tuple) independent variables, where
the random pairs (ei, ri), ei represent an instance in a D-
dimensional feature space of the link like ei = [ei1, ei2, ..., eiD]
and ri shows the dependent variable (reliability level) of
each associated link ei. The objective of K-NNR to predict
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the reliability level r for a new link-down event ex using
learn function f : ex → rx. In K-NNR, the nearest
neighbor’s method assigns a reliability level to ex as the
closet neighbor/instance in Z, using Euclidean, Manhattan, or
Makowski distance. In this work, we consider the Euclidean
distance, (ri, ex) =

√
(ri, ex)

2, where (ri, ex) shows the
distance between the target reliability value of ri.

The performance of the K-NNR algorithm strongly depends
upon choosing the optimal value for the k. For example, there
are k nearest neighbors to the ex with reliability level set r =
(rnn1, rnn2, ..., rnnk), such that for any ri is not in the nearest
neighbor set. Then the distance(ri, ex) ≥ distance (rnnk, ex),
this means that any other observation in the historical data is
further away than the k − th nearest neighbors set. Therefore,
for k > 1, the K-NNR algorithm estimates the target reliability
level f(ex) by averaging the target reliability level values of its
k − th nearest neighbors, f(ex) = 1/k

∑k
i=1 rnni.

Lemma 3.2: A reliable path is a path in which the minimum
reliability’s level of each link is maximum.

THEOREM 3.2: Based on Lemma 3.2, here, we define a
conditional reliable path indicator R〉〉.

Analysis: The R〉〉 is used for the selection of a most reliable
path for task offloading process <p((hx, fn)|T−) from IoT
device (hx. a.k.a. IoT devices) to the fog node (fn. a.k.a., fog
node), in the given time set T−, which can be computed by:

R〉〉 = max

min
 Pn∏
pi∈P

<e∈pi
(
δGu/T−

) , (6)

<p
(
(hx, fn) |T−

)
=

∑
Gu⊆G | T−

{
R〉〉(hx, fn)(<e(δGu/T−))

}
,

(7)
where R〉〉 is a function used to compute the reliable paths. A
reliable path is one in which the minimum reliability’s level of
each link is maximum, as shown in Eq. (6). A path pi(hx, fn),
in which more links have a minimum reliability level, has not
been taken into account unless and until if there is no other path
available. Therefore, the most reliable path in the network can
be as follows, as described in Eq. (7).

In the Algorithm 1, the test dataset, and remaining samples
are used as a training dataset. After this, the K-NNR function
K − NNR(.) predicts the accuracy of the legacy link’s reli-
ability level and returns the predicted value by summing up
Root Mean Squared Error (RMSE) values for each k value.
The K − NNR(.) function calculates the distance between
sample (Xtest) and all other samples in the training dataset
(Xtrain) using Euclidean distance. Then, it selects the nearest
k neighbors of Xtest. Finally, it estimates the predicted value by
the mean of the label values and returns the predicted value of
the legacy link. The K-NNR algorithm then selects k with the
lowest value of RMSE, as this is associated with the highest
accuracy. Finally, the K-NNR algorithm forecasts the legacy
link’s reliability level according to the best nearest value. In this
paper, we used the Leave-One-Out Cross-Validation (LOOCV)
approach [38], [39] for accurate prediction of the legacy links.

Complexity of Algorithm 1:
K-NNR Algorithm 1 predicts the legacy link reliability level

after a number of iterations. The algorithm consists of state-
ments and loops to predict the reliability of legacy links at the
SDN controller based on historical data. Suppose, we have m
samples with D-dimensional feature space d of a link e ∈ E.
Initially, the value of k is set to 0 for all observations in the

Algorithm 1: K-NNR - Prediction of Links Reliability
Level

input : E, Dataset (Z) with samples (m), feature
space (d), k

output: return reliability level of <e∈E
1 for k = 1 to n do // O(n)
2 RMSE[k] ← 0 // Root Mean Squared Error
3 K-NNR(Xtest, Xtrain, k)
4 // K-NNR algorithm, estimate the <e∈E
5 for y = 1 to n do // O(n2)
6 E-Dst[y] ← 0 // Euclidean Distance
7 for z = 1 to m do // O(n2 + dk)
8 E-Dst[y] ← E-Dst[y] + (Xtestz , Xtrainyz )2

