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A Combined Field-of-View Prediction-assisted
Viewport Adaptive Delivery Scheme for

360° Videos
Abid Yaqoob , Student Member, IEEE, Gabriel-Miro Muntean , Senior Member, IEEE

Abstract—Recently, 360° or omnidirectional videos have be-
come increasingly popular for both personal and enterprise use-
cases. However, 360° video streaming has very high bandwidth
and processing requirements. State-of-the-art viewport-based
streaming solutions lower these requirements by performing
selective streaming based on long-term Field-of-View (FoV)
prediction mechanisms. However, sometimes user movement is
extremely unpredictable during some parts of the video, and
applying these solutions adversely affects the overall quality
of experience (QoE). This paper proposes a novel Combined
Field-of-View tile-based adaptive streaming solution (CFOV) that
improves end-user QoE for 360° video streaming. CFOV per-
forms interactive tile selection based on more accurate dynamical
viewing area identification by combining the results of two FoV
prediction mechanisms. It also employs an innovative priority-
based bitrate adaptation approach that ensures improved bitrate
budget distribution between different tiles. We evaluate the
proposed solution with a comprehensive set of experiments
involving four immersive videos, diverse tiling patterns (i.e., 4x3,
6x4, and 8x6), different segment lengths (i.e., 1s, 2s, and 3s), and
48 empirical head movement traces under different bandwidth
settings. The evaluation employs a newly defined QoE metric
specifically introduced to assess the streaming performance of
360° videos objectively. The experimental findings show that,
compared to alternative approaches, our proposed solution can
achieve a higher viewport match and can significantly improve
the user QoE for different watching behaviors and content
characteristics.

Index terms— 360◦ video streaming, tile-based adapta-
tion, HTTP adaptive streaming, FoV prediction, QoE

I. INTRODUCTION

OMNIDIRECTIONAL 360◦ video is rapidly moving to-
wards the mainstream mainly due to the recent devel-

opments in computing, display, and networking technologies.
Major commercial video streaming vendors (e.g., YouTube,
Facebook, and Vimeo) promote panoramic nature content.
With the increasing adoption of new and interactive 360°
videos in virtual reality, gaming, and sports industry [1],
mobile video traffic is projected to account for about 82% of
global cellular traffic by 2022 [2]. 360° cameras are available
for producing high-resolution video content. The stitching or
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Fig. 1: Viewport-based 360° viewing arrangements for a
spherical image retrieved from a sports video.

post-processing software ensures the best content preparation.
Modern head-mounted display (HMD) devices are equipped
with powerful sensors and processing components for efficient
display of 360◦ videos. However, this type of video trans-
mission over existing IP networks is still very challenging,
which stems from their larger size [3]. Moreover, the real-time
handling of 360° content is highly time-sensitive because all
the requested content has to be displayed in less than 20ms
[4], [5] in response to the viewer head movements.

360◦ videos are similar to interactive applications, enabling
its audience a look around the environment [6]. Fig. 11

illustrates the viewport-based visualization for virtual 360◦

environment. The usefulness of interactive video services is
strictly dependent on managing bandwidth resources during
playback time. Adaptive video transmission help support the
user’s appetite for improved streaming experience by dealing
with both the content and network objectives, e.g., visual
quality [7], [8], navigation [9], Region-of-Interest (RoI) [10],
[11], energy consumption [12], [13], load balancing [14],
etc. on mobile and fixed networks [15]. Compared to tradi-
tional adaptive streaming, 360° client needs to switch among
different viewing regions according to the consumer’s head
movements and playback rate adaptation.

