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Solution for Improving Live UHD Video Streaming
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Abstract—The latest advances in terms of network technologies1

open up new opportunities for high-end applications, including2

using the next generation video streaming technologies. As mobile3

devices become more affordable and powerful, an increasing4

range of rich media applications could offer a highly realis-5

tic and immersive experience to mobile users. However, this6

comes at the cost of very stringent Quality of Service (QoS)7

requirements, putting significant pressure on the underlying8

networks. In order to accommodate these new rich media appli-9

cations and overcome their associated challenges, this paper10

proposes an innovative Machine Learning-based scheduling solu-11

tion which supports increased quality for live omnidirectional12

(360◦) video streaming. The proposed solution is deployed in a13

highly dynamic Unmanned Aerial Vehicle (UAV)-based environ-14

ment to support immersive live omnidirectional video streaming15

to mobile users. The effectiveness of the proposed method is16

demonstrated through simulations and compared against three17

state-of-the-art scheduling solutions, such as: static Prioritization18

(SP), Required Activity Detection Scheduler (RADS) and Frame19

Level Scheduler (FLS). The results show that the proposed solu-20

tion outperforms the other schemes involved in terms of PSNR,21

throughput and packet loss rate.22

Index Terms—Omnidirectional video, live streaming, QoS,23

machine learning, radio resource management, UAV.24

I. INTRODUCTION25

GLOBAL mobile video traffic continues to grow26

exponentially, especially with the introduction of27

Ultra-High-Definition (UHD) or so called 4K video streaming28

applications. This new application category puts tremendous29

pressure on the current underlying networks as the average bit30

rate for 4K video is around 15 to 18Mbps, which is more than31

double the High Definition (HD) video bit rate and nine times32

more than the Standard Definition (SD) video bit rate [1].33

Additionally, the increasing adoption of new Virtual Reality34

(VR) and Augmented Reality (AR) enabled high-end mobile35
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Fig. 1. Highly dynamic immersive live UHD streaming example scenario.

devices together with the increasing amount of content ready 36

to be consumed pushes the current 4G networks closer to their 37

saturation. It is expected that the VR/AR generated traffic to 38

continue to follow a high growth trajectory especially with the 39

potential adoption of virtual reality streaming [1] that opens 40

up a new era of 5G-based media services. Moreover, Cisco [1] 41

also predicts that live Internet video will account for 17% of 42

the Internet video traffic by 2022 with IP video traffic reaching 43

82% of all IP traffic globally. 44

Consequently, in order to keep up with the current and pre- 45

dicted traffic demands, the network operators have already 46

started an accelerated roll-out of 5G communications. As 47

the new 5G technology targets high data rate and very low 48

latency, it opens up a new range of applications starting 49

from immersive augmented reality to driverless cars or even 50

robot-enabled remote surgery. According to Cisco, by 2022, 51

5G devices and connections will represent more than 3% of 52

global mobile devices and connections, with 12% of the global 53

mobile traffic being generated over the 5G cellular network [1]. 54

However, the network operators need to demonstrate that the 55

tremendous potential of the 5G deployment could meet the 56

users’ expectations. The challenge is magnified even further 57

especially given the current wide and diverse range of appli- 58

cations with different Quality of Service (QoS) requirements 59

which need to be supported on a heterogeneity of end- 60

user hardware platforms. Applications such as live network 61

streaming require low latency and jitter, whereas, reliability 62

is needed for applications such as file transfer which cannot 63
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tolerate packet loss or high delay. As most applications require64

end-to-end network support, this hampers the potential devel-65

opment and advantages of new applications. Consequently, it66

becomes obvious that just increasing the system capacity is67

not enough to meet the heterogeneous QoS requirements for68

all mobile users at the same time. This is mainly due to the69

increasing popularity of bandwidth-hungry applications (e.g.,70

multimedia-based applications), limited radio resources and71

changeable wireless network conditions. Thus, along with the72

next generation networks deployment, new emerging technolo-73

gies and solutions are being explored to help network operators74

to cope with such high traffic demands, such as: integration75

of MPEG-DASH [2] as the de-facto video delivery mecha-76

nism, Advanced Television Systems Committee (ATSC) 3.077

standard [3], evolved Multimedia Broadcast/Multicast Service78

(eMBMS) [4], Further eMBMS (FeMBMS) and New Radio79

MBMS (NR-MBMS) [5], mmWave communications [6], satel-80

lite back-haul [7], Software Defined Networks (SDN) and81

Network Function Virtualisation (NFV) [8], [9], Mobile Edge82

Computing (MEC) [10], Unmanned Aerial Vehicle (UAV) or83

drones [11], machine learning [12], etc. As a potential use84

case of UAV, Mangina et al. [13] make use of drones for live85

streaming for people with limited mobility, so that they could86

enjoy the immersion as if they were present at the specific87

location. The aim of this framework is to use the technology88

to enable opportunities for communication and self expression89

of people of all levels of physical and cognitive ability.90

This work focuses on a highly dynamic mobile scenario91

involving high bitrate live video streaming, as the one illus-92

trated in Fig. 1. In this scenario, an UAV equipped with an93

omnidirectional (360◦) camera is used to send 4K/8K video94

captured in real time from a live event taking place for instance95

in a stadium, to a MEC server attached to a 5G network. VR-96

enabled users get the live video stream served via the 5G97

network and expect to enjoy a high quality video experience,98

as if they were present at the venue. However, to be able99

to create a high quality immersive experience for the remote100

users, the network operators need to guarantee low latency101

and packet loss, and high throughput while also accommodat-102

ing other traffic classes. Unfortunately, this is not possible to103

achieve with conventional resource management methods.104

In this context, this paper proposes and describes an105

innovative Machine Learning (ML)-based scheduling solu-106

tion for radio resource management to improve signifi-107

cantly QoS provisioning and increase users’ Quality of108

Experience (QoE) levels in the presence of heteroge-109

neous traffic. The proposed solution targets particularly110

highly challenging scenarios which involve live stream-111

ing of very high bitrate video in highly dynamic network112

environments.113

The remainder of this article is organized as follows:114

Section II discusses important related works in this area115

and Section III presents an overview of the proposed solu-116

tion. Section IV details the proposed innovative ML-based117

scheduling solution for increased quality of live high bitrate118

video streaming in highly dynamic network environments119

and presents the associated problem formulation. Evaluation120

results are discussed in Section V in comparison with those121

of alternative solutions and finally, conclusions are drawn in 122

Section VI. 123

II. RELATED WORKS 124

A key challenge for network operators is to provide ubiq- 125

uitous connectivity to different device types and applica- 126

tions with heterogeneous QoS requirements. This challenge 127

is amplified by the increasing popularity of multimedia- 128

based bandwidth-hungry applications with strict QoS require- 129

ments that stretch the current 4G networks closer to satu- 130

ration. Consequently, to be able to accommodate all these 131

new immersive live streaming applications, known for being 132

bandwidth-hungry and having low-latency and packet loss 133

requirements [14], advanced solutions must be adopted to 134

maintain increased QoE for end-users, since QoE is expected 135

to become the biggest differentiator between network opera- 136

tors [15]. 137

An important component that is expected to be integrated 138

within the 5G and beyond 5G networks is the use of UAV [16]. 139

Apart from facilitating temporary radio access and Internet 140

connectivity, UAVs could also be used to facilitate live video 141

broadcasting and enable support for high data rate transmis- 142

sions [11]. However, to accommodate a high number of users 143

with enhanced QoE levels within the 5G radio access network, 144

system bandwidth needs to be properly managed. According 145

to [17], two adaptation methods classes can be considered to 146

deal with the bandwidth efficiency in order to improve QoS 147

and QoE, such as: passive and active. The active approaches 148

aim to improve the bandwidth allocation by using scheduling 149

algorithms, whereas passive ones refer more to bandwidth- 150

compliant adaptation techniques that adapt the multimedia 151

transmission to the available bandwidth. 152

As an active adaptation entity, the packet scheduler is 153

responsible for dynamically sharing the system bandwidth 154

between the end-users such that the QoS provisioning is max- 155

imized. Different scheduling strategies are proposed in the 156

literature to deal with QoS targets [18]. A scheduler that 157

encapsulates the features of different scheduling strategies 158

is proposed in [19] for 3G downlink systems to assure the 159

multidimensional QoS provisioning under varying traffic and 160

radio channel conditions. However, most of the state-of-the- 161

art schedulers targeting multidimensional QoS requirements 162

aim to prioritize some traffic classes while ignoring others. 163

For instance, Frame Level Scheduler (FLS) [20] prioritizes 164

real-time traffic (e.g., video, voice, gaming) over the more 165

elastic traffic classes (e.g., file transfer, HTTP). In contrast, 166

Required Activity Detection (RADS) [21] prioritizes a group 167

of users according to their packet delay and fairness crite- 168

rion. However, most of the prioritization schemes are unable 169

to react to the dynamics of the wireless environment, such 170

as: increasing number of users, various traffic characteristics, 171

and changeable network conditions. As a consequence, some 172

traffic classes are over-provisioned while others may have a 173

degraded QoS. 174

A passive method used for traffic prioritization and band- 175

width adaptation is proposed in [17] to manage the transmis- 176

sion of massive clinical applications in high-speed ambulance 177

scenario under variable and limited communication bandwidth. 178
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Fig. 2. Proposed 5G UAV-based live streaming framework.

The approach works in two stages: a) the clinical multimedia179

data is prioritized in four classes based on the disease model180

and the criticality of each model; b) according to the avail-181

able bandwidth, different heuristic algorithms are proposed to182

reduce the clinical data rates according to their priority class.183

The evaluations show the effectiveness of this approach by184

transferring the most critical information within the limited185

bandwidth. By focusing only on QoE improvement, the system186

bandwidth can remain underutilized. In this sense, a passive187

adaptation scheme is proposed in [22] to facilitate the video188

rate adaptation by considering the physical layer information189

to enable accurate bandwidth estimation. The latest network190

advancements need to accommodate advanced applications191

and services with very high data rates and extremely low192

latency. Wang et al. [23] propose the use of fog networking193

to coordinate a network of drones equipped with cameras to194

broadcast live events. The objective of the proposed framework195

is to maximizing the coverage area as well as the available196

throughput for high-quality video streaming to video servers.197

In terms of Radio Resource Management (RRM) and QoS198

provisioning, classical RRM functionalities would not be able199

to meet the stringent QoS requirements of all these immer-200

sive live streaming applications while also catering for the201

rest of application classes. In the context of 5G, ML is cur-202

rently gaining considerable attention as it is seen as one of203

the key enablers for QoS provisioning [12], [18], [24]–[26] as204

well as for the development of intelligent services for smart205

cities [27]. An autonomous network resource management for206

QoS and QoE provisioning is proposed in [12] to predict the207

amount of network resources that needs to be allocated to208

cope with the traffic demands for live and on-demand dynamic209

adaptive streaming over HTTP. Machine learning is used to210

optimize the scheduling and resource allocation problems in211

5G radio access networks focusing on different combinations212

of QoS objectives, such as: throughput, delay and packet loss213

in [18], packet loss and delay in [24], system throughput and214

user fairness in [25]. However, these ML-based scheduling215

solutions are designed for homogeneous traffic types only. 216

The ML framework proposed in [26] aims to optimize the 217

resource and power allocation problem for heterogeneous traf- 218

fic with the scope of improving the delay of Ultra-Reliable and 219

Low-Latency Communications (URLLC) users and throughput 220

of enhanced Mobile Broadband (eMBB) users. Compared to 221

previous works, this paper proposes a ML-based scheduling 222

and resource allocation solution to enable high level of QoS 223

provisioning for mobile users experiencing UAV VR-based 224

live video content while maintaining an acceptable service 225

quality of other traffic types with diverse QoS requirements. 226

To this extent, the contributions of this paper are two fold: 227

• an innovative ML-based scheduling solution to enable 228

QoS provisioning for Ultra High Definition video stream- 229

ing in highly dynamic network environments; 230

• a QoS-oriented UAV-based integrated system for enabling 231

high quality levels for immersive live video streaming. 232

The benefits of the proposed ML-based solution compared 233

to other state-of-the-art schedulers are summarized as follows: 234

• enhanced QoS provisioning (in terms of delay, through- 235

put and packet loss requirements), higher throughput and 236

Peak Signal-to-Noise Ratio (PSNR) for users requesting 237

UHD VR-based live video; 238

• gains in excess of 100% when monitoring the time frac- 239

tion when the heterogeneous QoS requirements are met 240

in a mixture of services with various QoS requirements; 241

• improved inter-class fairness by respecting over time the 242

standard prioritization order; it can accommodate a higher 243

number of UHD VR video connections and avoids the 244

over/under-provisioning of other traffic classes. 245

III. PROPOSED FRAMEWORK FOR UAV-BASED 4K 246

STREAMING 247

The main components of the proposed quality and 248

performance-oriented system for high quality live video 249

streaming are illustrated in Fig. 2. The figure presents a very 250
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challenging deployment involving a UAV with a 360◦ cam-251