9 end
10 E-Dst[y] ← sqrt(E-Dst[y])
11 end
12 // Sort Euclidean Distance List
13 for s = 1 to k do // O(n+ c)
14 neareastSet[s] = E-Dst[z]
15 end
16 sum ← 0
17 for s ∈ neareastSet do // O(n+ c)
18 sum ← sum + s
19 end
20 predrel ← sum/k
21 return predrel
22 end
23 for j = 1 to n do // O(n)
24 Xtest ← xj
25 Xtrain ← Z - {xj}
26 predrel ← K-NNR(Xtest, Xtrain, k)
27 RMSE[k] ← RMSE[k] + (predrelj − relvalj )2

28 end
29 // predict <e∈E
30 kbest argmink RMSE[k]

Xtrain set and the Euclidean Distance (E-Dst) is computed from
a new observation to Xtrain. Each E-Dst computation requires
O(n) run-time, and due to all observations, the run-time of E-
Dst is O(n2). Now, for a one-sample, the run-time is O(n), and
for all iterations, the required run-time is O(n2 +dk), where dk
shows the memory constraints. The run-time of other loops is
O(n). Therefore, the complexity of Algorithm 1 is O(n2 +dk).

D. DRL-based Framework for Hybrid SDN-F

The IHSF third stage involves the computation of the path for
an IoT flow with given requirements in terms of bandwidth and
delay. This is performed in SDN-F, with dynamic changes in
both link reliability levels (including link failures) and available
link bandwidth. To solve this problem, a novel Reliable and
Time-sensitive Deep Deterministic Policy Gradient (RT-DDPG)
mechanism, which extends the DDPG algorithm introduced
in [35], is proposed. The RT-DDPG-based path computation
solution employs the following components: State, Action,
Reward, and Agent, described next

1) State (S): In RT-DDPG, the state reflects the flow condi-
tions of the hybrid SDN-F network. In hybrid SDN-F, for each
flow, the agent performs the flow installation process in units of
time slots signified as t ∈ {t1, t2, t3, ..., T}. Suppose each time
slot is set to t seconds and the total time for flow installation
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from IoT device to fog node (hx, fn), the agent takes time
T . In ISHP, the state of the flow includes path reliability, delay,
bandwidth utilization, and the number of disturbed flows in case
of link’s failure. Therefore, the agent obtains the corresponding
reward by path reliability <p, bandwidth utilization Bu, delay
d, and the number of disturbed flows Υf . Thus, in the IHSF,
the state vector in one-time slot t might be explained, as shown
in Eq. (8),

s(t) =


<p1(t),<p2(t),<p3(t), ...,<pn(t),

Bup1(t), Bup2(t), Bup3(t), ...., Bupn(t),
Υf1(t),Υf2(t),Υf3(t), ....,Υfn(t),

d1(t), d1(t), d1(t), ...., d1(t)

 , (8)

where for <p we use the K-NNR algorithm (based on Eq. (7))
and bandwidth utilization on path p (i.e.,

∑
p∈<p1:e∈p L(p) ≤

Ce) should be less than or equal to link capacity, where L(p)
shows the bandwidth allocation on path p in time-slot t.

2) Action (A): The agent computes the optimal path for a
flow based on traffic policy for the time-critical IoT applications
in the hybrid SDN-F; therefore, the main objective of the
agent is to map the states’ space with actions’ space. For
the time-critical application, the action in IHSF includes three
portions: 1) selection of the most reliable path <p, 2) bandwidth
allocation according to the IoT traffic demand, 3) and minimum
delay. The agent decides which path is reliable for a flow, and
the action is explained in Eq. (9),

a(t) =
[
a
<p

h1 (t), a
<p

h2 (t), a
<p

h3 (t), ..., a
<p

hn(t)
]
, (9)

where a
<p

h1 (t) shows a vector a
<p

h1 (t) ={
a
<p

(hx,fn)(t) | <p ∈ {<p1, ...,<pn}
}

, and a
<p

h1 (t) signify
the reliability of path from <p (hx, fn) ∈ (0, 1]. Additionally,
the action should have met the bandwidth requirement of the
flow.