360◦ video streaming has progressed from viewport-
independent streaming to viewport-dependent or tile-based
streaming. Viewport-independent streaming is similar to tradi-
tional video streaming, where the playback adaptation for the
whole segment is performed based on the estimated network
capacity. However, a user is able to watch only a little part of
the transmitted stream (e.g., 20%-30%) [16], known as the
viewport, due to the visual limitations of both the human

1The spherical image is retrieved from the LOSC Football video available
at https://www.youtube.com/watch?v=lvH89OkkKQ8.
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and display devices. Such streaming solutions are simple to
implement; however, they result in substantial wastage of
bandwidth resources [17]. Instead of transmitting the whole
frames in higher quality, viewport-dependent streaming so-
lutions allow certain frame areas’ selective transmissions in
accordance with the user’s viewing orientation. Such solutions
have lower bandwidth requirements; however, they are asso-
ciated with very high storage and processing overheads [18].
Tile-based streaming is an extension of viewport-dependent
streaming, where 360◦ frames are spatially cut into several
rectangular grids, known as tiles [19]–[21]. The video tiles
are then temporally split into several equal-duration segments
to facilitate adaptive streaming. Both spatial and temporal
adaptation is performed by leveraging human viewing behavior
information. The client selects the visible and non-visible
tiles and their quality levels based on the predicted viewport
and the next segment’s available connection speed. The tiles
requests are performed in advance to ensure synchronous and
timely playback of the content. Some straightforward tile-
based solutions [22]–[24] adjust the quality based on the
available viewport data. However, this is impractical in a real-
time streaming scenario, as user actual and predicted viewing
positions could be different [25]. Some solutions [26]–[29]
have been proposed to stream non-visible tiles to avoid the
black dots in the viewport, including some solutions [24], [30],
[31] that assign the lowest resolution to the invisible tiles to
save network bandwidth.

Although beneficial, tile-based adaptive solutions struggle
to perform good viewport identification, synchronization with
user head movements, bitrate adjustments, etc. Long-term
accurate Field-of-View (FoV) prediction for the upcoming
segments can support high-quality future media services [32].
However, it is highly error-prone and adds tremendous pres-
sure on the prediction mechanisms. Delivering viewport tiles
following inaccurate viewport prediction may significantly
deteriorate user-perceived quality and reduce their satisfac-
tion with the 360◦ video streaming service. Unfortunately,
conventional bitrate adaptation heuristics [33]–[38] are not
able to perform accurate content adjustment during tile-based
streaming in the presence of highly variable and diverse factors
(e.g., available bandwidth, user movement, segment sizes,
etc.) or to make the best selection as the video segments
are prepared in numerous tiles and encoding bitrates. Several
existing tile-based adaptive streaming solutions either increase
the viewport quality aggressively [27], [29], [39] or use a
conservative approach [26], [30], [40] to maintain continuous
video playback. However, this is not acceptable because the
former approach will result in playback interruptions and
wastage of the bandwidth, while the later policy will result
in a poor streaming experience. Therefore, it is indispensable
to maintain an important balance between bandwidth utiliza-
tion and user-perceived quality. Moreover, considering visual
quality only as a key assessment metric cannot ensure high-
performance streaming. The multiple objective metrics such
as maximizing viewport quality and minimizing background
quality while also maintaining the inter- and intra-viewport
smoothness play a significant role in optimizing the adaptive
360◦ video distribution.

In order to overcome the limitations of existing solutions,
this paper introduces a combined FoV prediction-assisted
360◦ video streaming approach (CFOV). In contrast to exist-
ing schemes, CFOV employs two FoV prediction mechanisms
to reduce the impact of unpredictable user movements noted
on different videos. The proposed solution is capable to
dynamically perform tile selection and bitrate adjustment for
each adaptation interval during 360° video streaming. To be
more specific, the CFOV client systematically decides best-fit
tiles for each segment, considering the fact that the viewer
can change the view at any time during the playback. Then,
CFOV renders the selected tiles at the best possible quality to
reach the optimization goal. Unlike previous solutions, CFOV
implements an aggressive priority-related weighted quality
adjustment for the tiles belonging to different regions based on
exploration and exploitation of environmental variables such
as viewing areas, tiles distribution, and connection speed.

The main contributions of this paper are as follows:
1) It introduces a practical-oriented tile selection method

for 360° videos, which lowers the impact of fast head
movement. This method defines the user viewport in
terms of a 110° viewing space in both horizontal and
vertical directions and employs a combination of two
viewport prediction mechanisms.

2) It proposes a new adaptation algorithm, which actively
allocates the video bitrate budget to different video
frame areas to maximize the VR perception levels. The
benefit of the proposed method is assessed using videos
with different levels of motion content and with different
segment durations.