era, a MEC server, a 5G intelligent packet scheduler and VR252

users. The UAV has a 360◦ spherical camera that records a253

live event (e.g., football games, concerts, festivals, etc.). The254

UAV communicates via the 5G network on the ground to255

send 4K/8K UHD video to the MEC server. For simplicity,256

it is assumed that there is no loss on the communication link257

between the UAV and the MEC server. The MEC server will258

then stream live the UHD video content to the users. However,259

in order to accommodate a heterogeneous traffic mix with260

different QoS requirements, an intelligent ML-based packet261

scheduler is proposed to enable high QoS provisioning for262

different traffic classes, including for live high bitrate video263

streaming. The mix of traffic can consider the 5G services264

and use cases such as eMBB, URLLC and massive Machine265

Type Communications (mMTC) as well as other types of 4G266

related services with more relaxed QoS requirements.267

The role of the packet scheduler is to allocate the avail-268

able frequency resources to active users within a given cell to269

improve as much as possible the fraction of scheduling time270

when the QoS requirements are met for each traffic type. The271

scheduling process is conducted at each Transmission Time272

Interval (TTI) and usually works in two steps: a) Time-based273

Prioritization (TP) where a group of users with more stringent274

QoS requirements is prioritized among other users with more275

relaxed QoS constraints and b) Frequency-based Prioritization276

(FP) that aims to allocate the radio resources in order to277

increase the QoS provisioning in terms of delay, packet loss278

and rate requirements for the pre-selected group of users.279

While time prioritization is seen as an outer QoS provisioning280

scheme for all traffic classes based on a given priority order,281

frequency prioritization acts as an inner QoS provisioning282

scheme for the pre-selected users. Consequently, the sched-283

uler will prioritize data packets in both time and frequency284

domains based on current networking conditions that may285

change at each TTI, including: number of users for each traffic286

class, QoS profiles, heterogeneous QoS parameters, VR live287

streaming characteristics, channel conditions, etc. However,288

many existing scheduling schemes are not able to adapt to the289

dynamic and unpredictable networking conditions [18]. For290

instance, some time-based prioritization schemes aim to over-291

provision some traffic classes while degrading the performance292

of others [20], [21], whereas the frequency-based prioritization293

techniques will address only particular QoS requirements at294

any time [18]. In order to avoid these drawbacks, the proposed295

scheduling solution is flexible, being able to adapt according to296

the current network conditions in order to enhance the frac-297

tion of time when the heterogeneous QoS requirements are298

respected.299

Since live UHD VR-based video streaming has strict QoS300

requirements with data rates at least twenty times greater than301

other conventional applications [1], the best practice would302

be to decide at each TTI the most suitable traffic class to be303

prioritized in order to: a) meet the very stringent QoS require-304

ments of live UHD VR-based traffic and b) avoid the starvation305

effect for other types of applications. In the frequency domain,306

the most suitable scheduling rule is selected to improve the307

QoS provisioning for each selected traffic class. Therefore, an308

intelligent ML-based solution is introduced to learn over time 309

and propose the most suitable prioritization decisions based 310

on current scheduler states. Therefore, this paper proposes an 311

innovative ML-based scheduler for heterogeneous traffic in 312

Orthogonal Frequency Division Multiple Access (OFDMA) 313

downlink systems. The proposed ML-based scheduling solu- 314

tion is able to take each time two scheduling decisions in order 315

to increase the amount of time when all QoS requirements are 316

met. This two-dimensional decision prioritizes a certain traffic 317

class at each TTI and decides the scheduling rule that allocates 318

the available bandwidth to users of the pre-selected class in 319

the frequency domain. 320

IV. INTELLIGENT ML-BASED 321

SCHEDULING SOLUTION 322

As previously stated, the proposed ML-based scheduler (see 323

Fig. 2) is able to select at each TTI the most suitable traffic 324

class to be prioritized in time domain and the best scheduling 325

rule for the user prioritization in frequency domain in order 326

to improve the QoS provisioning. These decisions could be 327

taken based on various parameters, such as: wireless chan- 328

nel conditions, application requirements, traffic characteristics, 329

users’ profile, device types, etc. The details of the ML-based 330

scheduler are presented next in this section. 331

A. Prioritization-Based Scheduling 332

In frequency domain, it is considered that the available 333

bandwidth is divided in equal Resource Blocks (RBs), the 334

smallest radio resource that can be allocated by the Base 335

Station (BS) to the user (see Fig. 2). We define by B = 336

{1, 2, . . . , B} the set of available RBs in a given bandwidth. To 337

get the necessary bandwidth needed to accommodate a high 338

number of UHD VR-enabled live video streaming connections, 339

we aggregate multiple radio bandwidths. Each User Equipment 340

(UE) is characterized by a single traffic class, with a given 341

priority and a QoS profile in terms of delay, packet loss and 342

throughput requirements. Multiple UEs may request different 343

services with heterogeneous QoS requirements. A successful 344

scheduler should be able to accommodate UHD VR-based live 345

services as well as other conventional traffic types (e.g., video, 346

voice, file transfer, etc) without penalizing one over the other. 347

The list of symbols used in this paper is presented in Table I. 348

Let us consider P the number of traffic classes with differ- 349

ent QoS profiles. We define by P = {1, 2, . . . , P} the priority 350

set such that traffic class 1 has the highest priority (i.e., UHD 351

VR-based live streaming traffic) while traffic class P has the 352

lowest priority. The Static prioritization (SP) is defined accord- 353

ing to the 3GPP guidelines [28] as follows: regardless of the 354

network conditions, the scheduling process respects the prior- 355

ity set P = {1, 2, . . . , P} for the entire downlink transmission 356

session. Let us define the set of active users for all classes 357

as U = {U1,U2, . . . ,UP}, where Up is the subset of users 358

corresponding to traffic class p ∈ P . We denote by Up the 359

number of users belonging to class p ∈ P , while by U, the 360

total number of active users from all classes. Moreover, the 361

set of heterogeneous QoS objectives in terms of their require- 362

ments’ accomplishment is defined as O = {O1,O2, . . . ,OP}, 363
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TABLE I
LIST OF NOTATIONS

where Op is the set of objectives for class p ∈ P . It is said364

that set Op is met if the delay, packet loss and throughput365

requirements are respected by all active users belonging to366

traffic class p ∈ P .367

In frequency domain, the process of user scheduling and368

resource allocation is conducted according to a given schedul-369

ing rule that is oriented on a particular QoS objective or on370

a group of QoS objectives. We define the set of scheduling371

rules as R = {1, 2, . . . , R}, where R represents the maximum372

number of rules. Assuming that a SP scheme is employed at373

this stage at each TTI, the set of active users U1 is passed in374

the frequency domain for scheduling. Here, a given schedul-375

ing rule r ∈ R contributes to the metric computation for each376

user u ∈ U1 on each RB b ∈ B. Each metric shows how nec-377

essary is for each user u ∈ U1 to get each resource b ∈ B from378

the perspective of the addressed objective o ∈ O1 targeted by379

the scheduling rule r ∈ R. In the initial phase of scheduling,380

a number of U1 metrics is computed for each RB b ∈ B by381

summing a total number of U1 ·B metrics. In the second phase,382

the scheduler allocates each RB b ∈ B to the user with the383

highest metric and the process is repeated RB-by-RB until the384

entire set B is allocated. However, some metrics can be zero385

since the QoS objectives are met or there are not enough pack-386

ets in the queue for some users. If all metrics are equal, then387

the RB b ∈ B remains unoccupied. Finally, the third phase388

of the scheduling process aims at calculating the size of the389

transport block for each user scheduled on different RBs and390

determines the modulation and coding scheme necessary to391

decode the data at the reception. The scheduling process can392

be repeated for the next prioritized class (i.e., p = 2) if some393

RBs are unoccupied once the users from U1 are scheduled.394

By employing this SP scheme, the UHD VR-based live 395

video streaming traffic is always allocated the best resources 396

while adversely affecting QoS provisioning for other traf- 397

fic classes. To avoid this fundamental drawback, other traffic 398

classes must be prioritized when network conditions are favor- 399

able. Consequently, in this work, the proposed approach aims 400

to select at each TTI the traffic class p ∈ P in such a way that 401

the satisfaction of heterogeneous QoS requirements has the 402

highest possible outcome under the current networking con- 403

ditions. In this way, we decide at each TTI the prioritization 404

set P[t] = {p, 1, . . . , p − 1, p + 1, . . . , P}, where class p ∈ P 405

gets as many resources as needed up to the maximum number 406

of RBs, whereas other classes receive the remaining resources 407

by following the priority order of {1, . . . , p−1, p+1, . . . , P}. 408

Even so, if always applying the same scheduling rule for 409

frequency prioritization, only one objective across all traffic 410

classes would be addressed, while harming the performance 411

of other QoS targets. Consequently, in the frequency domain, 412

our aim is to apply at each TTI the most suitable scheduling 413

rule in order to increase the fraction of time (in TTIs) when 414

the heterogeneous QoS requirements are met. 415

B. Multi-Class and Multi-Objective Optimization Problem 416

Let us define by xp,u,o the Key Performance Indicator 417

(KPI) of user u ∈ Up and objective o ∈ Op and by 418

x̄p,u,o its associated requirement. It is said that user u ∈ Up 419

meets objective o ∈ Op if and only if xp,u,o respects x̄p,u,o. 420

Furthermore, let us define the current KPI vector xp,u[t] = 421

[xp,u,o1, xp,u,o2 , . . . , x̄p,u,Op ] and its associated requirement 422

vector x̄p,u = [x̄p,u,o1, x̄p,u,o2 , . . . , x̄p,u,Op ]. User u ∈ Up 423

meets all QoS objectives if and only if xp,u respects the 424

requirement vector x̄p,u. By extending this reasoning, the 425

entire set of objectives is met for each traffic class p ∈ P , 426

if vector xp[t] = [xp,1, xp,2, . . . , xp,Up ] respects its require- 427

ments x̄p = [x̄p,1, x̄p,2, . . . , x̄p,Up ]. The proposed framework 428

aims to increase the number of TTIs when the KPI vector 429

x = [x1, x2, . . . , xP] respects the QoS requirement vector 430

x̄ = [x̄1, x̄2, . . . , x̄P]. We formulate in (1) the multi-class and 431

multi-objective optimization problem that aims to determine 432

at each TTI the most convenient traffic class to be prioritized 433

and scheduling rule to be applied in the frequency domain such 434

that vector of QoS indicators x reaches the highest possible 435

outcome when reporting to the vector of QoS requirements x̄. 436

max
i,j,k

∑

r∈R

∑

p∈P

∑

u∈Up

∑

b∈B
ir,p[t] · jp,u[t] · ku,b[t] · �r,p(xp,u[t]) 437

× γu,b[t], (1) 438

s.t.
∑

u

ku,b[t] ≤ 1, b = 1, . . . , B, (1a) 439

∑

p

jp,u[t] ≤ 1, u = u1, . . . , uUp , p = 1, . . . , P, (1b) 440

∑

u

jp∗,u[t] = Up∗ , p∗ ∈ P, (1c) 441

∑

u

jp⊗,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (1d) 442

∑

r

ir,p[t] = 1, p = 1, 2, . . . , P, (1e) 443
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∑

p

ir∗,p[t] = P, r∗ ∈ R, (1f)444

∑

p

ir⊗,p[t] = 0, ∀r⊗ ∈ R\{r∗}, (1g)445

ir,p[t] ∈ {0, 1}, ∀r ∈ R,∀p ∈ P, (1h)446

jp,u[t] ∈ {0, 1}, ∀p ∈ P,∀u ∈ Up, (1i)447

ku,b[t] ∈ {0, 1}, ∀u ∈ Up,∀b ∈ B. (1j)448

In (1) γu,b[t] is the achievable user rate that quantifies the449

number of bits transmitted if the RB b ∈ B would be allo-450

cated to user u ∈ Up. Basically, γu,b[t] is determined based451

on the Channel Quality Indicator (CQI), a bandwidth depen-452

dent vector reported by each user u ∈ Up to the base station.453

For each scheduling rule r ∈ R, a unique utility function454

�r,p(xp,u) is associated in order to attenuate the channel vari-455

ations given by γu,b[t] and to provide to the user the priority456

to be scheduled in the frequency domain. Any utility function457

�r,p(xp,u) : R → R must be monotone and concave [29]. The458

utility functions can be designed in many ways by consid-459

ering different KPIs as arguments with certain impact when460

meeting the heterogeneous and multidimensional QoS require-461

ments. More examples of utility functions are presented in the462

next section. When setting the same utility function �r,p(xp,u)463

for all traffic classes, no matter what the prioritization set Pp[t]464

is, the KPI vector x respects the requirement vector x̄ in a465

certain measure. The idea is to select at each TTI the prior-466

itization set Pp[t] and the most suitable utility such that the467

QoS provisioning would be maximized.468

The traffic class, scheduling rule and radio resources are469

assigned based on the decision variables. In (1), ku,b[t] is the470

resource allocation variable: ku,b[t] = 1 when RB b ∈ B471

is allocated to UE u ∈ Up and ku,b[t] = 0, otherwise.472

Constraints in (1a) aim to allocate at most one user to each473

RB. Variable jp,u[t] assigns each user to a specific traffic class.474

Constraints (1b) indicate that each user belongs to at most475

one traffic class. Constraints (1c) and (1d) show that only476

users from the selected traffic class p∗ ∈ P are passed in477

the frequency domain. Variable ir,p[t] determines the type of478

utility to be selected at each TTI. Constraints (1e) indicate479

that one type of utility function per traffic class is selected480

at each TTI, whereas constraints (1f) and (1g) show that the481

same scheduling rule is selected for all traffic classes, where482

variable r∗ ∈ R is the selected scheduling rule at TTI t and483

r⊗ ∈ R are the other scheduling rules remained un-selected at484

TTI t. Constraints (1h), (1i) and (1j) make the entire problem485

combinatorial.486

Due to very high complexity, solving the optimization487

problem from (1) at each TTI is difficult to achieve. Thus, we488

propose a sub-optimal solution aiming to split this problem in489

two sub-problems: in the first sub-problem, the prioritization490

set Pp[t] is decided and the most appropriated scheduling rule491

r ∈ R is assigned; in the second sub-problem, the resource492

allocation is performed based on the prioritized traffic class493

and selected scheduling rule. For the first sub-problem, we494

propose a ML-based approach [30] to decide at each TTI the495

class p∗ ∈ P to be prioritized at first and the best fitting496

scheduling rule r∗ ∈ R for the resource allocation. The second497

sub-problem aims to solve the user scheduling from Up∗ and 498

the resource allocation based on the selected scheduling rule 499

r∗ ∈ R as described in Section IV-A. As a first step of the 500

scheduling process, we determine the metric mb,p∗,u for each 501

user u ∈ Up∗ and RB b ∈ B at each TTI as follows: 502

mb,p∗,u[t] = �r∗,p∗
(
xp∗,u

) · γu,b[t]. (2) 503

As a result, the matrix of metrics m = [mb,p∗,u] ∈ 504

R
Up∗×B is computed, where b = {1, 2, . . . , B} and u = 505

{u1, u2, . . . , uUp∗ }. For each RB b ∈ B, a vector of metrics is 506

considered, such as: mb = [mb,p∗,u1 , mb,p∗,u2 , . . . , mb,p∗,uUp∗ ]. 507

Resource b ∈ B is allocated to that user that has the maxi- 508

mum metric value from the vector mb, written in the following 509

manner: 510

b 
→ u, if u = argmaxu′
(
mb,p∗,u′ [t]

)
, (3) 511

where expression b 
→ u allocates RB b to user u and ku,b = 1. 512

It is important to mention that the allocation is performed RB- 513

by-RB until the entire set of RBs B gets allocated. However, 514

if for example mb′ = [0, 0, . . . , 0], then RB b′ ∈ B remains 515

unoccupied. This resource can be allocated when the schedul- 516

ing process is repeated for the next prioritized traffic class 517

from the remained set of P[t]\ {p∗}. By following this model, 518

under certain network conditions it might happen that not all 519

the users could get enough resources to meet their QoS objec- 520

tives. The aim of the proposed scheduler is to increase as much 521

as possible the QoS provisioning for UHD VR video users 522

with insignificant QoS degradation of other services by prop- 523

erly selecting each time the traffic class to be prioritized and 524

the scheduling rule to be performed in the frequency domain. 525

C. Types of Scheduling Rules 526

A scheduling rule r ∈ R provides a unique utility function 527

�r,p(xp,u) focused on a particular or a group of QoS objectives. 528

User fairness is one of the most popular objectives which can 529

be addressed when employing the following function [31]: 530

�1,p
(
T̄p,u

) = 1/T̄p,u (4) 531

where T̄p,u is the average throughput of user u ∈ Up calculated 532

based on the exponential moving filter and the scheduling rule 533

r = 1 is Proportional Fair (PF). According to (2), (3) and (4), 534

user u ∈ Up with the highest ratio between achievable rate and 535

average throughput on RB b ∈ B is selected, while keeping a 536

certain fairness with the previously served users. 537

Guaranteeing the Bit Rates (GBR) is another QoS objective 538

that can be addressed when selecting the function [32]: 539

�2,p

( ¯̄Tp,u

)
= [1 + w1 · e

−w2·
( ¯̄Tp,u−TR

p,u

)

] · �1,p
(
T̄p,u

)
. (5) 540

where ¯̄Tp,u is the average user throughput calculated with the 541

median moving filter and r = 2 is the Barrier Function (BF) 542

scheduling rule. Users with lower average rates than that of the 543

corresponding requirements TR
p,u are preferred to be scheduled 544

on each RB. 545

Delay objective aims at respecting the Head-of-Line (HoL) 546

packet delay of each user at each TTI. One possible solution 547
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to achieve this target is to employ the following function [33]:548