3) Reward (R): In RT-DDPG, the agent gets the rewards
from the feedback of the network G based on the current state
si ∈ S and current action ai ∈ A. Subsequently, the agent
continuously improves to compute a more accurate path for the
flow by evaluating the effectiveness of rewards. This is because
different actions infer different rewards. In the proposed hybrid
SDN-F architecture, the path’s reliability level and also other
QoS requirements including the minimum number of disturbed
flows, maximum bandwidth utilization, and minimum delay, and
these parameters are the main reward factors. Therefore, the
transmission of IoT flows at each time slot contains the follow-
ing parts: a) transmission of flow on a reliable path <p (hx, fn).
b) the path should fulfill these other QoS requirements. Thus,
the reward R(t) at time-slot t can be computed as follows, as
shown in Eq. (10),

R(t) =
1

Z

∑
z∈Z

(βR
<p

hx
(t)) + (αRQoShx

(t)), (10)

where Z shows the communication session occurring at time-
slot t, and |Z| signifies the total number of the communication
sessions in a network, where β and α are tuning weight and
determined by the specific situation and β + α = 1. Additionally,
R
<p

hx
(t) shows the reliability reward determined based on the K-

NNR algorithm and also see the Eq. (6) and Eq. (7). Due to
link failure, the R<p

hx
(t) can be computed as follows, as shown

in Eq. (11),
R
<p

hx
(t) = −Υhx

− dhx
, (11)

where Υhx
shows the number of disturbed flows in case of a

link failure, and dhx
signifies the delay to compute a path for

a flow and also show the delay to reroute the disturbed flows.
Additionally, the Reward of QoS RQoShx

(t), as shown in Eq.
(10), determined based on link constraints, like flow’s drop ratio,
bandwidth utilization, and delay at time-time can be signified
by Eq. (12),

RQoShx
(t) =

∑
<p∈<p1

,..,<pn

a
<p

h1 (t)(−d(hx,fn)−Υ(hx,fn)−Bu(hx,fn)),

(12)
where d(hx, fn), Υ(hx, fn), and Bu(hx, fn) represent the delay,
disturbed flows ratio, bandwidth utilization between a IoT and
fog node (hx, fn) respectively.

4) Agent (AG): The agent is located at the level of the
SDN controller and is the brain of the RT-DDPG. The agent
collects the information of the underlying network G from
the SDN controller and generates a corresponding routing path
for a flow. The agent evaluates the network performance after
the path is executed by forwarding the flow to determine the
rewards obtained by the routing path and adjust parameters to
achieve higher reward values. In the training session, the agent
learns enough about the network based on historical interaction
data/records. Therefore, the agent computes an approximately
optimal path in the real hybrid SDN-F network for IoT appli-
cations.

Lemma 3.3: The RT-DDPG agent optimizes the path com-
putation process based on new states (s ∈ S), actions (a ∈ A),
and rewards (r ∈ R) functions.

THEOREM 3.3: Based on Lemma 3.3:, in hybrid SDN-F,
the RT-DDPG computes the path based on d(hx, fn), Υ(hx, fn),
and Bu(hx, fn).

Analysis: In RT-DDPG, the agent layer consists of an actor-
critic model. The actor contains two networks, that is, the
primary actor-network Ψ(s|θΨ) and target actor-network Ψ∗,
as shown in Fig. 2. The target actor-network Ψ∗ and target
critic-network Q∗ have the same components as primary actor-
network Ψ(s|θΨ). Additionally, the input and output of the Ψ∗

and Q∗ are same to the Ψ(s|θΨ) and Q(s, a). However, the main
difference between the primary actor-network (i.e., Ψ(s|θΨ) and
Q(s, a)) and target critic-network (i.e., Ψ∗ and Q∗) is that the
input of target critic-networks is the Transformed State (TS),
not the current state (s).

