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Abstract—Base station caching and multicast are two promis-
ing methods to support mass content delivery in future wireless
network environments. However, existing scheduling designs do
not take full advantage of the two methods. This paper focuses
on employing multicast scheduling and caching in a network
architecture which involves both macro cell base stations (MBS)
and small cell base stations (SBS) in order to achieve joint opti-
mization of average delay and power consumption. We describe
this co-optimization problem as the Multicast-Aware Caching
Scheduling Problem (MACSP). This paper proposes a novel
pending request queue model, which aims to solve the problem
of long waiting time for non-popular content, and transform this
collaborative multicast-cache scheduling problem into a Markov
Decision Process that can be solved using reinforcement learning
methods. For actual deployment, the paper further introduces
a Distributed Policy Gradient algorithm (DPG) with similar
performance and lower complexity. The simulation-based testing
results demonstrate that our model and algorithm have better
performance and lower energy consumption than existing state-
of-the-art approaches.

Index Terms—Cache; Multicast; Markov Decision Process;
Reinforcement Learning.

I. INTRODUCTION

A. Motivation

According to the Cisco Visual Network Index (Cisco VNI),
mobile data traffic worldwide is expected to continue to grow
at a rate of 45% per year over the next few years due to the
large-scale use of smartphones, new broadband services and
applications. By 2020, traffic from wireless and mobile devices
will account for more than two-thirds of total IP traffic [1]. Not
only the amount of data is an issue, but also the requirements
for the delivery of data associated with the emerging services,
many rich media-based. The fifth-generation mobile network
system (5G) has set ambitious performance targets for the
immediate future to support these services. However, the
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5G network features such as high-speed, multi-access, low
latency, etc. have their limitations. There limitations are mostly
in terms of energy consumption and efficiency of resource
utilization. Different candidate solutions were proposed to
address these limitations and two important avenues have
involved multicast and caching [2]–[6].

Multicast transmissions can simultaneously support services
for a large number of users, which is to some extent to meet
the increasing demand for mobile video data and to provide
better quality of experience (QoE) for end users [7], [8].
Many operators use multicast to utilize more efficiently the
available bandwidth of their network and deliver the same
content to multiple users (receivers). For example, multicast
is often used to deliver advertising content, specifically to set
up mobile ads, download news, stock market reports, and
weather at specific locations. At the same time, multicast
has been incorporated into the 3GPP specifications for LTE
as evolved multimedia broadcast and multicast service (eM-
BMS) [9]. By using eMBMS, it is possible to fully support
broadcast and multicast transmissions in LTE and LTE-A
systems. Ericsson and Qualcomm’s LTE broadcast solutions
are typical commercial examples of eMBMS [10] [11]. This
technique uses a common carrier frequency to synchronize
the transmission between the sender and the receiver and
can be applied to multiple cells. Therefore, multicast only
consumes radio resources as required by a unicast service,
and the remaining resources can be used to support other
transmissions, thereby enhancing the network capacity. The
use of systems optimized for unicast services for multicast
transmissions can result in performance degradations in terms
of spectrum, energy efficiency, and QoE [12]. Although the
3GPP working group reached a consensus to remove the TDM-
related constraints in the LTE Release 14 specification to
support a more efficient and independent eMBMS network
[13] [14], there are still some challenges associated with the
scheduling and resource allocation (SRA) process.

Related to caching, the academic community has performed
a lot of research on network cache architecture and algorithms.
However, with the rapid growth of mobile video services,
current network architectures will become increasingly dif-
ficult to adapt to the ever-increasing content request rate.
Taking full advantage of the fact that end users request popular
content and placing popular content closer to the end user can
directly reduce the service delay and traffic load of the core
network, and indirectly address network congestion problems
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[15]. Many existing works have utilized this design principle
to develop dynamic content caching algorithms and use a
network caching architecture. Regardless of the approach, the
solutions allocate storage resources near end users, rather than
just storing data in the data center. Examples of commercial
systems that support caching include Altobridge’s ”edge data”
solution [16], Nokia Siemens Networks’ liquid application
[17] and Saguna Networks’ Open RAN platform [18].

In general, multicast and caching systems are independently
designed according to different requirements. However, con-
sidering the various mutual benefits a joint design of these
two technologies is expected to achieve superior performance
in mass content delivery in wireless networks. There have
been joint studies on multicast and caching mechanisms in
content distribution [19], [20]. Most researchers use multicast
or caching as an indicator of optimization, and then limit the
conditions of the other technology employment in different
scenarios. However, most of the literature does not consider
the fact that macro base stations (MBS) coexist with small cell
base stations (SBS) and does not exploit the synergy between
MBS multicast and SBS caching plus multicast over a long
period of time. No solution solves this problem known to be
NP-hard, despite some of them making excellent contributions
[2], [21], [22].

In theory, when enough content is reused, caching is ben-
eficial. When many users generate requests for a particular
content file at the same time, a multicast approach is useful.
This is common when crowds gather and are interested in the
same content, such as in sports competitions, concerts, and
public demonstrations, often with thousands of participants.

It is also known that caching on a small base station (SBS)
can reduce backhaul data traffic, shorten transmission delays,
and improve the quality of the user experience [23]. However,
these studies only consider the caching strategy under unicast
transmission of wireless networks, or assume that each SBS
will multicast one content per unit time slot only.

B. Contributions

In this paper, we consider a more efficient deployment, in
which one piece of content is multicast in MBS, while at the
same time, SBS can multicast multiple pieces of content, so
that the multicast characteristics of the wireless network can
be fully utilized. This approach is expected to be beneficial
to reducing network delay and improving user experience, as
well as reducing energy consumption.

In order to solve the above problem, we study a cache-
enabled 5G network that includes one MBS, N SBSs, and
M pieces of content and uses multicast. For a given situation,
we consider queuing pending requests and the following prob-
lems. The caching problem determines what content each SBS
multicasts in a time slot. The multicast problem determines
whether all BSs are multicasting in a time slot or not, and
if a BS decides to multicast, then what content should be
multicast? The main contributions of the paper are as follows:

Time-Cumulative-Markup Method: In order to record
pending requests from each user on the network, we model
the pending request queues associated with content m and a

base station (BS). However, in a 5G scenario, the network
size is large, and the content request frequency is high, so
that more popular content requests are rapidly accumulated,
resulting in a long queue of pending requests. There will
also be some less popular content that cannot be accumulated
for a period of time, causing the content to be selected for
multicasting and wait a long time while competing for pending
request queues. In order to address this problem we propose
the Time-Cumulative-Markup Method which reduces the wait
time for the unpopular content by redesigning the pending
request queuing. Simulation-based results demonstrate the
effectiveness of this method.

