
Multicast-Aware Optimization for Resource Allocation with Edge Computing and Caching

Hao Haoa, Changqiao Xua,∗, Shujie Yanga, Lujie Zhongb, Gabriel-Miro Munteanc

aState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
bInformation Engineering College, Capital Normal University, Beijing 100048, P. R. China.

c Performance Engineering Laboratory, School of Electronic Engineering, Dublin City University, Dublin, Ireland.

Abstract

Mobile edge computing (MEC) can save backhaul network bandwidth and meet latency requirements, rising as a key technology
for computation-intensive and delay-sensitive applications. Although many works have studied various problems of MEC (e.g.
computation offloading, resource allocation), most of them only consider unicast scenarios, and ignore multicast issues. The reason
is that MEC aiming at personalized computing of users conflicts with multicast which demands transmission of the same data
stream. This makes MEC and multicast seem inconsistent. However, in fact, there will be lots of services, whose computation
process is different but the result may be same (e.g. media push), which can greatly benefit from multicast over MEC and make the
combination of multicast and MEC meaningful. In this paper, we first consider challenges and propose multicast-aware resource
allocation for MEC, which jointly optimizes computing and caching in multicast scenarios. Consider the complexity, we formulate
the problem as an online optimization by jointly minimizing the average time delay and energy consumption, and separate it into
two subproblems that can be solved per time slot. Then, an efficient online algorithm called MA-ECC is proposed to solve the
problem. Finally, numerical results show that MA-ECC has fast convergence and can effectively reduce service latency while still
keeping energy consumption low.

Keywords: Mobile Edge Computing, Multicast, Stochastic Optimization, Resource Allocation.

1. Introduction

Many new computational-demanding services, such as video
codec, face detection, etc. are emerging and becoming essen-
tial elements in our life. While enriching our daily life, they
also causes more consumption of computing, energy and other
resources for mobile devices. To address this issue, researchers
proposed cloud computing which can effectively reduce the
computing pressure of mobile devices by offloading computing
services to remote cloud servers.[1] However, cloud computing
tends to have high service delay because of the long transmis-
sion from users to cloud servers, and it is hard for the cloud
servers to support computing demand of all devices. In this
context, mobile edge computing (MEC) [2] was proposed to
achieve lower service delay by moving computing tasks from
the remote servers to the edge base stations which are closer to
users.

An important avenue for research in MEC is comput-
ing resource allocation in heterogeneous cellular networks
[3][4][5][6][7][8]. The reason is that unlike the cloud,
computing resource of base stations(BSs) is limited, im-
plying that computing resource allocation affects signifi-
cantly MEC efficiency. In addition, BSs need to cache

∗Corresponding author: Changqiao Xu
Email addresses: hao_hao@bupt.edu.cn (Hao Hao),

cqxu@bupt.edu.cn (Changqiao Xu), sjyang@bupt.edu.cn (Shujie Yang),
zljict@gmail.com (Lujie Zhong), gabriel.muntean@dcu.ie.
(Gabriel-Miro Muntean)

related databases/libraries before providing edge computing
[9][10][11][12][13]. Consequently, resource allocation with
joint optimization of computing and caching is of double im-
portance for MEC.

Although some excellent works have focused on computing
resource allocation or service caching, they have usually opti-
mized one these aspects only. Moreover, existing works studied
computing and caching resource allocation in unicast scenar-
ios, but have not focused on multicast yet. Multicast technol-
ogy, which effectively utilizes the intrinsic broadcast nature of
BS channels, is an efficient way to deliver identical content to
satisfy multiple requests [14]. At first glance, MEC and mul-
ticast seem to be two orthogonal research directions, focusing
on personalized processing and same content transmission, re-
spectively. However, we discover that many MEC services can
benefit from multicast.

For example, in live video case, the applications analyse
packet loss, available bandwidth and other factors to provide
appropriate bitrate version for users by video codec. Consider-
ing that the number of video versions (e.g. 360P, 720P, 1080p,
etc.) is limited, users with similar link qualities will get the
same bitrate version [15]. Therefore, we can encode at edge
base stations and transmit the same version to users with similar
link qualities by multicast to improve transmission efficiency,
which is an effective combination of MEC and multicast. An-
other relevant example involves media push. A typical solu-
tion is that users with similar interests are allocated to the same
group and are pushed the same content [16][17]. If we can joint

Preprint submitted to Journal of LATEX Templates December 5, 2020

MEC and multicast, edge base stations analyze user interests
and allocate users with similar interests to the same group, then
use multicast to push same contents to users in same group,
which will greatly improve transmission efficiency. Extrapolat-
ing these examples, note that these services have different com-
putation processes, but may result in the same outcome, which
means multicast is of high potential in MEC. Therefore, it is
valuable to study the resource allocation with edge computing
in multicast scenarios.

The multicast-aware resource allocation with joint optimiza-
tion of computing and caching faces many challenges. First,
computing, caching and multicast are highly coupled and in-
teracting with each other, so they should be addressed jointly.
There are two variables in this problem, caching decision which
is a zero-one type integer, and computing allocation decision
which is a continuous variable. The problem is hard to be
solved because of a mixture of discrete variable and continu-
ous variable, which makes some methods such as reinforcement
learning inappropriate.

Second, the collaboration between edge base stations and
cloud servers should be considered. As we all know, the lim-
ited resources of the edge base station make it impractical to
provide all services. In order to provide high quality services,
cloud servers are needed besides edge base stations. But, dif-
ferent services require different aspects of resources [18]; for
instance face recognition focuses on computing resources, but
VR needs more storage space. Therefore, how to coordinate the
tasks allocation between edge and cloud is a big challenge.

Third, network variants are highly dynamic and stochastic.
We should use long-term average performance to evaluate an al-
gorithm. However, this usually needs future information which
is hard to be obtained in dynamic network. So, it is very chal-
lenging to optimize long-term average performance.

In this paper, we addresses multicast-aware resource al-
location with joint optimization of computing and caching.
The Multicast-Aware Caching and Computing algorithm (MA-
ECC) is proposed to enable efficient allocation of resources.
The main contributions of this paper are as follows:

(1) We discover the link between edge computing and multi-
cast, and innovatively propose the multicast-aware resource
allocation problem , which is formulated as minimization
of service latency under energy consumption constraints.

(2) Due to the lack of future information, we transform orig-
inal problem into per time-slot optimization. Considering
the mixture of discrete variable and continuous variable,
the problem is further decomposed into two subproblems:
caching decision and computing resource allocation. Then,
we solve them by employing implicit enumeration method
and Karush-Kuhn-Tucher (KKT) solution, respectively. Fi-
nally, a novel efficient algorithm, MA-ECC, is proposed to
solve the joint optimization problem.

(3) Furthermore, we prove the performance of MA-ECC the-
oretically and design extensive simulation experiments to
verify it. Results show that MA-ECC performs well in
terms of both service latency and energy consumption.