The RT-DDPG model continuously gets the samples of state
(s) by interacting with the network G at time-slot t. Thus,
RT-DDPG uses replay buffer (mini-batches) to store samples
and uses these samples to improve the training and learning
process in each batch. In the RT-DDPG model, the primary
critic-network Q(s, a) is trained to minimize the loss function,
as shown in Eq. (13),

Π(θ) =
1

k

∑
t

(τ(t)−Q(s(t), a(t) | θQ))2, (13)

where τ(t) is the target Q-value. In Eq. (13), Deep Q-
Learning (DQL) is used to train the primary critic-network and
Q(s(t), a(t) | θQ) is obtained by adding a(t) into the primary
critic-network. By taking state s(t) as the input, we can obtain
the a(t), as shown in Eq. (14). The target value τ(t) of Q-value
can signify as follows (see Eq. (15)),

Q(s(t), a(t))←
[

Q(s(t), a(t) + ψ(r(s(t), a(t))) +
max
a(t+1)Q(s(t+ 1), a(t+ 1))−Q(s(t), a(t))

]
,

(14)
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Fig. 2: RT-DDPG based IHSF architecture

τ(t) = r(t) + λQ∗(s(t+ 1),Ψ∗(s(t+ 1) | θΨ∗
)| θQ

∗
). (15)

By adding the current reward r (t) and the Q (s, t) value
Q∗
(
s (t+ 1) ,Ψ∗

(
s (t+ 1) |θΨ∗) |θQ∗)

, we can obtain the
value of target critic-network Q∗ in the next batch. The output
action Ψ∗

(
s (t+ 1) |θΨ∗)

is obtained at the next batch when
the input state is s(t+1), and here λ is considered as the discount
factor. Using PG (Policy Gradient) process, the gradient of
actor-network is shown in Eq. (16),

ρH(θΨ)

ρ(θΨ)
= Gs

[
ρQ(s, a|θQ)

ρa

ρΨ∗(s|θΨ)

ρθΨ

]
. (16)

In the proposed hybrid SDN-F architecture, the agent, the
actor-network, updates the network’s parameters, as shown in
Eq. (17). The actor-network updates depend on a reverse PG.
More precisely, the primary actor can output multiple actions
for the same s(t).

∇θΨH ≈ 1

K

∑
t

[
∇aQ(s, a|θQ)|s=s(s(t)),a=Ψ(s(t))

∇θΨΨ(s| θΨ)|s(t)

]
. (17)

In RT-DDPG, as mentioned earlier, the different actions a(t)
might be entered into the primary-critic network and can obtain
different Q values. Based on the Q value, the probability of
the corresponding action can be decreased or increased to get a
more considerable Q value. Thus, the target network is updated
by using Eq. (18) and Eq. (19), as shown below,

θQ
∗
← µθQ + (1− µ)θQ

∗
, (18)

θΨ∗
← µθΨ + (1− µ)θΨ∗

. (19)

V. PERFORMANCE EVALUATION AND RESULTS

We simulated a real network topology1 using the Mininet
emulator and the POX controller. The topology consists of 38

1COMSATS University Islamabad (CUI), Attock Campus, Pakistan,
https://attock.comsats.edu.pk/

switches and 516 links. For results in Fig. 3(b), Fig. 4, and Fig.
5, for performance evaluation and experimental results of the
proposed IHSF model and CTM it is compared against, we use
the following parameters in the simulation setup. We generate 6
IoT applications, and each application has between 2 to 10 flows
(randomly generated) from different IoT devices with random
delay in the [10, 20] ms interval. Additionally, for each IoT
flow, the bandwidth demand was also generated randomly from
the [1, 20] Mbps interval.

For the prediction of legacy links reliability level, we use
a dataset of link failure statistics of about six months period
(April 15, September 21, 2019). We collected the network data
and filtered the syslog file to reduce the number of transient
events. The filtered syslog file consists of a smaller set of
actionable events. This is as syslog messages, in particular, can
be incorrect as network switches send several messages even
though a link functions well. The syslog file consists of more
than 750, 000 events per hour, but the actionable events are
75%. The event log contains information about what type of
network element experienced the event, type of event, small
descriptive text, and ID. From the syslog file, primarily, we
extract all “down” events for two types of failures, i.e., switches
and links. These events are detected by SNMP monitoring on
the interface state of switches. We use a real network dataset
to evaluate the performance of the IHSF model. Figure 3(a)
shows the distribution of link failures events that occurs over
an almost six months period (April 15, September 21, 2019).
After cleaning the syslog data, we use the proposed K-NNR
algorithm [39] and predict the reliability level of legacy links
and then compared them with the actual reliability level of the
links.

