
SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 1

CoLEAP: Cooperative Learning-Based Edge
Scheme with Caching and Prefetching for DASH

Video Delivery
Wanxin Shi, Student Member, IEEE, Chao Wang, Yong Jiang, Member, IEEE, Qing Li, Member, IEEE,

Gengbiao Shen, Student Member, IEEE and Gabriel-Miro Muntean, Senior Member, IEEE

Abstract—The outstanding increase in video traffic, puts in-
creasing pressure on network transmission. Since the Dynamic
Adaptive Streaming over HTTP (DASH) adjusts the delivery to
the dynamic network conditions, it has emerged as a popular
approach for video transmissions. However, bitrate switching
and video rebuffering may still occur and influence negatively
quality of experience (QoE). Additionally the popular videos
are transmitted multiple times, which leads to high bandwidth
consumption, despite large transmission redundancy. In this
context, we propose a Cooperative Learning-based scheme for the
smart Edge servers with cAching and Prefetching (CoLEAP) to
improve the QoE of adaptive video streaming. CoLEAP employs
edge servers which cache the most beneficial contents to reduce
redundant video transmissions and prefetches content to decrease
network transmission delay. Considering user-related informa-
tion and the state of network, CoLEAP intelligently makes
the most advantageous decisions of caching and prefetching by
employing a novel QoE-oriented deep neural network model.
To demonstrate the performance of our scheme, we test the
proposed solution in comprehensive simulated scenarios and
against four alternative solutions. When compared with the
existing schemes, CoLEAP increases average bitrate by up to
181.8%, reduces video rebuffering by up to 70.8% as well as
decreases response time by up to 28.0%. These values result in
minimum improvements of 57.4% and 29.0%, respectively in
terms of cache hit rate and QoE.

Index Terms—DASH, Caching, Prefetching, QoE, Edge Com-
puting

I. INTRODUCTION

THERE is an exponential increase in video traffic, which,
according to a Cisco report, is expected to exceed 82%

of the total IP traffic by 2022 [1]. This video traffic increase
puts pressure on existing heterogeneous network environment
in terms of its delivery and may as well result in lower
viewer quality of experience (QoE). In this context, there
is a need for solutions for optimization of video delivery

W. Shi is with Tsinghua Shenzhen International Graduate School and also
with PCL Research Center of Networks and Communications, Peng Cheng
Laboratory (PCL), Shenzhen, China (Email: shiwx17@mails.tsinghua.edu.cn).

C. Wang is with Tsinghua-Berkeley Shenzhen Institute, Tsinghua Univer-
sity, Shenzhen, China (Email: wangchao17@mails.tsinghua.edu.cn).

Y. Jiang is with Tsinghua Shenzhen International Graduate School
and also with Peng Cheng Laboratory (PCL), Shenzhen, China (Email:
jiangy@sz.tsinghua.edu.cn).

Q. Li is with Southern University of Science and Technology and also
with PCL Research Center of Networks and Communications, Peng Cheng
Laboratory (PCL), Shenzhen, China (Email: liq8@sustech.edu.cn).

G. Shen is with Tsinghua Shenzhen International Graduate School, Shen-
zhen, China (Email: sgb16@mails.tsinghua.edu.cn).

G.-M. Muntean is with Performance Engineering Laboratory, School of
Electronic Engineering, Dublin City University, Galsnevin Campus, Dublin
9, Ireland (Email: gabriel.muntean@dcu.ie).

Corresponding author: Qing Li (liq8@sustech.edu.cn)

in order to improve user QoE and consequently influence
positively user satisfaction and user engagement [2, 3]. The
Dynamic Adaptive Streaming over HTTP (DASH) [4] was
standardised and is widely being employed to enable highly
flexible and dynamic video content adjustment. Diverse client-
side adaptive bitrate (ABR) algorithms [5–7] were proposed
to complement DASH and support in improving the quality
of adaptive video delivery. These algorithms can select the
most appropriate bitrates for video transmissions, which not
only meet user requirements, but also adaptively respond to
the rapid change of network state, eventually mitigating the
pressure put by the increasing video traffic.

However, even when employing DASH-based solutions,
video deliveries still need to overcome some serious chal-
lenges. The issues of most concern contain the unstable
QoE related to network dynamics and inefficient bandwidth
utilization caused by redundant transmissions. First, the highly
dynamic Internet can support best-effort content delivery only
[8, 9]. For a remote video viewer, the bandwidth fluctuations
may result in frequent bitrate switching and even rebuffering,
which severely affect QoE and ultimately degrade user sat-
isfaction and engagement [3]. Secondly, video transmissions
are strongly correlated temporally and spatially in relation to
their content [10]. This double correlation refers to the fact that
the end users from some specific area networks tend to request
few popular videos during specific time intervals. For instance,
62%-83% of Facebook video transmissions concentrate on its
merely top 0.1%-1% videos [11]. Moreover, these clips are
always requested during peak time (i.e. non-working hours).
The redundant transmission of frequently-requested videos
contributes to most of bandwidth consumption, inevitably
leading to an inefficient use of limited bandwidth resources.

Therefore, optimization of video transmissions continues to
attract important research efforts. Based on their principles,
existing innovative solutions can be classified in diverse av-
enues, as follows. A first research direction includes client-
side adaptive bitrate adjustment schemes [12–14], in which
each client making decisions by itself competes for the shared
bandwidth [15]. Such solutions may lack global optimization
or fairness. The second research avenue focuses on global
optimization at the server side. However, it is of difficulty
for the server to perceive the whole network state and/or
serve all users perfectly in highly dynamic network conditions.
The third type of solutions employ cache-based redundancy
elimination, including Content Delivery Network (CDN) [16],
Information Centric Network (ICN) [17] and cache proxy
[18, 19], etc. These techniques have their pros and cons,

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 2

mostly related to deployment cost, implementation difficulties
and function flexibility.

Accordingly, there is necessity to propose a scheme for QoE
video delivery improvement with the following properties:

• Optimize globally the video transmission for the clients
that share the same bottleneck, instead of allowing each
client make decisions locally.

• Reduce content transmission redundancy, which enables
that the limited dynamic network bandwidth be utilized
efficiently.

• Include mechanisms to reduce network jitter and smooth
the viewing experience for end users.

• Perform intelligent differentiation of services for different
users and/or videos (including video segments).

• Facilitate cooperation among adjacent edges to reduce
unnecessary overhead from redundant transmissions.

• Have commercial sense and be easy to deploy in the
current Internet.

In a previous work, we have proposed the smart edge LEAP
as a solution to achieve some of the aforementioned goals [20].
However, LEAP does not cooperate with adjacent edges to
assist busy backhaul links or utilize the resources available at
other edge nodes. Sometimes backhaul links are busy or down,
so cooperation between edge servers is beneficial in terms
of both supporting services and improving their performance.
When the origin server suffers failures, the adjacent edge
nodes can act as backup. Additionally fetching content from
neighbouring edges helps improve transmission delay.

In this context, the paper introduces the Cooperative
scheme for Learning-based Edge scheme with cAching
and Prefetching (CoLEAP), which extends LEAP by em-
ploying node cooperation and caching in order to improve
the performance of video content delivery. CoLEAP considers
multiple adjacent edge nodes as part of a large cooperating
edge structure, which enables sharing of node storage and
supports common utilization of their computing capacity. Sim-
ilar to LEAP, CoLEAP collects information regarding video
sessions from the clients, being aware of video popularity and
delivery quality. CoLEAP prefetches the most popular video
segments when there is available bandwidth from the origin
server. CoLEAP caches video segments from the origin server
according to a QoE-weighted popularity. When there is not
enough available bandwidth, CoLEAP delivers the prefetched
video segments from the edge nodes instead of the origin
server and the clients benefit from an improved service quality.
The CoLEAP edge nodes cooperate with each other to best
share their limited computation and storage resources and
support video delivery at improved QoE levels in dynamic
network conditions.

This paper makes the following contributions:

• An edge-based scheme for caching and prefetching to
reduce video transmission redundancy and mitigate the
effect of network jitter.

• A neural network model for the edge nodes to automati-
cally make caching and prefetching decisions such as to
maximize the QoE gains by using cooperation.

• A cooperative solution which effectively efficiently uti-
lizes the resources of adjacent edges.

CoLEAP was implemented and tested using simulations in
two major scenarios, involving a single and multiple cooperat-
ing edge nodes, respectively. The results show how CoLEAP
is very efficient in terms of performance as it outperforms
significantly other existing approaches in terms of average
bitrate, video rebuffering, cache hit rate, transmission duration
and QoE levels.

This paper is organized as follows. Section II presents
related works. Section III details the network model and some
important definitions. The designs of the CoLEAP-related
schemes are presented in Section IV. In Section V, the testbed
is described and evaluation results are presented. Section VI
is the conclusion of the paper.

II. RELATED WORK

Network transmission capacity affects user experience while
user experience facilitates the continuous optimization of
network transmission capacity. In order to improve user ex-
perience in the context of highly dynamic network delivery
environments, various schemes are proposed including client-
side, server-side and network-based solutions.

A. Client-side Adaptive Bitrate Adjustment Schemes

Lately, there is increased focus on client-side adaptive video
bitrate adjustment schemes. The model predictive control
algorithm (MPC) [5] assumes accurate prediction of network
throughput and utilizes a control-theoretic approach to select
the appropriate bitrate at the client in order to achieve the
best QoE. Huang et al. [21] proposed a buffer-based bitrate
selection scheme that explores the influence of buffer occu-
pation on bitrate adaptation. JM Batalla et al. [22] exploited
a buffer-based tracker to fulfill the guarantees of maximum
rebuffering probability. Buffer Occupancy based Lyapunov
Algorithm (BOLA) [6] performs local optimization of bitrate
selection in a utility-based approach and achieves near-optimal
utility by employing the Lyapunov technique. Oboe [7] auto-
tunes dynamically the delivery parameters in order to adapt to
different network conditions, improve throughput and reduce
throughput variability in current network conditions. However,
each client makes decisions by itself despite competing for
shared bandwidth with other clients and therefore these ap-
proaches lack global optimization or fairness.