Multicast-Aware Caching Scheduling Problem: The
premise of most research on multicasting and caching is in
a certain time slot, that is to say, few studies have considered
changes in multicasting and caching over a continuous period
of time. The authors of [2] proved that the multicast delivery
problem is an NP-hard problem. We go a step further and
consider this optimization problem across multiple time slots
and denote it as the Multicast-Aware Caching Scheduling
Problem (MACSP).

The problem targets joint optimization of multicast with
caching across multiple time slots in 5G systems, aiming to
achieve minimum pending queues and taking energy con-
straints into account. To the best of our knowledge, we are
the first researchers which focus on this optimization across
more than one time slot. We employ Markov Decision Process
and at the same time, reinforcement learning to find the
optimal solution for MACSP. Experimental results show that
the proposed algorithm is superior to the greedy algorithm.

Distributed Policy Gradient Algorithm: We propose the
Distributed Policy Gradient algorithm (DPG), which combines
the use of the Deep Deterministic Policy Gradient (DDPG) and
Deep Q-Network (DQN) training methods. DPG is employed
into the entire Markov decision-making process. Since the
MACSP problem is a complex collaborative problem, solving
this problem is also a NP-hard problem. Therefore, we have
designed a distributed algorithm that divides SBS and MBS
actions into two state spaces for training. The final simulation
results show the effectiveness of this algorithm design method,
and demonstrates that its convergence is good.

The rest of this article is organized as follows. Section
II reviews related work. Section III introduces the system
model and problem formulation. Section IV gives the designed
reinforcement learning algorithm for solving the optimal so-
lution in the average time of MACSP problem. Section V
evaluates the performance of the proposed algorithm through
experimental simulation.

II. RELATED WORKS

This section discusses multicast and caching-based mecha-
nisms proposed in different scenarios, identifying the scientific
and technological gaps related to our research.

A. Research on Caching

Today, content sharing network services are becoming more
popular, including on-line social networking (OSN), photo
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sharing, and video on demand, which have to manage a
large amount of content. An efficient solution for this content
management is to deploy a collaborative cache. Specifically, in
[24], the authors studied cache placement on a collaborative
cache built from a single client cache in an on-line social
network or web service, and proposed a client to maintain
content and cache content, so that the mapping between the
client and the workload statistics can be used to design a
cache placement scheme. In [25], the authors consider a K-
user cache-assisted wireless multi-antenna symmetric broad-
cast channel with random fading and imperfect feedback. In
this case, the article gets an approximate best solution through
which identifies new synergies between the use of code buffer
and delayed CSIT. At the same time, intra-network caching
is one of the key technologies in the content-centric mobile
ad hoc network (CCMAN), which can significantly reduce
network traffic load and improve content retrieval perfor-
mance. In [26], the author analyzes the theoretical performance
of the cache in CCMAN, defines and deduces the cache
utility, and finally proposes a CSEC scheme to improve the
efficiency of cache space utilization in CCMAN. To better
improve the performance of content caching, the emerging
layered network architecture makes it possible to leverage
cloud-centric and edge-centric caching. In [15], the authors
propose a cache design of mixed content, which is designed
to support the average higher request content data rate latency
as much as possible on a limited service basis, they also solve
the NP-hard cache control problem by using the Lyapunov
optimization method and tight coupling between CU cache
and BS cache control decisions. As the same for cloud storage
applications, the literature [27] proposes a service curve based
QoS algorithm to support latency in the same storage system
to ensure application execution, which not only provides QoS
guarantees for applications, but also pursues better system
utilization. In order to further improve the user’s experience
of network use, [28] developed the best economic caching
solution in the cache-enabled heterogeneous network, while
providing mobile users with multimedia video services with
personalized viewing quality. Meanwhile the author designs
a heuristic algorithm based on greedy strategy to achieve
near-optimal layer cache index, and proves the performance
superiority of the proposed SVC-based caching scheme.

B. Research on Multicast

In recent years, multicasting data to mobile users (e.g. video
streaming, video conferencing, IPTV, distribution of news and
alerts, or the purpose of application and operating system
updates) has become increasingly important. Since such traffic
in cellular networks grows very rapidly and wireless resources
are scarce and expensive, improving the efficiency of wireless
multicasting is highly practical. In [29], the authors propose
a heuristic algorithm for opportunistic multicast in wireless
networks, which can best solve the problem of balancing
the overall throughput and equalizing the throughput of a
single receiver, and is suitable for practical on-line scheduling.
The software-defined Network Multicast (SDM) mentioned in
[30], on the basis of which the author redesigned DYN-SDM,

supplemented SDM at key points, which describes the detailed
design on internal traffic and service management process of
the ISP. At the same time, the article also introduces a new
set of SDN-based network layer mechanism to achieve traffic
load balancing and group and network dynamic processing.
The ISP network, also used in SDN, literature [31] proposed
an extensible multicast group management mechanism based
on the network function virtualization method to implement
and deploy multicast services on the network edge. In addition,
this paper also contributes to a lazy load-balanced multicast
(L2BM) routing algorithm for sharing core network capacity
in a friendly manner between guaranteed bandwidth multicast
traffic and best effort traffic which doesn’t require real-time
link monitoring, reducing economic costs as well. In terms
of improving the spectral efficiency of the system, the lit-
erature [12] proposed a novel sub-band CQI-based multicast
strategy, which relies on the selection of a more spectrally
efficient transmission mode to increase the data rate while
also meeting the quality index of specified services. In [32],
the authors studied NFV-enabled multicasting in Software
Defined Networks (SDN) to maximize network throughput
while minimizing the cost of allowed NFV-enabled multicast
requests. In order to solve the problem of multicast routing
delay in the smart grid, [33] proposed a systematic method,
namely betweenness centrality to bandwidth ratio tree (BCBT)
approach, which uses the shortest path tree (SPT) multicast
routing under light traffic, but when the multicast link becomes
congested, it will switch to BCBT multicast routing, thereby
alleviating SPT congestion.

All of the above research has promoted the development
of multicast and cache in various fields, and greatly improved
the overall resource utilization of the network while saving
economic costs. The joint design of multicast and cache has
become one of the solutions to the problem. Next, under the
constraint of MBS and SBS joint multicast, the SBS cache
mechanism is determined to seek the shortest pending request
queue in one time slot.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As shown in Fig. 1, we study a cache-enabled 5G network
that contains one macro cell base station (MBS), N small
cell base stations (SBSs), and M contents. It is assumed that
the coverage areas of SBS do not intersect. The MBS can be
associated with any user in the macro cell network, while the
SBS can only be associated with users in its coverage area.
The set of request content m is denoted by eq. (1).

M ∆
= {1, 2, ...,M} . (1)

Each SBS n is equipped with a cache of size Sn bytes
(Sn ≥ 0), which can be filled by content files retrieved from
the core network over the backhaul link. In general, SBS has
low caching capabilities and cannot provide services directly
to a large number of local users. Conversely, the MBS has
enough power to download the content requested by the user.
Therefore, the MBS directly multicasts to the user, or the local
SBS requests the MBS to cache the content and then multicasts
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Fig. 1: System Model

to the user. The two modes of the collaborative policy can be
used to provide services for the users.