3) It presents extensive trace-driven simulations using real
head motion traces of 48 VR users, with different
content types, tiling patterns, segment durations, and dy-
namic bandwidth variations. Experimental results reveal
that the proposed CFOV solution significantly improves
the streaming performance compared to existing tile-
based streaming approaches. For instance, CFOV pro-
vides an improvement between 12.74%-21.5% in terms
of average QoE under different testing settings.

Paper Organization: The paper is organized as follows:
several existing field-of-view prediction solutions are de-
scribed next, along with 360° tile-based streaming solutions.
An illustration of the CFOV architecture follows the pre-
sentation of the proposed system design. The experimental
testing setup and comparative evaluation with different other
approaches are presented next. The last Section includes con-
clusive remarks and indicates possibilities for some potential
future avenues.

II. RELATED WORKS

The latest unprecedented demand for 360° video content
is mostly due to the associated immersive user experience.
An integral part of current multimedia applications, 360°
video distribution has drawn many researchers’ attention. This
Section discusses the latest related works in terms of streaming
technologies, proposed frameworks, their main innovations,
and possible limitations.
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A. FoV Prediction

FoV prediction is considered a key player in the optimized
streaming of 360◦ video. The latest wearable headsets allow
the clients to refresh their scenes matching to their viewing
positions. The FoV prediction approaches can be categorized
as content-dependent solutions that make predictions based
on the video content data, and content-independent solutions
that require only the historical positions to anticipate the fu-
ture viewing positions. Several existing prediction approaches
predict future viewing positions using average [30], linear
regression (LR) [25], [27], [30], motion-based [41]–[43],
user-clustering [44]–[47], or straightforward machine learning
(ML) [48]–[50] methods.

A short-term (0.5s-3s) viewpoint generator model has been
proposed by Qian et al. [30] based on average, linear regres-
sion, and weighted linear regression methods. The authors
entirely streamed the viewport tiles in higher resolution based
on the derived future coordinates. Bao et al. [48] employed
an LR-based neural network model to best fit the variations
in the head tracking dataset. Azuma et al. [43] proposed
a frequency-driven prediction model based on the viewing
position, velocity, and acceleration. Likewise, Mavlankar et
al. [41] characterized the user’s viewing movements as motion
vectors, i.e., speed and acceleration, for a zoomable panoramic
framework. La Fuente et al. [42] tracked the future head
position based on the angular velocity and angular acceleration
of the user head movements. Petrangeli et al. [51] extrapolated
the 100ms orientation data of the user to drive the viewing
behaviors for the upcoming segment.

Linear regression and motion-based prediction approaches
result in relatively lower prediction accuracy, especially for
outdoor fast motion content [52]. Jiang et al. [53] established a
Long-Short Term Memory (LSTM) model to analyze the user
viewing behavior using an open-source dataset recorded with
five videos watched by 59 users [54]. The authors found that
most users have swift yaw movements than the movements
in the pitch direction. They compared the proposed model
with the LR and average approaches and showed that the
LSTM-based viewport predictor outperforms the others for
both yaw and pitch angle predictions. Qian et al. [25] pro-
posed a practical view-based streaming system for commodity
devices named Flare. They compared the performance of
naive, LR, ridge regression (RR), and support vector regression
(SVR) methods on 1300 head motion datasets collected from
130 users. They suggested using the LR (for <1s prediction
window) and RR (≥1s prediction window) methods for the
Flare to make it more robust and lightweight.

The cross-user learning-based systems can reduce the mis-
match between predicted and ground truth data. Liu et al. [45]
employed a data fusion approach that considers several excit-
ing features, such as the behavior of the current and previous
users, their engagement levels for a single or multiple videos,
streaming device, and mobility-level among others, to predict
the future viewing coordinates. Xie et al. [47] proposed
a cooperative client-server view prediction model that can
improve the prediction precision by up to 15% compared with
LR. At the server-side, the users are grouped based on their

watching interest for each video using the DBSCAN [55]
clustering. On the client-side, the viewport prediction module
decides the viewing group of the current user. Ban et al. [56]
took advantage of users’ attention distribution in 360° video to
improve the view prediction performance. They analyzed the
current user’s watching behavior using the LR method and
then combined it with other users’ similar ROI using the K-
Nearest-Neighbors (KNN) algorithm to fetch the viewport tiles
for the next segment. Experimental evaluation on real datasets
reveals that 20% improved prediction accuracy can result in
up to 30% more quality gain than the LR-based streaming
approach.