B. Server-Based Optimization Schemes

The server-based optimization schemes refer to solutions
which apply global optimization methods at the server side
in order to improve user QoE associated with video transmis-
sions. For instance, the traffic shaping methods in [23] need to
maintain the stability and fairness for the users competing for
the available bandwidth. The tracker in [24] should manage
the clients globally and help them share knowledge with each
other. However, assessing the whole network state in real
time at the server is extremely difficult, so it is a challenge
to support any online global optimization for the fact that
decisions are taken remote from end users.

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 3

From another perspective, although the server-based ap-
proaches are effective, they demand high investment in de-
vices and maintenance due to their computing and storage
requirements. S Altamimi et al. [25] proposed a server-side
QoE-fair rate adaptation method where the learning-based
sever consumes great computing resources. The sever-side
scheme for 360-Degree video streaming [26] minimizes the
overall received video distortion of all users but requires great
computing and storage capacity. Therefore, the classic server-
based approaches are not strongly recommended mostly due
to their coarse-grained optimization and high associated costs.

C. Network-Based Optimization Solutions

Network-based optimization schemes include cache-based
solutions, prefetching schemes and hybrid methods. Particu-
larly relevant are some works on caching and prefetching that
are vital for improving the performance of DASH streaming.

Cache Schemes. In order to improve the video delivery
performance with the limited storage capacity in the net-
work, diverse cache schemes are proposed. The existing cache
schemes include offline and online types. Offline schemes
adopt some fixed replacement policies without considering
the dynamic of clients and servers in a long update period.
While online schemes adapt to the real-time dynamic to
replace cache content. Some offline cache schemes [11, 27]
employ complex algorithms to select and cache the most
popular content. In order to improve the response time, online
cache schemes are proposed including advanced algorithms or
models, e.g., a Markov model based replacement algorithm for
popular content [16], a reinforcement learning method based
caching method [28] and a real-time dynamic caching for non-
popular content [29]. Further improvements were proposed
to provide finer granularity caching in a fragmental proxy-
caching scheme [30] and to introduce QoE influence into cache
replacement policies in some QoE-based cache schemes [31–
34].

Prefetching Schemes. The current cache-based approaches
employ diverse prefetching strategies following a cache miss
due to any of the following: first-time request, limited stor-
age space or device failure. First, prefetching was employed
mostly for interactive streaming [35]. Now customized video
prefetching is widely used. For instance, Google provides a
preload-webpack-plugin for web browsers [36], accelerating
the loading speed. HotDASH [37] implements a prefetching
module in the open source DASH player, which is powered
by an optimal prefetching and bitrate decision engine. These
works focus on client-side optimization but do not have a
global system perspective. Considering network-side HTTP
content download, prefetching is performed to the end of the
video without considering bitrate level adjustments [13, 14].
Focusing on DASH-based video delivery acceleration, some
works construct utility-based models to prefetch content, such
as iPac [38]. Unfortunately it does not take into account the
bitrate switches in the start-up phase [39].

Hybrid Schemes. Lately, following the increasing emphasis
on QoE, integrated cache-prefetching schemes have been
prevailing [13, 38]. However, despite of the rapid growth

of these schemes applied in the network, the existing third
party infrastructure is either not practical or smart enough.
These schemes are not well compatible with the existing
physical infrastructure such as ICNs and CDNs. So it is of
great necessity to exploit the potential of smart edges. Smart
edges can be regarded as the extension of proxies, working as
an intelligent accelerator between client and origin server as
Fig. 4. In order to explore the available resources of edges,
cooperative caching schemes [40–42] are also proposed but
without consideration of prefetching.

DASH-aware caching and prefetching schemes are well
developed and evaluated. In terms of HTTP-based adaptive
streaming (HAS), V Krishnamoorthi et.al [43] quantified the
benefits of basic best effort policies and more advanced content
quality aware prefetching policies. They proved that policy se-
lection is important when trying to enhance HAS performance
in edge networks, which also motivates other research on QoE-
based prefetching, such as 4K Video-on-Demand delivery in
the mobile network [44]. Besides, S Benno et.al [45] proved
the key role of response delay in HAS and the effect of cache
on response delay. In summary, these works are enlightening
to our research on the cooperative smart edge scheme with
caching and prefetching for DASH video delivery, as the
architecture of Fig. 5 illustrates, with the purpose of optimizing
both user experience and edge performance.

III. MODEL AND DEFINITION

To formulate the problem and solution, we construct the
network model and give the concrete definition of notations.
We also clarify the definition of QoE which is a key part of
defining Utility. Besides, the role of Utility playing in our
scheme will be illustrated.

A. Network Model

Consider a network model with three types of entities:
end users, edge servers and origin servers. End users re-
quest video content which by default resides at the origin
servers. However the proposed solution CoLEAP employs a
cooperative approach, caching and prefetching and involves
edge servers to deliver the video content to end users more
efficiently. Therefore, the network in our work is defined as
a bipartite graph GE,U,O,LE ,LO,L, including the set of edge
servers E = {e1, e2, ..., eN}, the set of end users U = {u},
the set of origin servers O = {o}, the set of links between
end users and edge servers LE = {lu,e|u ∈ U, e ∈ E},
the set of links between edge servers and origin servers
LO = {le,o|e ∈ E, o ∈ O} and the set of links between
the edges L = {lei,ej |ei, ej ∈ E}. Besides, cu,e(t), ce,o(t)
and cei,ej (t) represent the transmission capacities of lu,e,
le,o and lei,ej at time t, respectively. The proposed scheme
requires end users and cooperative edges to supply some
local performance-related information to edge servers. For
instance, the following information for the end user u request-
ing the file fm at time t should be collected such as QoE
value QoEu(fm, t), buffer length bu(fm, t), rebuffering time
ru(fm, t) and the perceived Round Trip Time (RTT) τu(fm, t).
Since the adaptive algorithm makes the bitrate decision for the

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 4

next segment sequentially, these four values can be rewritten as
QoEu(fm, k), bu(fm, k), ru(fm) and τu(fm) where k means
the moment when requesting the kth segment.

The features of DASH-based video are also illustrated.
The set of video files that users can watch is assumed as
F = {f}. Each video f is encoded into M(f) different
bitrate versions and split into K(f) segments. In our work,
each segment lasts for 4 seconds. Each segment is defined as
fm,k,m ∈ M(f), k ∈ K(f). The delivery-related values for
the requested segments are saved, fm,k they can be used to
calculate the value of QoE. As a DASH request arrives, the
edge server extracts the required information and calculates
the utility with the QoE value. Therefore, we define its
utility as Utility(fm,k) for the video segment fm,k. Then,
the prefetching decisions of edge servers are made according
to utility values.

B. QoE

In spite of diverse QoE definitions, its value is influenced
by average bitrate, bitrate switching, rebuffering ratio and
rebuffering frequency [46] as well as total rebuffering time
and start-up stage [5]. QoE definitions describe the experience
for a specific period of S segments. Generally, QoE is defined
across S segments of video f as follows:

QoEu =

S∑
s=1

[q(fm,s)− µru(fm,s)− λ|q(fm,s+1)− q(fm,s)|]

where q(·) indicates the video quality, ru(·) indicates re-
buffering time and |q(fm,s+1)− q(fm,s)| indicates the bitrate
switching of two sequential video segments. Here QoEu
may depend on several continuous video segments (e.g., 5
or more). Referring to Pensieve [47], we focus on the most
essential factors for QoE and consider bitrate, rebuffering and
smoothness as critical elements. For the user u, the QoE is
defined as follows:

QoEu(fm,k) = q(fm,k)−µru(fm,k)−λ|q(fm,k)−q(fm,k−1)|

where q(·) is used to evaluate the quality related to bitrate.
µ and λ are weight factors associated with rebuffering and
smoothness, respectively. Here QoEu(fm,k) is only influenced
by two continuous segments. Each segment includes a 4-
second video clip in our implementation. Two video clips
(8 seconds) are able to provide enough QoE knowledge for
further decisions in our model. So the defined QoEu(·) is
somewhat different from the conventional one.

In order to provide relevance, q(·) is defined using the
structural similarity (SSIM) index instead of simple bitrate
value or its variants [5, 6, 47].

SSIM was used as its value reflects better the subjective
quality as perceived by users. The larger SSIM value is, the
lower compression loss and better video quality are. The SSIM
of a video can be formulated as a fourth-degree polynomial of
the logarithm of the normalized bitrate as follows, where α is
a synthetic representation of the complexity of a video scene,
as indicated in [48, 49].

SSIM(x) = 1 + αv,1x+ αv,2x
2 + αv,3x

3 + αv,4x
4

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log(bitrate/max_bitrate)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM Video Type 1

Video Type 2
Video Type 3
Video Type 4
Video Type 5

Fig. 1: SSIM: the videos are
categorized into five types

indicating variance in quality.

0.0 0.5 1.0 1.5 2.0
log(Chain Length)

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

Co
m

pl
em

en
ta

ry
 C

DF
 (%

)

Fitting
Original

Fig. 2: The distribution of chain
lengths: note that chain lengths

are denoted in logarithms.

Here x = log[
B(fm,k)
Bmax(fm)] is a logarithmic measure of the

normalized bitrate, where B(fm,k) indicates the bitrate of the
segment fm,k and the Bmax(fm) indicates the maximal bitrate
of the video fm. The videos are categorized in one of five types
based on their associated SSIM values. These videos include
TV serials, movies, documentaries, etc. The video segments
from different types with the same bitrate may varies in SSIM
that indicates video quality. Fig. 1 shows the SSIM curves for
the five video types.

C. Utility

Utility is a comprehensive measure for QoE gain and
the being-requested probability of a certain video clip. It
influences the decisions of prefetching the next video segment
by assessing the benefit of prefetching. The utility associated
with the videos is saved at the edge server. The key elements of
utility include QoE gain, the probability of bitrate switching
and size of the next segment as shown in Table I. Taking
R1 as a sample, it represents a certain video clip, e.g.,
fm,k. At a certain moment, providing different clients (e.g.,
C1 and C2, holding different chain lengths) with the same
content (e.g., R1) may bring distinct QoE Gains that is
elaborated in Section III-C1. CHL and p(CHL) respectively
indicate the chain length of requesting the same bitrate and the
probability of keeping a stable chain, which will be further
illustrated in Section III-C2. The content with the highest
utility is prefetched. Next, we will elaborate in details the
utility components used.