�3,p
(
Dp,u

) = ew3·Dp,u/DR
p,u · �1,p

(
T̄p,u

)
, (6)549

where Dp,u is the HOL delay of user u ∈ Up at TTI t, DR
p,u550

is the corresponding requirement and r = 3 is entitled the551

EXPonential (EXP) rule. Users with packets approaching to552

their deadline receive a much higher priority to be scheduled553

given the exponential function.554

The Packet Loss Rate (PLR) of each user can be improved555

when the scheduler employs the following utility function [34]:556

�4,p
(
Lp,u

) = w4 · Lp,u/LR
p,u · �1,p

(
T̄p,u

)
, (7)557

where Lp,u is the PLR value at TTI t of user u ∈ Up, LR
p,u is the558

corresponding PLR requirement and r = 4 is the Opportunistic559

Packet Loss Fair (OPLF) scheduling rule. When the through-560

put, delay and PLR requirements are met by all users, BF,561

EXP and OPLF, respectively act similar to the PF scheduling562

rule.563

D. Controller and Packet Scheduler Interaction564

In order to increase the fraction of scheduling time when565

the heterogeneous QoS requirements are respected, we pro-566

pose the use of Reinforcement Learning (RL) [30] to learn567

the most suitable traffic prioritization and scheduling rule that568

can be applied in real time scheduling. RL makes use of569

an agent (e.g., intelligent controller) that in time will learn570

to take actions which will generate the maximum reward by571

interacting with the environment (e.g., packet scheduler). As572

seen from Fig. 2, at TTI t, the controller observes a state573

s[t] ∈ S, representing the current network conditions, and574

takes an action a[t] = [p, r] ∈ A that prioritizes traffic class575

p ∈ P in time domain and selects the scheduling rule r ∈ R576

to be applied in the frequency domain. The scheduling proce-577

dure is conducted based on the selected action and the system578

evolves to the next state s[t+1] = s′ ∈ S at TTI t+1. As illus-579

trated in Fig. 2, the reward value received from the scheduling580

environment evaluates the performance of the applied action581

in the previous state. This function is calculated based on the582

set of KPIs x[t + 1] = x′ received at TTI t + 1. If we define583

the reward function as ρ : X → [−1, 1], where X ⊂ S is the584

state space of KPI vectors, then the proposed function takes585

the following form:586

ρ
(
s′) =

∑

p

∑

o

wp · ρp,o

(
x′

p

)
, (8)587

where ρp,o is the reward value of traffic class p ∈ P and588

objective o ∈ Op, respectively. In (8), x′
p is the KPI vector of589

class p ∈ P at TTI t+1. This ρp,o value denotes how far the590

online KPI parameters of traffic class p ∈ P are from their591

requirements in terms of objective o ∈ Op. The weight wp592

sets the 3GPP priority for each class as denoted by the static593

prioritisation set P . The controller must explore a high num-594

ber of state-to-state transitions to optimize the prioritization595

decisions.596

E. RL-Based Scheduling Framework597

Since the scheduler state space is multi-dimensional and598

continuous, the scheduling problems cannot be enumerated599

Fig. 3. CACLA-based RL controller architecture.

exhaustively. We can only approximate the best traffic class 600

to be prioritized and the scheduling rule to be performed in 601

the frequency domain, such that the QoS provisioning is much 602

improved. To reduce the complexity for the learning frame- 603

work, Neural Network (NN) is used to approximate the best 604

prioritization decisions at each current state. During the learn- 605

ing stage, the NN weights are updated at each TTI based on 606

the scheduler and controller interaction as shown in Fig. 2. In 607

the exploitation stage, these weights are saved and the neural 608

network is implemented as a non-linear function. 609

We propose the implementation of RL framework with a 610

minimum complexity. In this sense, let M be the number of 611

NN output pins in which, the first M/2 pins can be used to 612

determine the index of the traffic class to be prioritized and 613

the rest of output pins to decide the scheduling rule to be 614

applied in the frequency domain. To train this non-linear func- 615

tion with multi-dimensional input and output variables, we use 616

Continuous Actor-Critic Learning Automata (CACLA) algo- 617

rithm [35]. As seen from Fig. 3, CACLA considers two neural 618

networks: a) the critic neural network that approximates the 619

state value function and criticizes the action taken on each 620

state; b) actor neural network that approximates the best pri- 621

oritization set Pp[t] and scheduling rule r ∈ R to be applied 622

on each state. The role of the critic function is to examine the 623

actor activity and improve its decisions over time. 624

As an internal structure, a neural network is composed by 625

L number of layers, including here the hidden and output lay- 626

ers only. Therefore, we define the number of hidden layers as 627

LH = L − 1. Each layer l ∈ {1, 2, . . . , L + 1} is composed by 628

neurons or nodes and interconnection matrices that represent 629

the weights connecting the nodes within two consecutive lay- 630

ers, for example l and l + 1. If Nl and Nl+1 are the number 631

of nodes (not including the bias nodes) of layers l and l + 1, 632

respectively, then the total number of weights to be updated 633

at each TTI is
∑L

l=1 (Nl + 1) · Nl+1. As indicated in Fig. 3, 634

when CACLA algorithm is employed, two sets of weights need 635

to be updated since both actor and critic neural networks are 636

involved during the learning stage. 637



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON BROADCASTING

The functional structure of critic NN is taking the form of638

the non-linear function defined as: V : S → [−1, 1]. The639

actor NN takes the same form with the amendment that the640

output value is multi-dimensional and the definition domain is641

A : S → [−1, 1]M . In the learning stage, two steps are per-642

formed at each TTI: a) the updating step in which the weights643

of both neural networks V and A are updated according to644

CACLA algorithm and b), the action selection step, that deter-645

mines the policy of how the controller action is selected at each646

TTI. In the exploitation stage, only the learnt actor function647

is used to provide the M dimensional decision under the form648

of the controller action a[t + 1] = [p, r] that can be decoded649

into traffic class prioritization and scheduling rule selection.650

The updating process based on CACLA algorithm aims to651

refine the weights of both networks iteratively, on each state.652

For example, when the current state is s′ ∈ S, the error653

between the impact of applied action a[t] ∈ A in the previous654

state s[t] ∈ S and its expectation must be reinforced through655

the neural networks. Since CACLA makes use of two neural656

networks, then two types of errors must be reinforced.657

Critic Error: At the beginning of the learning stage, the658

weights of the critic NN are randomly chosen. Thus, these659

weights are gradually updated based on the quality of the660

applied actions in every state. As seen in Fig. 3, the adapta-661

tion of the critic NN weights comprises two steps: a) forward662

propagation responsible to get the consecutive critic values663

{V(s), V(s′)} ∈ [−1, 1] in order to quantify the impact of664

action a ∈ A in state s ∈ S; and b) back-propagation665

step that calculates the critic error and propagates it through666

the critic NN based on the gradient descent principle [35].667

Without going into details, the gradient descent calculates668

the error for each neuron of each layer l ∈ {2, . . . , L + 1}669

and updates the weights accordingly. The critic error function670

Ec : S × S → [−1, 1] is defined (9), where {VT(s), V(s)} are671

determined by propagating the states (s, s′) through the critic672

NN from input to the output layers:673

Ec(s′, s) = VT(s) − V(s). (9)674

Here, the target value is determined as VT(s) = ρ + γ · V(s′),675

where γ ∈ [0, 1] is a discount factor and ρ is the reward value676

calculated with (8).677

Actor Error: If the critic error is positive Ec(s′, s) ≥ 0, then678

the previous action was a good choice and the actor NN can679

be updated as well. If Ec(s′, s) < 0, then the previous action680

was an unfortunate choice and then, the actor NN must be dis-681

couraged in taking such decision in the future. Consequently,682

the actor NN is not updated. When Ec(s′, s) ≥ 0, the actor683

NN is updated by following the same forward and backward684

propagation principles. The multi-dimensional actor error is685

determined based on the function Ea : S → [−1, 1]M:686

Ea(s) = AT(s) − A(s), (10)687

where AT is the target multi-dimensional action value deter-688

mined based on some probability distributions. At the begin-689

ning of the learning stage, it is not recommended to exploit690

the actor NN decisions and then, a random multi-dimensional691

value of AT(s) different from A(s) is preferred in order to692

enlarge the exploration of the scheduler state space. This is693

denoted as the improvement step. Once the learning process 694

is approaching to its deadline, we aim to exploit more the 695

actor decisions and then, the multi-dimensional target AT(s) 696

is equal to A(s). This is denoted as the exploitation step. For 697

an optimal learning, it is preferred to mix improvement and 698

exploitation steps with certain probabilities. Certainly, more 699

improvements steps are preferred at the beginning of the learn- 700

ing stage, whereas the end of the learning stage is likely to 701

use more exploitation steps. In this way, we monitor if the 702

mean actor error can converge or not to certain error levels. 703

Once the neural network(s) is(are) updated, the RL controller 704

decides the new action a′ ∈ A to be applied in state s′ ∈ S. 705

V. SYSTEM EVALUATION 706

The proposed adaptation framework was implemented in 707

the RRM Scheduler Simulator [31], which is a C/C++ object 708

oriented tool that inherits the LTE-Sim simulator [36]. For 709

the performance evaluation, an infrastructure of 7 Intel 4-Core 710

machines with i7-2600 CPU at 3.40GHz, 64 bits, 8GB RAM 711

and 120 GB HDD Western Digital storage was used. Each 712

traffic type is generated by using the models provided by LTE- 713

Sim simulator adapted to generate UHD VR-based video large 714

data packets. 715

The wireless channel is simulated by using the Jakes fast 716

fading model, that is considered deterministic, similar to 717

Rayleigh fading as it makes use of sinusoidal summing [31]. 718

Jakes fading considers the central frequency of 2GHz, the 719

system bandwidth in order to determine the periods of sinu- 720

soids, and the user speed to determine the pulsation and the 721

number of paths for the initial phase calculation. In our case, 722

the user speed is 3kmph with random direction in both learn- 723

ing and exploitation stages. Then, a number of 6 to 12 paths 724

are randomly generated at each TTI as implemented in [36]. 725

The channel propagation considers the loss given by: path, 726

shadowing and penetration. We consider the urban microcell 727

model for the path loss calculation, the shadowing loss is mod- 728

elled as a log-normal distribution (μ = 0, σ = 8 dB) in the 729

range of [0, 20] dB, and the penetration loss is fixed to 10dB 730

as it considers only the wall attenuation. 731

At each TTI, the user CQI is reported by following five 732

steps. In the first step, the reference signal is broadcasted at 733

each TTI by the base station over the entire system band- 734

width. In the second step, each user calculates the power of the 735

received reference signal that is attenuated by fading and prop- 736

agation loss models. In the third step, each user measures the 737

channel gain or the Signal-to-Interference/Noise Ratio (SINR) 738

for each RB based on the received power and interference val- 739

ues. In our model, the intra-cell interference is negligible while 740

the inter-cell interference considers a cluster of 7 cells for each 741

component carrier. The ML-based solution and other sched- 742

ulers run only on the central cell of each cluster, while other 743

cells provide the inter-cell interference levels. In the fourth 744

step, the CQI value for each RB is determined based on map- 745

ping curves between SINR and BLock Error Rate (BLER), 746

where the target BLER is 10% [31]. Finally, the fifth step 747

involves the transmission of each user CQI to the base station 748

via a separate uplink channel which is errorless in our case. 749
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We consider downlink transmission with carrier aggrega-750

tion with a bandwidth of 100 MHz (B = 500), a micro cell751

radius of 200m and the FDD transmission mode. The CQI752

reporting scheme is full-band and periodically sent at each753

TTI to each user. The packet scheduler works on the carrier754

component basis and makes use of separate entities for RLC755

functionalities, retransmission schemes and modulation/coding756

assignments. Each RLC entity works in acknowledged mode757

and considers a maximum number of 5 retransmissions for758

each data packet. Packets failing to get successfully transmit-759

ted within this period are declared lost. The user PLRs and760

rates are summed per each carrier component at each TTI.761

Four traffic classes with different QoS profiles are consid-762

ered for scheduling, such as: 20% UHD VR-based live video763

streaming (p = 1), 60% live conventional video (p = 2), 15%764

voice (p = 3) and 5% file transfer (p = 4) [1]. UHD VR-based765

video traffic is generated with a rate higher than 20Mbps,766

where the packet delay requirement is 10ms and the packet767

loss rate less than 10−3. The conversational video traffic has a768

variable data rate with a mean of 1Mbps and more relaxed QoS769

profile. In the frequency domain, a mixture of scheduling rules770

is considered, such as PF, BF (w1 = 1.25, w2 = 1.31 · 10−5),771

EXP (w3 = 6) and OPLF (w4 = 10) functions as detailed in772

Section IV-C.773

A. Learning Stage774

In the learning stage, the number of users for each traf-775

fic class is randomly chosen in the given ratio at predefined776

time slots in order to increase the possibility of the actor-critic777

neural networks to experience as many as possible variants778

of instantaneous states from different space regions. Under779

these circumstances, the optimal configuration of both actor780

and critic NNs must be found in terms of the number of hidden781

layers LH and hidden nodes Nl, l = {2, . . . , L}. With a lower782

number of hidden layers and nodes, the actor NN may under-783

fit the input data in the sense that some regions of the state784

space are not very well represented by the learnt non-linear785

function. On the other hand, a higher number of hidden layers786

and nodes may determine the neural networks to overfit the787

training data, in the sense that, the framework will also learn788

the noisy data. In both cases, the critic error starts to increase at789

a certain moment of time in the learning stage. In order to find790

the best options for the number of hidden layers and nodes,791

we simulated the learning stage in parallel for about 107 TTIs792

(with the same networking conditions) for each of the fol-793

lowing group of configurations: (Nl = 150; LH = {1, 3, 5}),794

(Nl = 200; LH = {1, 3, 5}), (Nl = 250; LH = {1, 3, 5} and795

(Nl = 300; LH = {1, 3, 5}). Table II presents the numerical796

results of these configurations in terms of the critic error and797

system complexity.798

By monitoring the minimum error of a neural network799

over the learning stage, the over-fitting can be detected when800

increasing the number of hidden layers and nodes. For exam-801

ple, if the error decreases as the NN topology increases, then802

the system can learn better with the higher configuration. On803

the other side, if the minimum error increases as the NN topol-804

ogy size increases, then the over-fitting can appear and the805

TABLE II
LEARNING PERFORMANCE OF DIFFERENT CONFIGURATIONS

OF NEURAL NETWORKS

system can learn better with the lower configuration. As seen 806

in Table II for Nl = 150 hidden nodes, the minimum critic 807

error gets lower as the critic NN configuration increases from 808

LH = 1 to LH = 3 and gets higher when increasing the number 809

of layers from LH = 3 to LH = 5. For the first set of results 810

(Nl = 150; LH = {1, 3, 5}) obtained with the same networking 811

conditions, it can be concluded that above 450 hidden nodes 812

({LH = 3; Nl = 150}), the risk of over-fitting becomes higher. 813

For other three sets of results (Nl = {200, 250, 300}), it can 814

be observed that the critic error increases as the number of 815

hidden layers increases from LH = 1 to LH = 5. Although 816

these four sets of simulations are not obtained with the same 817

networking conditions, it can be concluded that the critic NN 818

configurations with (LH = 1, Nl = {150, 200, 250, 300}) and 819

(LH = 3, Nl = 150) can be used for the proposed ML-based 820

scheduling solution. The same observations are respected for 821

the actor NN, with the amendment that the over-fitting appears 822

much later since the weights are not updated at each TTI due 823

to the critic decision. For a higher topology, the over-fitting 824

can cause poor QoS provisioning for UHD VR users as well 825

as over-provisioning of other traffic classes. 826

Alongside the performance of the critic error, Table II 827

presents the complexity analysis for the forward and back- 828

ward propagation of both actor and critic NNs. The backward 829

propagation includes here the error propagation from output to 830

the input layers and the refinement of NN weights. We mea- 831

sure the normalized complexity as a ratio between the sum 832

of additional time (in seconds) needed to back-propagate the 833

errors through critic and actor NNs at each TTI averaged over 834

the total learning time (in seconds). Note that the backward 835

propagation complexity of actor NN is measured only when 836

the critic error is Ec ≥ 0. The normalized complexity for the 837

forward propagation procedure of both actor and critic NNs 838

is determined in a similar way by averaging over the learning 839

stage the accumulated time needed to forward the states from 840

input to the output layers at each TTI. As seen in Table II, the 841

normalized complexity of both monitored processes increases 842

as the NN topology includes higher number of hidden lay- 843

ers and nodes. When considering the complexity analysis for 844

the most indicated NN configurations from the perspective of 845

over-fitting, we observe that a topology of (LH = 3, Nl = 150) 846

requires 3.5 times more computational time to forward propa- 847

gate the states through the actor and critic NNs when compared 848
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Fig. 4. (a) QoS provisioning (GBR, delay and PLR) for UHD VR-based live video streaming; (b) 5th Percentile throughput performance for UHD VR-based
live video streaming; (c) 5th Percentile PSNR performance for UHD VR-based live video streaming; (d) Heterogeneous QoS provisioning (GBR, delay and
PLR) for all traffic classes; (e) 95th Percentile PLR performance per traffic type when the range of heterogeneous users is [10, 30]; (f) 95th Percentile PLR
performance per traffic type when the range of heterogeneous users is [31, 50].