The paper is organized as follows. The related works are
reviewed in Section II. The system model is introduced in Sec-
tion III. We formulate the problem in Section IV. Section V
decomposes the problem into two subproblem and presents the
designed MA-ECC algorithm. Section VI discusses the simu-
lation results. Finally, Section VII is the conclusion.

2. Related Work

Avoiding long-distance transmission from users to cloud
servers, MEC can effectively reduce the service delay and re-
lieve the backhaul link pressure, which is becoming an impor-
tant computing paradigm. Many scholars have conducted re-
search on MEC. The authors of [3] transform the problem into
a distributed convex optimization and solve it based on alter-
nating direction method. [4] designs a decentralized compu-
tation offloading algorithm by game theoretical and proves the
upper bound of algorithm. In [5], authors study the MEC in
Device-to-Device scenario. They propose an integrated frame-
work for computation offloading and interference management
to optimize service delay. Considering the limited power of
mobile devices, [6] formulate the computation offloading to a
mixed-integer problem and reduced the energy consumption
of communication in MEC. In [7], author propose an energy-
efficient computation offloading strategy, which contains three
step of computation offloading selection, clock frequency con-
trol and transmission power allocation, to shorten the service
delay while reducing energy consumption. Considering the
stochastic properties of service requests, the authors of [8] study
the stochastic resource allocation strategy by deep reinforce-
ment learning. These works are focus on the computation of-
floading, but does not give the computing resources allocation
scheme for each service.

In terms of edge caching, authors [9] investigate the content
caching problem for the adaptive streaming. The caching man-
agement in mobile network scenario is studied in [10]. They
propose a mathematical framework which considers content re-
quest characteristics and content catalogs to reduce delivery de-
lay. Authors of [11] provide a cooperative video caching mech-
anism by jointly considering users’ request similarity, users’
movement behavior and users’ demand, which greatly improves
quality of experience. In [12], authors improve the hit ratio by
predicting the popularity of contents. In [13], authors improve
the hit ratio by proposing a cache prefetching strategy. They
use Bayesian network theory to select contents. These works
mainly focus on content caching scheme and not consider the
joint optimization of caching and computation.

To enhance video rate adaptation, a joint optimization of
computing and caching is proposed in software-defined net-
works [19]. In [20], authors research a joint caching and com-
puting problem for adaptive bitrate (ABR) delivery, which con-
siders the constraints of both storage space and computing ca-
pacity. The most related work is [21]. Authors formulate the
joint optimization of content caching, computation offloading
and computing resource allocation as an mixed integer nonlin-
ear programming, and solve it by generalized benders decom-
position method.But there are several differences to our work.

2

First, while unicast scenario is considered in [21], we focus on
a multicast scenario. Second, while only the computing delay is
optimized in [21], we optimize the service latency which con-
tains computing delay and transmission time. Third, while the
computing tasks are assumed to be divisible in [21], we con-
sider they are the smallest processing unit.

3. System Model

This section proposes the system model for multicast-aware
joint edge computing and caching resource allocation. The sce-
nario is described first and then the request model, communi-
cation model, caching model and computation model are intro-
duced. Table 1 lists the mathematical notations.

Table 1: Mathematical notations

Notation Explanation
B The set of base stations
Cn Storage space of bn

Fn
Computing capacity (maximum frequency)
of base station bn

Hn Multicast channel gain of bn

Pn Multicast power of bn

σn Noise power of bn

en Unit energy consumption of bn

ζn Effective switched capacitance of bn

K The set of services
mk Transmission data size of service k
ck Storage space requirement of service k
dk Computing resource requirement of service k
f (t) Computation resource allocation vector
x(t) Caching resource allocation vector
Er

n The limited power of bn

T M
n,k(t) Time delay of bn for transmit service k

EM
n,k(t) Energy consumption of base station bn for

transmit service k

ES
n,k(t) Energy consumption of base station bn for

caching service k
TC

n,k(t) Computation time of bn for service k

EC
n,k(t) Energy consumption of base station bn for

computing service k
Rn,k(t) The request to bn for service k
S n,k(t) The actual service volume of k in bn

Hn(t) Length of energy queues

3.1. Scenario Description

A heterogeneous cellular network containing a MBS and N
SBSs is considered, as shown in Fig. 1. Each BS is equipped
with computing capabilities and storage space to provide com-
puting services. SBS coverage areas may be joint, but user ac-
cess is not the scope of this paper. Therefore, we assume users
only request to one SBS, as presented in literature [22][23].

Caching Decision: which

services to cache

Computing Resources

Allocation: How many

computing resources are

allocated

The requests for
uncached services are

satisfied by MBS

The services cached locally

 are processed by SBS

Storage Space Computing resource

Figure 1: System architecture

MBS can serve all SBSs and users while the coverage ar-
eas of SBS is limited. We denote the set of base stations
B , {b0, b1, ..., bN} where MBS is represented by b0 and we de-
note B+ , {b1, b2, ..., bN} as the set of SBSs. Each base station
bn is associated with storage space Cn and computing capacity
Fn (e.g. the maximum frequency of CPU). The storage space
Cn is used to cache services data (e.g. databases/libraries and
content) and the computing capability Fn is used for support of
diverse computation processes of services. Similar to reality,
MBS which is regared as the cloud servers can store all ser-
vices data and has strong computing capability [24]. Different
from MBS, the storage space of SBSs which are edge nodes is
limited and can only store part of services.

There are K independent services, expressed by the set
K , {1, 2, ...,K}. Every service k has three important attributes
(ck, dk,mk) where ck is the storage space required for caching
service data (e.g. databases/libraries and contents) of k, dk de-
notes the average computation required to complete service k,
i.e. the number of CPU cycles, and mk is the data size of re-
sults when the computing of service k is completed. For ex-
ample, in media pushing case, ck is the data size of related
databases/libraries and content, dk is the computation required
for analysing user interests, and mk is the size of media that is
recommended to users. Moreover, considering each service is
indivisible (i.e. it is difficult to get accurate user interests if di-
vide user’s request record into several parts and analyse them
separately), we assume that each logically independent service
is the smallest processing unit. For a single service, mobile
users first request it from the SBS which they are associated
to. The SBS will allocate computing resources to complete the

3

service if it caches the related data. Otherwise, the SBS will
offload the requests to MBS and MBS will provide the service.

Without loss of general assumption, the time is slotted [25],
i.e., T = {0, 1, ...,T − 1}. In each time slot t, BSs provide the
services which have been requested according to multicast. Due
to the difference of storage space and computing resource be-
tween MBS and SBSs, for a service, the caching status and
allocated computing resource will affect services latency and
energy consumption. Therefore, we consider the following
multicast-aware edge caching and computing problem with two
sub-problems:

1. Which service to cache? The decision to make is which
services data should be cached in SBS due to the limited
storage space.

2. How to allocate computing resources? This refers to how
many computing resources are allocated to each service
with the limited computing capability of SBS.