TABLE I: Logs Required for Calculating Utility

Content
ID

Client CHL p(CHL) QoE
Gain

Utility

R1
C1 2 0.3 5 1.7=0.3*5+0.2*1
C3 1 0.2 1

R2 C2 4 0.4 4 1.6=0.4*4
R3 C4 5 0.8 4 3.2=0.8*4

1) QoE Gain: As an important part of the utility, it is
employed to reflect the benefit related to fetching the next
segment of a video. It also provides input information in the
cache replacement process which will be further discussed
in Section IV-C. In our scheme, the utility of the probably-
requested video segment is updated upon the arrival of new
DASH requests, in need of the QoE Gain for each segment.
In order to calculate QoE Gain, we need to determine QoE

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 5

Request
Collector

QoE Gain Predictor

Client

LEAP Edge

Server

Traffic Bursts

Req
ue

st

Data

Cache-miss Request

Prefetch Request
Prefetch
Manager

Bitrate

THP
QoE

Buffer

ChainCache
Manager

Fig. 3: The architecture of a single smart edge: it works with the client
and origin server under the dynamic network environment. The edge
includes four key modules detailed in Section IV.

values of the requested segments if cache hit and miss happens,
respectively. For the kth segment in the video f , we assume
that the values of QoE if the next segment is cached is
QoEhitu (fm,k+1) and if it is not cached is QoEmissu (fm,k+1).
Therefore, we describe QoE Gain of the probably-requested
segment in video f as follows:

∆QoEu(fm,k+1) = QoEhitu (fm,k+1)−QoEmissu (fm,k+1)

However, it is very difficult to get the information of
QoEhitu (fm,k+1) and QoEmissu (fm,k+1) due to the unknown
future network state. We use instead a prediction model to
estimate these values. We deploy the prediction model on the
edge server and collect user information to be used to calculate
QoE Gain. A deep neural network is designed to predict the
QoE Gain for all users, which is detailed in Section IV.

2) Chain-based utility: The utility should consider, apart
from QoE, also the content popularity to reflect the necessity
of fetching the content. The Utility formula, is as follows:

Utility(fm,k+1) =
∑
u∈U

∆QoEu(fm,k+1)

×Popularity(fm,k+1)/c(fm,k+1)

However, the prediction of Popularity(·) for the next segment
is usually coarse-grained and not easy to compute. Addition-
ally, in general, Popularity(·) of the content is assessed for a
whole video instead of for each segment. Besides, the update
period of the content popularity is relatively long, which may
be of little use for the timely calculation of utility-based
prefetching.

Instead, we focus on the characteristics of content itself.
It can be easily concluded that the DASH requests from a
client consists of a series of segments with certain bitrate,
characterizing bitrate switches. The sequence of the segments
with constant bitrate is called a chain. The length of the chain
is consistent with the constant requests. Simply according to
the historical statistics, the chain length distribution can be
obtained [50]. It can be modeled as a piecewise distribution
by multiple fitting lines or a special continuous function. As
defined, the probability of a chain length larger than x is p(x).
With the collected logs from the end users deployed on Plan-
etLab [38], we propose a 5-degree polynomial approximation
as a function of the chain length, i.e. p(x) =

∑5
i=0 aix

i, to
fit the distribution as shown in Fig. 2.

To clarify the definition of Utility, the size of the next
segment is defined as c(fm,k+1) for the kth segment with

Base-Station
ISP

Edge DC

ORIGIN SERVER A ORIGIN SERVER B

X86 EP

Exit Point of A
Campus Network

Public Cloud
Service Provider

EDGE SERVER

CLIENTS

HIT

MISS

HIT

MISS

HIT

MISS

HIT

MISS

Fig. 4: The architecture of an integrated system: the proposed
edge can practically run on the mentioned positions above, serving
numbers of users.

a bitrate of m in the file f . Since the video segments have
the same duration when employing DASH, segment bitrate
represents segment size in the experiment. Therefore, the
utility value is namely the expected QoE gain per unit, as
follows:

Utility(fm,k+1) =

∑
u∈U ∆QoEu(fm,k+1)× p(l)

c(fm,k+1)

where l represents the length of corresponding chain of a
single end user, when requesting the kth segment.

To sum up, Utility, based on QoE gain and the probability
of bitrate switching, influences prefetching decisions in real
time. Besides, QoE Gain also influences cache replacement as
stated in Section IV-C. The concrete use of Utility is further
detailed in Section IV-E

IV. COLEAP DESIGN

A. Overview

Consider a single Edge that handles the DASH requests
from a Client and makes decisions to cache-prefetch the video
content from the origin Server, based on the QoE. Fig. 3
shows the architecture of the CoLEAP smart edge which
consists of four modules including Request Collector, Cache
Manager, QoE Gain Predictor and Prefetch Manager. Request
Collector gathers and parses the requests from users and
supplies user information to other modules. Cache Manager
achieves cache update, cache lookup and content reply. QoE
Gain Predictor utilizes the user information and the network
state to predict throughput and QoE Gain. Prefetch Manager
calculates the utility for videos and executes the utility-based
prefetch strategy.

These modules cooperate with each other to serve the users
covered by the smart edge interactively. This design optimizes
the transmission globally instead of making the decision
for each client locally, which is beneficial to the efficient
utilization of the limited network bandwidth. Additionally, it
can achieve intelligent differentiation of services for different
users or videos (even video segments). Moreover, the differ-
entiated service does not result in transmission redundancy,
but can help the smart edge reduce network jitter in real time,
ultimately providing users with a smooth viewing experience.

In order to avoid long public Internet path with no quality
assurance, CoLEAP is deployed closer to users at the level

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 6

Base-Station

X86

EDGE SERVER A

ORIGIN SERVER EDGE SERVER B

Exit Point of A
Campus Network

EP

DOMAIN CLIENTS

REQ HIT

MISS

HIT

MISS

DATA

Fig. 5: The cooperative architecture of adjacent edges: each edge
serves the covered users with the assistance from the adjacent edge.

of the smart edge server. The corresponding entities should
have the motivation to deploy the edge. According to the
number of users, the computing and storage capacity of the
edge will be different. So the smart edge can be deployed
in multiple potential positions as shown in Fig. 4. An option
is for the campus or enterprise network to deploy the edge
server at the exit point connected to network providers. In
this way, edge managers themselves achieve the optimization
for their covered users. For example, iQIYI Open Cache
Program [51] is exactly an available platform that provides
customizable edge functions. Actually, the smart edge can also
be compared to a reverse proxy which intercepts the requests
before they reach the origin server. This can be achieved
by setting up appropriately the DNS entry for the origin
server. Alternatively, with the aid of public could, virtualized
edge data center of the Internet Service Provider (ISP) and
chosen super clients, content providers can deploy the smart
edge as a container, virtual machine (VM) or application.
For example, content providers, e.g., ByteDance and Youku,
utilize the hardware of Internet Data Center (IDC) to serve
end users. They depend on the storage and traffic capacity of
IDC, which motivates them to customize the edge functions.
In this way, the content providers themselves are of necessity
to optimize caching and prefetching. It follows that the content
provider can both help improve QoE for its users and reduce
the required bandwidth.

However, independent edges cannot take full advantage of
network capacity. Because certain edges may be too far from
the origin server. So even with prefetching, the responses from
the origin server to the edge are slow. The backhaul link
may not have enough transmission capacity for prefetching
or may even break down in some extreme conditions. So it is
necessary to make adjacent edges cooperate as illustrated in
Fig. 5. The figure shows how fetching content from a nearby
edge is more efficient. In our work, we set the first edge
efirst as the cache server for the geographically concentrated
clients. It helps accelerate video transmissions to these users.
The second edge esecond is an adjacent edge for efirst, but
not covering the users. If the link between the two edges
has high transmission capacity, then efirst and esecond can
work as a cooperative cache. However, these two edges cache

0 200 400 600 800
Steps

0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26

Lo
ss

Train_cvg
Test_cvg

Fig. 6: Prediction convergence

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Measured/Mbps

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Pr
ed

ic
te

d/
M

bp
s Test

Predicted

Fig. 7: Throughput regression

distinctive content to support the users, being complementary.
For instance, esecond caches the content with high utility, while
efirst stores content with relatively low utility.

B. Request Collector

In a DASH-based approach, the user performs adaptive
video streaming by dynamically selecting the bitrate for next
video segments requested. The smart edge collects some
key information from the geographically-concentrated DASH
requests. When such a DASH request arrives at the edge, the
Request Collector parses the obtained URL and identify the
requested video, and updates the information associated with
the requested content. The related modules record or calculate
the latest feature values and writes them into these previously
mentioned modules including Prefetch Manager and QoE
Gain Predictor. Additionally, the edge periodically updates
request information and network status data to train the neural
network model which will be discussed later concretely.

As the smart edge takes the QoE-related cache-prefetch
decisions, alongside URL, the DASH request needs to provide
some relevant information. These requests may originate from
either the end user or the adjacent edge. The following
information is appended to the HTTP header of each DASH
request, including lastQoE, buffer, bitrate, videoType, chain-
Length, throughputList n, downloadTime n, segmentSize n
and ifHit n, RTT. In Fig. 9, these variables are respectively
abbreviated as LSTQ, BFR, BTRT, TYP, CL, THP, DWT, IFHIT
and RTT. Request Collector extracts this information from
the DASH requests for further use. This information only
consumes little transmission bandwidth, so the extra overhead
in the DASH scenario is low. (e.g., 1 byte for lastQoE, 5 byte
for throughputList n, 1 byte for ifHit n, etc. For instance, n=5,
22 bytes data is sent at each request.)