B. Tile-based Adaptive Streaming

Recently, tile-based adaptive streaming is a hot research
direction that enables the client to optimize the spatial random
bitrate allocation based on the user’s interest and network
constraints. Rossi et al. [22] undeviatingly designed a tile-
based streaming algorithm to maximize user expectations for
the known set of tiles. Similarly, based on the given viewport
data, Ghosh et al. [23] encoded the visible tiles in higher
resolution while the rest tiles in lower resolution according to
the time-varying network constraints. The authors showed that
streaming variable quality levels for the visible and non-visible
regions can boost the performance in terms of formulated
Quality of Experience (QoE) metric by up to 20%. Graf et
al. [24] analyzed the performance of five tiling patterns, such
as 1x1, 3x2, 5x3, 6x4, and 8x5, in comparison to the straight-
forward monolithic streaming. The authors showed that a 6x4
tiling pattern could provide a worthwhile trade-off between
coding performance and bandwidth consumption for different
content types. Besides, they showed that a bandwidth saving of
more than 60% could be achieved by employing a full delivery
basic streaming strategy for a given viewport data. Chao et
al. [57] proposed a clustering-based tiles selection mechanism,
named ClusTile, to lower the bandwidth and computation
overheads. ClusTile dynamically performs the tiles selection
and bitrate adjustments for each segment. It could achieve a
bandwidth saving of around 52% in comparison to the best-
performing tiling method, as demonstrated by the experiments.

To minimize the impact of spatial quality variance and view-
port quality distortion, Xie et al. [58] proposed a tile-based
streaming framework that employs a QoE-driven target-buffer
based rate optimization. Trace-driven experiments reveal that
the proposed probability-based tiles-selection mechanism can
enhance the visible quality levels by up to 39% and alleviate
the spatial quality variance by 45% in comparison to other
approaches. Hosseini et al. [29] proposed a priority-based
adaptation algorithm for the central, surrounding, and outside
tiles. The proposed algorithm firstly assigns the lowest quality
to all the tiles. Then, it adjusts the central tile’s quality to
the maximum level and repeats the same procedure for the
surrounding and outer tiles while respecting the available
bandwidth budget. Hooft et al. [39] proposed two variants
of bitrate adaptation for 360◦ videos, named as uniform
viewport quality (UVP) and center tile first (CTF). As the
name suggests, UVP allocates a uniform quality to all the
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viewport tiles, while the CTF mainly focuses on the viewport
center similar to the [29]. The tiles are selected based on a
spherical walk approach that extrapolates the 3D trajectory of
the user movements on the spherical surface to predict the
next viewing points. Petrangeli et al. [51] proposed a priority-
aware HTTP/2 based segment transmission scheme to facilitate
360◦ video streaming. The urgent transmission of high-priority
tiles based on the user’s interest can improve the throughput
performance compared to HTTP/1.1 under variable network
delay conditions. Instead of solely relying on viewport and
bandwidth data for quality adjustments, Nguyen et al. [59]
proposed to select the viewport bitrate by also taking into
account the viewport prediction errors during each segment
duration. He et al. [60] performed a network delay-based joint
selection of the viewport coverage and bitrate. The simulation
outcomes confirm that adaptable viewport coverage offers
improved quality streaming under different delay settings.

The algorithms discussed have set a stable background
by considering user-specific viewing preferences for 360°
videos. However, the space and time separation of such videos
makes it challenging to develop a successful VR streaming
framework. Most proposed schemes including [20], [23], [61],
[62] use different quality levels for the viewport and back-
ground tiles. This approach can assist in bandwidth-efficient
streaming. However, following inaccurate FoV predictions, the
different quality tiles can dramatically lower user-perceived
video quality. Moreover, all existing schemes transmit the tiles
based on a single prediction mechanism and then expand the
viewport either in all directions [24], [29], [51] or towards
some specific sides [59]. Compared to previous works, this
paper’s novelty lies in dynamically deciding the coverage of
different viewing regions based on the combined output of
two FoV prediction mechanisms to achieve higher viewport
matching performance. In contrast to [29], [39], [51], the
proposed CFOV streams either the viewport only tiles or all
the tiles at certain quality levels by learning tile distribution
and real-time network transmission capacity.