to the case of (LH = 1, Nl = 150). For the backward prop-849

agation, the normalized complexity (LH = 3, Nl = 150) is850

only 1.5 times greater than that of (LH = 1, Nl = 150) since851

the actor NN is not updated at each TTI. However, we are852

interested in exploiting the performance of the configuration853

that provides the lowest complexity (LH = 1, Nl = 150). The854

additional execution overhead required by this configuration855

in the scheduling process is about 70% in the learning stage856

(6% for the forward propagation and 64% for the backward857

propagation) for both actor and critic neural networks. In the858

exploitation stage, the additional complexity is 3% since only859

the actor NN is used.860

B. Exploitation Stage861

In the exploitation stage, the performance of the proposed862

ML-based scheduling solution is analyzed when using the con-863

figuration of LH = 1 and Nl = 150. The proposed CACLA864

framework is compared with FLS [20], RADS [21] and SP865

schemes. Among other scheduling approaches, RADS and866

FLS schedulers are time efficient and target a multitude of867

QoS objectives divided between time and frequency schedul-868

ing domains. The TP stage for FLS estimates the amount of869

real-time data to be transmitted in the next frame based on870

discrete-time linear control theory arguments. Then, the real-871

time flows are prioritized based on the approximated quota of872

data necessary to meet the delay constraints. The configuration873

details on this controlling loop can be found in [20]. The TP874

stage of RADS scheme is conducted based on a function that875

considers the fairness, delay and user rates in order to create an876

inter-class user prioritization at each TTI. The number of users877

to be passed to the FP scheduler at each TTI must be a priori878

configured. For our simulations, a maximum number of U/2879

users show the best performance when measuring the average880

scheduling time when the heterogeneous QoS requirements are881

respected. For SP scheme, TP domain considers a static prior- 882

itization between different classes at each TTI as presented in 883

Section IV-A. In the frequency domain, FLS employs the PF 884

scheduler to improve the fairness between users preselected in 885

the TP stage, whereas RADS and SP make use of the OPLF 886

scheduler to enhance the PLR performance. 887

In order to measure the performance of the proposed solu- 888

tion in real time scheduling, three types of evaluations are 889

considered: intra-class, aggregate and inter-class. For the intra- 890

class evaluation (Figures 4.a, 4.b, 4.c), the aim is to measure 891

the performance when scheduling the UHD VR-based live 892

video traffic only. In this case, we evaluate the intra-class QoS 893

provisioning, throughput and PSNR depending on U1 number 894

of UHD VR connections, where U1 represents a ratio of 20% 895

from the total number of heterogeneous users (U1 = 1/5 · U). 896

The aggregate evaluation (Fig. 4.d) aims to measure the overall 897

scheduling performance in terms of heterogeneous QoS pro- 898

visioning as a function of the total number of active users U. 899

The intra-class evaluation (Fig. 4.e and Fig. 4.f) presents the 900

over-provisioning effect by considering the PLR performance 901

of each scheduler per different traffic class. Finally, in Fig. 5 902

we analyze the execution overhead required by each scheduler 903

while varying the number of heterogeneous users. 904

Figure 4.a presents the normalized scheduling duration 905

when all QoS objectives (in terms of GBR, delay and PLR) 906

are respected for the UHD VR-based live streaming traffic 907

only. As expected, the SP scheme provides the highest pos- 908

sible performance as it gives the highest priority to the UHD 909

VR-based live streaming traffic at all times. For the entire user 910

range, CACLA performs much better than FLS and RADS by 911

obtaining gains in excess of 100% when serving more than 912

six UHD VR-based live video connections. 913

The Cumulative Distribution Function (CDF) of user 914

throughput is determined at the end of the exploitation stage 915

(for each configuration in terms of the number of users) based 916
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on the throughput values collected from each user at each917

TTI. Looking at the 5th percentile of user throughput from the918

CDF curve (worst user throughput) for the UHD VR-based919

live streaming traffic (Fig. 4.b), smooth degradation can be920

observed in the case of CACLA scheme compared to SP when921

the number of UHD VR-based live streaming users goes above922

seven. When scheduling more than five users from the first923

class, RADS and FLS aim to focus more on scheduling lower924

priority users by degrading the user throughput of the first925

prioritized traffic class. As seen in Fig. 4.b, when scheduling926

eight UHD VR users, CACLA outperforms FLS and RADS by927

more than 1Mbps and 2Mbps, respectively. For ten users, the928

gain gets much higher at about 3Mbps and 5Mbps, respec-929

tively. This is because when the number of heterogeneous930

users gets very high, CACLA aims at working similarly to931

the SP scheme by providing a much higher prioritization to932

the UHD VR connections.933

Figure 4.c presents the performance of the 5th percentile934

PSNR in order to highlight the worst user PSNR performance935

when experiencing UHD VR content. This choice is motivated936

by the fact that PSNR is considered as one of the most popular937

objective QoE indicators used to evaluate the user perceived938

quality for video services [15]. Based on the evaluation pro-939

vided in [37], an excellent Mean Opinion Score (MOS) can940

be obtained when PSNRdB ≥ 36 while an acceptable MOS941

is considered when 29 ≤ PSNRdB < 36. Thus, a very good942

MOS performance for CACLA is obtained when scheduling943

less than eight users while an acceptable level can be attained944

for more than eight UHD VR users. When employing RADS945

and FLS schedulers, the best MOS performance is obtained946

for U1 ∈ [2, 5], an acceptable MOS value when U1 = 6 and947

poor and even bad MOS levels are obtained when U1 > 6.948

When U1 > 9, CACLA obtains gains higher than 50% when949

compared to FLS and RADS in terms of the worst user PSNR.950

When all the traffic classes are considered, we present in951

Fig. 4.d the performance when provisioning heterogeneous952

QoS. We monitor the number of TTIs when all users meet953

their QoS requirements by using the priority policies given by954

SP, RADS, FLS and CACLA. It can be noticed that SP is not955

able to provide an acceptable QoS level when scheduling more956

than 20 heterogeneous users. In this case, CACLA can achieve957

up to 50% more time when the heterogeneous QoS objectives958

are achieved. When reporting to RADS and FLS, CACLA can959

obtain gains higher than 100% for a range of scheduled users960

of U ∈ [20, 40]. When the number of users start to increase961

(U > 45), the achievement of QoS objectives gets close to the962

saturation. Consequently, CACLA aims to prioritize more the963

UHD VR traffic class as showing in Figures 4.b and 4.c.964

For each traffic class, we monitor PLR values of each user965

at each TTI. At the end of each exploitation simulation, we966

compute the CDF curves for each of these classes in order to967

get the worst user percentiles of PLR. When compared to user968

throughput and PSNR, the worst PLR percentiles are found at969

the upper limit of the CDF curve. Figure 4.e analyses the inter-970

class performance when averaging the 95th PLR percentiles971

for each traffic class over the range of U ∈ [10, 30]. When972

employing CACLA-based scheduling solution, up to 30 UHD973

VR connections can be supported (the PLR requirements are974

Fig. 5. System complexity of involved schedulers.

met) in the network while providing the requested PLR levels 975

of other services. For this range, SP is over-provisioning the 976

UHD VR traffic class being unable to assure the requested 977

PLR for other traffic classes. RADS and FLS are unable to 978

respect the PLR requirement of UHD VR traffic class (10−3) 979

when the worst user PLR is monitored. 980

As stated previously, the RADS and FLS prioritization 981

schemes are unable to react to the changeable networking 982

conditions in terms of the number of active users U, variable 983

arrival bit rates when generating the traffic, and wireless chan- 984

nel conditions. Thus, some traffic classes are over-provisioned 985

while others may have degraded QoS performance. Figure 4.f 986

demonstrates the aforementioned statement. The inter-class 987

performance when averaging the 95th PLR percentile for each 988

traffic class over the range of U ∈ [31, 50] is analyzed. This 989

is achieved in order to monitor the behavior of each scheme 990

when the heterogeneous QoS provisioning is getting closer to 991

the saturation level due to the increase in number of users. 992

As seen from this figure, FLS is over-provisioning the video 993

and VoIP classes while degrading the QoS performance of 994

the UHD VR-based live streaming traffic. As expected, the 995

SP scheme prioritizes UHD VR users while drastically penal- 996

izing the rest of the traffic classes. CACLA prioritizes more 997

the UHD VR-based live streaming class when the number of 998

users is increasing, while it aims to give enhanced inter-class 999

fairness when the number of users is lower and the QoS pro- 1000

visioning can be attained for each class as shown in Fig. 4.e. 1001

This is possible due to the adaptation capability of this policy 1002

when the number of users increases/decreases. The impact of 1003

the scheduling rule adaptability based on channel conditions 1004

and application characteristics is highlighted in Fig. 4.e, where 1005

CACLA is able to obtain better PLR performance than FLS 1006

and RADS while the PLR requirements for other classes are 1007

respected by all these candidates. The RADS scheme shows a 1008

notable limitation in Fig. 4.f due to the prioritization scheme 1009

used in time domain. A certain level of inter-class fairness 1010

can be observed but at lower PLR levels when compared to 1011

CACLA, even if the PLR minimization is considered in the 1012

frequency domain since the OPLF scheduler is employed. 1013

Figure 5 represents the complexity analysis of the previously 1014

analyzed scheduling schemes. The complexity analysis mea- 1015

sures the number of clock ticks elapsed for the TP and FP 1016

stages divided to the total number of clocks within one second 1017

and averaged over the exploitation stage duration (in seconds). 1018
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Below twenty aggregate users, FLS and RADS are less time1019

consuming since the frequency domain scheduling is per-1020

formed for a less number of users than that of SP and CACLA1021

schemes. Since the networking conditions permit, CACLA and1022

SP perform the FP stage for all four traffic classes. However, a1023

slight complexity increase is required by the traffic class selec-1024

tion procedure when performing CACLA scheduling. Above1025

this level of 20 aggregate users, SP solution gets the lowest1026

complexity since only the first prioritized class (live UHD VR1027

video users) is sent to the FP domain (see correlation with1028

Fig. 4.a and Fig. 4.d.). Starting from the level of 30 heteroge-1029

neous users, RADS becomes a better option than FLS since1030

the TP stage pre-selects a lower number of users to be sent in1031

the frequency domain. At this point, RADS and FLS provide a1032

complexity gain of 11.1% when compared to CACLA. As seen1033

from Fig. 4.d, in the range of [30, 40] users, CACLA obtains1034

gains in excess of 100% in terms of heterogeneous QoS pro-1035

visioning when compared to FLS and RADS. However, this1036

performance comes at the expense of the complexity increase1037

as depicted in Fig. 5. Since the FP stage is performed for all1038

traffic classes at almost each TTI, CACLA needs additional1039

time resources in proportion of 20% to complete its tasks1040

when compared to FLS, while the extra complexity require-1041

ment exceeds 30% when compared to RADS. Above this level,1042

the complexity required by CACLA starts to stabilize or even1043

to decrease since it behaves more like a SP scheme, while the1044

FLS complexity becomes higher.1045

C. Practical Implications1046

According to our findings, some aspects must be considered1047

when employing a RL-based scheduling solution for traffic pri-1048

oritization, user scheduling and resource allocation in practice,1049

such as: the training data set, the state space pre-processing,1050

the controller configuration and termination condition for the1051

learning stage. In order to get a generalised training data set,1052

the training samples must consider variable number of users1053

and changed at certain time intervals for each traffic class.1054

Moreover, different speed levels and direction models should1055

be considered for mobile users in order to explore a high1056

variety of channel conditions. Under its original form, the1057

training data-set is multidimensional and variable, depend-1058

ing on the number of active users that may change over1059

time. Therefore, some pre-processing methods are necessary to1060

compress the dimension of input state to some constant repre-1061

sentations. Statistical methods can be used to get the mean and1062

standard deviation values for the QoS indicators (i.e., packet1063

loss, delay, throughput, etc.) for each traffic class [18]. Also,1064

supervised learning can be used to classify the CQI reports1065

in given patterns for users of each traffic class [31]. The1066

optimal configuration of RL controller depends on the num-1067

ber of traffic classes and scheduling rules. When the number1068

of traffic classes increases, higher number of hidden layers1069

and nodes can be required with respect to some complexity1070

constraints. Additionally, the output layer for the actor neural1071

network must be properly managed and decoded in traffic class1072

and scheduling rule selection as the size of the action space1073

increases. During learning, both critic and actor errors must be1074

monitored. In case of over-fitting (error increases above given 1075

threshold), the weights should be saved and learning process 1076

stopped. Otherwise, learning can continue for a number of 1077

iterations (TTIs) a priori established. 1078

VI. CONCLUSION 1079

This paper proposes an intelligent Machine Learning- 1080

based scheduling solution which makes use of Reinforcement 1081

Learning by employing CACLA, to react to the changeable 1082

networking conditions and take the best decisions in order to 1083

improve the fraction of time (in TTIs) when the QoS require- 1084

ments are met for diverse services. Thus, the algorithm decides 1085

at each TTI the traffic class prioritization and the type of 1086

scheduling rule to be employed. Different traffic classes are 1087

dynamically prioritized such that the over-provisioning effect 1088

for some applications is avoided, whereas radio resources are 1089

intelligently managed by choosing the best scheduling rule for 1090

user scheduling and resource allocation. The proposed solu- 1091

tion is deployed in a very challenging dynamic environment 1092

in which UAV performs UHD VR-based live video streaming 1093

to ground users. The proposed solution was evaluated through 1094

simulations and compared against other three state-of-the-art 1095

scheduling algorithms, such as: SP, RADS and FLS. The sim- 1096

ulation results indicate that the proposed CACLA-based RL 1097

scheduling solution outperforms the other schemes involved 1098

while considering four perspectives: a) CACLA outperforms 1099

RADS and FLS in terms of packet loss, delay, throughput 1100

and PSNR when considering UHD VR-based users only; 1101

b) when considering a mixture of users requesting heteroge- 1102

neous services, CACLA shows gains in excess of 100% by 1103

measuring the fraction of TTIs when the heterogeneous QoS 1104

requirements are respected; c) by measuring the inter-class 1105

packet loss, CACLA can accommodate a higher number of 1106

UHD VR users in the network, while SP and FLS prioritization 1107

schemes are over-provisioning some traffic classes; d) CACLA 1108

provides the best performance vs. complexity tradeoff. 1109
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Abstract—The latest advances in terms of network technologies1

open up new opportunities for high-end applications, including2

using the next generation video streaming technologies. As mobile3

devices become more affordable and powerful, an increasing4

range of rich media applications could offer a highly realis-5

tic and immersive experience to mobile users. However, this6

comes at the cost of very stringent Quality of Service (QoS)7

requirements, putting significant pressure on the underlying8

networks. In order to accommodate these new rich media appli-9

cations and overcome their associated challenges, this paper10

proposes an innovative Machine Learning-based scheduling solu-11

tion which supports increased quality for live omnidirectional12

(360◦) video streaming. The proposed solution is deployed in a13

highly dynamic Unmanned Aerial Vehicle (UAV)-based environ-14

ment to support immersive live omnidirectional video streaming15

to mobile users. The effectiveness of the proposed method is16

demonstrated through simulations and compared against three17

state-of-the-art scheduling solutions, such as: static Prioritization18

(SP), Required Activity Detection Scheduler (RADS) and Frame19

Level Scheduler (FLS). The results show that the proposed solu-20

tion outperforms the other schemes involved in terms of PSNR,21

throughput and packet loss rate.22

Index Terms—Omnidirectional video, live streaming, QoS,23

machine learning, radio resource management, UAV.24

I. INTRODUCTION25

GLOBAL mobile video traffic continues to grow26

exponentially, especially with the introduction of27

Ultra-High-Definition (UHD) or so called 4K video streaming28

applications. This new application category puts tremendous29

pressure on the current underlying networks as the average bit30

rate for 4K video is around 15 to 18Mbps, which is more than31

double the High Definition (HD) video bit rate and nine times32

more than the Standard Definition (SD) video bit rate [1].33

Additionally, the increasing adoption of new Virtual Reality34

(VR) and Augmented Reality (AR) enabled high-end mobile35
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Fig. 1. Highly dynamic immersive live UHD streaming example scenario.