Define a set of all base stations (BSs), denoted as follows:

N ∆
= {n0, n1, n2, ..., N} . (2)

Especially, n0 represents MBS, n ∈ N+ = n1, n2, . . . , N
express SBS n.

In practice, SBS coverage areas can usually overlap, but
each user can be associated with only one SBS according to
the best server criteria (e.g. the highest SNR rule). Therefore, it
can be assumed that the coverage of the SBS does not coincide.

The operator uses multicast to transmit the same content
to multiple receivers. In this case, the users’ requests will be
aggregated in a short time window and served by a single
multicast stream when the corresponding window expires. We
use t (unit time) to indicate the duration of the window, also
known as the multicast period. The set of time slot allocation
without loss of generality is indicated as in eq. (3).

T = {1, 2, . . . , T} . (3)

Let time slot t be a multicast cycle of MBS. In each time slot
t, MBS only multicasts one content, and SBS n can buffer and
multicast multiple contents. The average demand for content
m by the users associated with SBS n is represented by k ≥ 0
(the number of requests at time slot t). The probability that
the users of its local SBS coverage area request the content
m during the multicast period is denoted by pn,m. Similarly,
p0,m represents the probability that the user does not request
the content m in the coverage area of any SBSs. For example,
if the number of requests for content m associated with SBS
n follows a ZipF distribution with a rate parameter of k, the
probability of users’ requests is expressed as in eq. (4).

pn,m(k, a) =
1

ζ(a)ka
, (4)

where a is fixed parameter. Compared to SBS, MBS typ-
ically consumes more power, and its power consumption de-
pends on the size of the requested content, channel conditions,
and distance between the transmitter and receiver. Let Pn (unit:
Watt) represent the minimum transmit power required by the

MBS to send a file to the user. According to SINR [2], Pn
can be expressed as in the formula from eq. (5).

Pn = δs −Gn −Gn0
+ Ln0,i + ΨN + 10 log10BN (5)

In eq. (5), δs is the receiver sensitivity of the specific service
object, parameter Gn represents the antenna gain of the user
in the SBS n coverage area, and Gn0 represents the antenna
gain of the MBS. Ln0,i is the path loss between MBS and
user i, which depends on the channel characteristics and the
distance between the MBS and the user, ΨN is the shadow
component derived from the log-normal distribution, and BN
is the resource blocks allocated to the users in the 5G network.
The transmission power of SBS has a similar definition.

B. Service Model

Currently, the operators’ approach is to deploy SBS to
certain areas where user traffic is high. Therefore, other areas
that request fewer users may be covered only by MBS. When
the user i generates a request for the content m, the SBS n
that the user contacts would cache the content. If there are
a large number of requests for the same content m in other
SBS coverage areas, coordinated the request information of
the entire network, the strategy would tend to multicast content
m directly by the MBS, instead of delivering the content to a
certain SBS via the MBS, then multicasting by the SBS.

Consider the general case of MBS and SBS multicast. For
SBS n multicast transmission consider that, at time slot t,
a request for the content m has been generated in the area
covered by the SBS n, and has been cached locally. For
MBS multicast transmission consider that in the relevant SBS
coverage area, the content m requested by the user in the
current time slot t has not been cached.

The multicast caching strategy of all BSs in 5G network
depends on how to minimize the energy consumption of the
entire network. Use n∗ to indicate the coverage area of a BS
n where the BS needs the highest transmit power. Then, at
time slot t, the BS multicast energy consumption is as in eq.
(6):

un,m = Pn∗ = max
n∈N

Pn,∀n ∈ N . (6)

The energy consumption for SBS n to multicast cached
content to local users is generally less than the energy con-
sumption of MBS multicast, as eq. (7) indicates.

un,m ≤ u0,m,∀n ∈ N+. (7)

Similarly, vn,m is used to represent the energy consumption
of the SBS n cache content m. The energy required for the
SBS cache is related to the CPU size of the SBS, and is
also related to other hardware structures of the SBS. Finally,
w0,m ≥ 0 indicates the energy consumption when the MBS
delivers content through the backhaul link. Here, it is necessary
to consider the content request change of each SBS in each
time slot. It is assumed that in each time slot, SBS n can
buffer the content of the s, and when MBS delivers content
to SBS, it will consider the state of current cached content of
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SBS n. If there are already d contents in the buffer, at time
slot t, SBS n will not request the same content from the MBS
again, which is mathematically expressed as in eq. (8).

w0,m =

M∑
n=1

(s− d)Pbh(n),∀n ∈ N+, (8)

where Pbh (n) represents the power when the MBS sends a
content to the SBS n through the backhaul link.

C. Request Queue Model

In each time slot, the user submits a content request to the
MBS or local SBS. The number of requested content arriving
at the BS in the time slot t is αn, m, thus the content request
sequence at time slot t can be expressed as in eq. (9).

αn,m(t) =
{

0, 1, 2, . . . , αmaxn,m

}
. (9)

Since the users between the BSs do not overlap and the
request probabilities are the same, the request sequence of
each BS can be considered to be independent and identically
distributed (i.i.d). In order to record pending requests, the
queue Qn,m(t) associated with the BS and the content m is
modeled below. In theory, if the content m is multicast by
the MBS, it means that at time slot t, all pending requests in
the queue Q0, m(t) will be satisfied. Here we find a factor
that is easily overlooked: there are usually some less popular
contents. These contents are requested less frequently, that is
to say, being unsatisfied for a long time. In order that all the
requests would not to be ignored, we add a parameter β related
to number of times to update the rule of the pending request
queue. Therefore, the pending request queue for MBS (n = 0)
is updated as in eq. (10).

Q0,m (t+ 1) = (1− x0,m (t))Q0,m (t) + α0,m (t+ 1)

+ β,
(10)

where x0,m(t) = 1 indicates the MBS multicast scheduling
content m, and x0,m(t) = 0 shows that the MBS has no
multicast content m at time slot t. β is a fixed constant.
Similarly, the SBS (n ∈ N+) pending request queue is
dynamic as follows:

Qn,m (t+ 1) = d1− xn,m (t)− x0,m (t)eQn,m (t) +

αn,m (t+ 1) + β,
(11)

where d·e is defined as

dxe def=

{
x, if x ≥ 0
0, if x < 0

. (12)

However, the reality is that the resources of each base station
are limited. Suppose Rn,m is the upper limit value of the user
request satisfied by the BS, that is, the number of user pending
requests that each BS can satisfy through multicast in each
time slot is limited. Therefore, the formula (10) is updated to

Q0,m (t+ 1) = dQ0,m (t)− r0,m(t)e+ α0,m (t+ 1) + β,
(13)

where

r0,m(t) =

{
R0,m, x0,m(t) = 1

0, x0,m(t) = 0
.