C. Cache Manager

The cache strategy is relatively independent of the prefetch
strategy. This is as caching is performed for the already-
requested content, while prefetching is executed for the content
which may be requested in the future. The storage space for
caching is allocated larger than that for prefetching, due to the
relative utilization ratio of content in the two situations. The
prefetched content may not be used and be discarded quickly
in a short update period of prefetching. So Cache Manager
performs the designed cache strategy and updates the local
cache content during an update period. Replacing different
cached segments has a distinct impact on QoE because of
their different SSIM values.

The cache update period is defined as Tc. We assume
that, for a certain video f during the θth period, there are

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 7

Hf (θTc) segment IDs in all requests . hif (θTc), in which
i = 1, · · · , Hf (θTc), is the number of requests regarding
each segment ID. The average QoE Gain for the video
segments from historical statistics are maintained and denoted
as ∆Q̂oE

k

f , k = 1, · · · ,K(f). To sum up, the Accumulated
QoE gain (AQ) for the received segments in the period can

be described as AQif (θTc) = hif (θTc) × ∆Q̂oE
x(i)

f , i =
1, · · · , Hf (θTc), where x(i) is the function to map the ith
segment into the real ID.

As illustrated above, AQ is based on the request frequency
and QoE Gain, which takes both request characteristics and
video features into account. So we regard that AQ is useful
to figure out the priority of corresponding videos. If there are
multiple contents that have similar priority but without enough
storage spaces, we just remove the old ones which were
requested early. Even if a small number of cached contents
are not so frequently requested, the contents will be updated in
the next cache replacement period due to its changing request
frequency and QoE Gain.

We design a novel cache strategy which we name Pro-
portional Accumulated Cooperative QoE gain (PACQ) to
maximize the expected overall QoE gains for CoLEAP. During
the cache update period for a domain smart edge, for instance
efirst, its Cache Manager first calculates all values of the
AQ gains for the content requested directly by the domain
users, i.e. AQif (θTc). Then the list of AQif (θTc) is sorted
in descending order. After that, Cache Manager selects the
sorted segments sequentially till it cannot add more contents
to the limited cache space. The local cached contents is also
checked. Finally, the non-selected segments will be replaced.
The periodical update mechanism in Cache Manager improves
the adaptability of CoLEAP, leading to timely reaction to any
dynamic scenario.

At the same time, for an adjacent edge e.g., esecond, its
Cache Manager also calculates the AQ gains for the content
requested directly by the clients, as well as AQ gains for the
content requested by other edges i.e. efirst. PACQ has a
tuning parameter η used to adjust the importance of the other
edges’ requests. f(u) and f(e) are the requests from users and
edges, respectively for the file f .

PACQif (sTc) = hif(u)(θTc)×∆Q̂oE
x(i)

f(u)+

η × hif(e)(θTc)×∆Q̂oE
x(i)

f(e)

Any CoLEAP edge performs the same process described
for efirst to replace the items which have the AQ gains. In
fact, each edge acts both as primary edge (i.e. efirst) and as a
cooperative edge (i.e. esecond) for other edges. CoLEAP edges
work as a large cooperative cache to support the domain clients
and offload traffic from the origin servers. This is achieved
by edges by dynamically and intelligently storing and serving
content using the CoLEAP approach.

To better distinguish different requests, the requests from
clients have user labels in the implementation, while those
from other edges do not. With the user labels, the edge can
execute the differentiated responses to different requests. We
regard that PACQ well solves the problem that duplicate

0

2

Se
gS

ize
(M

B)

0
4

hT
hr

(M
bp

s)

0

4

m
Th

r
(M

bp
s)

0
8

16

hT
im

e
(s

)

0
8

16

m
Ti

m
e

(s
)

0 1 2
SegSize

(MB)

0
200RT

T
(m

s)

0 4
hThr

(Mbps)

0 4
mThr

(Mbps)

0 8 16
hTime

(s)

0 8 16
mTime

(s)

0 200
RTT
(ms)

Fig. 8: Scatter matrix of QoE metrics: it shows the correlation
between every two metrics. A strong correlation presents regularly-
distributed dots.

contents may be cached by adjacent edge servers. When the
edge is relatively idle, it can serve the adjacent edge more
by increasing the parameter η, and vice versa. But the η in
our implementation is not automatically adaptive, which needs
further improvement.

D. QoE Gain Predictor

Any cache hit is associated with positive QoE gains, since
the cache edge server closer to the user than the origin server
accelerates the download process as well as decreases the
transmission latency. Additionally the edge load may be lighter
and network conditions better, so it may provide the user with
higher throughput. Therefore, prefetching the segments with
high QoE gains is beneficial. However, the actual QoE gains
at the moment of content request can only be predicted. We
employ a deep neural network approach to predict the QoE
gains in two cases. Besides, as network throughput is a vital
factor in the QoE gain prediction, we also design a simple
prediction model, using linear regression, to forecast future
throughput. Next, we elaborate on the two prediction models.

1) Throughput Prediction: Network throughput is greatly
influenced by many factors. We have analysed the correlation
between the throughput and other factors by plotting the
scatter-based correlation diagram in cache hit and cache miss
scenarios, as shown in Fig. 8. The data is collected from the
nodes on PlanetLab. These nodes act as client players request-
ing for video segments from the multimedia server deployed
on Amazon Cloud. The regular trend in subfigures indicates
a strong correlation between two features, while a disperse
behaviour reflects weak correlation. It can be concluded that
segment size, user-to-edge RTT and download time of video
segments are strongly relative to the throughput.

We cannot acquire the network throughput of cache hit when
cache miss happens because cache hit and cache miss cannot
occur at the same moment, and vice versa. Fortunately, it was
noted that there is a strong correlation between the throughput
during cache hit and the throughput during cache miss. Thus,
linear regression is available to predict throughput in two

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 8

Linear
Regression

HIT
QoE
MISS
QoE

Client

R1 R2 R3 R4 R5 P P P

Origin Server

R1 R3 R4

HitThroughput

MissThroughput

Edge B

M M M M M

H H H H H

LSTQ THP
BFR DWT
BTRT IFHIT
TYP RTT&CL

Edge A

Fig. 9: The deep neural network for QoE prediction: the figure
illustrates the operations of the whole predicting process along
with generating requests, including collecting client-side information,
estimating throughput and predicting QoE gains.

cases, and the inputs of the regression model are the factors
which were identified to have the highest correlation. The
fitting results show a good agreement with actual measurement
values, as Fig. 7 illustrates. The discrete dots scatter around
the standard line, indicating a good performance.

2) QoE Gain Prediction: QoE gain prediction is performed
using a deep neural network approach. QoE gain is defined as
the difference between the QoE values associated with cache
hit and cache miss, which means that two QoE values need
to be predicted. We design a three-layer neural network to
calculate two QoE values by instantiating the model twice.
The difference between the two instances is in terms of
network throughput values, illustrated in Fig. 9. The inputs
of the deep neural network model consist of the information
obtained from the Request Collector. Moreover, the deep
neural network adds into the model the predicted throughput
of cache hit, calculated by using the historical throughput in
cache hit scenarios to determine QoEhitu (fm,k+1). Similarly,
it calculates QoEmissu (fm,k+1) by using predicted throughput
of cache miss. By subtracting the two values, the QoE gain
of the next segment is computed and is used to calculate the
corresponding utility.

The QoE gain prediction model is trained at the server
side due to the requirement of computing capacity and power
consumption. We make use of a back-end server similar to
Pytheas [52] to train the model. For deployment in a cache
scenario, the edge in CoLEAP is an excellent choice. The edge
server is able to train the QoE prediction model, calculate the
QoE gain and collect historical statistics with the aid of its
computing capacity. In addition, if the prefetched content has
already been cached at the edge server, it is not necessary
to repeat the calculation of the QoE gain, saving computing
resources to some extent.

E. Prefetch Manager

CoLEAP performs the prefetch following utility compu-
tation and evaluation. Selecting the prefetch segments that
generate the maximum overall benefit result in an optimal
result. We design a periodical prefetch process and assume the
prefetch period is Tp. The ideal solution involves selecting the
prefetch segments such as the sum of the associated utilities
is maximised in each period. However, this simple method
has two problems. First, a large number of requests received
in any period results in excessive maintenance overhead and

makes very hard solving the complicated selection process.
The second relates to the fact that the fixed period solution
inevitably postpones some prefetch decisions and degrades the
overall benefit. Hence, there is a need for a more practical and
timely method to make the prefetch decision.

This content selection process is similar to the secretary
problem [53] which is one of the famous optimal stopping
problem. We adopt the classic solution of the secretary
problem as it responds to requests dynamically and timely,
achieving high efficiency in each period. Note, we do not
have to prefetch every content which may be requested, as
coarse-grained level selection offers good results. Additionally,
caching and prefetching are relatively independent to each
other and they both improve the overall results. Caching targets
popular content requested in the past and content that may be
used in the future. Caching is a process with a long update
period and large storage space requirements. Decisions refer
to caching the whole video or just certain video segments.
Prefetching consumes the transmission capacity and aims at
content which may be accessed in a short time in the future. If
the prefetched content is not accessed in a short period of time,
it will be replaced immediately. Therefore, the update cycle
of prefetch is short, and its prefetch granularity is in favor of
saving resources. The secretary problem solution is appropriate
to the prefetching problem. Once the Prefetch Manager has
collected enough statistics, it can directly make the prefetch
decision for the subsequent requests.

We design a novel Periodical Two-stage Optimal Prefetch
Selection mechanism (p-Tops) to solve the optimal selection
problem as shown in Algorithm 1. The details of the p-Tops’
two stages are described as follows.

Stage 1: The Prefetch Manager performs this stage at the
beginning of each period. For the dth prefetch period, the
current available bandwidth between the edge server and origin
server can be obtained: ce,o(ηTp). The obtained average bitrate
in the last prefetch period is assumed as π̂(ηTp). Thus, the
possible maximum number of the prefetch segments can be
concluded in this period: κ(ηTp) =

ce,o(ηTp)
π̂(ηTp)

The weighted
average, as a useful approach to alleviate the influence of
uncertainty and randomness, is utilize to compute this value,
i.e. ν(ηTp) = αν((η − 1)Tp) + βκ(ηTp), where α and β are
weight factors. Similar to [48], it can be figure out that the
number of the accumulated segments in Stage 1 is as follows:
r(ηTp) =

⌊
ν(ηTp)

κ(ηTp)e
1/κ(ηTp)

⌋
. This indicates that the Prefetch

Manager only gathers request statistics in the first r(ηTp)
requests to find the maximum utility Utilitymax(ηTp) and
does not prefetch segments. This process is detailed in Lines
7-10 of Algorithm 1.