devices together with the increasing amount of content ready 36

to be consumed pushes the current 4G networks closer to their 37

saturation. It is expected that the VR/AR generated traffic to 38

continue to follow a high growth trajectory especially with the 39

potential adoption of virtual reality streaming [1] that opens 40

up a new era of 5G-based media services. Moreover, Cisco [1] 41

also predicts that live Internet video will account for 17% of 42

the Internet video traffic by 2022 with IP video traffic reaching 43

82% of all IP traffic globally. 44

Consequently, in order to keep up with the current and pre- 45

dicted traffic demands, the network operators have already 46

started an accelerated roll-out of 5G communications. As 47

the new 5G technology targets high data rate and very low 48

latency, it opens up a new range of applications starting 49

from immersive augmented reality to driverless cars or even 50

robot-enabled remote surgery. According to Cisco, by 2022, 51

5G devices and connections will represent more than 3% of 52

global mobile devices and connections, with 12% of the global 53

mobile traffic being generated over the 5G cellular network [1]. 54

However, the network operators need to demonstrate that the 55

tremendous potential of the 5G deployment could meet the 56

users’ expectations. The challenge is magnified even further 57

especially given the current wide and diverse range of appli- 58

cations with different Quality of Service (QoS) requirements 59

which need to be supported on a heterogeneity of end- 60

user hardware platforms. Applications such as live network 61

streaming require low latency and jitter, whereas, reliability 62

is needed for applications such as file transfer which cannot 63
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tolerate packet loss or high delay. As most applications require64

end-to-end network support, this hampers the potential devel-65

opment and advantages of new applications. Consequently, it66

becomes obvious that just increasing the system capacity is67

not enough to meet the heterogeneous QoS requirements for68

all mobile users at the same time. This is mainly due to the69

increasing popularity of bandwidth-hungry applications (e.g.,70

multimedia-based applications), limited radio resources and71

changeable wireless network conditions. Thus, along with the72

next generation networks deployment, new emerging technolo-73

gies and solutions are being explored to help network operators74

to cope with such high traffic demands, such as: integration75

of MPEG-DASH [2] as the de-facto video delivery mecha-76

nism, Advanced Television Systems Committee (ATSC) 3.077

standard [3], evolved Multimedia Broadcast/Multicast Service78

(eMBMS) [4], Further eMBMS (FeMBMS) and New Radio79

MBMS (NR-MBMS) [5], mmWave communications [6], satel-80

lite back-haul [7], Software Defined Networks (SDN) and81

Network Function Virtualisation (NFV) [8], [9], Mobile Edge82

Computing (MEC) [10], Unmanned Aerial Vehicle (UAV) or83

drones [11], machine learning [12], etc. As a potential use84

case of UAV, Mangina et al. [13] make use of drones for live85

streaming for people with limited mobility, so that they could86

enjoy the immersion as if they were present at the specific87

location. The aim of this framework is to use the technology88

to enable opportunities for communication and self expression89

of people of all levels of physical and cognitive ability.90

This work focuses on a highly dynamic mobile scenario91

involving high bitrate live video streaming, as the one illus-92

trated in Fig. 1. In this scenario, an UAV equipped with an93

omnidirectional (360◦) camera is used to send 4K/8K video94

captured in real time from a live event taking place for instance95

in a stadium, to a MEC server attached to a 5G network. VR-96

enabled users get the live video stream served via the 5G97

network and expect to enjoy a high quality video experience,98

as if they were present at the venue. However, to be able99

to create a high quality immersive experience for the remote100

users, the network operators need to guarantee low latency101

and packet loss, and high throughput while also accommodat-102

ing other traffic classes. Unfortunately, this is not possible to103

achieve with conventional resource management methods.104

In this context, this paper proposes and describes an105

innovative Machine Learning (ML)-based scheduling solu-106

tion for radio resource management to improve signifi-107

cantly QoS provisioning and increase users’ Quality of108

Experience (QoE) levels in the presence of heteroge-109

neous traffic. The proposed solution targets particularly110

highly challenging scenarios which involve live stream-111

ing of very high bitrate video in highly dynamic network112

environments.113

The remainder of this article is organized as follows:114

Section II discusses important related works in this area115

and Section III presents an overview of the proposed solu-116

tion. Section IV details the proposed innovative ML-based117

scheduling solution for increased quality of live high bitrate118

video streaming in highly dynamic network environments119

and presents the associated problem formulation. Evaluation120

results are discussed in Section V in comparison with those121

of alternative solutions and finally, conclusions are drawn in 122

Section VI. 123

II. RELATED WORKS 124

A key challenge for network operators is to provide ubiq- 125

uitous connectivity to different device types and applica- 126

tions with heterogeneous QoS requirements. This challenge 127

is amplified by the increasing popularity of multimedia- 128

based bandwidth-hungry applications with strict QoS require- 129

ments that stretch the current 4G networks closer to satu- 130

ration. Consequently, to be able to accommodate all these 131

new immersive live streaming applications, known for being 132

bandwidth-hungry and having low-latency and packet loss 133

requirements [14], advanced solutions must be adopted to 134

maintain increased QoE for end-users, since QoE is expected 135

to become the biggest differentiator between network opera- 136

tors [15]. 137

An important component that is expected to be integrated 138

within the 5G and beyond 5G networks is the use of UAV [16]. 139

Apart from facilitating temporary radio access and Internet 140

connectivity, UAVs could also be used to facilitate live video 141

broadcasting and enable support for high data rate transmis- 142

sions [11]. However, to accommodate a high number of users 143

with enhanced QoE levels within the 5G radio access network, 144

system bandwidth needs to be properly managed. According 145

to [17], two adaptation methods classes can be considered to 146

deal with the bandwidth efficiency in order to improve QoS 147

and QoE, such as: passive and active. The active approaches 148

aim to improve the bandwidth allocation by using scheduling 149

algorithms, whereas passive ones refer more to bandwidth- 150

compliant adaptation techniques that adapt the multimedia 151

transmission to the available bandwidth. 152

As an active adaptation entity, the packet scheduler is 153

responsible for dynamically sharing the system bandwidth 154

between the end-users such that the QoS provisioning is max- 155

imized. Different scheduling strategies are proposed in the 156

literature to deal with QoS targets [18]. A scheduler that 157

encapsulates the features of different scheduling strategies 158

is proposed in [19] for 3G downlink systems to assure the 159

multidimensional QoS provisioning under varying traffic and 160

radio channel conditions. However, most of the state-of-the- 161

art schedulers targeting multidimensional QoS requirements 162

aim to prioritize some traffic classes while ignoring others. 163

For instance, Frame Level Scheduler (FLS) [20] prioritizes 164

real-time traffic (e.g., video, voice, gaming) over the more 165

elastic traffic classes (e.g., file transfer, HTTP). In contrast, 166

Required Activity Detection (RADS) [21] prioritizes a group 167

of users according to their packet delay and fairness crite- 168

rion. However, most of the prioritization schemes are unable 169

to react to the dynamics of the wireless environment, such 170

as: increasing number of users, various traffic characteristics, 171

and changeable network conditions. As a consequence, some 172

traffic classes are over-provisioned while others may have a 173

degraded QoS. 174

A passive method used for traffic prioritization and band- 175

width adaptation is proposed in [17] to manage the transmis- 176

sion of massive clinical applications in high-speed ambulance 177

scenario under variable and limited communication bandwidth. 178
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Fig. 2. Proposed 5G UAV-based live streaming framework.

The approach works in two stages: a) the clinical multimedia179

data is prioritized in four classes based on the disease model180

and the criticality of each model; b) according to the avail-181

able bandwidth, different heuristic algorithms are proposed to182

reduce the clinical data rates according to their priority class.183

The evaluations show the effectiveness of this approach by184

transferring the most critical information within the limited185

bandwidth. By focusing only on QoE improvement, the system186

bandwidth can remain underutilized. In this sense, a passive187

adaptation scheme is proposed in [22] to facilitate the video188

rate adaptation by considering the physical layer information189

to enable accurate bandwidth estimation. The latest network190

advancements need to accommodate advanced applications191

and services with very high data rates and extremely low192

latency. Wang et al. [23] propose the use of fog networking193

to coordinate a network of drones equipped with cameras to194

broadcast live events. The objective of the proposed framework195

is to maximizing the coverage area as well as the available196

throughput for high-quality video streaming to video servers.197

In terms of Radio Resource Management (RRM) and QoS198

provisioning, classical RRM functionalities would not be able199

to meet the stringent QoS requirements of all these immer-200

sive live streaming applications while also catering for the201

rest of application classes. In the context of 5G, ML is cur-202

rently gaining considerable attention as it is seen as one of203

the key enablers for QoS provisioning [12], [18], [24]–[26] as204

well as for the development of intelligent services for smart205

cities [27]. An autonomous network resource management for206

QoS and QoE provisioning is proposed in [12] to predict the207

amount of network resources that needs to be allocated to208

cope with the traffic demands for live and on-demand dynamic209

adaptive streaming over HTTP. Machine learning is used to210

optimize the scheduling and resource allocation problems in211

5G radio access networks focusing on different combinations212

of QoS objectives, such as: throughput, delay and packet loss213

in [18], packet loss and delay in [24], system throughput and214

user fairness in [25]. However, these ML-based scheduling215

solutions are designed for homogeneous traffic types only. 216

The ML framework proposed in [26] aims to optimize the 217

resource and power allocation problem for heterogeneous traf- 218

fic with the scope of improving the delay of Ultra-Reliable and 219

Low-Latency Communications (URLLC) users and throughput 220

of enhanced Mobile Broadband (eMBB) users. Compared to 221

previous works, this paper proposes a ML-based scheduling 222

and resource allocation solution to enable high level of QoS 223

provisioning for mobile users experiencing UAV VR-based 224

live video content while maintaining an acceptable service 225

quality of other traffic types with diverse QoS requirements. 226

To this extent, the contributions of this paper are two fold: 227

• an innovative ML-based scheduling solution to enable 228

QoS provisioning for Ultra High Definition video stream- 229

ing in highly dynamic network environments; 230

• a QoS-oriented UAV-based integrated system for enabling 231

high quality levels for immersive live video streaming. 232

The benefits of the proposed ML-based solution compared 233

to other state-of-the-art schedulers are summarized as follows: 234

• enhanced QoS provisioning (in terms of delay, through- 235

put and packet loss requirements), higher throughput and 236

Peak Signal-to-Noise Ratio (PSNR) for users requesting 237

UHD VR-based live video; 238

• gains in excess of 100% when monitoring the time frac- 239

tion when the heterogeneous QoS requirements are met 240

in a mixture of services with various QoS requirements; 241

• improved inter-class fairness by respecting over time the 242

standard prioritization order; it can accommodate a higher 243

number of UHD VR video connections and avoids the 244

over/under-provisioning of other traffic classes. 245

III. PROPOSED FRAMEWORK FOR UAV-BASED 4K 246

STREAMING 247

The main components of the proposed quality and 248

performance-oriented system for high quality live video 249

streaming are illustrated in Fig. 2. The figure presents a very 250
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challenging deployment involving a UAV with a 360◦ cam-251