Similarly, formula (11) is updated to eq. (14).

Qn,m (t+ 1) = dQn,m (t)− rn,m(t)e+ αn,m (t+ 1) + β,
(14)

where

rn,m(t) =

{
Rn,m, x0,m(t) = 1 or xn,m(t) = 1

0, otherwise
.

In the following sections, the problem with the pending
request queue dynamics in this format will be considered. In
addition, Qn,m(t) should have an upper limit, as in eq. (15).∑

T

Qn,m (t) ≤ Qmax (15)

D. Problem Formulation

Since the SBS n multicast policy depends on its cached
content, only two binary matrices x, y are defined as optimiza-
tion variables, representing the cache and multicast policies,
respectively. The value of xn,m indicates whether the content
m is stored in the cache of the SBS (xn,m = 1 is yes,
xn,m = 0 is no). Then in slot t, the SBS n caching policy
is expressed as in eq. (16).

x
∆
=
{
xn,m(t) ∈ {0, 1} : n ∈ N+,m ∈M, t ∈ T

}
(16)

The value of yn,m indicates whether the BS performs
multicast transmission (yn,m = 1 is yes, yn,m = 0 is no).
Then, within slot t, the multicast policies of all BSs are
expressed as in eq. (17):

y
∆
= {yn,m(t) ∈ {0, 1} : n ∈ N ,m ∈M, t ∈ T } (17)

Obviously, the operations of BS scheduling content m
consume energy. In time slot t, the energy consumption can be
specifically divided into three parts: the BS multicast energy
consumption u, the SBS cache energy consumption v, and the
energy consumption w on the MBS backhaul link, i.e.

u
∆
= {un,m(t) : n ∈ N ,m ∈M, t ∈ T } , (18)

v
∆
=
{
vn,m(t) : n ∈ N+,m ∈M, t ∈ T

}
, (19)

w
∆
= {w0,m(t) : m ∈M, t ∈ T } . (20)

Therefore, BS n multicast energy consumption is:

C1(t) =
∑
n∈N

∑
m∈M

E {yn,m (t)un,m (t)} . (21)

SBS cache energy consumption is expressed in eq. (22).

C2(t) =
∑
n∈N+

∑
m∈M

E {xn,m (t) vn,m (t)} (22)
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The energy consumption of content delivered through back-
haul link by MBS is as in eq. (23):

C3(t) =
∑
m∈M

E {(s− d)w0,m (t)} , (23)

where E {ϕ (t)} shows the time average of ϕ (t). In sum-
mary, the total energy consumption is expressed in eq. (24).

J (t) = C1 (t) + C2 (t) + C3(t). (24)

Our optimization goal is to determine the strategy of BS
cooperative scheduling in 5G networks, aiming to minimize
the average energy consumption under the constraints of
certain delay conditions.

It is worth noting that we minimize energy consumption on
the premise that the pending request queue is stable, which is
determined by the number of content requests by users in the
entire system against the actions of MBS and SBSs. However,
in order to better focus the problem on MBS and SBS schedul-
ing strategies, we design the optimization goal as the sum of
the total energy consumption and the number of outstanding
requests in the queues. In section V we will further show
the performance relationship between energy consumption and
throughput. Therefore, Multicast Aware Caching Scheduling
Problem (MACSP) is described as follows:

Minimize:

1

T

T−1∑
T=0

∑
n∈N ,m∈M

J(t) +Qn,m(t) (25)

Subject to: ∑
m∈M

y0,m (t) ≤ 1 (26a)

∑
n∈N+

∑
m∈M

y0,m (t) ≤ s (26b)

yn,m (t) ≤ xn,m (t) ,∀n ∈ N+ (26c)∑
T

Qn,m (t) ≤ Qmax (26d)

∑
m∈M

xn,m(t) ≤ Sn, ∀n ∈ N+ (26e)

xn,m (t) ∈ {0, 1} , n ∈ N+,m ∈M, t ∈ T (26f)

yn,m (t) ∈ {0, 1} , n ∈ n ∈ N ,m ∈M, t ∈ T (26g)

The constraint (26a) expresses that at time slot t, the
MBS can only multicast at most one content. The constraint
(26b) means that at time slot t, the SBS can cache up to s
contents. Constraint (26c) ensures that the content of the SBS
n multicast has been cached. Constraint (26d) indicates that all
queues are in the normal range to ensure limited accumulation
of pending requests. Constraint (26e) shows that the cache
space has an upper limit. Constraints (26f)-(26g) represent the
discrete properties of the two optimized variables.

IV. DISTRIBUTED POLICY GRADIENT ALGORITHM

The MACSP problem is actually trying to find the best
balance between the opposing goals to have minimum energy
consumption and minimum pending request queue size. From
the above optimization problem (25), it can be seen that, unlike
traditional optimization problems, we need to find the optimal
strategy for MBS and each SBS in a period of time T , rather
than simply solving the optimal value in each time slot (like
greedy algorithm, which would likely not find a global optimal
solution). The MACSP problem solving involves the time
stationary of the sequence, which obviously is a challenge.

Unlike supervised learning, reinforcement learning does not
rely on the prepared data for training. It only has a reward
value, and this reward value is different from the output value
of supervised learning. It is not given in advance, but is
given based on the delay of the action. Therefore we consider
using reinforcement learning to solve this problem. In this
section, we use Markov Decision Process to simplify our
reinforcement learning model, and we propose the Distributed
Policy Gradient (DPG) Algorithm based on Deep Determin-
istic Policy Gradient (DDPG) training and Deep Q-Learning
(DQN) algorithm. This algorithm is used to solve the MACSP
problem, noting that a coupling problem is creatively solved
separately.

A. Markov Decision Process

A Markov Decision Process involves a tuple
〈S,A,P,R, γ〉, where S is a set of state matrices named
state space. A is a set of behavioral matrices, we call it action
space. The state transition probability refers to the probability
that the time slot t to the next time slot state becomes s,
which expressed as P . The reward function is a reward that
is received immediately after the action a(t) transitions from
the state s(t) to the state s(t + 1), which represented by R.
γ is a decay factor to adjust learning rate, γ ∈ [0, 1].