III. PROPOSED SOLUTION

A. System Architecture

The proposed end-to-end 360◦ video streaming solution
aims to improve the viewport overlap by requesting extra tiles
in higher resolution while reducing the bandwidth utilization
for background tiles. Fig. 2 illustrates the end-to-end 360◦

video streaming framework. The server is responsible for
storing and pre-processing video content. The 360◦ sphere
representation is transformed into an equirectangular projec-
tion format [63] following capturing and stitching steps. The
equirectangular projected video is temporally split into ( equal
duration segments, and each segment is prepared in " spatial
tiles, and each tile encoded into # bitrate levels. Let L:

9
(8)

represents the quality level 9 ∈ [1, #] of tile : ∈ [1, "]
in segment 8 ∈ [1, (]. Let G: (8) be a decision variable
representing that the :th tile for (8)th segment is selected for
streaming (i.e., G: (8) = 1) or not (i.e., G: (8) = 0).

At the client-side, the FoVs Prediction module predicts the
future FoVs coordinates based on the user’s watching history.

TABLE I: Notations used in the paper

Symbol Meaning
(, # , " Number of segments, bitrates, and tiles
8, 9, : Index of segment, bitrate, and tiles
g Segment duration
T Ê (8) Set containing the actual viewport tiles
T 1̂ (8) Set containing the actual background tiles
T(8) Set containing all the tiles in a streaming session
TE (8) Set containing the predicted viewport tiles
T1 (8) Set containing the predicted external tiles
T1 (8) Set containing the predicted background tiles

L:
9
(8) Video bitrate level 9 selected for :th tile of

(8)th segment
)̂ ℎ (8) Estimated throughput for the (8)th segment

) ℎE (8) , ) ℎ4 (8) Estimated throughput for the viewport
and external tiles

U, V, W, X Weight Coefficients
)$ (8) Tiles overlap for (8)th segment

Accordingly, the Tiles Selection module selects the viewport,
external, and background tiles sets for the (8)th segment, i.e.,
T E (8), T 4 (8), T 1 (8), from the tiles set, T (8). Based on the
output of the Tiles Selection module, the Bitrate Adaptation
unit selects suitable bitrates for each tile according to the
associated region and the estimated network throughput. Once
the segments are received, the client performs decoding and
stitching of the requested tiles to reconstruct the 360◦ video.
It then performs the rendering and starts playing the requested
content. Table I includes the mathematical symbols and their
meanings used in the following discussion.

B. Problem Definition

The high-quality expectations of the user mainly depend
on the quality of the visible area. The lower rate of visible
tiles may not satisfy the user even if the background tiles are
played in good quality. Some key challenges to help support
the high QoE levels include real-time scene update, accurate
FoV prediction, tiles selection, adaptive quality adjustments,
and employing efficient delivery protocols, among others [52].
The client seeks optimal bitrates for each segment, intending
to optimize the user’s long-term QoE reward, subject to the
constraints (2-7). Mathematically, the optimization problem
can be formulated as the following problem:

Problem:
0A6 <0G

8∈[1,( ]
&>� (8) (1)

Constraints:∑
:∈T (8)

L:9 (8) ∗ G: (8) ≤ )̂ ℎ(8),∀ 9 ∈ [1, #] (2)

L:9 (8) ∗ G: (8) = L:
′
9 (8) ∗ G:

′ (8),∀:, : ′ ∈ T E (8),∀ 9 ∈ [1, #]
(3)

L:9 (8) = L:1 (8) ∗ G
: (8),∀: ∈ T 1 (8),∀ 9 ∈ [1, #] (4)∑

:∈TE (8)
L:9 (8) ∗ G: (8) ≤ )ℎE (8),∀ 9 ∈ [1, #] (5)

∑
:∈T4 (8)