era, a MEC server, a 5G intelligent packet scheduler and VR252

users. The UAV has a 360◦ spherical camera that records a253

live event (e.g., football games, concerts, festivals, etc.). The254

UAV communicates via the 5G network on the ground to255

send 4K/8K UHD video to the MEC server. For simplicity,256

it is assumed that there is no loss on the communication link257

between the UAV and the MEC server. The MEC server will258

then stream live the UHD video content to the users. However,259

in order to accommodate a heterogeneous traffic mix with260

different QoS requirements, an intelligent ML-based packet261

scheduler is proposed to enable high QoS provisioning for262

different traffic classes, including for live high bitrate video263

streaming. The mix of traffic can consider the 5G services264

and use cases such as eMBB, URLLC and massive Machine265

Type Communications (mMTC) as well as other types of 4G266

related services with more relaxed QoS requirements.267

The role of the packet scheduler is to allocate the avail-268

able frequency resources to active users within a given cell to269

improve as much as possible the fraction of scheduling time270

when the QoS requirements are met for each traffic type. The271

scheduling process is conducted at each Transmission Time272

Interval (TTI) and usually works in two steps: a) Time-based273

Prioritization (TP) where a group of users with more stringent274

QoS requirements is prioritized among other users with more275

relaxed QoS constraints and b) Frequency-based Prioritization276

(FP) that aims to allocate the radio resources in order to277

increase the QoS provisioning in terms of delay, packet loss278

and rate requirements for the pre-selected group of users.279

While time prioritization is seen as an outer QoS provisioning280

scheme for all traffic classes based on a given priority order,281

frequency prioritization acts as an inner QoS provisioning282

scheme for the pre-selected users. Consequently, the sched-283

uler will prioritize data packets in both time and frequency284

domains based on current networking conditions that may285

change at each TTI, including: number of users for each traffic286

class, QoS profiles, heterogeneous QoS parameters, VR live287

streaming characteristics, channel conditions, etc. However,288

many existing scheduling schemes are not able to adapt to the289

dynamic and unpredictable networking conditions [18]. For290

instance, some time-based prioritization schemes aim to over-291

provision some traffic classes while degrading the performance292

of others [20], [21], whereas the frequency-based prioritization293

techniques will address only particular QoS requirements at294

any time [18]. In order to avoid these drawbacks, the proposed295

scheduling solution is flexible, being able to adapt according to296

the current network conditions in order to enhance the frac-297

tion of time when the heterogeneous QoS requirements are298

respected.299

Since live UHD VR-based video streaming has strict QoS300

requirements with data rates at least twenty times greater than301

other conventional applications [1], the best practice would302

be to decide at each TTI the most suitable traffic class to be303

prioritized in order to: a) meet the very stringent QoS require-304

ments of live UHD VR-based traffic and b) avoid the starvation305

effect for other types of applications. In the frequency domain,306

the most suitable scheduling rule is selected to improve the307

QoS provisioning for each selected traffic class. Therefore, an308

intelligent ML-based solution is introduced to learn over time 309

and propose the most suitable prioritization decisions based 310

on current scheduler states. Therefore, this paper proposes an 311

innovative ML-based scheduler for heterogeneous traffic in 312

Orthogonal Frequency Division Multiple Access (OFDMA) 313

downlink systems. The proposed ML-based scheduling solu- 314

tion is able to take each time two scheduling decisions in order 315

to increase the amount of time when all QoS requirements are 316

met. This two-dimensional decision prioritizes a certain traffic 317

class at each TTI and decides the scheduling rule that allocates 318

the available bandwidth to users of the pre-selected class in 319

the frequency domain. 320

IV. INTELLIGENT ML-BASED 321

SCHEDULING SOLUTION 322

As previously stated, the proposed ML-based scheduler (see 323

Fig. 2) is able to select at each TTI the most suitable traffic 324

class to be prioritized in time domain and the best scheduling 325

rule for the user prioritization in frequency domain in order 326

to improve the QoS provisioning. These decisions could be 327

taken based on various parameters, such as: wireless chan- 328

nel conditions, application requirements, traffic characteristics, 329

users’ profile, device types, etc. The details of the ML-based 330

scheduler are presented next in this section. 331

A. Prioritization-Based Scheduling 332

In frequency domain, it is considered that the available 333

bandwidth is divided in equal Resource Blocks (RBs), the 334

smallest radio resource that can be allocated by the Base 335

Station (BS) to the user (see Fig. 2). We define by B = 336

{1, 2, . . . , B} the set of available RBs in a given bandwidth. To 337

get the necessary bandwidth needed to accommodate a high 338

number of UHD VR-enabled live video streaming connections, 339

we aggregate multiple radio bandwidths. Each User Equipment 340

(UE) is characterized by a single traffic class, with a given 341

priority and a QoS profile in terms of delay, packet loss and 342

throughput requirements. Multiple UEs may request different 343

services with heterogeneous QoS requirements. A successful 344

scheduler should be able to accommodate UHD VR-based live 345

services as well as other conventional traffic types (e.g., video, 346

voice, file transfer, etc) without penalizing one over the other. 347

The list of symbols used in this paper is presented in Table I. 348

Let us consider P the number of traffic classes with differ- 349

ent QoS profiles. We define by P = {1, 2, . . . , P} the priority 350

set such that traffic class 1 has the highest priority (i.e., UHD 351

VR-based live streaming traffic) while traffic class P has the 352

lowest priority. The Static prioritization (SP) is defined accord- 353

ing to the 3GPP guidelines [28] as follows: regardless of the 354

network conditions, the scheduling process respects the prior- 355

ity set P = {1, 2, . . . , P} for the entire downlink transmission 356

session. Let us define the set of active users for all classes 357

as U = {U1,U2, . . . ,UP}, where Up is the subset of users 358

corresponding to traffic class p ∈ P . We denote by Up the 359

number of users belonging to class p ∈ P , while by U, the 360

total number of active users from all classes. Moreover, the 361

set of heterogeneous QoS objectives in terms of their require- 362

ments’ accomplishment is defined as O = {O1,O2, . . . ,OP}, 363
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TABLE I
LIST OF NOTATIONS

where Op is the set of objectives for class p ∈ P . It is said364

that set Op is met if the delay, packet loss and throughput365

requirements are respected by all active users belonging to366

traffic class p ∈ P .367

In frequency domain, the process of user scheduling and368

resource allocation is conducted according to a given schedul-369

ing rule that is oriented on a particular QoS objective or on370

a group of QoS objectives. We define the set of scheduling371

rules as R = {1, 2, . . . , R}, where R represents the maximum372

number of rules. Assuming that a SP scheme is employed at373

this stage at each TTI, the set of active users U1 is passed in374

the frequency domain for scheduling. Here, a given schedul-375

ing rule r ∈ R contributes to the metric computation for each376

user u ∈ U1 on each RB b ∈ B. Each metric shows how nec-377

essary is for each user u ∈ U1 to get each resource b ∈ B from378

the perspective of the addressed objective o ∈ O1 targeted by379

the scheduling rule r ∈ R. In the initial phase of scheduling,380

a number of U1 metrics is computed for each RB b ∈ B by381

summing a total number of U1 ·B metrics. In the second phase,382

the scheduler allocates each RB b ∈ B to the user with the383

highest metric and the process is repeated RB-by-RB until the384

entire set B is allocated. However, some metrics can be zero385

since the QoS objectives are met or there are not enough pack-386

ets in the queue for some users. If all metrics are equal, then387

the RB b ∈ B remains unoccupied. Finally, the third phase388

of the scheduling process aims at calculating the size of the389

transport block for each user scheduled on different RBs and390

determines the modulation and coding scheme necessary to391

decode the data at the reception. The scheduling process can392

be repeated for the next prioritized class (i.e., p = 2) if some393

RBs are unoccupied once the users from U1 are scheduled.394

By employing this SP scheme, the UHD VR-based live 395

video streaming traffic is always allocated the best resources 396

while adversely affecting QoS provisioning for other traf- 397

fic classes. To avoid this fundamental drawback, other traffic 398

classes must be prioritized when network conditions are favor- 399

able. Consequently, in this work, the proposed approach aims 400

to select at each TTI the traffic class p ∈ P in such a way that 401

the satisfaction of heterogeneous QoS requirements has the 402

highest possible outcome under the current networking con- 403

ditions. In this way, we decide at each TTI the prioritization 404

set P[t] = {p, 1, . . . , p − 1, p + 1, . . . , P}, where class p ∈ P 405

gets as many resources as needed up to the maximum number 406

of RBs, whereas other classes receive the remaining resources 407

by following the priority order of {1, . . . , p−1, p+1, . . . , P}. 408

Even so, if always applying the same scheduling rule for 409

frequency prioritization, only one objective across all traffic 410

classes would be addressed, while harming the performance 411

of other QoS targets. Consequently, in the frequency domain, 412

our aim is to apply at each TTI the most suitable scheduling 413

rule in order to increase the fraction of time (in TTIs) when 414

the heterogeneous QoS requirements are met. 415

B. Multi-Class and Multi-Objective Optimization Problem 416

Let us define by xp,u,o the Key Performance Indicator 417

(KPI) of user u ∈ Up and objective o ∈ Op and by 418

x̄p,u,o its associated requirement. It is said that user u ∈ Up 419

meets objective o ∈ Op if and only if xp,u,o respects x̄p,u,o. 420

Furthermore, let us define the current KPI vector xp,u[t] = 421

[xp,u,o1, xp,u,o2 , . . . , x̄p,u,Op ] and its associated requirement 422

vector x̄p,u = [x̄p,u,o1, x̄p,u,o2 , . . . , x̄p,u,Op ]. User u ∈ Up 423

meets all QoS objectives if and only if xp,u respects the 424

requirement vector x̄p,u. By extending this reasoning, the 425

entire set of objectives is met for each traffic class p ∈ P , 426

if vector xp[t] = [xp,1, xp,2, . . . , xp,Up ] respects its require- 427

ments x̄p = [x̄p,1, x̄p,2, . . . , x̄p,Up ]. The proposed framework 428

aims to increase the number of TTIs when the KPI vector 429

x = [x1, x2, . . . , xP] respects the QoS requirement vector 430

x̄ = [x̄1, x̄2, . . . , x̄P]. We formulate in (1) the multi-class and 431

multi-objective optimization problem that aims to determine 432

at each TTI the most convenient traffic class to be prioritized 433

and scheduling rule to be applied in the frequency domain such 434

that vector of QoS indicators x reaches the highest possible 435

outcome when reporting to the vector of QoS requirements x̄. 436

max
i,j,k

∑

r∈R

∑

p∈P

∑

u∈Up

∑

b∈B
ir,p[t] · jp,u[t] · ku,b[t] · �r,p(xp,u[t]) 437

× γu,b[t], (1) 438

s.t.
∑

u

ku,b[t] ≤ 1, b = 1, . . . , B, (1a) 439

∑

p

jp,u[t] ≤ 1, u = u1, . . . , uUp , p = 1, . . . , P, (1b) 440

∑

u

jp∗,u[t] = Up∗ , p∗ ∈ P, (1c) 441

∑

u

jp⊗,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (1d) 442

∑

r

ir,p[t] = 1, p = 1, 2, . . . , P, (1e) 443
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∑

p

ir∗,p[t] = P, r∗ ∈ R, (1f)444

∑

p

ir⊗,p[t] = 0, ∀r⊗ ∈ R\{r∗}, (1g)445

ir,p[t] ∈ {0, 1}, ∀r ∈ R,∀p ∈ P, (1h)446

jp,u[t] ∈ {0, 1}, ∀p ∈ P,∀u ∈ Up, (1i)447

ku,b[t] ∈ {0, 1}, ∀u ∈ Up,∀b ∈ B. (1j)448

In (1) γu,b[t] is the achievable user rate that quantifies the449

number of bits transmitted if the RB b ∈ B would be allo-450

cated to user u ∈ Up. Basically, γu,b[t] is determined based451

on the Channel Quality Indicator (CQI), a bandwidth depen-452

dent vector reported by each user u ∈ Up to the base station.453

For each scheduling rule r ∈ R, a unique utility function454

�r,p(xp,u) is associated in order to attenuate the channel vari-455

ations given by γu,b[t] and to provide to the user the priority456

to be scheduled in the frequency domain. Any utility function457

�r,p(xp,u) : R → R must be monotone and concave [29]. The458

utility functions can be designed in many ways by consid-459

ering different KPIs as arguments with certain impact when460

meeting the heterogeneous and multidimensional QoS require-461

ments. More examples of utility functions are presented in the462

next section. When setting the same utility function �r,p(xp,u)463

for all traffic classes, no matter what the prioritization set Pp[t]464

is, the KPI vector x respects the requirement vector x̄ in a465

certain measure. The idea is to select at each TTI the prior-466

itization set Pp[t] and the most suitable utility such that the467

QoS provisioning would be maximized.468

The traffic class, scheduling rule and radio resources are469

assigned based on the decision variables. In (1), ku,b[t] is the470

resource allocation variable: ku,b[t] = 1 when RB b ∈ B471

is allocated to UE u ∈ Up and ku,b[t] = 0, otherwise.472

Constraints in (1a) aim to allocate at most one user to each473

RB. Variable jp,u[t] assigns each user to a specific traffic class.474

Constraints (1b) indicate that each user belongs to at most475

one traffic class. Constraints (1c) and (1d) show that only476

users from the selected traffic class p∗ ∈ P are passed in477

the frequency domain. Variable ir,p[t] determines the type of478

utility to be selected at each TTI. Constraints (1e) indicate479

that one type of utility function per traffic class is selected480

at each TTI, whereas constraints (1f) and (1g) show that the481

same scheduling rule is selected for all traffic classes, where482

variable r∗ ∈ R is the selected scheduling rule at TTI t and483

r⊗ ∈ R are the other scheduling rules remained un-selected at484

TTI t. Constraints (1h), (1i) and (1j) make the entire problem485

combinatorial.486

Due to very high complexity, solving the optimization487

problem from (1) at each TTI is difficult to achieve. Thus, we488

propose a sub-optimal solution aiming to split this problem in489

two sub-problems: in the first sub-problem, the prioritization490

set Pp[t] is decided and the most appropriated scheduling rule491

r ∈ R is assigned; in the second sub-problem, the resource492

allocation is performed based on the prioritized traffic class493

and selected scheduling rule. For the first sub-problem, we494

propose a ML-based approach [30] to decide at each TTI the495

class p∗ ∈ P to be prioritized at first and the best fitting496

scheduling rule r∗ ∈ R for the resource allocation. The second497

sub-problem aims to solve the user scheduling from Up∗ and 498

the resource allocation based on the selected scheduling rule 499

r∗ ∈ R as described in Section IV-A. As a first step of the 500

scheduling process, we determine the metric mb,p∗,u for each 501

user u ∈ Up∗ and RB b ∈ B at each TTI as follows: 502

mb,p∗,u[t] = �r∗,p∗
(
xp∗,u

) · γu,b[t]. (2) 503

As a result, the matrix of metrics m = [mb,p∗,u] ∈ 504

R
Up∗×B is computed, where b = {1, 2, . . . , B} and u = 505

{u1, u2, . . . , uUp∗ }. For each RB b ∈ B, a vector of metrics is 506

considered, such as: mb = [mb,p∗,u1 , mb,p∗,u2 , . . . , mb,p∗,uUp∗ ]. 507

Resource b ∈ B is allocated to that user that has the maxi- 508

mum metric value from the vector mb, written in the following 509

manner: 510

b 
→ u, if u = argmaxu′
(
mb,p∗,u′ [t]

)
, (3) 511

where expression b 
→ u allocates RB b to user u and ku,b = 1. 512

It is important to mention that the allocation is performed RB- 513

by-RB until the entire set of RBs B gets allocated. However, 514

if for example mb′ = [0, 0, . . . , 0], then RB b′ ∈ B remains 515

unoccupied. This resource can be allocated when the schedul- 516

ing process is repeated for the next prioritized traffic class 517

from the remained set of P[t]\ {p∗}. By following this model, 518

under certain network conditions it might happen that not all 519

the users could get enough resources to meet their QoS objec- 520

tives. The aim of the proposed scheduler is to increase as much 521

as possible the QoS provisioning for UHD VR video users 522

with insignificant QoS degradation of other services by prop- 523

erly selecting each time the traffic class to be prioritized and 524

the scheduling rule to be performed in the frequency domain. 525

C. Types of Scheduling Rules 526

A scheduling rule r ∈ R provides a unique utility function 527

�r,p(xp,u) focused on a particular or a group of QoS objectives. 528

User fairness is one of the most popular objectives which can 529

be addressed when employing the following function [31]: 530

�1,p
(
T̄p,u

) = 1/T̄p,u (4) 531

where T̄p,u is the average throughput of user u ∈ Up calculated 532

based on the exponential moving filter and the scheduling rule 533

r = 1 is Proportional Fair (PF). According to (2), (3) and (4), 534

user u ∈ Up with the highest ratio between achievable rate and 535

average throughput on RB b ∈ B is selected, while keeping a 536

certain fairness with the previously served users. 537

Guaranteeing the Bit Rates (GBR) is another QoS objective 538

that can be addressed when selecting the function [32]: 539

�2,p

( ¯̄Tp,u

)
= [1 + w1 · e

−w2·
( ¯̄Tp,u−TR

p,u

)

] · �1,p
(
T̄p,u

)
. (5) 540

where ¯̄Tp,u is the average user throughput calculated with the 541

median moving filter and r = 2 is the Barrier Function (BF) 542

scheduling rule. Users with lower average rates than that of the 543

corresponding requirements TR
p,u are preferred to be scheduled 544

on each RB. 545

Delay objective aims at respecting the Head-of-Line (HoL) 546

packet delay of each user at each TTI. One possible solution 547
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to achieve this target is to employ the following function [33]:548