1) The State Space: We assume that the system state
changes at an independent time. The time that the system
remains in its current state until the next state is called
the phase. Since a matrix representation is advantageous for
integrating the deep learning framework, we focus on the
problem given the system state at slot t ∈ T , and the response
state of MBS and SBSs represented by a matrix S = [sn,m],
where sn,m is the number of content m requests by users
in SBS n. We consider two situations: when the content m
is not requested, we would set a special value for sn,m;
correspondingly, if the content m is requested, sn,m will obey
the rule from eq. (27):

sn,m(t) =
Qn,m(t)∑

n∈N∗ Qn,m(t)
, (27)

where Qn,m is the length of pending request queue of SBS
n to content m. The present state set of the system can be
expressed as in eq. (28):

S = {(sn,m,∆t) |sn,m ∈ S,∆t ∈ T} , (28)

where S is the set of entire random combination, T is the
set of all action time gap of the agent.
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2) The Action Space: When the system state is S, the
set of possible actions A is a combination trained by the
reinforcement learning algorithm. Due to the huge variety of
content in the 5G network, the content combination of SBS
cache and multicast is also very large, so the action of the
system’s multicast cache cannot be simply regarded as discrete
behavior, but should be regarded as a continuous variable.
The traditional DDPG algorithm is to use a deeper network
structure, plus a strategy gradient algorithm, to randomly select
actions in a continuous action space according to the learned
strategy (action distribution). The role of Deterministic is to
help the policy gradient not to randomly chooses to output
only one action value. In other words, the policy output is the
action, i.e. π(s) : S → A, and a policy π is a probability
distribution over actions in given states.

π (a|s) = P
[
At = a|St = s

]
. (29)

Therefore, each BS requests a different content m to have
a corresponding action value, and the action matrix is rep-
resented by A, where a represents the value trained by our
algorithm. Define the action space as all possible combinations
of BS cooperative behavior, i.e.

A =
⋃
At, (30)

where A is a set of contents allocation solutions.
3) State Transition Probability: The state transition proba-

bility from state Sj(t) to state Sk(t) is given by eq. (31):

pj,k = p
(
At,∆t

)
, (31)

where p(At, θt) refers to the system state transition rate
divided by the system state transition probability from state j
to state k divided by the overall state transition rate from state
j. Specifically, the state transition rate from state j to state k is
the probability of occurrence of state j transition to k, and the
total state transition rate is the frequency of occurrence of all
possible events. Although the expression of the state transition
matrix probability is given here, the mapping relationship
cannot be directly used to solve the problem because it has no
application value in the real situation.

4) Reward Function: The reward function defines the goal
in the reinforcement learning problem, which maps each
perceived state to a single value R : S × A → R, indicating
the intrinsic demand of the state. In the MACSP problem,
the goal is to select the appropriate operation for each BS
in different states to optimize the overall performance of the
network and the quality of user service. We roughly divide the
reward into two parts, SBS behavior cost (SBS for caching and
small-scale multicast energy consumption) and MBS behavior
cost (MBS multicast and energy consumption on its back-
haul link). Energy consumption issues and queue constraints
have been highlighted in Section III, so the reward function is
expressed as in eq. (32):

R(t) = −Qn,m(t)− J(t), (32)

where Qn,m indicates the pending request queue, and J(t)
gather the whole energy consumption.

B. Algorithm Design

Different from the greedy strategy, our distributed algorithm
based on DDPG and DQN can complete the training space of
the Markov process, so as to make decisions.

Since the SBS can multicast and cache multiple pieces of
content in the time slot t, assuming that each time slot SBS
n multicasts c pieces of contents, then the reward function
obtained by the state corresponding to each action of the
actor has a specific expression, i.e. formula (32). The Policy
Gradient (PG) method employs a random strategy, and if the
goal is to perform the action in the current state, we need to
sample the probability distribution of the optimal strategy to
train the value of the desired action space. Therefore, we adopt
a deterministic strategy based on PG, and determine an action
based on the behavior directly through the function µ. This is
an optimal behavior strategy expressed as in eq. (34).

a(t) = µ [s(t)|θ] . (33)

This deterministic strategy µ is used to select the action,
where θ is the parameter of the strategic network that produces
deterministic actions.

Use the policy network µ to act as an actor, and use the
value network to fit the (s, a) function to play the role of
critic, so the objective function of DDPG can be defined as

F (µθ) = Es∼sµ [r(s, µθ(s))] , (34)

where r (·) denotes the reward function of state s. At this
point, the Q function is expressed as the expected reward value
for choosing actions under a deterministic strategy µ. Here we
use a Q network to fit the Q function.

Qµ
(
st, at

)
= E

[
r
(
st, at

)
+ γQµ

(
st+1, at+1

)]
(35)

The formula from eq. (36) is used to evaluate the quality
of strategy µ.

Jβ(µ) = Es∼sβ [Qµ(s, µ(s))] , (36)

where β is the random noise we introduced for the decision
mechanism of the action, and it obeys the Uhlenbeck-Ornstein
stochastic process.

Fig. 2: Network structure of DDPG
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Algorithm 1: Step 1 for single SBS training

1 Initialize: actor network µ (s|θµ), critic network
Q
(
s, a|θQ

)
, target network and replay buffer.

2 for each episode in range do
3 Initialize noise β as an OU random process for

later exploration;
4 for every steps in range do
5 Select action using at = µ (s|θµ) + β;
6 Perform actions in the environment;
7 reward = (the cost of multicast content as a

percentage of all content in the pending
queue) + (bh cost + cache cost +
multicast cost)/C;

8 Storage sample (st, a, r, st+1) into reply buffer;
9 Set yi = ri + γQ

(
si+1, µ (si+1|θµ) |θQ

)
;

10 loss = 1
N

∑
i

(
yi −Q

(
si, ai|θQ

))2
;

11 Update critic by minimizing the loss function;
12 Update the actor policy using the sampled policy

gradient;
13 Update the target networks;

Related to Deep Deterministic Policy Gradient (DDPG), the
DPG algorithm uses the deterministic strategy µ to select ac-
tion at, which is consistent with the requirements of MACSP,
where µ is the parameter that produces the deterministic action
strategy. We use the strategy µ to act as the actor required
for training, and use the critic net to fit the Q(a) function
to act as a critic. Because the structure of Deep Q-Learning
(DQN) is referenced, there is one more target network in Fig.
2. Lillicrap et al. gave a detailed proof of the network update
using gradient descent in the DDPG algorithm [32].

In our actor-critic framework, the action space of the critic
net is simplified, which reduces the computational complexity
of the algorithm and thus converges better. The proposed DPG
algorithm mainly includes two stages: first, an SBS agent
would be trained separately and secondly, the SBS agent and
MBS would be integrated to train together. Therefore the
algorithm is divided into two parts. In details, first we initialize
the actor and critic network and create the target network.
Then, the value of A is continuously updated during training
using the reinforcement learning method to obtain the output
value of the action space in the next iteration. Finally, all the
queues are updated at the current time to get a new target
network. This iteration is summarized in Algorithm 1.

We assume that the number of multicasts of MBS in
a slot should be very small, so the MBS multicast action
space is relatively large. Considering that DDPG has a poor
training effect on discrete action spaces, DQN is used for final
integration training. Discrete values can be used to indicate
which content is selected from existing content after all. The
integration stage is described in Algorithm 2.

We performed extensive numerical simulations presented in
the next section, and the results show that the solution per-
forms better in real settings than when employing alternative
approaches.