A. Accuracy Prediction of K-NNR in IHSF Model
We divided the link failure dataset into two subsets: 70%

training set and 30% testing set. We used the ML library named
Scikit-learn for Python and we performed various simulations
by varying the k value from 1 to 20 to examine the effect
of the k parameter on the prediction accuracy, as explained in
Algorithm 1. In IHSF, the dataset size of our realistic network
is not large enough; therefore, for accuracy predication of the
legacy links reliability level, we used the Leave-One-Out Cross-
Validation (LOOCV) approach [38], [39].

From the result presented in Fig 3(b), it is noted that the error
rate increases with increasing the value of k. In the various
simulations, the average values of RMSE (Root Mean Square
Error) are 0.0095821382 ± 0.0074189614, and the average
values of MAE (Mean Absolute Error) are 0.0040949598 ±
0.0023610452. It is observed from the results that RMSE and
MAE values increase with k when k > 9, and decrease when
k < 9, and between 5 to 9, the K-NNR algorithm gives a
smaller mean error. Therefore, based on analysis, we select the
k value 7 for reliability prediction in the simulations, as shown
in Fig. 3(b). The K-NNR algorithm predicts very well the link
reliability levels, and the prediction accuracy is 86.54%.

B. Convergence of RT-DDPG in IHSF
To optimize the performance of the RT-DDPG agent of the

proposed IHSF, we train the agent by varying the numbers of
flows. Additionally, in the proposed, we employed TensorFlow,
an open-source platform for ML, in the back-end. For agent
implementation, Python with Keras is used, which is a High-
Level Neural Network (HL-NN) API. On top of TensorFlow,
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Fig. 3: Accuracy Prediction of K-NNR in IHSF Model.
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Fig. 4: Convergence of RT-DDPG in IHSF Model.

this API runs efficiently. In the simulation (RT-DDPG), we use
training events/episodes up to 400. For computing the value of
the accumulated rewards, we set the maximum step to 15 in
each event. Before explaining the results, next, the convergence
process of RT-DDPG is discussed.

Results in Fig. 4(a) show the effectiveness and convergence

of the RT-DDPG based routing in the proposed solution. Based
on the defined parameters in the reward function (see Eq. 10),
Fig. 4(a) presents a learning curve of the RT-DDPG based
routing in the network, which shows the total and mean total
reward values in several training events. The proposed routing
method improves the reward value in each training episode.
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(a) SDN switches ratio (b) DF vs. No of Flows

(c) E2E-D (ms) vs. No of Flows (d) PDR (%) vs. No. of Flows

Fig. 5: Performance comparison between IHSF and CTM

By having maximum rewards, it means that our proposed
approach computes more often the optimum path based on
model parameters such as maximum reliable path, bandwidth
utilization, minimum delay, and a number of disturbed flows.
Noticeably, the convergence ratio of the proposed RT-DDPG
routing is better for time-critical applications.

To compute the optimal path for time-critical IoT applications
in the proposed solution, we train the agent of RT-DDPG with
different Learning Rate (ψ) and various discount factors (λ),
as explained in Eq. (14). Figure 4(b) shows the convergence
level for different discount factors (λ). As shown in Fig. 4(b),
the convergence level is better for the RT-DDPG based routing
when λ = 0.9. The learning rate (ψ) also has a significant impact
on the convergence level, as shown in Fig. 4(c). From these
results, for further simulation (i.e., for results in Fig. 5), we
choose ψ = 0.1, and λ = 0.9. Additionally, we use the same
reward value for both parameters, i.e., (β + α) = (0.5, 0.5).

C. Comparative IHSF and CTM Results

In this section, first we discuss the performance metrics that
will be used to compare our proposed approach with CTM, an
existing state-of-the-art approach. For time-critical applications,
these parameters are essential for consideration in the hybrid
SDN-F.