L:9 (8) ∗ G: (8) ≤ )ℎ4 (8),∀ 9 ∈ [1, #] (6)
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Fig. 2: The proposed end-to-end 360° video streaming framework.∑
:∈TE (8)

L:9 (8) ∗G: (8) ≥
∑

:∈T4 (8)
L:9 (8) ∗G: (8),∀ 9 ∈ [1, #] (7)

The constraints in Eq. (2) limit the selected bitrate of all
the tiles in (i)th segment. Constraints in Eq. (3) state that all
the viewport tiles should have the same selected video bitrate.
Eq. (4) restricts the bitrate of all the background tiles to the
lowest quality level (i.e., L:1 (8)). The constraints in Eq. (5) and
Eq. (6) make sure that the bitrate of the viewport and external
tiles is not higher than the throughput of the viewport and
external tiles, respectively. Particularly, the viewport tiles are
downloaded in higher bitrates compared to the external tiles.
The throughput calculation based on the importance of each
region is described in section IV.D. Finally, the constraints in
Eq. (7) ensure that the bitrates of external tiles would not be
higher than the viewport tiles. The following three steps solve
the above problem:

1) defines a user QoE metric that assesses the perceived
quality not solely based on the visual quality.

2) employs a content-agnostic FoVs prediction-based tiles
selection approach that dynamically performs the view-
ing area selection to improve the overlap between real
and predicted viewport tiles.

3) selects optimal quality levels by assigning priority-
related weights to each tile of different regions.

The following subsection elaborates on these aspects.

IV. PROPOSED ARCHITECTURE AND ALGORITHMS

A. CFOV QoE
With the adaptive transmission of omnidirectional video,

it is imperative to recognize the unique quality aspects of
the consumer due to its highly prevalent nature. How long
a user feels immersion in a VR video dictates the level of
experience perceived by users. Accurate QoE assessment is
a key factor in optimizing the adaptive video streaming [64].
However, calculating visual quality alone is not adequate for a
complete VR QoE framework. In evaluating the user’s QoE, it
is also essential to define the effect of other parameters, e.g.,
bandwidth savings, spatial fluctuations, and temporal quality
variations, etc.
• Viewport Quality: By averaging the quality of the view-

port tiles based on the real viewport traces, we get the
viewport quality in segment (8) as follow [65], [66]:

f1 (8) =
∑
:∈T Ê (8)

∑
9∈[1,# ] Q(L:9 (8))
|T Ê (8) |

(8)

where T Ê (8) represents the actual viewport tiles set and
|T Ê (8) | indicates the number of tiles in viewport tiles set.
Q(L:

9
(8)) maps the video bitrate to the relevant quality

level for the (8)th segment.
• Background Quality: Ideally, the 360° client should

only stream the viewport tiles at best possible quality
with no background tiles. But several solutions stream
the background tiles to lower the impact of viewport
anomalies due to the limited precision of prediction
mechanisms. This metric explicitly indicates the average
quality of the background tile in (8)th segment and is
given as follow:

f2 (8) =
∑
:∈T 1̂ (8)

∑
9∈[1,# ] Q(L:9 (8))

|T 1̂ (8) |
(9)

where T 1̂ (8) represents the background tiles set which
contains tiles not visible to the user based on the ground
truth viewport traces during the (8)th segment. The term
in the denominator |T 1̂ (8) | represents the number of tiles
in background tiles set.

• Temporal Quality Oscillations: The efficiency of tile-
based streaming schemes can be impaired by the disparity
in quality levels between two viewports of consecutive
segments. Therefore, the temporal quality fluctuations
need not be drastic and can be calculated by [65]:

f3 (8) = | f1 (8) − f1 (8 − 1) | (10)

• Spatial Quality Oscillations: Cybersickness, viewing
irritation, and other physiological effects, such as nausea,
fatigue, and aversion [67], can be driven by variable
quality levels within the viewport. That leads, therefore,
to lower QoE levels. Following [53], we measure this
value according to the coefficient of variation (CV) of
the viewport quality levels.

f4 (8) =
f(Q(L:

9
(8)))

`(Q(L:
9
(8)))

, ∀: ∈ T Ê (8),∀ 9 ∈ [1, #] (11)

The term in the numerator represents the standard devi-
ation of the viewport quality samples, while the denom-
inator represents the mean of the samples.