V. SIMULATION-BASED TESTING

The simulation results will be presented to show the feasi-
bility of the proposed algorithm. Besides, we also introduced
a trivial greedy algorithm in comparison to show the effec-
tiveness of our algorithm.

A. Environment Setup

In order to solve the MACSP problem with the proposed
deep reinforcement learning approach, there was a need to
build the environment for the simulation scenario. We consider
there are 4 SBS and 1 MBS in the environment and each
SBS can cache up to 2 content entries at any time. We also
consider the number of content types equal to 5. In each time
slot, 15 user requests are sent to each SBS. Without losing any
generality, we suppose that each SBS can multicast 2 pieces
of content to satisfy user requests. In the meanwhile, each
MBS can multicast 1 piece of content to satisfy the remaining
requests. Each SBS has a delay queue which contains requests
to be handled. We assume that each request has a delay time
attribute which indicates its priority. To retain the crucial
property of user requests, we use the Zipf distribution to
generate user requests. The Zipf distribution assumes that the
content has associated a popularity as in eq. (37):

f (k, a) =
1

ζ(a)ka
, (37)

where a has value of 1.2 in our simulations. The simulation
parameters are listed in Table I for convenience.

For simplicity, at the beginning of every episode, each
SBS cache content should also follow the Zipf distribution.
To demonstrate the efficiency of the reinforcement learning
approach, a basic greedy multicast method and a trivial random

Algorithm 2: Step 2 for all BSs Training (integrating
MBS base on step 1)

1 Initialize: DQN’s reply memory and the SBS agent
that has been trained using the DDPG algorithm,
randomize the Q function of DQN as well. for each
episode in range do

2 Initialize s observation of every SBS;
3 The agent takes actions to update status according

to s observation of SBS;
4 if get the current status then
5 select a random action with probability ε;

6 else
7 action = maxaQ

∗ (st, a, θ);

8 reward = (the cost of multicast content as a
percentage of all content in the pending queue) +
(bh cost + cache cost + multicast cost)/C;

9 Storage state space (st, a, r, st+1) in reply memory;
10 Get samples in random minibatch of replay

memory;
11 Update yj = rj + γmaxaQ (sj+1, a, θ);
12 Derived the gradient descent value of y;
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(a) Algorithm 1 for Single SBS Training

(b) Algorithm 2 for all BSs Training

Fig. 3: Training Results of DPG

TABLE I: SIMULATION PARAMETERS

Parameter Value
Number of SBS 4
Number of MBS 1

Cache size of each SBS 2
Number of content types 5

User request number per slot 15
User request popularity distribution ZipF with a = 1.2

multicast method are used for comparison. The greedy method
follows the rule that each SBS selects the content which delays
the longest time without considering the energy cost of the
entire network system, after all SBS multicast their cached
contents to satisfy user request, the MBS selects the remaining
content among all SBS which have the longest delay time.
Meanwhile, the random method follows the rule that each
SBS randomly select contents from its delay queue, and MBS
follows the same rule. By using the above greedy rule, the
algorithm can obtain a relative short delay queue but the total
energy cost is not considered.

The computational complexity of reinforcement learning
algorithms is determined by the state space and action space
of the problem and size of the network. In our approach, we
have divided the algorithm into two stages. First, a single
SBS should train its own DDPG agent without considering
the MBS’s multicast process. The DDPG agent can achieve
a relative good SBS multicast strategy having constraint the
length of delay queue. Considering the efficiency of the

(a) Test Result of Single SBS Agent

(b) Test Result after Two Stages

Fig. 4: Testing Results of DPG

training process, we decided that the action space for single
SBS is continuous, represented by a 1-D array with length
equal with the number of content items. For each element
in the action space the entry in this array indicates whether
the content it represents is multicast or not. By default, if
the element has a value greater than zero, then SBS should
multicast the content. The observation space for the single SBS
case is also continuous, represented by a 1-D array indicating
the status of the SBS delay queue. Secondly, all SBS and MBS
are put together to train a DQN agent to control the MBS
multicast process. The action space and observation space in
this stage is similar to that in the first stage. We use the default
parameters indicated in [34] for the first stage training, and
those employed in [35] for the second stage training.

B. Discussion of Results

Next the effectiveness of the two stages of the DPG algo-
rithm is assessed in comparison with the results of the greedy
algorithm and random algorithm when solving MACSP. The
simulation parameters listed in Table I are used.

Fig. 3 illustrates the convergence effect of the DPG algo-
rithm in our problem. As shown in Fig. 3(a), after around 700
episodes, the agent reaches a relative high reward and has the
ability to make reasonable decisions with a deep understanding
of the environment. Fig. 3(b) presents how by integrating the
training process of all BSs and observing the reward value of
each step, from about 170 episodes, the reward value is in a
stable state. This is as our DPG algorithm chooses a relative
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(a) The Value of Cost (b) Waiting Time of the Queue of Requests (c) Energy Consumption of the Entire Network

Fig. 5: Test Results of DPG

(a) a=1.2 of ZipF

(b) a=1.4 of ZipF

Fig. 6: The comparative performance of the three methods in
terms of four aspects: c1 denotes the energy consumption of
MBS multicasting, c2 indicates the energy consumption of
all BSs caching, bh cost means the energy consumption in

backhaul links, and g represents the queue delay.

good action to perform based on current system state, which
means that it always tries to satisfy the constraint and keep
the cost low.

Fig. 4 shows the test results of DDPG Agent trained by step
1 algorithm and DQN Agent trained by step 2 algorithm for
all BSs. The test results of a single SBS training agent are
shown in Fig. 4(a). In addition, after joining MBS multicast,

the original algorithm (i.e. Step 1) that only includes SBSs
multicast can be optimized. Compared with the result of
directly superimposing SBS, our DPG algorithm can obtain a
lower optimization target cost, which fluctuates around −19.7
in Fig. 4(b). The overall cost value is stable, and the cost value
is relatively low. Specifically, in the step 1 algorithm, each
SBS makes a relative good decision based on its own state. In
step 2, as MBS holds the entire system’s state, it takes good
actions to address all SBS unsatisfied requests, which reduces
the costs.

From these two plots, it can be noted that the proposed DPG
algorithm obtains more stable test results for the probability
distribution of different requests, and its cost is small. It can
also be suggested that Step 2 of DPG (i.e. Algorithm 2) can
help MBS and SBS cooperate to perform multicasting.

Fig. 5 shows the performance comparison of our method
(the DPG algorithm) with the greedy and random algorithms.
It can be seen that the DPG algorithm has a lower cost
than the greedy algorithm in Fig.5(a). On the other hand, the
results of the greedy and reinforcement learning algorithms
are significantly better than that of the random algorithms.
Fig. 5(b) shows the total waiting time of each SBS queue
under the three algorithms. Although the greedy strategy is to
select the content with the longest waiting time for multicast in
each step, the sum of the final waiting time is still higher than
that of our algorithm. This demonstrates that our algorithm
optimizes the queue waiting time in the context of the MACSP
problem. Fig. 5(c) shows that our algorithm consumes less
energy than the random algorithm and greedy algorithm,
which demonstrates that the algorithm also optimizes well
the energy consumption, successfully solving the problems we
have focused on.