�3,p
(
Dp,u

) = ew3·Dp,u/DR
p,u · �1,p

(
T̄p,u

)
, (6)549

where Dp,u is the HOL delay of user u ∈ Up at TTI t, DR
p,u550

is the corresponding requirement and r = 3 is entitled the551

EXPonential (EXP) rule. Users with packets approaching to552

their deadline receive a much higher priority to be scheduled553

given the exponential function.554

The Packet Loss Rate (PLR) of each user can be improved555

when the scheduler employs the following utility function [34]:556

�4,p
(
Lp,u

) = w4 · Lp,u/LR
p,u · �1,p

(
T̄p,u

)
, (7)557

where Lp,u is the PLR value at TTI t of user u ∈ Up, LR
p,u is the558

corresponding PLR requirement and r = 4 is the Opportunistic559

Packet Loss Fair (OPLF) scheduling rule. When the through-560

put, delay and PLR requirements are met by all users, BF,561

EXP and OPLF, respectively act similar to the PF scheduling562

rule.563

D. Controller and Packet Scheduler Interaction564

In order to increase the fraction of scheduling time when565

the heterogeneous QoS requirements are respected, we pro-566

pose the use of Reinforcement Learning (RL) [30] to learn567

the most suitable traffic prioritization and scheduling rule that568

can be applied in real time scheduling. RL makes use of569

an agent (e.g., intelligent controller) that in time will learn570

to take actions which will generate the maximum reward by571

interacting with the environment (e.g., packet scheduler). As572

seen from Fig. 2, at TTI t, the controller observes a state573

s[t] ∈ S, representing the current network conditions, and574

takes an action a[t] = [p, r] ∈ A that prioritizes traffic class575

p ∈ P in time domain and selects the scheduling rule r ∈ R576

to be applied in the frequency domain. The scheduling proce-577

dure is conducted based on the selected action and the system578

evolves to the next state s[t+1] = s′ ∈ S at TTI t+1. As illus-579

trated in Fig. 2, the reward value received from the scheduling580

environment evaluates the performance of the applied action581

in the previous state. This function is calculated based on the582

set of KPIs x[t + 1] = x′ received at TTI t + 1. If we define583

the reward function as ρ : X → [−1, 1], where X ⊂ S is the584

state space of KPI vectors, then the proposed function takes585

the following form:586

ρ
(
s′) =

∑

p

∑

o

wp · ρp,o

(
x′

p

)
, (8)587

where ρp,o is the reward value of traffic class p ∈ P and588

objective o ∈ Op, respectively. In (8), x′
p is the KPI vector of589

class p ∈ P at TTI t+1. This ρp,o value denotes how far the590

online KPI parameters of traffic class p ∈ P are from their591

requirements in terms of objective o ∈ Op. The weight wp592

sets the 3GPP priority for each class as denoted by the static593

prioritisation set P . The controller must explore a high num-594

ber of state-to-state transitions to optimize the prioritization595

decisions.596

E. RL-Based Scheduling Framework597

Since the scheduler state space is multi-dimensional and598

continuous, the scheduling problems cannot be enumerated599

Fig. 3. CACLA-based RL controller architecture.

exhaustively. We can only approximate the best traffic class 600

to be prioritized and the scheduling rule to be performed in 601

the frequency domain, such that the QoS provisioning is much 602

improved. To reduce the complexity for the learning frame- 603

work, Neural Network (NN) is used to approximate the best 604

prioritization decisions at each current state. During the learn- 605

ing stage, the NN weights are updated at each TTI based on 606

the scheduler and controller interaction as shown in Fig. 2. In 607

the exploitation stage, these weights are saved and the neural 608

network is implemented as a non-linear function. 609

We propose the implementation of RL framework with a 610

minimum complexity. In this sense, let M be the number of 611

NN output pins in which, the first M/2 pins can be used to 612

determine the index of the traffic class to be prioritized and 613

the rest of output pins to decide the scheduling rule to be 614

applied in the frequency domain. To train this non-linear func- 615

tion with multi-dimensional input and output variables, we use 616

Continuous Actor-Critic Learning Automata (CACLA) algo- 617

rithm [35]. As seen from Fig. 3, CACLA considers two neural 618

networks: a) the critic neural network that approximates the 619

state value function and criticizes the action taken on each 620

state; b) actor neural network that approximates the best pri- 621

oritization set Pp[t] and scheduling rule r ∈ R to be applied 622

on each state. The role of the critic function is to examine the 623

actor activity and improve its decisions over time. 624

As an internal structure, a neural network is composed by 625

L number of layers, including here the hidden and output lay- 626

ers only. Therefore, we define the number of hidden layers as 627

LH = L − 1. Each layer l ∈ {1, 2, . . . , L + 1} is composed by 628

neurons or nodes and interconnection matrices that represent 629

the weights connecting the nodes within two consecutive lay- 630

ers, for example l and l + 1. If Nl and Nl+1 are the number 631

of nodes (not including the bias nodes) of layers l and l + 1, 632

respectively, then the total number of weights to be updated 633

at each TTI is
∑L

l=1 (Nl + 1) · Nl+1. As indicated in Fig. 3, 634

when CACLA algorithm is employed, two sets of weights need 635

to be updated since both actor and critic neural networks are 636

involved during the learning stage. 637
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The functional structure of critic NN is taking the form of638

the non-linear function defined as: V : S → [−1, 1]. The639

actor NN takes the same form with the amendment that the640

output value is multi-dimensional and the definition domain is641

A : S → [−1, 1]M . In the learning stage, two steps are per-642

formed at each TTI: a) the updating step in which the weights643

of both neural networks V and A are updated according to644

CACLA algorithm and b), the action selection step, that deter-645

mines the policy of how the controller action is selected at each646

TTI. In the exploitation stage, only the learnt actor function647

is used to provide the M dimensional decision under the form648

of the controller action a[t + 1] = [p, r] that can be decoded649

into traffic class prioritization and scheduling rule selection.650

The updating process based on CACLA algorithm aims to651

refine the weights of both networks iteratively, on each state.652

For example, when the current state is s′ ∈ S, the error653

between the impact of applied action a[t] ∈ A in the previous654

state s[t] ∈ S and its expectation must be reinforced through655

the neural networks. Since CACLA makes use of two neural656

networks, then two types of errors must be reinforced.657

Critic Error: At the beginning of the learning stage, the658

weights of the critic NN are randomly chosen. Thus, these659

weights are gradually updated based on the quality of the660

applied actions in every state. As seen in Fig. 3, the adapta-661

tion of the critic NN weights comprises two steps: a) forward662

propagation responsible to get the consecutive critic values663

{V(s), V(s′)} ∈ [−1, 1] in order to quantify the impact of664

action a ∈ A in state s ∈ S; and b) back-propagation665

step that calculates the critic error and propagates it through666

the critic NN based on the gradient descent principle [35].667

Without going into details, the gradient descent calculates668

the error for each neuron of each layer l ∈ {2, . . . , L + 1}669

and updates the weights accordingly. The critic error function670

Ec : S × S → [−1, 1] is defined (9), where {VT(s), V(s)} are671

determined by propagating the states (s, s′) through the critic672

NN from input to the output layers:673

Ec(s′, s) = VT(s) − V(s). (9)674

Here, the target value is determined as VT(s) = ρ + γ · V(s′),675

where γ ∈ [0, 1] is a discount factor and ρ is the reward value676

calculated with (8).677

Actor Error: If the critic error is positive Ec(s′, s) ≥ 0, then678

the previous action was a good choice and the actor NN can679

be updated as well. If Ec(s′, s) < 0, then the previous action680

was an unfortunate choice and then, the actor NN must be dis-681

couraged in taking such decision in the future. Consequently,682

the actor NN is not updated. When Ec(s′, s) ≥ 0, the actor683

NN is updated by following the same forward and backward684

propagation principles. The multi-dimensional actor error is685

determined based on the function Ea : S → [−1, 1]M:686

Ea(s) = AT(s) − A(s), (10)687

where AT is the target multi-dimensional action value deter-688

mined based on some probability distributions. At the begin-689

ning of the learning stage, it is not recommended to exploit690

the actor NN decisions and then, a random multi-dimensional691

value of AT(s) different from A(s) is preferred in order to692

enlarge the exploration of the scheduler state space. This is693

denoted as the improvement step. Once the learning process 694

is approaching to its deadline, we aim to exploit more the 695

actor decisions and then, the multi-dimensional target AT(s) 696

is equal to A(s). This is denoted as the exploitation step. For 697

an optimal learning, it is preferred to mix improvement and 698

exploitation steps with certain probabilities. Certainly, more 699

improvements steps are preferred at the beginning of the learn- 700

ing stage, whereas the end of the learning stage is likely to 701

use more exploitation steps. In this way, we monitor if the 702

mean actor error can converge or not to certain error levels. 703

Once the neural network(s) is(are) updated, the RL controller 704

decides the new action a′ ∈ A to be applied in state s′ ∈ S. 705

V. SYSTEM EVALUATION 706

The proposed adaptation framework was implemented in 707

the RRM Scheduler Simulator [31], which is a C/C++ object 708

oriented tool that inherits the LTE-Sim simulator [36]. For 709

the performance evaluation, an infrastructure of 7 Intel 4-Core 710

machines with i7-2600 CPU at 3.40GHz, 64 bits, 8GB RAM 711

and 120 GB HDD Western Digital storage was used. Each 712

traffic type is generated by using the models provided by LTE- 713

Sim simulator adapted to generate UHD VR-based video large 714

data packets. 715

The wireless channel is simulated by using the Jakes fast 716

fading model, that is considered deterministic, similar to 717

Rayleigh fading as it makes use of sinusoidal summing [31]. 718

Jakes fading considers the central frequency of 2GHz, the 719

system bandwidth in order to determine the periods of sinu- 720

soids, and the user speed to determine the pulsation and the 721

number of paths for the initial phase calculation. In our case, 722

the user speed is 3kmph with random direction in both learn- 723

ing and exploitation stages. Then, a number of 6 to 12 paths 724

are randomly generated at each TTI as implemented in [36]. 725

The channel propagation considers the loss given by: path, 726

shadowing and penetration. We consider the urban microcell 727

model for the path loss calculation, the shadowing loss is mod- 728

elled as a log-normal distribution (μ = 0, σ = 8 dB) in the 729

range of [0, 20] dB, and the penetration loss is fixed to 10dB 730

as it considers only the wall attenuation. 731

At each TTI, the user CQI is reported by following five 732

steps. In the first step, the reference signal is broadcasted at 733

each TTI by the base station over the entire system band- 734

width. In the second step, each user calculates the power of the 735

received reference signal that is attenuated by fading and prop- 736

agation loss models. In the third step, each user measures the 737

channel gain or the Signal-to-Interference/Noise Ratio (SINR) 738

for each RB based on the received power and interference val- 739

ues. In our model, the intra-cell interference is negligible while 740

the inter-cell interference considers a cluster of 7 cells for each 741

component carrier. The ML-based solution and other sched- 742

ulers run only on the central cell of each cluster, while other 743

cells provide the inter-cell interference levels. In the fourth 744

step, the CQI value for each RB is determined based on map- 745

ping curves between SINR and BLock Error Rate (BLER), 746

where the target BLER is 10% [31]. Finally, the fifth step 747

involves the transmission of each user CQI to the base station 748

via a separate uplink channel which is errorless in our case. 749
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We consider downlink transmission with carrier aggrega-750

tion with a bandwidth of 100 MHz (B = 500), a micro cell751

radius of 200m and the FDD transmission mode. The CQI752

reporting scheme is full-band and periodically sent at each753

TTI to each user. The packet scheduler works on the carrier754

component basis and makes use of separate entities for RLC755

functionalities, retransmission schemes and modulation/coding756

assignments. Each RLC entity works in acknowledged mode757

and considers a maximum number of 5 retransmissions for758

each data packet. Packets failing to get successfully transmit-759

ted within this period are declared lost. The user PLRs and760

rates are summed per each carrier component at each TTI.761

Four traffic classes with different QoS profiles are consid-762

ered for scheduling, such as: 20% UHD VR-based live video763

streaming (p = 1), 60% live conventional video (p = 2), 15%764

voice (p = 3) and 5% file transfer (p = 4) [1]. UHD VR-based765

video traffic is generated with a rate higher than 20Mbps,766

where the packet delay requirement is 10ms and the packet767

loss rate less than 10−3. The conversational video traffic has a768

variable data rate with a mean of 1Mbps and more relaxed QoS769

profile. In the frequency domain, a mixture of scheduling rules770

is considered, such as PF, BF (w1 = 1.25, w2 = 1.31 · 10−5),771

EXP (w3 = 6) and OPLF (w4 = 10) functions as detailed in772

Section IV-C.773

A. Learning Stage774

In the learning stage, the number of users for each traf-775

fic class is randomly chosen in the given ratio at predefined776

time slots in order to increase the possibility of the actor-critic777

neural networks to experience as many as possible variants778

of instantaneous states from different space regions. Under779

these circumstances, the optimal configuration of both actor780

and critic NNs must be found in terms of the number of hidden781

layers LH and hidden nodes Nl, l = {2, . . . , L}. With a lower782

number of hidden layers and nodes, the actor NN may under-783

fit the input data in the sense that some regions of the state784

space are not very well represented by the learnt non-linear785

function. On the other hand, a higher number of hidden layers786

and nodes may determine the neural networks to overfit the787

training data, in the sense that, the framework will also learn788

the noisy data. In both cases, the critic error starts to increase at789

a certain moment of time in the learning stage. In order to find790

the best options for the number of hidden layers and nodes,791

we simulated the learning stage in parallel for about 107 TTIs792

(with the same networking conditions) for each of the fol-793

lowing group of configurations: (Nl = 150; LH = {1, 3, 5}),794

(Nl = 200; LH = {1, 3, 5}), (Nl = 250; LH = {1, 3, 5} and795

(Nl = 300; LH = {1, 3, 5}). Table II presents the numerical796

results of these configurations in terms of the critic error and797

system complexity.798

By monitoring the minimum error of a neural network799

over the learning stage, the over-fitting can be detected when800

increasing the number of hidden layers and nodes. For exam-801

ple, if the error decreases as the NN topology increases, then802

the system can learn better with the higher configuration. On803

the other side, if the minimum error increases as the NN topol-804

ogy size increases, then the over-fitting can appear and the805

TABLE II
LEARNING PERFORMANCE OF DIFFERENT CONFIGURATIONS

OF NEURAL NETWORKS

system can learn better with the lower configuration. As seen 806

in Table II for Nl = 150 hidden nodes, the minimum critic 807

error gets lower as the critic NN configuration increases from 808

LH = 1 to LH = 3 and gets higher when increasing the number 809

of layers from LH = 3 to LH = 5. For the first set of results 810

(Nl = 150; LH = {1, 3, 5}) obtained with the same networking 811

conditions, it can be concluded that above 450 hidden nodes 812

({LH = 3; Nl = 150}), the risk of over-fitting becomes higher. 813

For other three sets of results (Nl = {200, 250, 300}), it can 814

be observed that the critic error increases as the number of 815

hidden layers increases from LH = 1 to LH = 5. Although 816

these four sets of simulations are not obtained with the same 817

networking conditions, it can be concluded that the critic NN 818

configurations with (LH = 1, Nl = {150, 200, 250, 300}) and 819

(LH = 3, Nl = 150) can be used for the proposed ML-based 820

scheduling solution. The same observations are respected for 821

the actor NN, with the amendment that the over-fitting appears 822

much later since the weights are not updated at each TTI due 823

to the critic decision. For a higher topology, the over-fitting 824

can cause poor QoS provisioning for UHD VR users as well 825

as over-provisioning of other traffic classes. 826

Alongside the performance of the critic error, Table II 827

presents the complexity analysis for the forward and back- 828

ward propagation of both actor and critic NNs. The backward 829

propagation includes here the error propagation from output to 830

the input layers and the refinement of NN weights. We mea- 831

sure the normalized complexity as a ratio between the sum 832

of additional time (in seconds) needed to back-propagate the 833

errors through critic and actor NNs at each TTI averaged over 834

the total learning time (in seconds). Note that the backward 835

propagation complexity of actor NN is measured only when 836

the critic error is Ec ≥ 0. The normalized complexity for the 837

forward propagation procedure of both actor and critic NNs 838

is determined in a similar way by averaging over the learning 839

stage the accumulated time needed to forward the states from 840

input to the output layers at each TTI. As seen in Table II, the 841

normalized complexity of both monitored processes increases 842

as the NN topology includes higher number of hidden lay- 843

ers and nodes. When considering the complexity analysis for 844

the most indicated NN configurations from the perspective of 845

over-fitting, we observe that a topology of (LH = 3, Nl = 150) 846

requires 3.5 times more computational time to forward propa- 847

gate the states through the actor and critic NNs when compared 848
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Fig. 4. (a) QoS provisioning (GBR, delay and PLR) for UHD VR-based live video streaming; (b) 5th Percentile throughput performance for UHD VR-based
live video streaming; (c) 5th Percentile PSNR performance for UHD VR-based live video streaming; (d) Heterogeneous QoS provisioning (GBR, delay and
PLR) for all traffic classes; (e) 95th Percentile PLR performance per traffic type when the range of heterogeneous users is [10, 30]; (f) 95th Percentile PLR
performance per traffic type when the range of heterogeneous users is [31, 50].