In this paper, we optimize the problem by minimizing overall
latency of services with the constraints of energy consumption.
Next, system models for request, communication, caching and
computation are presented in details.

3.2. Request Model

A user sends service requests to the associated base station.
The process of service requests is two-tier as shown in Fig.2.
First, users request service k from the SBS they are associated
to. If the SBS stores related data(e.g. database/libraries and
contents), it will allocate computing capabilities to process the
task and provide related service. Otherwise, the SBS forwards
the request to MBS and MBS assigns pre-fixed computing re-
source [26] to it. In other word, for SBS bn, it will forward
the requests of service k to MBS if not stores related data. It’s
worth noting that the service delay of MBS is much longer than
the edge computation time because of long distance transmis-
sion. Denote x , (xn,k(t) ∈ {0, 1} : n ∈ B, k ∈ K , t ∈ T) as the
caching variable, i.e., xn,k(t) = 1 if base station bn stores data
of service k at time slot t and xn,k(t) = 0 otherwise. The actual
volume of service k to bn is formulated as:

S n,k(t) = Rn,k(t)xn,k(t) (1)

where Rn,k(t) is the number of requests to bn for service k at
time slot t.

For MBS b0, alongside requests from users, it also needs to
satisfy the requests that are forwarded from SBSs. Therefore,
at time slot t, the actual service volume is the sum of the two
components. This is formulated as:

S 0,k(t) = R0,k(t) +
∑
n∈B+

Rn,k(t)[1 − xn,k(t)] (2)

Services

requests

results

uncached

results

SBS MBS

Figure 2: The process of service requests

3.3. Communication Model

Based on multicast communication mechanism, we build the
communication model considering transmission time and en-
ergy consumption. Assuming that the spectrum between SBSs
and MBS is orthogonal. For base station bn, Hn(t) is the mul-
ticast channel gain and Pn(t) is the multicast power. Then the
multicast data rate of bn is as follows:

rn(t) = Bn(t) log2(1 +
Pn(t)Hn(t)
σ2

n(t)
) (3)

where σ2
n(t) denotes the noise power, and Bn(t) represents the

channel bandwidth. Although bn provides services to S n,k(t)
users, the data transfer volume is mk instead of mkS n,k(t) be-
cause of the multicast technology. Therefore, for base station
bn, the transmission time of service k is:

T M
n,k(t) =

mk

rn(t)
(4)

where mk is the result size of service k after computing. The
energy consumption of multicast is represented as follows:

EM
n,k(t) = Pn(t)T M

n,k(t) (5)

3.4. Caching Model

In this subsection, we present the caching model consider-
ing storage space constraint and energy consumption. MBS
has enough storage space and can cache all services data which
means x0(t) = 1. For SBSs, requests for service k can be sat-
isfied locally if SBSs cache related data, reducing transmission
time and improving service quality. However, because of the
constraint of caching capacity, SBSs can not simultaneously
cache all services data. Therefore, it is important for SBS bn

to decide efficiently which services to store. Moreover, consid-
ering the limited storage space, the caching decision of SBS bn

should satisfy the following constraint:∑
k∈K

ck xn,k(t) ≤ Cn (6)

The energy consumption of bn associated to caching service
k is obtained as follows:

ES
n,k(t) = ck xn,k(t)en (7)

where en is the unit energy consumption, considered a fixed
value.

4

3.5. Computation Model

It is obvious that different computing resource allocation de-
cisions lead to different computation times and energy con-
sumption. Let f,(fn,k(t):n ∈ B, k ∈ K , t ∈ T) denote the
allocation decision, which means that base station bn allocates
fn,k(t) computing resource to complete service k in time slot t.
Similar to caching, the computing resource allocation decision
for SBSs is subject to the limited computing resource:∑

k∈K

fn,k(t) ≤ Fn (8)

As mentioned above, the computing process of services is
indivisible and the process of service request is two-tier. SBSs
will allocate computing resources for services k if they cache
related data. Otherwise, MBS assigns computing resource to
the service. For service k, the computation demand of SBSs
in time slot t is presented uniformly as dkS n,k(t), which is dif-
ferent from the calculation method of data transfer volume in
the communication model. The reason is that different users
have different inputs leading to different computations. There-
fore, the computation time TC

n,k(t) of SBS bn for service k can
be expressed as:

TC
n,k(t) =

dkS n,k(t)
fn,k(t)

(9)

For MBS, the calculation of computation time is different
from SBS because the MBS allocates a pre-fixed computing re-
source to every request, regardless of the actual service volume.
Therefore, the computation time for service k is:

TC
0,k(t) =

dk

f0,k(t)
(10)

The energy that each CPU cycle consumes is ζn(f 2
n,k(t)),

where ζn is the energy coefficient relevant to chip architecture
[27]. The energy consumption of bn for service k is defined as
follows:

EC
n,k(t) = dkS n,k(t)ζn(f 2

n,k(t)) (11)

4. PROBLEM FORMULATION AND TRANSFORMA-
TION

In this section, based on the already-introduced system
model, we first formulate the multicast-aware joint resource al-
location as an optimization problem to minimize service latency
while keeping energy consumption low. Considering the lack of
future information and intractability of the problem, we further
transform the problem into an online solvable problem.

4.1. Problem Formulation

For each request, the service latency of k consists of two
parts: transmission time and computation time. Therefore, the
total latency of base station bn for all requests is:

Tn(t) =
∑
k∈K

(T M
n,k(t) + TC

n,k(t))S n,k(t) (12)

To simplify the total latency for SBS, we find that S 2
n,k(t) =

S n,k(t)Rn,k(t) because of x2
n,k(t) = xn,k(t) and S 2

n,k(t) =

Rn,k(t)xn,k(t). Therefore, for SBS, we can replace the quadratic
term x2

n,k(t) and obtain the total latency as:

Tn(t) =
∑
k∈K

(T M
n,k(t)S n,k(t) + TC

n,k(t)Rn,k(t)) (13)

The overall energy consumption is due to multicast consump-
tion, caching consumption and computation consumption. As
we all know, base stations provide services only when the re-
lated computation is complete. In other word, only the ser-
vices that are allocated computing resources can be provided
and have transmission energy consumption. So the total energy
consumption of SBS bn for all services can be expressed as:

En(t) =
∑
k∈K

{EM
n,k(t)1{ fn,k(t),0} + EC

n,k(t) + ES
n,k(t)} (14)

where 1{x} = 1 if x is true, otherwise 1{x} = 0.
The objective of multicast-aware joint resource allocation

problem is to minimize overall service latency with limited en-
ergy consumption. We formulate this problem as follows:

min
x, f

lim
T→∞

1
T

T−1∑
t=0

∑
n∈B

Tn(t)

s.t. lim
T→∞

1
T

T−1∑
t=0

En(t) ≤ Er
n,∀n ∈ B+ (15a)∑

k∈K

ck xn,k(t) ≤ Cn,∀n ∈ B+ (15b)∑
k∈K

fn,k(t) ≤ Fn,∀n ∈ B+ (15c)

fn,k(t)
Fn

≤ xn,k(t),∀n ∈ B+,∀k ∈ K (15d)

xn,k ∈ {0, 1} (15e)

The first constraint (15a) guarantees that long-term average
energy consumption of SBS bn is limited by power Er

n. Con-
straint (15b) ensures the storage space allocated to all services
is limited by the caching capacity of SBS. Constraint (15c) in-
dicates the computing capacity of SBS is limited. The fourth
constraint (15d) means that we can only allocate computing re-
source to the services whose related data has been stored in BS.
The constraint (15e) is due to the fact that caching variable is
binary.