The radar charts shown in Fig. 6 reflect the overall per-
formance of the DPG algorithm related to various aspects.
The four indicators in the radar chart are connected into an
irregular quadrilateral. From a single point of view, the energy
consumption of our algorithm (c1 and c2 in blue) is slightly
larger than for the random algorithm. This is because there
is more distributed content under the DPG algorithm, but the
delay (g in blue) is much smaller than the delay experienced
by the random and greedy algorithms. We believe this is
a necessary sacrifice for achieving low latency. In order to
comprehensively evaluate the combination of multicast and
caching, multiple performance parameters should be consid-
ered in conjunction. In this context, the area of the radar
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Fig. 7: System performance of three methods

chart illustrates the superiority of our algorithm, that is, the
smaller the quadrilateral area, the better overall performance
an algorithm can achieve. Additionally, it can be observed
in Fig. 6 that the area of the quadrilateral figure surrounded
by the blue line is much smaller than the quadrilateral area
represented by the other two algorithms. This shows that the
overall performance of the proposed algorithm is superior
to both greedy and random algorithms. Further, comparing
Fig.6(a) with Fig.6(b) by changing the parameter a of ZipF
distribution, it can be distinctly seen that the quadrilateral area
is different, indicating that our algorithm has better sensitivity.

The relationship between system throughput and energy
consumption can be clearly seen from Fig. 7. Under the
premise of ensuring a certain throughput, our algorithm has
a lower cost than the other two methods. This gap is more
obvious in the case of large throughput (that is, for longer
queue of pending requests).

VI. CONCLUSIONS

This paper focuses on the joint optimal multicast schedul-
ing in cache-enabled wireless heterogeneous networks. We
describe the issue as Multicast-Aware Caching Scheduling
Problem (MACSP) and, considering its complexity, we employ
a Markov Decision Process which benefits from training
using reinforcement learning to find the optimal solution. We
also propose a Distributed Policy Gradient algorithm (DPG)
with similar performance with existing solutions, but lower
complexity. Extensive simulation-based experimental testing
has showed that our algorithm successfully solves this complex
problem, and that outperforms alternative approaches in terms
of performance and energy saving.

REFERENCES

[1] Ericsson, “Mobility report: On the pulse of networked society,” June
2015. [Online]. Available: http://www.ericsson.com/mobility-report

[2] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
Caching and Multicast for 5G Wireless Networks,” IEEE Transactions
on Wireless Communications, vol. 15, no. 4, pp. 2995–3007, April 2016.

[3] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang, “5G-
QoE: QoE Modelling for Ultra-HD Video Streaming in 5G Networks,”
IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 621–634, June
2018.

[4] C. Xu, S. Jia, L. Zhong, H. Zhang, and G. Muntean, “Ant-Inspired Mini-
Community-Based Solution for Video-On-Demand Services in Wireless
Mobile Networks,” IEEE Transactions on Broadcasting, vol. 60, no. 2,
pp. 322–335, June 2014.

[5] C. Xu, M. Wang, X. Chen, L. Zhong, and L. A. Grieco, “Optimal
Information Centric Caching in 5G Device-to-Device Communications,”
IEEE Transactions on Mobile Computing, vol. 17, no. 9, pp. 2114–2126,
Sep. 2018.

[6] G. Araniti, P. Scopelliti, G. Muntean, and A. Iera, “A Hybrid Unicast-
Multicast Network Selection for Video Deliveries in Dense Hetero-
geneous Network Environments,” IEEE Transactions on Broadcasting,
vol. 65, no. 1, pp. 83–93, 2019.

[7] G. Araniti, M. Condoluci, P. Scopelliti, A. Molinaro, and A. Iera, “Mul-
ticasting over Emerging 5G Networks: Challenges and Perspectives,”
IEEE Network, vol. 31, no. 2, pp. 80–89, March 2017.

[8] S. Yang, C. Xu, L. Zhong, J. Shen, and G. Muntean, “A QoE-Driven
Multicast Strategy With Segment Routing - A Novel Multimedia Traffic
Engineering Paradigm,” IEEE Transactions on Broadcasting, vol. 66,
no. 1, pp. 34–46, March 2020.

[9] “3rd Generation Partnership Project (3GPP),” 2016. [Online]. Available:
http://www.3gpp.org/speci?cations/releases/71-release-9

[10] T. Lohmar, M. Slssingar, V. Kenehan, and S. Puustinen, “Delivering
Content with LTE Broadcast,” Ericsson Review, Feb 2013.

[11] “LTE Broadcast - A Revenue Enabler in the Mobile Media
Era,” Qualcomm White Paper, February 2013. [Online]. Avail-
able: https://www.qualcomm.com/media/documents/files/lte-broadcast-
a-revenue-enabler-in-the-mobile-media-era.pdf

[12] A. De La Fuente, G. Femenias, F. Riera-Palou, and A. Garcia Ar-
mada, “Subband CQI Feedback-Based Multicast Resource Allocation
in MIMO-OFDMA Networks,” IEEE Transactions on Broadcasting,
vol. 64, no. 4, pp. 846–864, Dec 2018.

[13] J. Lee, Y. Kim, Y. Kwak, J. Zhang, A. Papasakellariou, T. Novlan,
C. Sun, and Y. Li, “LTE-advanced in 3GPP Rel -13/14: an evolution
toward 5G,” IEEE Communications Magazine, vol. 54, no. 3, pp. 36–
42, March 2016.

[14] L. Zhang, Y. Wu, G. K. Walker, W. Li, K. Salehian, and A. Florea,
“Improving LTE e MBMS With Extended OFDM Parameters and
Layered-Division-Multiplexing,” IEEE Transactions on Broadcasting,
vol. 63, no. 1, pp. 32–47, March 2017.

[15] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid Content Caching in
5G Wireless Networks: Cloud Versus Edge Caching,” IEEE Transactions
on Wireless Communications, vol. 17, no. 5, pp. 3030–3045, May 2018.

[16] D. Liu and C. Yang, “Energy Efficiency of Downlink Networks With
Caching at Base Stations,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 4, pp. 907–922, April 2016.

[17] M. Europe, “Altobridge debuts intel-based network edge small cells
caching solution,” London, UK, Jun, 2013.

[18] L. Reading, “Nsn adds chinacache smarts to liquid applications,” New
York, NY, USA, 2014.

[19] Y. Cui, Z. Wang, Y. Yang, F. Yang, L. Ding, and L. Qian, “Joint and
Competitive Caching Designs in Large-Scale Multi-Tier Wireless Mul-
ticasting Networks,” IEEE Transactions on Communications, vol. 66,
no. 7, pp. 3108–3121, July 2018.