1) The Number of SDN Links: Fig. 5(a) shows that our
proposed approach has higher % of SDN links as compared
to CTM. By having more % of SDN links in our proposed
approach, it means that the SDN controller gets the link state
information including the reliability value of more links in real-
time, and has to predict the reliability of less number of legacy
links. This improves the accuracy of a computed path in our
approach. In the proposed approach, the controller obtains more
links’ information as the ratio of SDN switches is between 0.25
and 0.45. The controller gets almost 90% links’ information
at 0.35% SDN ratio. The main reason is that the proposed
algorithm focus on the optimal value of important switch and
maximum degree of a switch.

The main objective of our proposed model to upgrade a
minimum of the legacy switch into important SDN switches
can approximately predict the link’s reliability level of legacy
links. Therefore, for results, we only upgrade 0.25% switches
to SDN switches, and remaining are legacy switches. Based on
this observation, in the proposed model, the number of SDN
links is 70%, and legacy links are 30%. In the CTM model, the
number of SDN links is 58% and 42% legacy links.

2) The number of Disturbed Flows (DF): The main objective
of this paper is to minimize the impact of a link failure on the
time-critical and computational intensive flows. The proposed
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model uses the K-NNR module to predict the reliability of the
legacy links and provides a reliable path for the flows. The
ratio of DF increases in both the approaches as the number of
flows increased. This is because of the number of flows per link
increases. The figure also shows that the link failure event has a
significant impact on the number of disturbed flows. However,
the number of DF is comparatively very less in the proposed
model as compared to the CTM model, as shown in Fig. 5(b).

3) End-to-End Delay (E2E-D): E2E-D shows the time a flow
takes from the IoT device to the fog node. In our simulation, the
E2E-D includes flow installation process, transmission delay,
queuing delay, and processing delay. Additionally, the same
E2E-D parameters are considered for rerouting the disturbed
flows. From Fig. 5(c), one can note that the proposed approach
significantly reduces the E2E-D as compared to the CTM due
to following reasons. First, our proposed approach considers
both the link reliability and available bandwidth of the links
in computing the path for a flow. Second, our approach has
less number of DF, as shown in Fig. 5(b). This is because our
approach considers the link reliability in computing the path.
This, in turn, reduces the occurrence of recomputing the path
for the distributed flows. Third, our approach reduces the traffic
at the controller by reducing the number of DF. This allows
the controller to compute the path for other flows. Fourth, our
approach uses the RT-DDPG algorithm to compute the path,
and its accuracy has increased, as shown in Fig. 3(b).

4) Packet Delivery Ratio (PDR): PDR is the ratio of a
total number of packets transmitted by the origin node (IoT)
to the total number of packets successfully received at the
destination nodes (fog nodes). The larger PDR shows the better
performance of the proposed model. We analyze the PDR ratio
of the proposed approach as compared to the CTM model.Figure
5(d) shows that the PDR ratio decreases with the increase of
the number of flows in the network. From the results, we can
provide the analysis that the PDR ratio in the proposed model
is almost 68%; however, in CTM, the PDR ratio decreased to
almost 52%. We can also see that at 1000 flows, the PDR
of the IHSF model is 16% greater than the CTM model.
Thus, our novel proposed IHSF model for IoT applications
performs outstandingly in terms of SDN switches selection,
minimize the end-to-end delay, and minimize the disturbed
flows. Additionally, our novel proposed IHSF model is also
applicable other than IoT traffic. In this paper, throughout, we
only focused on IoT applications because the IoT applications
need more and more reliable communication services.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed IHSF, a novel solution that improves
the performance of hybrid SDN-based FC architecture for IoT
applications. First, IHSF selects a subset of legacy switches and
replaces them with SDN switches by considering both switch
importance and number of flows in order to improve network
observability. Secondly, IHSF predicts the current reliability of
legacy links based on their previous reliability values at the SDN
controller using an improved K-NNR algorithm, which achieves
a prediction accuracy of 86.54%. Thirdly, IHSF uses RT-DDPG,
a novel Deep Reinforcement Learning algorithm to find the
optimal path for a flow based on maximum path reliability,
minimum delay, and bandwidth utilization. Testing results show
that the proposed solution outperforms a current state-of-the-
art approach. Future research will focus on improving the
prediction accuracy of legacy link reliability and testing in a

more realistic IoT scenario, including both static and mobile
IoT nodes.
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