It is intractable to derive the optimal solution of the above
problem. The first challenge is lacking of future information.
It is difficult and impractical to solve this problem because it
requires the request status of users in all time slots. Moreover,
the problem is a mixed integer nonlinear programming with dis-
crete variable and continuous variable, which is still challeng-
ing even if the request status is known a priori. Therefore, it
is imperative to transform this problem into an online solvable
problem without the need for predicting future information.

5

4.2. Problem Transformation

In this subsection, we transform the problem (15) into per
time-slot optimization which does not require future informa-
tion. We construct energy queues to satisfy the long-term en-
ergy constraint (15a):

Hn(t + 1) = max[Hn(t) − Er
n + En(t), 0] (16)

where Hn(0) = 0. By its dynamic, Hn(t) indicates the back-
log of deviation of current energy consumption from the energy
constraint.

Lemma 1. If Hn(t) is mean rate stable, our desired average
energy consumption constraint (15a) is satisfied. We define the
mean rate stable as:

lim
t→∞

E{Hn(t)}
t

= 0 (17)

where E{�} denotes the expectation.
The proof of Lemma 1 is shown in Appendix A. �
To represent the ”congestion level” in energy queues, we de-

fine the energy function as:

q(t) ,
1
2

∑
n∈N

(H2
n(t)) (18)

The energy function represents the status of energy queues.
A small q(t) means queues are highly stable, which implies the
energy deficit is small. We persistently reduce the value of en-
ergy function to stabilize the energy queues and satisfy the en-
ergy consumption constraints. In addition, we introduce the
drift which is the variation of energy function:

∆q(t) , E{q(t + 1) − q(t)|H(t)} (19)

Energy queues become more stable if ∆q(t) is smaller. There-
fore, in order to jointly optimize the service latency and queue
stability, the drift-plus-penalty is defined as:

Θ(t) , ∆q(t) + E{V
∑
n∈B

Tn(t)} (20)

where V is a positive parameter to emphasize the significance of
service latency. Considering the inequality (max[a−b+c, 0])2 ≤

a2+b2+c2+2a(c−b), we further find the upper-bound of energy
function as follows:

∆q(t) ≤
1
2
E{
∑
n∈B+

((Er
n)2 + E2

n(t) + 2gn(t))}

≤ B +
∑
n∈B+

E{gn(t)} (21)

where B = 1
2E{
∑

n∈B+ ((Er
n)2 + E2

n(t))} is a constant and gn(t) =

Hn(t)E{(En(t) − Er
n)}.

Therefore, we convert the original problem (15) to minimize
the upper-bound which not need future information:

min
x, f

ψ(x, f) = E{V
∑
n∈B

Tn(t) +
∑
n∈B+

gn(t)}

s.t. (15b), (15c), (15d), (15e)
(22)

So far, we have overcome the challenge of requiring future
information. However, problem (22) is still knotty to get an op-
timal solution because of non-convex objective and non-linear
constraint. Besides, it is a problem with mixture of discrete
variable and continuous variable. Thus, we further transform it,
as shown in Lemma 2.

Lemma 2. The optimization problem (22) is equivalent to
the following problem:

min
x, f

φ(x, f) = p(x, f) +
∑
n∈B+

∑
k∈K

Hn(t)EM
n,k(t)xn,k(t)

s.t. (15b), (15c), (15e)
(23)

where p(x, f) =
∑

n∈B+

∑
k∈K Hn(t)(ES

n,k(t) + EC
n,k(t) − Er

n) +∑
n∈B VTn(t).
The proof of Lemma 2 is shown in Appendix B. �
We further solve it through iterative optimization, which is

described in detail in the next section.

5. PRACTICAL SOLUTION

This section introduces the MA-ECC algorithm in order
to solve the multicast-aware caching and computing problem.
MA-ECC determines which services are cached locally and
how to allocate computing resources. First the problem is de-
composed (23) into two sub-problems: optimization of comput-
ing resource allocation for a particular caching status and opti-
mization of storage space allocation. MA-ECC is first described
in the context of the two sub-problems, then its performance is
analyzed theoretically.

5.1. Optimization of Caching Decision
This sub-problem concerns the allocation of storage space.

The multicast-aware caching and computing problem takes the
following form for a given computing resource allocation f (t).

min
x

∑
k∈K

{
∑
n∈B

V(T M
n,k(t) + TC

n,k(t))S n,k(t)+∑
n∈B+

Hn(t)(EM
n,k(t)xn,k(t) + EC

n,k(t) + ES
n,k(t))}

s.t.(15b), (15e)

(24)

The objective and constraints of problem (24) are linear
which means this is a zero-one Type Integer Linear program-
ming. By employing the implicit enumeration method, we can
get the optimal caching decision of SBSs. This is briefly de-
scribed in Algorithm 1.

5.2. Optimization of Computing Resource Allocation
The computing resource allocation is concerned in this sub-

section. The optimization problem for a given caching decision
x is as follows:

min
f

∑
n∈B+

∑
k∈K

(Hn(t)EC
n,k(t) + VTC

n,k(t))

s.t. (15c)
(25)

Lemma 3. Problem (25) is a convex problem.

6

Algorithm 1: Optimization of Caching Decision
Input:
Nonnegative penalty parameter V;
Virtual queue length Hn(t);
The requests Rn,k(t);
The computing resource allocation f (t);
Output:
Caching status x(t);

1 Calculate the coefficients of (24) according to f (t);
2 Replace x(t) with y(t) to make all coefficients not less than

0;
3 Arrange the coefficients in ascending order;
4 Get the solution y(t) by the implicitimplicit enumeration

method;
5 Change y(t) to x(t);
6 Return x(t);
7 final ;

The proof of Lemma 3 is shown as Appendix C. �
As it is a convex problem, Karush-Kuhn-Tucher (KKT) can

solve it. We define Lagrangian functions under inequality con-
straints:

L(f (t),µ) =
∑
n∈B+

∑
k∈K

{Hn(t)EC
n,k(t) + VTC

n,k(t)}+∑
n∈B+

{µn(
∑
k∈K

fn,k(t) − Fn)}
(26)

The optimal solution f ∗(t) should satisfy the following con-
ditions:

∂L(f (t),µ)
∂ f (t) | f (t)= f ∗(t) = 0

µn(
∑

k∈K
f ∗n,k(t) − Fn) = 0∑

k∈K
f ∗n,k(t) − Fn ≤ 0

µn ≥ 0

(27)

By solving the equations, we get the optimal computing re-
source allocation f ∗(t) for a given x(t).