[20] B. Dai, Y. Liu, and W. Yu, “Optimized Base-Station Cache Allocation for
Cloud Radio Access Network With Multicast Backhaul,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 8, pp. 1737–1750,
Aug 2018.

[21] B. Zhou, Y. Cui, and M. Tao, “Optimal Dynamic Multicast Scheduling
for Cache-Enabled Content-Centric Wireless Networks,” IEEE Transac-
tions on Communications, vol. 65, no. 7, pp. 2956–2970, July 2017.

[22] B. Zhou and Y. Cui, “Stochastic Content-Centric Multicast Scheduling
for Cache-Enabled Heterogeneous Cellular Networks,” IEEE Transac-
tions on Wireless Communications, vol. 15, no. 9, pp. 6284–6297, Sep.
2016.

[23] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Cache-Aware Multicast Beam-
forming Design for Multicell Multigroup Multicast,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 12, pp. 11 681–11 693, Dec 2018.

[24] S. Nikolaou, R. Van Renesse, and N. Schiper, “Proactive Cache Place-
ment on Cooperative Client Caches for Online Social Networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp.
1174–1186, April 2016.

[25] J. Zhang and P. Elia, “Fundamental Limits of Cache-Aided Wireless BC:
Interplay of Coded-Caching and CSIT Feedback,” IEEE Transactions on
Information Theory, vol. 63, no. 5, pp. 3142–3160, May 2017.

[26] T. Zhang, X. Xu, Le Zhou, X. Jiang, and J. Loo, “Cache Space Efficient
Caching Scheme for Content-Centric Mobile Ad Hoc Networks,” IEEE
Systems Journal, vol. 13, no. 1, pp. 530–541, March 2019.



12

[27] Y. Zhang, Q. Wei, C. Chen, M. Xue, X. Yuan, and C. Wang, “Dynamic
Scheduling with Service Curve for QoS Guarantee of Large-Scale Cloud
Storage,” IEEE Transactions on Computers, vol. 67, no. 4, pp. 457–468,
April 2018.

[28] X. Zhang, T. Lv, Y. Ren, W. Ni, N. C. Beaulieu, and Y. J. Guo, “Eco-
nomical Caching for Scalable Videos in Cache-Enabled Heterogeneous
Networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 7, pp. 1608–1621, July 2019.

[29] G. H. Sim, J. Widmer, and B. Rengarajan, “Opportunistic Finite Horizon
Multicasting of Erasure-Coded Data,” IEEE Transactions on Mobile
Computing, vol. 15, no. 3, pp. 705–718, March 2016.

[30] J. Rückert, J. Blendin, R. Hark, and D. Hausheer, “Flexible, Efficient,
and Scalable Software-defined over-the-top Multicast for ISP Environ-
ments with DYNSDM,” IEEE Transactions on Network and Service
Management, vol. 13, no. 4, pp. 754–767, 2016.

[31] H. Soni, W. Dabbous, T. Turletti, and H. Asaeda, “NFV-Based Scalable
Guaranteed-Bandwidth Multicast Service for Software Defined ISP
Networks,” IEEE Transactions on Network and Service Management,
vol. 14, no. 4, pp. 1157–1170, Dec 2017.

[32] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient
NFV-Enabled Multicasting in SDNs,” IEEE Transactions on Communi-
cations, vol. 67, no. 3, pp. 2052–2070, March 2019.

[33] X. Li, Y. Tian, G. Ledwich, Y. Mishra, and C. Zhou, “Minimizing
Multicast Routing Delay in Multiple Multicast Trees With Shared Links
for Smart Grid,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp.
5427–5435, Sep. 2019.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous Control with Deep Reinforcement
Learning,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

[35] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” in Proceedings of the 33rd International Conference on
Machine Learning - Volume 48, ser. ICML’16, 2016, p. 1995–2003.

Lujie Zhong received the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2013. She is currently
an Associate Professor with the Information Engi-
neering College, Capital Normal University, Beijing,
China. Her research interests include communication
networks,computer system and architecture,and mo-
bile Internet technology.

Changqiao Xu (SM’15) received the Ph.D. degree
from the Institute of Software, Chinese Academy of
Sciences (ISCAS) in Jan. 2009. He was an Assis-
tant Research Fellow and R&D Project Manager in
ISCAS from 2002 to 2007. He was a researcher at
Athlone Institute of Technology and Joint PhD at
Dublin City University, Ireland during 2007-2009.
He joined Beijing University of Posts and Telecom-
munications (BUPT), Beijing, China, in Dec. 2009.
Currently, he is a full Professor with the State Key
Laboratory of Networking and Switching Technol-

ogy, and Director of the Next Generation Internet Technology Research
Center at BUPT. His research interests include Future Internet Technology,
Mobile Networking, Multimedia Communications, and Network Security. He
has published over 160 technical papers in prestigious international journals
and conferences. He has served a number of international conferences and
workshops as a Co-Chair and Technical Program Committee member. He
is currently serving as the Editor-in-Chief of Transactions on Emerging
Telecommunications Technologies (Wiley). He is Senior member of IEEE.

Jiewei Chen is a master candidate in Institute of
Network Technology, Beijing University of Posts
and Telecommunications, Beijing, China. Her re-
search interests include wireless network, edge com-
puting and federated machine learning.

Weiqi Yan received the B.E. degree in digital
media technology from Communication University
of China, Beijing in 2019. Now he is pursuing a
Master’s degree of Computer technology in Beijing
University of Posts and Telecommunication, China.

Shujie Yang received the Ph.D. degree in Institute
of Network Technology from Beijing University of
Posts and Telecommunications, Beijing, China, in
2017. He is currently a Lecturer with State Key Lab-
oratory of Networking and Switching Technology,
Beijing, China. His major research interests are in
the areas of wireless communications, and wireless
networking.

Gabriel-Miro Muntean (SM’17) is an Associate
Professor with the School of Electronic Engineering,
Dublin City University (DCU), Ireland, and the
Co-Director of the DCU Performance Engineering
Laboratory. He has published over 350 papers in
top-level international journals and conferences, au-
thored 4 books and 19 book chapters, and edited
6 additional books. He has supervised to comple-
tion 22 Ph.D. students and has mentored ten post-
doctoral researchers. His research interests include
quality, performance, and energy saving issues re-

lated to multimedia and multiple sensorial media delivery, technology en-
hanced learning, and other data communications over heterogeneous networks.
He is an Associate Editor of the IEEE TRANSACTIONS ON BROAD-
CASTING, the Multimedia Communications Area Editor of the IEEE COM-
MUNICATIONS SURVEYS AND TUTORIALS, and chair and reviewer for
important international journals, conferences, and funding agencies. He is a
Senior Member of IEEE Broadcast Technology Society.