Stage 2: With the collected information in Stage 1, the
Prefetch Manager implements the utility-based prefetch strat-
egy. The process of filtering prefetch requests is shown in
Lines 11-14 of Algorithm 1. Once a request arrives during
Stage 2, the Prefetch Manager compares the utility of the
request with the acquired maximum utility Utilitymax(ηTp)
from Stage 1. As defined in Section III, the Utilityf ′ (t) is
mapped to the video segment in Utility(f

′

m,k). The possible-
to-prefetch segment, i.e. the next segment, will be prefetched

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 9

if the Utility(fm,k+1) is larger than Utilitymax(ηTp).

Algorithm 1 p-Tops Mechanism

Inputs: Utility(fm,k+1), r(dTp), Utilitymax(ηTp), ncount
Outputs: xf - Binary variable denoting the prefetch decision.

1: xf = 0
2: if t ≥ (η + 1)Tp then
3: update the value of r(ηTp)
4: Utilitymax(ηTp) = Utility(fm,k+1)
5: ncount = 1, η = η + 1
6: else
7: if ncount ≤ r(ηTp) then
8: Utilitymax(ηTp) =
9: max{Utilitymax(ηTp), Utility(fm,k+1)}

10: ncount = ncount + 1
11: else
12: if Utility(fm,k+1) ≥ Utilitymax(ηTp) then
13: xf = 1
14: end if
15: end if
16: end if
17: return xf

For more details in p-Tops, Lines 2-5 reset the parameters
at the beginning of a new prefetch period while Line 17 returns
the prefetch decision. By deploying p-Tops, we perform
sequential prefetching with a minimum influence on delay.
Since it is assumed that the bottleneck is between the edge
server and the origin server, the number of prefetch decisions
in one period does not exceed the upper bound of transmission
capacity. In addition, the weighted average method makes
full use of the estimated results and historical information,
enhancing the performance of prefetch strategy.

For better understanding that how to avoid the overlap of
caching and prefetching, we give a brief illustration on the
execution. We regard that the cache-miss requests are based
on traversing the cache space to ensure no corresponding con-
tents. In fact, the edge makes a quick comparison between the
prefetching requests and the cache-miss logs, so as to ensure
no overlapping requests. It also ensures that the prefetched
contents and to-be-prefetched contents do not exist in the
cache space. Besides, the prefetching requests sent during a
prefetch period are also recorded to avoid cache-miss requests.
We record the prefetching requests by generating a labeled
cache-miss log at the edge and dumping it in a prefetch period.
The above simple operations are helpful to avoid content
redundancy.

However, the problem that the contents being returned may
be duplicate with the contents already cached, is difficult to
solve in the concurrent network. In spite of it, we believe
that the probability of its occurrence is small and the impact
of it is little. Because in the next prefetch period, the old
prefetched contents will be cleared and replaced depending
on the comparison with the real cache-miss requests, which
ensures that a content will not be prefetched in an infinite
loop or cause a waste of bandwidth. Moreover, prefetching
should be executed during the idle time to avoid affecting the

Fig. 10: The architecture of neural network: it is adopted in the
prediction of QoE under cache miss/hit.

response to normal requests. In other words, the inevitable
overlapping contents from the concurrent network are trivial.
Because the space ratio of caching to prefetching is 1000:1, or
even 1000:0.5. Meanwhile, the cache replacement period (e.g.,
minutes to hours) is generally long, which is not synchronized
with the prefetch period (e.g., seconds to minutes). Compared
with spending more time and computing resources on redun-
dancy elimination, it works well to wait and update in the next
prefetch period. To sum up, we believe that prefetching will
not cause serious space waste and bandwidth waste.

V. IMPLEMENTATION AND EVALUATION

A. Implementation and Setup

1) Implementation: In order to evaluate the performance of
our scheme in diverse network scenarios, we deploy CoLEAP
in a prototype based on the Apache Traffic Server (ATS) [54].
The associated 4,000 lines of C++ and python code is available
open source in Github [55]. ATS uses a state machine to
handle HTTP transactions. Based on current states and HTTP
transactions, ATS uses HOOKS to call specific plug-ins and
perform user-defined functions. That is, the scheme is realized
in the form of plug-in which can be flexibly added or removed.

The main computing overhead is from training the QoE
Gain model, which mainly depends on the number of users
and requests. Larger user groups, containing more feature
information, lead to higher training cost, and vice versa. In our
implementation, the server with NVIDIA Tesla M60 (16GB
GPU) is adopted to train the model for hours to support
hundreds of clients. We regard that, in different real networks,
the model should be modified in accordance with the user
scale, thus causing variance in demand for training power.
With a well-trained model, the ATS-based plug-in can be
recompiled and applied into other networks easily.

Fig. 11 illustrates how CoLEAP is deployed in the ATS con-
text. Four modules of the smart edge is implemented through
the plug-ins in ATS. READ REQUEST HDR HOOK parses
user requests, achieving the function of Request Collector.
CACHE LOOKUP HOOK implements the Cache Manager

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 10

Cache Manager

Hit

Request Collector
READ_REQUEST_
HEADER_HOOK

Request

OS_DNS_
LOOKUP_HOOK

CACHE_LOOKUP_
HOOK

MissConn to OS

Freshness Check
Stale

Fresh
Send Reply HeaderSend Response Body

Valid

Invalid

Transaction Close

QoE-Gain PredictorPrefetch Manager
CUSTOMIZED_

PREFETCH_HOOK
CUSTOMIZED_

NETWORK_HOOK

Fig. 11: The correspondence of hooks in ATS: it shows how a request
triggers the related actions in ATS which exploits hooks to finish
transactions.

module to complete cache state feedback and the QoE-based
cache replacement. QoE Gain Predictor, obtaining the in-
puts from the caller of Operation System (OS), runs when
CUSTOMISED NETWORK HOOK triggers it. It is known
that Convolutional Neural Network (CNN) is a feedforward
neural network including a convolutional layer and a pooling
layer. For QoE Gain Predictor, the one-dimensional features
pass through a fully connected layer with 128 neurons as
Fig. 10. The multi-dimensional features pass through a one-
dimensional convolution layer with 128 neurons. The convo-
lution kernel size is 3. The past n values of the variables
are first processed by the CNN before the hidden layer. The
stride and padding of the convolutional network are both 1
respectively. The outputs of the full connection layer and the
convolution layer are input into a network composed of three
full connection layers. There are three hidden layers which
contain 256, 128 and 128 neurons, respectively. Besides, the
activation function of the neural network is Relu which has
fast convergence and better consistence with the characteristics
of biological neurons. In our work, the neural network is
implemented in PyTorch with a C++ interface libtorch.

In summary, QoE Gain Predictor is a compiled C++ pro-
gram that is invoked before the Prefetch Manager module
runs. Then, Prefetch Manager deals with prefetch requests
and sends the selected ones to the origin server with the aid
of the proposed prefetch strategy. The download throughput
of the origin server is continuously updated by executing
TXN CLOSE HOOK.

2) Framework Setup: Next, we will give a complete picture
of the evaluation settings. There are five machines simulating
client hosts, edge servers and origin server in the experiments.
Two client hosts run 80 DASH request programs in total,
simulating different users downloading videos. The rate-based
ABR algorithm adopted is to choose the maximal bitrate
according to the throughput, which is similar to FastMPC
[5]. DASH video requests sent to the edge are attached with
user state information. Additionally, the distribution of client-
side video requests is set conforming to the Zipf law with a
parameter, e.g., 0.73.

Two edge servers run ATS to implement the LEAP-based
schemes and the origin server serves the video requests with
Nginx Web Server [56]. To demonstrate the efficiency of
the proposed schemes under different cache sizes, the experi-

0 20 40 60 80 100
Time (Second)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
a
p
a
ci

ty
 o

f
B

a
ck

h
a
u
l
Li

n
k

(M
B

y
te

)

Throughput without Prefetching

Throughput with Prefetching

Available Bandwidth

Fig. 12: Throughput variation when there is background traffic

ments are executed with 5GB and 10GB cache. Additionally,
CoLEAP has two edges with 5GB cache each. These two
edges have good transmission connectivity. The transmission
capacity between the client hosts and the edge server, is set at
three levels: good, average and poor by setting the delay on
different program ports using Linux Traffic Control tools [57].
The corresponding delay is realized by setting different loss
ratio for transmission, i.e. 0, 15%, 30%. As for the origin
server, it contains 60 videos which occupy in total about
100GB. These videos include some popular TV series, movies,
documentaries and advertisement videos. The types of these
videos are equally distributed across the five SSIM categories.

3) Schemes and Metrics: Six schemes are compared in
our experimental evaluation: CoLEAP, LEAP, Cache Only,
Prefetch All, iPac and No Cache. LEAP refers to a solution
which uses the proposed approach, but only one edge adopting
smart caching and prefetching strategies to serve the domain
clients. CoLEAP employs two smart edges to serve users
cooperatively. In LEAP and CoLEAP, one edge has a link
to the origin server with a maximum bandwidth of 20Mbps.
In CoLEAP, the backhaul link between the second edge and
the origin server has a maximum bandwidth of 90Mbps.
Cache Only refers to a solution which caches the content with
the highest QoE gain. Prefetch All employs the aggressive
prefetching that keep fetching till the end of videos. iPac
prefetches two segments for every request according to their
utility and No Cache performs no caching at all.