5.3. Multicast-Aware Caching and Computing
The optimization solution of the multicast-aware caching and

computing resource allocation problem (23) to minimize both
the service latency and energy consumption is presented in de-
tail by Algorithm 2. In each time slot t, we first use the aver-
age computing resource to initialize each service. We solve two
sub-problems (24) and (25) because a much faster convergence
can be achieved by using the solutions of the two sub-problems.
Then, alternating iteration continues until convergence. We will
get the solution for a given error tolerance ε. Finally, the energy
queues are updated to prepare for the next time slot.

5.4. Performance Analysis
This subsection analyzes theoretically the performance of

MA-ECC as shown in Lemma 4.
Lemma 4. By applying MA-ECC, we have following per-

formance guarantees:

Algorithm 2: Multicast-Aware Edge Caching and Comput-
ing Algorithm (MA-ECC)

Input:
Nonnegative penalty parameter V;
Initialize queue length: Hn(0) = 0,∀n;
Storage space C, maximum frequency F;
The storage and multicast size of service k: ck and mk;
The requests: Rn,k(t);
The computing resource allocation of MBS: f0,k(t);
Number of iterations w = 0, maximum tolerance ε > 0;
Output:
Caching status x(t) and computing resource f (t);

1 while t ∈ T do
2 Initialize computing resource fn,k(t) = Fn

|K|

3 while |φw(x(t), f (t))−φw−1(x(t), f (t))
φw−1(x(t), f (t)) | ≥ ε do

4 Based on f (t), get the caching status x(t) by
calling Algorithm 1;

5 Update the computing resource allocation f (t) for
given x(t) using KKT;

6 Update w = w + 1;
7 end
8 Hn(t + 1) = max[H(t) − Er

n + En(t), 0];
9 end

10 final ;

1) The difference between MA-ECC and the optimal algo-
rithm in service latency satisfies:

lim
T→∞

1
T

T−1∑
t=0

E{T (t)} ≤ T opt +
B + C

V
(28)

where C is a positive constant, T (t) =
∑

n∈B
Tn(t) is the sum of

latency of all BS and T opt is the infimum average latency time
achievable by any policy that satisfies constraints.

2) The energy queue length which is the time-average devia-
tion of energy consumption satisfies:

lim
T→∞

1
T

T−1∑
t=0

∑
n∈B

E{Hn(t)} ≤
B + C + V[Φ(ε) − T opt]

ε
(29)

where ε and Φ(ε) are constants that satisfy the Slater condition
[28]. Besides, ε > 0 and T min ≤ Φ(ε) ≤ T max, where T min and
T max are finite constants and minimum and maximum bounds
for T (t).

Lemma 4 demonstrates that the services latency achieved by
the MA-ECC algorithm diverges from the optimal solution with
O(1/V). However, the energy queue length which represents
the energy deficit is bound by O(V). There is a tradeoff be-
tween services latency and energy consumption by parameter
V . When parameter V becomes large, the service latency is
more emphasized and MA-ECC achieved a better performance
with consuming more energy.

7

0 20 40 60 80 100 120 140 160 180 200
Time slot

5

6

7

8

9

10

11

12

13

T
im

e
av

er
ag

e
d

el
ay

Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

Figure 3: Time average delay

50 100 150 200 250
Computing capacity

4

5

6

7

8

9

10

11

12

T
im

e
av

er
ag

e
d
el

ay

Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

Figure 4: Time average delay with Fn

100 200 300 400 500
Storage space (GB)

5

6

7

8

9

10

T
im

e
av

er
ag

e
d

el
ay

Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

Figure 5: Time average delay with Cn

0 20 40 60 80 100 120 140 160 180 200
Time slot

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

103

Figure 6: Energy consumption

50 100 150 200 250
Computing capacity

0

2

4

6

8

10

12
E

ne
rg

y
co

ns
um

pt
io

n
Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

103

Figure 7: Energy consumption with Fn

100 200 300 400 500
Storage space (GB)

0

0.5

1.0

1.5

2.0

2.5

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

Unicast-optimal
Non-cooperative
MA-ECC
Delay-optimal

103

Figure 8: Energy consumption with Cn

0 20 40 60 80 100 120 140 160 180 200
Time slot

0

400

800

1200

1600

2000

2400

E
ne
rg
y

q
u

eu
e

le
n

g
th

V=5000 V=10000 V=20000 V=40000

Figure 9: Length of all energy queue

50 55 60 65 70 75 80 85 90 95 100
Time slots

0

20

40

60

80

100

120

140

C
o

m
p

u
ti

n
g

 r
es

o
u

rc
es

0

200

400

600

800

1000

1200

V
ir

tu
al

 q
u

eu
e

le
n

g
th

Allocated computing resources
Computing resources constraint
Virtual queue length

Figure 10: Queue length and workload

5000 10000 15000 20000 25000 30000 35000 40000
5.8

6.0

6.2

6.4

6.8

7.0

7.2

T
im

e
av

er
ag

e
d

el
ay

Time average delay
Energy consumption

400

402

404

406

408

410

412

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

V value

Figure 11: Effect of V value

6. SIMULATION RESULTS

Extensive simulations were designed and run to demonstrate
the performance of MA-ECC. We consider a 1000m × 1000m
area consisting of one MBS and 7 SBSs. We fix the MBS at the
center of the network and randomly distribute the SBSs. There
are K = 20 independent services and the request frequency con-
forms to the Zipf distribution with the parameter of 0.95 [29].
Besides, we formulate the total service request in BS bn as a
Poisson process. Other main parameter settings are shown in
Table 2.

Table 2: Parameter settings for simulations

Parameters Value
Communicate bandwidth of MBS 2 GB
Communicate bandwidth of SBS 6 GB
BS storage space Cn 200 GB
Storage space for service k, ck [2,40] GB
Unit energy consumption ck 0.04 kWh
SBS computing resource Fk 100 GHz
Computing resource requirement of service
k, dk

[5,15] GHz

In order to evaluate performance, we compare MA-ECC with

the following solutions.

• Unicast-optimal resource allocation: To demonstrate the
advantages brought by considering multicast in service la-
tency and energy consumption, we remove constraints on
energy consumption in algorithm [21], making it the opti-
mal algorithm in unicast.

• Non-cooperative resource allocation: The most popular
services in the serving region are stored in SBS. There are
not mutual communications between SBSs and we ignore
the constraint of energy consumption.

• Delay-optimal resource allocation: Removing the lim-
ited energy consumption, we find a global optimal re-
source allocation decision for all the BSs and time slot to
minimize the service delay.