to the case of (LH = 1, Nl = 150). For the backward prop-849

agation, the normalized complexity (LH = 3, Nl = 150) is850

only 1.5 times greater than that of (LH = 1, Nl = 150) since851

the actor NN is not updated at each TTI. However, we are852

interested in exploiting the performance of the configuration853

that provides the lowest complexity (LH = 1, Nl = 150). The854

additional execution overhead required by this configuration855

in the scheduling process is about 70% in the learning stage856

(6% for the forward propagation and 64% for the backward857

propagation) for both actor and critic neural networks. In the858

exploitation stage, the additional complexity is 3% since only859

the actor NN is used.860

B. Exploitation Stage861

In the exploitation stage, the performance of the proposed862

ML-based scheduling solution is analyzed when using the con-863

figuration of LH = 1 and Nl = 150. The proposed CACLA864

framework is compared with FLS [20], RADS [21] and SP865

schemes. Among other scheduling approaches, RADS and866

FLS schedulers are time efficient and target a multitude of867

QoS objectives divided between time and frequency schedul-868

ing domains. The TP stage for FLS estimates the amount of869

real-time data to be transmitted in the next frame based on870

discrete-time linear control theory arguments. Then, the real-871

time flows are prioritized based on the approximated quota of872

data necessary to meet the delay constraints. The configuration873

details on this controlling loop can be found in [20]. The TP874

stage of RADS scheme is conducted based on a function that875

considers the fairness, delay and user rates in order to create an876

inter-class user prioritization at each TTI. The number of users877

to be passed to the FP scheduler at each TTI must be a priori878

configured. For our simulations, a maximum number of U/2879

users show the best performance when measuring the average880

scheduling time when the heterogeneous QoS requirements are881

respected. For SP scheme, TP domain considers a static prior- 882

itization between different classes at each TTI as presented in 883

Section IV-A. In the frequency domain, FLS employs the PF 884

scheduler to improve the fairness between users preselected in 885

the TP stage, whereas RADS and SP make use of the OPLF 886

scheduler to enhance the PLR performance. 887

In order to measure the performance of the proposed solu- 888

tion in real time scheduling, three types of evaluations are 889

considered: intra-class, aggregate and inter-class. For the intra- 890

class evaluation (Figures 4.a, 4.b, 4.c), the aim is to measure 891

the performance when scheduling the UHD VR-based live 892

video traffic only. In this case, we evaluate the intra-class QoS 893

provisioning, throughput and PSNR depending on U1 number 894

of UHD VR connections, where U1 represents a ratio of 20% 895

from the total number of heterogeneous users (U1 = 1/5 · U). 896

The aggregate evaluation (Fig. 4.d) aims to measure the overall 897

scheduling performance in terms of heterogeneous QoS pro- 898

visioning as a function of the total number of active users U. 899

The intra-class evaluation (Fig. 4.e and Fig. 4.f) presents the 900

over-provisioning effect by considering the PLR performance 901

of each scheduler per different traffic class. Finally, in Fig. 5 902

we analyze the execution overhead required by each scheduler 903

while varying the number of heterogeneous users. 904

Figure 4.a presents the normalized scheduling duration 905

when all QoS objectives (in terms of GBR, delay and PLR) 906

are respected for the UHD VR-based live streaming traffic 907

only. As expected, the SP scheme provides the highest pos- 908

sible performance as it gives the highest priority to the UHD 909

VR-based live streaming traffic at all times. For the entire user 910

range, CACLA performs much better than FLS and RADS by 911

obtaining gains in excess of 100% when serving more than 912

six UHD VR-based live video connections. 913

The Cumulative Distribution Function (CDF) of user 914

throughput is determined at the end of the exploitation stage 915

(for each configuration in terms of the number of users) based 916
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on the throughput values collected from each user at each917

TTI. Looking at the 5th percentile of user throughput from the918

CDF curve (worst user throughput) for the UHD VR-based919

live streaming traffic (Fig. 4.b), smooth degradation can be920

observed in the case of CACLA scheme compared to SP when921

the number of UHD VR-based live streaming users goes above922

seven. When scheduling more than five users from the first923

class, RADS and FLS aim to focus more on scheduling lower924

priority users by degrading the user throughput of the first925

prioritized traffic class. As seen in Fig. 4.b, when scheduling926

eight UHD VR users, CACLA outperforms FLS and RADS by927

more than 1Mbps and 2Mbps, respectively. For ten users, the928

gain gets much higher at about 3Mbps and 5Mbps, respec-929

tively. This is because when the number of heterogeneous930

users gets very high, CACLA aims at working similarly to931

the SP scheme by providing a much higher prioritization to932

the UHD VR connections.933

Figure 4.c presents the performance of the 5th percentile934

PSNR in order to highlight the worst user PSNR performance935

when experiencing UHD VR content. This choice is motivated936

by the fact that PSNR is considered as one of the most popular937

objective QoE indicators used to evaluate the user perceived938

quality for video services [15]. Based on the evaluation pro-939

vided in [37], an excellent Mean Opinion Score (MOS) can940

be obtained when PSNRdB ≥ 36 while an acceptable MOS941

is considered when 29 ≤ PSNRdB < 36. Thus, a very good942

MOS performance for CACLA is obtained when scheduling943

less than eight users while an acceptable level can be attained944

for more than eight UHD VR users. When employing RADS945

and FLS schedulers, the best MOS performance is obtained946

for U1 ∈ [2, 5], an acceptable MOS value when U1 = 6 and947

poor and even bad MOS levels are obtained when U1 > 6.948

When U1 > 9, CACLA obtains gains higher than 50% when949

compared to FLS and RADS in terms of the worst user PSNR.950

When all the traffic classes are considered, we present in951

Fig. 4.d the performance when provisioning heterogeneous952

QoS. We monitor the number of TTIs when all users meet953

their QoS requirements by using the priority policies given by954

SP, RADS, FLS and CACLA. It can be noticed that SP is not955

able to provide an acceptable QoS level when scheduling more956

than 20 heterogeneous users. In this case, CACLA can achieve957

up to 50% more time when the heterogeneous QoS objectives958

are achieved. When reporting to RADS and FLS, CACLA can959

obtain gains higher than 100% for a range of scheduled users960

of U ∈ [20, 40]. When the number of users start to increase961

(U > 45), the achievement of QoS objectives gets close to the962

saturation. Consequently, CACLA aims to prioritize more the963

UHD VR traffic class as showing in Figures 4.b and 4.c.964

For each traffic class, we monitor PLR values of each user965

at each TTI. At the end of each exploitation simulation, we966

compute the CDF curves for each of these classes in order to967

get the worst user percentiles of PLR. When compared to user968

throughput and PSNR, the worst PLR percentiles are found at969

the upper limit of the CDF curve. Figure 4.e analyses the inter-970

class performance when averaging the 95th PLR percentiles971

for each traffic class over the range of U ∈ [10, 30]. When972

employing CACLA-based scheduling solution, up to 30 UHD973

VR connections can be supported (the PLR requirements are974

Fig. 5. System complexity of involved schedulers.

met) in the network while providing the requested PLR levels 975

of other services. For this range, SP is over-provisioning the 976

UHD VR traffic class being unable to assure the requested 977

PLR for other traffic classes. RADS and FLS are unable to 978

respect the PLR requirement of UHD VR traffic class (10−3) 979

when the worst user PLR is monitored. 980

As stated previously, the RADS and FLS prioritization 981

schemes are unable to react to the changeable networking 982

conditions in terms of the number of active users U, variable 983

arrival bit rates when generating the traffic, and wireless chan- 984

nel conditions. Thus, some traffic classes are over-provisioned 985

while others may have degraded QoS performance. Figure 4.f 986

demonstrates the aforementioned statement. The inter-class 987

performance when averaging the 95th PLR percentile for each 988

traffic class over the range of U ∈ [31, 50] is analyzed. This 989

is achieved in order to monitor the behavior of each scheme 990

when the heterogeneous QoS provisioning is getting closer to 991

the saturation level due to the increase in number of users. 992

As seen from this figure, FLS is over-provisioning the video 993

and VoIP classes while degrading the QoS performance of 994

the UHD VR-based live streaming traffic. As expected, the 995

SP scheme prioritizes UHD VR users while drastically penal- 996

izing the rest of the traffic classes. CACLA prioritizes more 997

the UHD VR-based live streaming class when the number of 998

users is increasing, while it aims to give enhanced inter-class 999

fairness when the number of users is lower and the QoS pro- 1000

visioning can be attained for each class as shown in Fig. 4.e. 1001

This is possible due to the adaptation capability of this policy 1002

when the number of users increases/decreases. The impact of 1003

the scheduling rule adaptability based on channel conditions 1004

and application characteristics is highlighted in Fig. 4.e, where 1005

CACLA is able to obtain better PLR performance than FLS 1006

and RADS while the PLR requirements for other classes are 1007

respected by all these candidates. The RADS scheme shows a 1008

notable limitation in Fig. 4.f due to the prioritization scheme 1009

used in time domain. A certain level of inter-class fairness 1010

can be observed but at lower PLR levels when compared to 1011

CACLA, even if the PLR minimization is considered in the 1012

frequency domain since the OPLF scheduler is employed. 1013

Figure 5 represents the complexity analysis of the previously 1014

analyzed scheduling schemes. The complexity analysis mea- 1015

sures the number of clock ticks elapsed for the TP and FP 1016

stages divided to the total number of clocks within one second 1017

and averaged over the exploitation stage duration (in seconds). 1018
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Below twenty aggregate users, FLS and RADS are less time1019

consuming since the frequency domain scheduling is per-1020

formed for a less number of users than that of SP and CACLA1021

schemes. Since the networking conditions permit, CACLA and1022

SP perform the FP stage for all four traffic classes. However, a1023

slight complexity increase is required by the traffic class selec-1024

tion procedure when performing CACLA scheduling. Above1025

this level of 20 aggregate users, SP solution gets the lowest1026

complexity since only the first prioritized class (live UHD VR1027

video users) is sent to the FP domain (see correlation with1028

Fig. 4.a and Fig. 4.d.). Starting from the level of 30 heteroge-1029

neous users, RADS becomes a better option than FLS since1030

the TP stage pre-selects a lower number of users to be sent in1031

the frequency domain. At this point, RADS and FLS provide a1032

complexity gain of 11.1% when compared to CACLA. As seen1033

from Fig. 4.d, in the range of [30, 40] users, CACLA obtains1034

gains in excess of 100% in terms of heterogeneous QoS pro-1035

visioning when compared to FLS and RADS. However, this1036

performance comes at the expense of the complexity increase1037

as depicted in Fig. 5. Since the FP stage is performed for all1038

traffic classes at almost each TTI, CACLA needs additional1039

time resources in proportion of 20% to complete its tasks1040

when compared to FLS, while the extra complexity require-1041

ment exceeds 30% when compared to RADS. Above this level,1042

the complexity required by CACLA starts to stabilize or even1043

to decrease since it behaves more like a SP scheme, while the1044

FLS complexity becomes higher.1045

C. Practical Implications1046

According to our findings, some aspects must be considered1047

when employing a RL-based scheduling solution for traffic pri-1048

oritization, user scheduling and resource allocation in practice,1049

such as: the training data set, the state space pre-processing,1050

the controller configuration and termination condition for the1051

learning stage. In order to get a generalised training data set,1052

the training samples must consider variable number of users1053

and changed at certain time intervals for each traffic class.1054

Moreover, different speed levels and direction models should1055

be considered for mobile users in order to explore a high1056

variety of channel conditions. Under its original form, the1057

training data-set is multidimensional and variable, depend-1058

ing on the number of active users that may change over1059

time. Therefore, some pre-processing methods are necessary to1060

compress the dimension of input state to some constant repre-1061

sentations. Statistical methods can be used to get the mean and1062

standard deviation values for the QoS indicators (i.e., packet1063

loss, delay, throughput, etc.) for each traffic class [18]. Also,1064

supervised learning can be used to classify the CQI reports1065

in given patterns for users of each traffic class [31]. The1066

optimal configuration of RL controller depends on the num-1067

ber of traffic classes and scheduling rules. When the number1068

of traffic classes increases, higher number of hidden layers1069

and nodes can be required with respect to some complexity1070

constraints. Additionally, the output layer for the actor neural1071

network must be properly managed and decoded in traffic class1072

and scheduling rule selection as the size of the action space1073

increases. During learning, both critic and actor errors must be1074

monitored. In case of over-fitting (error increases above given 1075

threshold), the weights should be saved and learning process 1076

stopped. Otherwise, learning can continue for a number of 1077

iterations (TTIs) a priori established. 1078

VI. CONCLUSION 1079

This paper proposes an intelligent Machine Learning- 1080

based scheduling solution which makes use of Reinforcement 1081

Learning by employing CACLA, to react to the changeable 1082

networking conditions and take the best decisions in order to 1083

improve the fraction of time (in TTIs) when the QoS require- 1084

ments are met for diverse services. Thus, the algorithm decides 1085

at each TTI the traffic class prioritization and the type of 1086

scheduling rule to be employed. Different traffic classes are 1087

dynamically prioritized such that the over-provisioning effect 1088

for some applications is avoided, whereas radio resources are 1089

intelligently managed by choosing the best scheduling rule for 1090

user scheduling and resource allocation. The proposed solu- 1091

tion is deployed in a very challenging dynamic environment 1092

in which UAV performs UHD VR-based live video streaming 1093

to ground users. The proposed solution was evaluated through 1094

simulations and compared against other three state-of-the-art 1095

scheduling algorithms, such as: SP, RADS and FLS. The sim- 1096

ulation results indicate that the proposed CACLA-based RL 1097

scheduling solution outperforms the other schemes involved 1098

while considering four perspectives: a) CACLA outperforms 1099

RADS and FLS in terms of packet loss, delay, throughput 1100

and PSNR when considering UHD VR-based users only; 1101

b) when considering a mixture of users requesting heteroge- 1102

neous services, CACLA shows gains in excess of 100% by 1103

measuring the fraction of TTIs when the heterogeneous QoS 1104

requirements are respected; c) by measuring the inter-class 1105

packet loss, CACLA can accommodate a higher number of 1106

UHD VR users in the network, while SP and FLS prioritization 1107

schemes are over-provisioning some traffic classes; d) CACLA 1108

provides the best performance vs. complexity tradeoff. 1109
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