To better evaluate the performance of the schemes, five
important metrics are included in the evaluation, i.e., bitrate,
rebuffering, cache hit rate, transmission speed and QoE. These
metrics are assessed from two perspectives including the
average value in a short period and the global distribution.
Among them, bitrate can represent the video definition at the
client side. Rebuffering time means the video stalling brought
from slow transmission. So the transmission speed is also a
key metric for the schemes. Besides, cache hit rate at the edge
is fully considered to evaluate the performance of caching
and prefetching. Finally, QoE is a defined index to present
the effects of the schemes in an intuitive manner. The overall
testing results are presented in Table II, and are discussed in
the next subsection.

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 11

0 2 4 6 8 10 12 14
Time (Minute)

400

600

800

1000

1200

1400
Bi

tra
te

 (K
bp

s)
LEAP
iPac
Prefetch All
Cache Only
No Cache

(a) 5GB cache

400 500 600 700 800 900
Bitrate (Kbps)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

LEAP
iPac
Prefetch All
Cache Only
No Cache

(b) 5GB cache

0 2 4 6 8 10 12 14
Time (Minute)

400
600
800

1000
1200
1400
1600
1800
2000

Bi
tra

te
 (K

bp
s)

CoLEAP
LEAP
iPac

Prefetch All
Cache Only
No Cache

(c) 10GB cache

500 1000 1500 2000 2500
Bitrate (Kbps)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

CoLEAP
LEAP
iPac
Prefetch All
Cache Only
No Cache

(d) 10GB cache

Fig. 13: Comparison of average bitrate

2 4 6 8 10 12 14
Time (Minute)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Re
bu

ffe
rin

g
(T

im
e/

S)

LEAP
iPac
Prefetch All

Cache Only
No Cache

(a) 5GB cache

0 200 400 600 800
Rebuffering (Time/S)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

LEAP
iPac
Prefetch All
Cache Only
No Cache

(b) 5GB cache

0 2 4 6 8 10 12 14
Time (Minute)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Re
bu

ffe
rin

g
(T

im
e/

S)

CoLEAP
LEAP
iPac

Prefetch All
Cache Only
No Cache

(c) 10GB cache

0 200 400 600 800 1000
Rebuffering (Time/S)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

CoLEAP
LEAP
iPac
Prefetch All
Cache Only
No Cache

(d) 10GB cache

Fig. 14: Comparison of rebuffering

B. Evaluation in the Simulated Scenario

1) Throughput: To further illustrate the motivation of the
proposed scheme, the throughput is first analysed when band-
width variation is experienced by the link between the edge
and origin server. This simulates the presence of background
traffic that changes the available capacity of the backhaul
link. The bandwidth is varied between 1Mbps and 4Mbps
periodically, i.e., 9s where high bandwidth availability is
maintained for six seconds in each period followed by three
seconds of low available bandwidth (or high load time). The
schemes compared against are Cache Only and LEAP, which
differ in terms of prefetching.

Fig. 12 shows that the throughput of Cache Only is lower
than LEAP, making better use of the available bandwidth. Ad-
ditionally, LEAP achieves higher throughput than the available
bandwidth when Cache Only is declining sharply during the
high load periods. It can be concluded that, with prefetching,
LEAP adjusts the utilization ratio of available bandwidth under
different network conditions.

2) Average Bitrate and Rebuffering: With the variation
of network state, clients play videos and request different
segments with various schemes. Client-side average bitrate
and rebuffering, as important indexes, are first investigated
to compare the effect of the different schemes. Fig. 13a and
Fig. 13c show how average bitrate varies in time, for the
5GB and 10GB cache cases, respectively. The average bitrate
slightly decreases in time due to the increasing participation of
users. Fig. 13b and Fig. 13d show the Cumulative Distribution
Function (CDF) of bitrate for different schemes for the two
cache sizes. In both scenarios, the No Cache scheme acts
as the baseline, exhibiting the lowest average bitrate. Its
bitrate CDF converges at a low level because all user requests
need to be served by the origin server. Cache Only and

Prefetch All schemes show slightly better average bitrate.
However, the Prefetch All scheme does not intelligently react
to the changing bandwidth and sometimes even brings about
backhaul congestion. Instead, the smart prefetch schemes, i.e.
iPac, LEAP, and CoLEAP, perform better in both average
bitrate and rebuffering. Besides, considering bitrate switches,
LEAP-based schemes obtains higher average bitrate and lower
rebuffering significantly than iPac does. Compared with iPac,
LEAP achieves 19.2% and 34.4% improvements of average
bitrate in the 5GB and 10GB cache scenarios respectively.
In the 10GB scenario, CoLEAP obtains high average bitrate,
with 109.6% improvement in comparison with LEAP. Because
CoLEAP employs collaboratively an adjacent edge to fetch
more beneficial contents and also achieves the best bitrate CDF
as the curves show. Moreover, the larger the cache size, the
more the efficiency increases for all the schemes, improving
their performance.

Fig. 14 illustrates the rebuffering time for all schemes with
the same two cache sizes: 5GB and 10GB. It is obvious that the
Prefetch All scheme performs the worst due to its aggressive
prefetching behaviour while LEAP-based schemes obtain low

TABLE II: Comparative Performance Data for Different Schemes

Cache
Size

Metrics CoLEAP LEAP Cache
Only

Prefetch
All

iPac No
Cache

10GB

Bitrate 1650.80 787.65 444.28 461.02 585.88 351.79
Rebuf 0.07 0.14 0.24 1.78 0.24 0.84

Hit Rate 0.96 0.71 0.39 0.61 0.53 -
Delay 2.60 3.40 3.74 5.67 3.61 4.65
QoE 0.89 0.80 0.67 -0.86 0.69 0.07

5GB

Bitrate - 624.70 431.63 444.45 524.28 351.79
Rebuf - 0.12 0.20 1.64 0.34 0.84

Hit Rate - 0.68 0.37 0.60 0.47 -
Delay - 3.45 3.62 5.55 3.80 4.65
QoE - 0.82 0.72 -0.73 0.58 0.07

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 12

0 2 4 6 8 10 12 14
Time (Minute)

0.0

20.0

40.0

60.0

80.0

100.0
Ca

ch
e

Hi
t R

at
e

(%
)

LEAP
Cache Only

Prefetch All
iPac

(a) 5GB cache

0.0 20.0 40.0 60.0 80.0 100.0
Cache Hit Rate (%)

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

LEAP
iPac
Prefetch All
Cache Only

(b) 5GB cache

0 2 4 6 8 10 12 14
Time (Minute)

0.0

20.0

40.0

60.0

80.0

100.0

Ca
ch

e
Hi

t R
at

e
(%

)

CoLEAP
LEAP
iPac

Prefetch All
Cache Only

(c) 10GB cache

0.0 20.0 40.0 60.0 80.0 100.0
Cache Hit Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

CoLEAP
LEAP
iPac
Prefetch All
Cache Only

(d) 10GB cache

Fig. 15: Comparison of cache hit rate

0 2 4 6 8 10 12 14
Time (Minute)

3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

Qo
E

LEAP
iPac
Prefetch All

Cache Only
No Cache

(a) 5GB cache

1.0 0.5 0.0 0.5 1.0
QoE

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

LEAP
iPac
Prefetch All
Cache Only
No Cache

(b) 5GB cache

0 2 4 6 8 10 12 14
Time (minute)

3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

QO
E

CoLEAP
LEAP
iPac

Prefetch All
Cache Only
No Cache

(c) 10GB cache

1.5 1.0 0.5 0.0 0.5 1.0
QOE

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

CoLEAP
LEAP
iPac
Prefetch All
Cache Only
No Cache

(d) 10GB cache

Fig. 16: Comparison of QoE

rebuffering time. Compared with iPac in both 10GB and 5GB
cache scenarios, Table II shows that LEAP reduces rebuffering
time with 42.7% and 40.0%, respectively. Noteworthy is that
CoLEAP barely suffers from rebuffering due to the availability
of the adjacent edge backhaul path. Compared with iPac,
CoLEAP reduces rebuffering time by 70.8% in the 10GB
cache scenario. However, perhaps the utility-based prefetching
does not always work in the cooperative pattern because
the statistical information of chain length is collected based
on one-edge experiments. Although the chain-based utility
works fine in most cases, it still causes rebuffering as Fig
14.(c) around Time 2 and Time 9. To sum up, the LEAP-
based schemes learn during the learning process that reducing
rebuffering can improve user experience, so they basically give
priority to the requests from users who are suffering from
rebuffering.

3) Cache Hit Rate: The cache hit rate described here
includes not only the traditional cache hit pertinent to the
already-requested contents cached by the edge server, but also
the prefetch hit related to the prefetch requests in the edge
server. Fig. 15a and Fig. 15b show the cache hit rate and its
CDF with a 5GB cache. Fig. 15c and Fig. 15d illustrate the
cache hit rate and its CDF with a 10GB cache. As the baseline,
Cache Only is inferior to Prefetch All in both 10GB and 5GB
scenarios. It can be concluded that Prefetch All improves its
hit rate by substantially consuming bandwidth resources and
may prefetch lots of unnecessary segments with the constant
bitrate. In both cache scenarios, the cache hit rate of iPac
keeps declining till converging with the baseline, which can be
attributed to the increasing number of users and video requests.
Moreover, iPac executes a simple LRU cache policy combined
with a conservative utility-based prefetching strategy. So iPac
still needs improvement.

LEAP-based schemes are superior to the other schemes.
As Table II shows, LEAP improves the cache hit rate by
33.9% and 44.7% in 10GB and 5GB cache scenarios in
comparison with iPac. In the 10GB cache scenario, CoLEAP
achieves 96% hit rate 57.4% better than that of Cache Only.
At the same time, the deep learning model ensures that the
prefetched content has larger QoE. Moreover, CoLEAP also
takes advantage of the available bandwidth of the adjacent
edge. However, both the cache hit rates of iPac and LEAP
in both 10GB and 5GB cache scenarios decrease gradually
and keep stable finally, because the transmission capacity of
the backhaul link is exhausted by the increasing number of
users and video requests. We also note that, as expected, the
larger cache size results in higher cache hit rates. The hit rate
of LEAP with a 10GB cache is 4.4% improvement than that
with a 5GB cache. Besides, CoLEAP achieves 25.0% higher
hit rate than single LEAP due to the benefit of the cooperative
cache mechanism.