6.1. Average delay comparison
Fig.3-Fig.5 show the time average delay in different condi-

tions. Specifically, Fig.3 shows the dynamic change of time de-
lay at different time slots. It shows that MA-ECC achieves time
average delay approximate to the delay-optimal resource allo-
cation and significantly better than non-cooperative resource
allocation and unicast-optimal resource allocation. For the
no-cooperative resource allocation, BSs individually cache the

8

most demanding services in the serving region, which lacks
the future information and the cooperation between BSs. The
method falls into a local optimal solution and results in poor
performance in time average delay. In the unicast-optimal cast,
BSs have to transmit the service to the user one by one, which
leads to higher communication time. Therefore, it has the worst
performance in terms of time average delay.

Fig.4 shows the impact of computing capacity on time av-
erage delay. We see that the system delay decreases with the
increase of SBS computing capacity for all four methods. Obvi-
ously, the reason is that as the computing capacity increases, the
computation time decreases which influences the time average
delay. However, because of the long-term energy consumption
constraint, the downward trend of MA-ECC is more gradual
than the other three methods, which means when the comput-
ing capacity is sufficient, the energy consumption will become
the bottleneck for MA-ECC to reduce the system delay.

Fig.5 presents time average delay variation with different
storage space. Similar to computing capacity, increasing the
storage space of SBSs can reduce the time average delay since
more services can be cached in SBSs. However, the effect will
gradually weaken, because storage space can affect communi-
cation time, but has less impact on computing time due to the
limited computing resources.

6.2. Energy consumption comparison
Fig.6 shows the energy consumption of the four algorithms

at different time slots. We observe that the energy consumption
of MA-ECC fluctuates around the limited power Er

n (the black
line), while the other three algorithms are far beyond the con-
straint. As expected, although the delay-optimal algorithm has
the lowest time average delay, it consumes two times more en-
ergy than MA-ECC. Non-cooperative resource allocation runs
out of storage space by caching the most popular service at each
time slot, which leads to higher caching energy consumption.
Compared with multicast schemes, unicast-optimal algorithm
needs more energy to support the transmission of multiple data
streams.

Fig.7 and Fig.8 present the impact of computing capacity and
storage space on system energy consumption, respectively. In
Fig.7, we find the energy consumption of MA-ECC closely fol-
lows the constraint in any case, but the other three algorithms
overuse energy. Besides, the trend of the other three graphs is
close to the square growth because of equation (11). As for stor-
age space, Fig.8 shows that the energy consumption increases
as the storage space since more services can be cached and pro-
vided by SBSs. However, the rate of increase will gradually
decrease until reaches zero.

6.3. Impact of V value
Fig.9 illustrates the impact of V on energy queues length

which indicates the backlog of deviation of current energy con-
sumption from the energy constraint. We find that the length of
energy queues becomes longer as V increases. In other words,
the energy deficit increases with V . The reason is that the
time average delay becomes more important in the optimiza-
tion problem (23) with increasing V and MA-ECC will achieve

200 300 400 500 600 700
Energy constraint

5.8

6.0

6.2

6.4

6.6

6.8

T
im

e
av

er
ag

e
d

el
ay

200

300

400

500

600

700

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

Time average delay
Energy consumption

Figure 12: Effect of energy constraint

a lower system delay at a cost of higher energy deficit. We also
observe that the energy queue length is proportional to V , which
is consistent with the second part of Lemma 4. In order to show
more intuitively the impact of energy queue length on network
resource allocation, we present the energy queue for V = 20000
and computing resource usage in Fig.10 at the same time. As
the figure shows, SBSs tend to use more computing resources
to minimize time average delay when the energy queue length
is small (e.g. slot 65, 85). On the contrary, if the energy length
is large, SBSs allocate lower computing resources to reduce the
energy consumption (e.g. slot 57, 84). Therefore, the energy
queue can affect resource allocation to make a tradeoff between
service latency and energy consumption.

Fig.11 shows the impact of V on time average delay and en-
ergy consumption. It shows that the system delay is inversely
proportional to V , which proves the first part of Lemma 4 ex-
perimentally. In contrast, energy consumption is roughly pro-
portional to V . This can be explained by equation (16) and the
second part of Lemma 4.

6.4. Impact of energy constraint

Fig.12 illustrates the impact of energy consumption con-
straints Er

n on the performance of MA-ECC. As the picture
shows, the MA-ECC reduces the time average delay with the
increase of energy consumption constraint, because SBSs can
allocate more resources to satisfy users’ requests. However,
due to the limited resource, the performance gain becomes more
gentle when the constraint Er

n is large. Besides, we also observe
from the right-side of y-axis that MA-ECC successfully meets
the predetermined energy consumption constraint.

6.5. Convergence of algorithm

In Fig.13, the convergence of the proposed MA-ECC is eval-
uated under different initial parameters. We set error tolerance
parameter ε as 10−2. In order to simplify, we unified the ini-
tial parameters of each SBS. Specially, Er is the limited power
of SBSs, C is the storage space of SBSs and F is the comput-
ing capacity. The x axis is the iteration number of MA-ECC
algorithm and y axis is the objective function value of the op-
timization problem (23). The pictures shows that although the

9

0 1 2 3 4 5
Iteration number

-12

-10

-8

-6

-4

-2

0

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

104

Er=200,C=200,F=100,V=40000

Er=400,C=200,F=100,V=40000

Er=400,C=100,F=100,V=40000

Er=400,C=200,F=200,V=40000

Er=400,C=200,F=100,V=10000

Figure 13: Convergence of the MA-ECC

initial parameters are different, MA-ECC usually achieves con-
vergence within 3 iterations, which means that MA-ECC is ef-
ficient in terms of computational complexity.

7. Conclusion

In this paper, we studied multicast-aware resource allocation
with joint optimization of caching and computing for MEC in
a heterogeneous cellular network environment. First, we for-
mulate it as a convex optimization problem. Then, in order
to effectively solve the problem, we separate it into two sub-
problems, optimization of caching decision and optimization
of computing resource allocation. Additionally, we propose an
online algorithm MA-ECC as a solution to the overall problem.
Theoretical analysis shows our solution not only reduces effec-
tively the time average delay, but also keeps low the energy
consumption. The experimental simulation-based performance
evaluation shows our proposed solution outperforms three al-
ternative solutions under different system parameters.

Future work will study the computation offloading on the ba-
sis of the original problem and study the multicast-aware com-
putation offloading and resource allocation for MEC.

Acknowledgment

This work is supported by National Key R&D Program of
China (2018YFE0205502); the National Natural Science Foun-
dation of China (NSFC) under Grant Nos. 61871048 and
61872253; the BUPT Excellent Ph.D. Students Foundation
CX2018108.

References

[1] J. S. Pan, A trust game model of service cooperation in cloud computing,
Journal of Network and Computer Applications 173 (2021).

[2] L. Hai, Z. Sherali, C. Zhihong, L. Houda, W. Lusheng, A survey on com-
putation offloading modeling for edge computing, Journal of Network and
Computer Applications 169 (2020).

[3] C. Wang, C. Liang, F. R. Yu, Q. Chen, L. Tang, Computation offload-
ing and resource allocation in wireless cellular networks with mobile
edge computing, IEEE Transactions on Wireless Communications 16 (8)
(2017) 4924–4938.

[4] S. JoÅilo, G. Dn, Selfish decentralized computation offloading for mo-
bile cloud computing in dense wireless networks, IEEE Transactions on
Mobile Computing 18 (1) (2019) 207–220.

[5] U. Saleem, Y. Liu, S. Jangsher, X. Tao, Y. Li, Latency minimization for
d2d-enabled partial computation offloading in mobile edge computing,
IEEE Transactions on Vehicular Technology 69 (4) (2020) 4472–4486.

[6] X. Xiaolong, L. Yuancheng, H. Tao, X. Yuan, P. Kai, Q. Lianyong,
D. Wanchun, An energy-aware computation offloading method for smart
edge computing in wireless metropolitan area networks, Journal of Net-
work and Computer Applications 133 (2019) 75–85.

[7] S. Guo, L. Jiadi, Y. Yang, B. Xiao, Z. Li, Energy-efficient dynamic com-
putation offloading and cooperative task scheduling in mobile cloud com-
puting, IEEE Transactions on Mobile Computing 18 (2) (2019) 319–333.

[8] Y. Wei, F. R. Yu, M. Song, Z. Han, Joint optimization of caching, com-
puting, and radio resources for fog-enabled iot using natural actorcritic
deep reinforcement learning, IEEE Internet of Things Journal 6 (2) (2019)
2061–2073.

[9] K. Shashwat, D. Sai Vineeth, F. A. Antony, J. Jiong, Ran-aware adap-
tive video caching in multi-access edge computing networks, Journal of
Network and Computer Applications 168.

[10] R. W. L. Coutinho, A. Boukerche, Modeling and analysis of a shared edge
caching system for connected cars and industrial iot-based applications,
IEEE Transactions on Industrial Informatics 16 (3) (2020) 2003–2012.

[11] D. Wu, Q. Liu, H. Wang, Q. Yang, R. Wang, Cache less for more: Ex-
ploiting cooperative video caching and delivery in d2d communications,
IEEE Transactions on Multimedia 21 (7) (2019) 1788–1798.

[12] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, X. Shen, Statistically in-
different quality variation: An approach for reducing multimedia distri-
bution cost for adaptive video streaming services, IEEE Transactions on
Multimedia 21 (4) (2019) 915–929.

[13] C. Li, M. Song, S. Du, X. Wang, Z. Min, Y. Luo, Adaptive priority-
based cache replacement and prediction-based cache prefetching in edge
computing environmen, Journal of Network and Computer Applications
165 (2020).

[14] G. Araniti, F. Rinaldi, P. Scopelliti, A. Molinaro, A. Iera, A dynamic
mbsfn area formation algorithm for multicast service delivery in 5g nr
networks, IEEE Transactions on Wireless Communications 19 (2) (2020)
808–821.

[15] Z. Jiang, C. Xu, J. Guan, Y. Liu, G.-M. Muntean, Stochastic analysis of
dash-based video service in high-speed railway networks, IEEE transac-
tions on Multimedia 21 (6) (2019) 1577–1592.

[16] Y. Lu, W. Chen, H. V. Poor, Coded joint pushing and caching with asyn-
chronous user requests, IEEE Journal on Selected Areas in Communica-
tions 36 (8) (2018) 1643–1856.

[17] C. Desogus, M. Anedda, M. Fadda, M. Murroni, Additive logarithmic
weighting for balancing video delivery over heterogeneous networks,
IEEE Transactions on Broadcasting.

[18] L. Wei, F. C. Heng, B. He, J. Cai, Towards efficient resource allocation
for heterogeneous workloads in iaas clouds, IEEE Transactions on Cloud
Computing 6 (1) (2018) 264–275.

[19] C. Liang, Y. He, F. R. Yu, N. Zhao, Enhancing video rate adaptation with
mobile edge computing and caching in software-defined mobile networks,
IEEE Transactions on Wireless Communications 17 (2017) 76–88.

[20] L. Yang, J. Cao, G. Liang, X. Han, Cost aware service placement and load
dispatching in mobile cloud systems, IEEE Transactions on Computers
65 (5) (2016) 1440–1452.

[21] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Chen, B. Hu,
V. C. M. Leung, Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching, IEEE Internet of
Things Journal 6 (3) (2019) 4283–4294.

[22] B. Zhou, Y. Cui, M. Tao, Optimal dynamic multicast scheduling for
cache-enabled content-centric wireless networks, IEEE Transactions on
Communications 65 (7) (2017) 2956–2970.

[23] C. Xu, Z. Li, L. Zhong, H. Zhang, G.-M. Muntean, Cmt-nc: Improving
the concurrent multipath transfer performance using network coding in
wireless networks, IEEE Transactions on Vehicular Technology 65 (3)
(2016) 1735–1751.

[24] C. Wang, F. R. Yu, C. Liang, Q. Chen, L. Tang, Joint computation offload-
ing and interference management in wireless cellular networks with mo-
bile edge computing, IEEE Transactions on Vehicular Technology 66 (8)
(2017) 7432–7445.

10

[25] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, K. M. Khurram, M. Ni,
G. Zhu, Joint admission control and resource allocation in edge comput-
ing for internet of things, IEEE Network 32 (1) (2018) 72–79.

[26] Z. Tan, F. R. Yu, X. Li, H. Ji, V. C. M. Leung, Virtual resource alloca-
tion for heterogeneous services in full duplex-enabled scns with mobile
edge computing and caching, IEEE Transactions on Vehicular Technol-
ogy 67 (2) (2018) 1794–1808.

[27] Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling, IEEE
Transactions on Communications 64 (10) (2016) 4268–4282.

[28] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems, Morgan & Claypool, 2010.

[29] M. Zhang, H. Luo, H. Zhang, A survey of caching mechanisms in
information-centric networking, IEEE Communications Surveys & Tu-
torials 17 (3) (2015) 1473–1499.

AppendixA. PROOF OF LEMMA 1

For base station bn, we have the inequality Hn(t+1)−Hn(t) ≥
En(t) − Er

n according to equation (16). Then we obtain the
equation (A.1) by the summation of this inequality over t ∈
{0,T − 1}:

Hn(T)
T
−

Hn(0)
T
≥

1
T

T−1∑
t=0

En(t) − Er
n (A.1)

Considering Hn(0) = 0, we have the following inequality by
taking expectation of equation (A.1) and taking T → ∞:

lim
T→∞

E{Hn(T)}
T

≥ lim
T→∞

1
T

T−1∑
t=0

En(t) − Er
n (A.2)

The energy queue Hn(t) is mean rate stable which means
lim
t→∞

E{Hn(t)}
t = 0. Combined with equation (A.1), the constraint

lim
T→∞

1
T
∑T−1

t=0 En(t) ≤ Er
n is satisfied. Therefore, Lemma 1 is

proved. �

AppendixB. PROOF OF LEMMA 2

The ψ(x, f) is composed of service latency and energy con-
sumption. According to equation (14), we have

ψ(x, f) = p(x, f) +
∑
n∈B+

∑
k∈K

Hn(t)EM
n,k(t)1{ fn,k(t),0} (B.1)

Compare with φ(x, f), we find that if the optimal solution
(x∗, f ∗) of problem (22) satisfies 1{ f ∗n,k(t),0} = x∗n,k(t), then con-
straint (15d) is useless and problem (22) is equivalent to prob-
lem (23). Now, we first remove constraint (15d) and discuss the
problem separately.