4) Response Speed and QoE: Although the defined QoE
does not include explicitly response speed as an influencing
factor, the response speed affects viewing experience. Re-
sponse speed is a metric which helps verify the feasibility of
a method and is used to reflect the efficiency of our proposed
scheme. The transmission time for every segment and its
distribution are shown in Fig. 17a and Fig. 17b for the 5GB
cache edge and in Fig. 17c and Fig. 17d for the 10GB cache
edge. The transmission results are similar for all the schemes
tested due to the similar settings in the network simulations.
CoLEAP transmission results in the 10 GB cache edge case,
also shown in Table II, are better than those of the other
schemes, as CoLEAP uses edge cooperation to provide the
requested content. CDF also shows how CoLEAP consistently
supports low transmission times, while the other schemes have

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 13

1 2 3 4 5 6 7 8
Time (minute)

500
1000
1500
2000
2500

Tr
sT

im
e

(m
s)

LEAP
iPac
Prefetch All

Cache Only
No Cache

(a) 5GB cache

1600 1800 2000 2200 2400
Transmission Time (ms)

0.0
20.0
40.0
60.0
80.0

CD
F

(%
)

LEAP
iPac
Prefetch All

Cache Only
No Cache

(b) 5GB cache

0 5 10 15 20 25
Time (minute)

0

500

1000

1500

2000

2500

Tr
an

sm
iss

io
n

tim
e

(m
s)

CoLEAP
LEAP
iPac

Prefetch All
Cache Only
No Cache

(c) 10GB cache

0 500 1000 1500 2000 2500
Transmission time (ms)

0.0

20.0

40.0

60.0

80.0

100.0

CD
F

(%
)

CoLEAP
LEAP
iPac

Prefetch All
Cache Only
No Cache

(d) 10GB cache

Fig. 17: Comparison of response speed

both low and very high transmission times. This is a great
result, despite the fact that the connection between the edges
in CoLEAP also adds to the transmission time.

Next we investigate the effect of all schemes on QoE. When
comparing the different schemes, we take No Cache as the
baseline, so its QoE value fluctuates around the zero line,
as shown in Fig. 16a and Fig. 16c, for the 5GB and 10GB
cache size cases, respectively. The CDF of QoE presented in
Fig. 16b and Fig. 16d also describe the effect of these schemes
in the two cases. We find that the aggressive prefetching
behavior of Prefetch All causes the inevitable transmission
delays even rebuffering. No Cache shows a relatively better
QoE, but the scheme does not make good use of edge server
resources. Cache Only, iPac and LEAP obtain even higher
values of QoE as the figures show. Of these schemes, LEAP
improves QoE by at least 15.9% and 13.4% in the 10GB
and 5GB cache scenarios, respectively as shown in Table II.
We also find that cache size has little influence on QoE for
single LEAP, further demonstrating the efficiency of LEAP.
However, CoLEAP achieves the highest average QoE and the
best distribution, which confirms that utilizing adjacent edges
is highly beneficial. Note that the initial value of QoE is lower
for all the schemes, because waiting delay in the start-up phase
is considered as rebuffering and affects QoE. After the buffer
fills to a given threshold, the client starts playing and the value
of QoE reflects the schemes’ behaviour.

VI. CONCLUSIONS

The increasing deployments of DASH make smart edges
become the preferred target for transmission optimization. In
order to provide end users with high QoE, it is of necessity
to design an efficient edge scheme with caching and prefetch-
ing to take advantage of the available edge-side resources.
This paper presents a cooperative learning-based smart edge

caching and prefetching solution to improve the QoE of
adaptive video streaming. We formalize the network problem
and design a deep neural network to predict the QoE gain,
which is employed in the proposed cooperative utility-based
caching and prefetching strategy. The results of comprehensive
simulation-based testing demonstrate the efficiency of our
scheme in terms of multiple performance metrics and in com-
parison with several existing solutions. By smart prefetching,
CoLEAP mitigates traffic load in the backhaul links, increases
average bitrate, reduces transmission time and rebuffering and
improves QoE. Further work considers deploying CoLEAP in
a real Internet environment and testing it in comparison with
other classic approaches.

ACKNOWLEDGMENT

This work is supported by National Natural Science Founda-
tion of China under grant No. 61972189, Guangdong Province
Key Area R&D Program under grant No. 2018B010113001,
the project ”PCL Future Regional Network Facilities for
Large-scale Experiments and Applications (PCL2018KP001)”
and the Shenzhen Key Lab of Software Defined Networking
under grant No. ZDSYS20140509172959989.

REFERENCES
[1] VNI Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017–

2022. White Paper, 2018.
[2] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph,

Aditya Ganjam, Jibin Zhan, and Hui Zhang. Understanding the Impact
of Video Quality on User Engagement. In ACM SIGCOMM, 2011.

[3] Jing Li, Lukáš Krasula, Yoann Baveye, Zhi Li, and Patrick Le Callet.
AccAnn: A New Subjective Assessment Methodology for Measuring
Acceptability and Annoyance of Quality of Experience. IEEE Transac-
tions on Multimedia, 21(10):2589–2602, 2019.

[4] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming
Over the Internet. IEEE Multimedia, 18(4):62–67, 2011.

[5] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A
Control-Theoretic Approach for Dynamic Adaptive Video Streaming
over HTTP. In ACM SIGCOMM, 2015.

[6] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. BOLA:
Near-Optimal Bitrate Adaptation for Online Videos. In IEEE INFO-
COM, 2016.

[7] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica
Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang.
Oboe: Auto-Tuning Video ABR Algorithms to Network Conditions. In
ACM SIGCOMM, 2018.

[8] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin Zhang, and
Jon M Peha. Streaming Video over the Internet: Approaches and
Directions. IEEE Transactions on circuits and systems for video
technology, 11(3):282–300, 2001.

[9] Qian Zhang, Wenwu Zhu, and Ya-Qin Zhang. Resource Allocation
for Multimedia Streaming over the Internet. IEEE Transactions on
Multimedia, 3(3):339–355, 2001.

[10] Zhi Wang, Lifeng Sun, Wenwu Zhu, Shiqiang Yang, Hongzhi Li, and
Dapeng Wu. Joint Social and Content Recommendation for User-
generated Videos in Online Social Network. IEEE Transactions on
Multimedia, 15(3):698–709, 2012.

[11] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt
Lloyd, and Kai Li. Popularity Prediction of Facebook Videos for Higher
Quality Streaming. In USENIX ATC, 2017.

[12] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Video Streaming with
Festive. IEEE/ACM Transactions on Networking, 22(1):326–340, 2014.

[13] Cezar Pleşca, Vincent Charvillat, and Wei Tsang Ooi. Multimedia
Prefetching with Optimal Markovian Policies. Journal of Network and
Computer Applications, 69:40–53, 2016.

[14] Wen Hu, Yichao Jin, Yonggang Wen, Zhi Wang, and Lifeng Sun.
Towards Wi-Fi AP-Assisted Content Prefetching for On-Demand
TV Series: A Reinforcement Learning Approach. arXiv preprint
arXiv:1703.03530, 2017.

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 14

[15] Kadir Tolga Bagci, Kemal Emrecan Sahin, and A Murat Tekalp. Com-
pete or Collaborate: Architectures for Collaborative DASH Video over
Future Networks. IEEE Transactions on Multimedia, 19(10):2152–2165,
2017.

[16] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. Adapt-
Size: Orchestrating the Hot Object Memory Cache in a Content Delivery
Network. In USENIX NSDI, 2017.

[17] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson,
kc claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and
Beichuan Zhang. Named Data Networking. ACM SIGCOMM Comput.
Commun. Rev., 44(3):66–73, 2014.

[18] Wei-Guang Teng, Cheng-Yue Chang, and Ming-Syan Chen. Integrating
Web Caching and Web Prefetching in Client-Side Proxies. IEEE
Transactions on Parallel and Distributed Systems, 16(5):444–455, 2005.

[19] Chithra D Gracia and S Sudha. A Case Study on Memory Efficient
Prediction Models for Web Prefetching. In IEEE ICETETS, 2016.

[20] Wanxin Shi, Qing Li, Chao Wang, Gengbiao Shen, Weichao Li, Yu Wu,
and Yong Jiang. LEAP: Learning-based Smart Edge with Caching and
Prefetching for Adaptive Video Streaming. In ACM/IEEE IWQOS, 2019.

[21] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and
Mark Watson. A Buffer-based Approach to Rate Adaptation: Evidence
from A Large Video Streaming Service. In ACM SIGCOMM, 2014.

[22] Jordi Mongay Batalla, Piotr Krawiec, Andrzej Beben, Piotr Wisniewski,
and Andrzej Chydzinski. Adaptive Video Streaming: Rate and Buffer
on the Track of Minimum Rebuffering. IEEE Journal on Selected Areas
in Communications, 34(8):2154–2167, 2016.

[23] Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and
Ali C Begen. Server-based Traffic Shaping for Stabilizing Oscillating
Adaptive Streaming Players. In ACM NOSSDAV, 2013.

[24] Andrea Detti, Bruno Ricci, and Nicola Blefari-Melazzi. Tracker-assisted
Rate Adaptation for MPEG DASH Live Streaming. In IEEE INFOCOM,
2016.

[25] Sa’di Altamimi and Shervin Shirmohammadi. QoE-Fair DASH Video
Streaming Using Server-side Reinforcement Learning. ACM TOMM,
16(2s):1–21, 2020.

[26] Junni Zou, Chenglin Li, Chengming Liu, Qin Yang, Hongkai Xiong, and
Eckehard Steinbach. Probabilistic tile Visibility-based Server-side Rate
Adaptation for Adaptive 360-degree Video Streaming. IEEE Journal of
Selected Topics in Signal Processing, 14(1):161–176, 2019.

[27] S M Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy.
Adaptive Scheme for Caching YouTube Content in a Cellular Network:
A Machine Learning Approach. IEEE Access, 5(99):5870–5881, 2017.