Case one: 1{ f ∗n,k(t),0} > x∗n,k(t), which means f ∗n,k(t) > 0 and
x∗n,k(t) = 0. Then we construct another strategy (x∗n,k(t), f +

n,k(t) =

0) which also satisfies the constraints. According to equation
(1), the requests for service k to bn is offloaded to MBS, which
means bn can provide service k to nobody. By calculating,
we find p(x∗, f ∗) = p(x∗, f +). As for multicast, the energy
consumption of f ∗n,k(t) are larger than f +

n,k(t). In other words,
we have ψ(x∗, f ∗) > ψ(x∗, f +) (strategy (x∗, f +) is better than
(x∗, f ∗)), which is conflicts with the assumption that (x∗, f ∗) is
optimal. Therefore, case one in not true.

Case two: 1{ f ∗n,k(t),0} < x∗n,k(t), which means f ∗n,k(t) = 0 and
x∗n,k(t) = 1. First, we start the case where the request number
Rn,k(t) , 0. In this case, the actual service volume S n,k(t) , 0
due to x∗n,k(t) = 1. But the computation time is infinity because
of f ∗n,k(t) = 0. This means ψ(x∗, f ∗) → ∞ which is clearly con-
flicts with the assumption. If the request number Rn,k = 0, we
construct another strategy (x+

n,k(t) = 0, f ∗n,k(t)) which also satis-
fies the constraints. There are no requests for service k, so the
costs of computation and multicast are zero for the two policy.
However, the caching energy consumption of (f ∗n,k(t), x+

n,k(t))
is smaller than (f ∗n,k(t), x∗n,k(t)) which need to cache service k.
Therefore, the cost function ψ(x∗, f ∗) > ψ(x+, f ∗), which is also
conflicts with the assumption. Therefore, case two is false.

11

In conclusion, the optimal solution (x∗, f ∗) satisfies
1{ f ∗n,k(t),0} = x∗n,k(t) which means the constraint (15d) is useless
and the objective function ψ(x, f) = φ(x, f). Therefore, the
problem (22) is equivalent to problem (23) and Lemma 2 is
proved. �

AppendixC. PROOF OF LEMMA 3

For ∀ fi ∈ f , we have the second partial derivative of p(f)
with respect to fi:

∂2 p
∂ f 2

i

= 2dkS n,k(t)ζn +
2dkS n,k(t)

f 3
i

≥ 0 (C.1)

For ∀ fi, f j ∈ f and i , j, we have the second partial deriva-
tive:

∂2 p
∂ fi∂ f j

= 0 (C.2)

Therefore, we get the Hessian matrix as following:

h(p) =

∂2 p
∂ f 2

1
0 . . . 0

0 ∂2 p
∂ f 2

2
. . . 0

...
...

. . .
...

0 0 . . . ∂2 p
∂ f 2

NK

(C.3)

The value on the diagonal of this matrix is non-negative and
other elements of this matrix is zero, so the Hessian matrix
is positive semidefinite which means the objective function is
convex. Moreover, the constraints of problem (25) are linear.
Therefore, problem (25) is a convex problem and Lemma 3 is
proved. �

AppendixD. PROOF OF LEMMA 4

According to the Theorem 4.5 in [28], there is a policy
(xδ(t), f δ(t)) satisfies following inequalities for any δ > 0:

E{T δ(t)} ≤ T opt + δ

E{Eδ
n(t) − Er

n} ≤ δ
(D.1)

Given equation (20) and (21), we have the following inequal-
ities for policy (xδ(t), f δ(t)) based on the Definition 4.7 in [28]:

∆q(t) + VE{T (t)}

≤∆q(t) + VE{T δ(t)} + C

≤B +
∑
n∈B

E{Hn(t)(Eδ
n(t) − Er

n)} + VE{T δ(t)} + C

≤B + δ
∑
n∈B

E{Hn(t)} + V(T opt + δ) + C

(D.2)

Taking δ→ 0:

E{T (t)} ≤ T opt +
B + C

V
−

∆q(t)
V

(D.3)

Considering q(t) ≥ 0 and q(0) = 0, we sum above equations
over all time slots, divide by T and take T → ∞:

lim
T→∞

1
T

T−1∑
t=0

E{T (t)} ≤ T opt +
B + C

V
−

q(t) − q(0)
VT

≤ T opt +
B + C

V

(D.4)

So far, we prove the first part of Lemma 4.
There is a policy (xε(t), f ε(t)) satisfies the following Slater

Condition:

E{T ε(t)} = Φ(ε)
E{Eε

n(t) − Er
n} ≤ −ε

(D.5)

Combining with formula (D.4), we have:

∆q(t) + VE{T (t)}

≤B +
∑
n∈B

E{Hn(t)(Eε
n(t) − Er

n)} + VE{T ε(t)} + C

≤B − ε
∑
n∈B

E{Hn(t)} + VΦ(ε) + C

(D.6)

Rearranging terms:

1
T

T−1∑
t=0

∑
n∈B

E{Hn(t)} ≤
1

Tε
{E{q(0) − q(t)}}+

1
ε
{B + V[Φ(ε) −

1
T

T−1∑
t=0

E{Tn(t)}] + C}

(D.7)

The expectation of Tn(t) cannot be less than T opt. We take a
limit as T → ∞:

lim
T→∞

1
T

T−1∑
t=0

∑
n∈B

E{Hn(t)} ≤
B + C + V[Φ(ε) − T opt]

ε
(D.8)

Therefore, the second part of Lemma 4 is proved. �

12

	Introduction
	Related Work
	System Model
	Scenario Description
	Request Model
	Communication Model
	Caching Model
	Computation Model

	PROBLEM FORMULATION AND TRANSFORMATION
	Problem Formulation
	Problem Transformation

	PRACTICAL SOLUTION
	Optimization of Caching Decision
	Optimization of Computing Resource Allocation
	Multicast-Aware Caching and Computing
	Performance Analysis

	SIMULATION RESULTS
	Average delay comparison
	Energy consumption comparison
	Impact of V value
	Impact of energy constraint
	Convergence of algorithm

	Conclusion
	PROOF OF LEMMA 1
	PROOF OF LEMMA 2
	PROOF OF LEMMA 3
	PROOF OF LEMMA 4