[28] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. A Deep
Reinforcement Learning-Based Framework for Content Caching. In
IEEE CISS, 2018.

[29] Mathieu Leconte, Georgios Paschos, Lazaros Gkatzikis, Moez Draief,
Spyridon Vassilaras, and Symeon Chouvardas. Placing Dynamic Content
in Caches with Small Population. In IEEE INFOCOM, 2016.

[30] James Z Wang and S Yu Philip. Fragmental Proxy Caching for
Streaming Multimedia Objects. IEEE Transactions on Multimedia,
9(1):147–156, 2006.

[31] Yumei Wang, Xiaojiang Zhou, Mengyao Sun, Lin Zhang, and Xiaofei
Wu. A New QoE-Driven Video Cache Management Scheme with
Wireless Cloud Computing in Cellular Networks. Mobile Networks and
Applications, 22(1):72–82, 2017.

[32] Chenglin Li, Laura Toni, Junni Zou, Hongkai Xiong, and Pascal
Frossard. QoE-Driven Mobile Edge Caching Placement for Adaptive
Video Streaming. IEEE Transactions in Multimedia, 20(4):965–984,
2018.

[33] Weiwen Zhang, Yonggang Wen, Zhenzhong Chen, and Ashish Khisti.
QoE-Driven Cache Management for HTTP Adaptive Bit Rate Streaming
over Wireless Networks. IEEE Transactions on Multimedia, 15(6):1431–
1445, 2013.

[34] Phuong L Vo, Long Van Nguyen, Tuan-Anh Le, and Duc Ngoc Minh
Dang. A QoE-Based Caching Algorithm for HTTP Adaptive Streaming
Contents in Radio Access Networks. In IEEE ICCE, 2016.

[35] JJ Sánchez-Hernández, JP Garcia-Ortiz, Vicente González-Ruiz, and
Daniel Müller. Interactive Streaming of Sequences of High Resolution
JPEG2000 Images. IEEE Transactions on Multimedia, 17(10):1829–
1838, 2015.

[36] preload-webpack-plugin, Chrome Browser Prefetch Function. https://
github.com/GoogleChromeLabs/preload-webpack-plugin.

[37] Satadal Sengupta, Niloy Ganguly, Sandip Chakraborty, and Pradipta
De. HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep
Reinforcement Learning. In ICNP, 2018.

[38] Ke Liang, Jia Hao, Roger Zimmermann, and David KY Yau. Integrated
Prefetching and Caching for Adaptive Video Streaming over HTTP: An

Online Approach. In ACM MMSys, 2015.
[39] Parikshit Juluri and Deep Medhi. Cache’n DASH: Efficient Caching for

DASH. In ACM SIGCOMM, 2015.
[40] Dapeng Wu, Qianru Liu, Honggang Wang, Qing Yang, and Ruyan

Wang. Cache Less for More: Exploiting Cooperative Video Caching and
Delivery in D2D Communications. IEEE Transactions on Multimedia,
2018.

[41] Shan Zhang, Peter He, Katsuya Suto, Peng Yang, Lian Zhao, and
Xuemin Sherman Shen. Cooperative Edge Caching in User-Centric
Clustered Mobile Networks. IEEE Transactions on Mobile Computing,
17(8):1791–1805, 2018.

[42] Haitian Pang, Jiangchuan Liu, Xiaoyi Fan, and Lifeng Sun. Toward
Smart and Cooperative Edge Caching for 5G Networks: A Deep
Learning Based Approach. In IEEE IWQOS, 2018.

[43] Vengatanathan Krishnamoorthi, Niklas Carlsson, Derek Eager, Anirban
Mahanti, and Nahid Shahmehri. Helping Hand or Hidden Hurdle:
Proxy-assisted HTTP-based Adaptive Streaming Performance. In IEEE
21st International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems, 2013.

[44] Chang Ge, Ning Wang, Gerry Foster, and Mick Wilson. Toward QoE-
assured 4K Video-on-Demand Delivery through Mobile Edge Virtual-
ization with Adaptive Prefetching. IEEE Transactions on Multimedia,
19(10):2222–2237, 2017.

[45] Steven Benno, Jairo O Esteban, and Ivica Rimac. Adaptive Streaming:
The Network HAS to Help. Bell Labs Technical Journal, 16(2):101–114,
2011.

[46] Adnan Ahmed, Zubair Shafiq, Harkeerat Bedi, and Amir Khakpour.
Suffering from Buffering? Detecting QoE Impairments in Live Video
Streams. In IEEE ICNP, 2017.

[47] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive
Video Streaming with Pensieve. In ACM SIGCOMM, 2017.

[48] Marco Zanforlin, Daniele Munaretto, Andrea Zanella, and Michele
Zorzi. SSIM-Based Video Admission Control and Resource Allocation
Algorithms. In IEEE WiOpt, 2014.

[49] Federico Chiariotti, Stefano D’Aronco, Laura Toni, and Pascal Frossard.
Online Learning Adaptation Strategy for DASH Clients. In ACM
MMSys, 2016.

[50] Jim Summers, Tim Brecht, Derek Eager, and Alex Gutarin. Characteriz-
ing the Workload of a Netflix Streaming Video Server. In IEEE IISWC,
2016.

[51] iqiyi open cache program. http://open.iqiyi.com/developer/iocp/iocp.html.
[52] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. Pytheas:

Enabling Data-Driven Quality of Experience Optimization Using Group-
Based Exploration-Exploitation. In USENIX NSDI, 2017.

[53] PR Freeman. The Secretary Problem and Its Extensions: A Review. In-
ternational Statistical Review/Revue Internationale de Statistique, pages
189–206, 1983.

[54] Apache Traffic Server. https://trafficserver.apache.org/.
[55] LEAP. https://github.com/wcc2wykdb/LEAP.git/.
[56] NGINX-High Performance Load Balancer, Web Server, & Reverse

Proxy. https://www.nginx.com/.
[57] Bert Hubert et al. Linux Advanced Routing & Traffic Control HOWTO.

Netherlabs BV, 1, 2002.

Wanxin Shi received the B.S degree in computer
science from China University of Geosicences (Bei-
jing) in 2017. She is currently pursuing the M.S
degree at Tsinghua University. She is primarily
interested in edge computing, optimization of video
transmission, software-defined networking, etc.

https://github.com/GoogleChromeLabs/preload-webpack-plugin
https://github.com/GoogleChromeLabs/preload-webpack-plugin
https://trafficserver.apache.org/
https://github.com/wcc2wykdb/LEAP.git/
https://www.nginx.com/

SHI et al.: COLEAP: COOPERATIVE LEARNING-BASED EDGE SCHEME WITH CACHING AND PREFETCHING FOR DASH VIDEO DELIVERY 15

Chao Wang received the B.S degree in software
engineering from Dalian University of Technology
in 2017, and is currently pursuing the M.S de-
gree at Tsinghua University. Her research interest
is in network-based optimization for adaptive video
streaming.

Yong Jiang received the B.S. degree (1998) and
the Ph.D. degree (2002) from Tsinghua Univer-
sity, Beijing, China, both in computer science and
technology. He is currently a full professor at the
Graduate school at Shenzhen, Tsinghua University.
His research interests include the future network
architecture, the Internet QoS, software defined net-
works, network function virtualization, etc.

Qing Li received the B.S. degree (2008) from
Dalian University of Technology, Dalian, China,
the Ph.D. degree (2013) from Tsinghua Univer-
sity, Beijing, China; both in computer science and
technology. He is currently an associate professor
at Southern University of Science and Technology,
China. His research interests include reliable and
scalable routing of the Internet, software defined net-
works, network function virtualization, in-network
caching/computing, intelligent self-running network,
etc.

Gengbiao Shen received the B.S. degree (2013)
and the M.S degree (2016) from Beihang Univer-
sity, Beijing, China, both in instrument science and
technology. He is currently a Ph.D. candidate at
Tsinghua University, China. His research interests
include data center network, in-network caching, in-
telligent network, software-defined networking, flow
scheduling, load balancing, etc.

Gabriel-Miro Muntean (S’02-M’04-SM’17) re-
ceived the B.Eng. and M.Sc. degrees from Po-
litehnica University of Timisoara, Romania in 1996
and 1997, respectively, and the Ph.D. degree from
the School of Electronic Engineering, Dublin City
University (DCU), Ireland, in 2003 for his research
on quality-oriented adaptive multimedia streaming
over wired networks. He is currently an Associate
Professor with the School of Electronic Engineering
DCU and co-Director of the Performance Engineer-
ing Laboratory DCU. He has published over 350

papers in prestigious international journals and conferences, has authored four
books and 18 book chapters, and has edited six other books. His research
interests include quality-oriented and performance related issues of adaptive
multimedia delivery, performance of wired and wireless communications,
energy-aware networking, and personalized technology-enhanced learning. Dr.
Muntean is an Associate Editor of the IEEE Transactions on Broadcasting,
the Multimedia Communications Area Editor of the IEEE Communication
Surveys and Tutorials, and a reviewer for other important international
journals, conferences, and funding agencies. He is a senior member of IEEE
and IEEE Broadcast Technology Society and coordinated the EU Horizon
2020-funded NEWTON project (http://newtonproject.eu)

http://newtonproject.eu

	Introduction
	Related Work
	Client-side Adaptive Bitrate Adjustment Schemes
	Server-Based Optimization Schemes
	Network-Based Optimization Solutions

	Model and Definition
	Network Model
	QoE
	Utility
	QoE Gain
	Chain-based utility

	CoLEAP Design
	Overview
	Request Collector
	Cache Manager
	QoE Gain Predictor
	Throughput Prediction
	QoE Gain Prediction

	Prefetch Manager

	Implementation and Evaluation
	Implementation and Setup
	Implementation
	Framework Setup
	Schemes and Metrics

	Evaluation in the Simulated Scenario
	Throughput
	Average Bitrate and Rebuffering
	Cache Hit Rate
	Response Speed and QoE

	Conclusions
	Biographies
	Wanxin Shi
	Chao Wang
	Yong Jiang
	Qing Li
	Gengbiao Shen
	Gabriel-Miro Muntean