Following the principle behind the QoE metric for tradi-
tional video [35], we define a QoE metric for 360° video.
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(a) Extended FoV for the (8)th segment (b) Fixed FoV for the (8 + 1)th segment

Fig. 3: Tiles selection cases for two consecutive segments in CFOV framework.

The proposed metric considers the weighted summation of the
above mentioned components and is given as follows:

QoE(8) = U ∗ f1 (8) − V ∗ f2 (8) − W ∗ f3 (8) − X ∗ f4 (8) (12)

where U, V, W, and X are the non-negative weight coefficients
corresponding to the background quality and temporal and spa-
tial quality oscillations, respectively. We want to minimize the
f2 (8), f3 (8), and f4 (8), therefore, these functions are negative.

B. CFOV Tiles Selection

360◦ video has become an integral part of popular mul-
timedia applications, as the consumer is interested in an
increasingly interactive and immersive streaming experience.
One of the key features of VR devices is to update the
scene according to the viewer’s head movement. When a user
changes his viewpoint, the end terminal processes the feedback
signals and can render the relevant FoV so that a view is
accessible from a regular visual angle. Typically, a user will
access only a small portion of the stream being transmitted.
The high-quality transmission of the entire frames results in
the waste of a large amount of bandwidth used for the unseen
portion of the content. In addition, the viewing experience of
a user depends on how efficiently the client can select the
visible tiles for the next segment. For instance, if video tiles
are requested based on an incorrect prediction, the user’s actual
viewport may be covered by black tiles for which no content
was requested.

Viewport prediction is analogous to a sequence predic-
tion problem, which focuses on forecasting future viewing
positions based on past head movement trajectories. It has
become an essential part of 360◦ video streaming. However,
the latest FoV prediction models result in a low long-term
prediction accuracy [68]. Rondon et al. [69] reported that
existing neural network models used for both content-based
and content-independent viewport prediction perform worse
than a basic (last known) approach that simply uses the last
viewing position for the next segment. Due to the extremely
unpredictable viewing nature of the user, the basic idea is to
stream more tiles than necessary to cover the actual viewing
area. This work considers two viewpoint/viewport prediction
mechanisms to perform the interactive tiles selection during
each adaptation interval. The current viewing point is used as

Algorithm 1: CFOV Tiles Selection Algorithm
Input :
T (8)← Tiles set in the streaming session
T E1 (8)← Tiles set for the first predicted FoV
T E2 (8)← Tiles set for the second predicted FoV
Result :
T E (8),T 4 (8),T 1 (8)← Estimated viewport, external,
and background tiles sets for the (8)th segment

1 if (T E1 (8) ∩ T E2 (8) ≠ ∅) then
2 T E (8) = T E1 (8) ∪ (T E2 (8) − T E1 (8))
3 T 4 (8) = ∅
4 T 1 (8) = T (8) − T E (8)
5 else
6 T E (8) = T E1 (8)
7 T 4 (8) = T E2 (8)
8 T 1 (8) = T (8) − (T E (8) ∪ T 4 (8))

the first predicted viewpoint for the next segment. A spherical
walk approach proposed in [39] is adopted for the second
viewpoint prediction that considers the user’s motion as a
walk on a sphere and predicts the future position based on the
spherical movement from one point to another point. Based
on the two predicted viewpoints and the FoV of the headset
(usually in the range of 90°-110°), the tiles for both viewports
are selected by calculating the spherical distance between the
predicted viewpoints and the center of each of the tiles. The
tiles whose centers are less than half of the FoV size apart
from the viewpoint will belong to the viewport region. In this
way, both the first (last known) and second (spherical walk)
viewport sets represented by et T E1 (8), T E2 (8), respectively,
are computed for (8)th segment.

For each video segment, the client classifies a 360◦ video
frame into the viewport, external, and background regions. We
consider Extended FoV and Fixed FoV cases for the innovative
tiles selections in CFOV. Fig. 3a illustrates the Extended FoV
case in an equirectangular space where both the predicted
FoVs partially overlap during the (8)th segment. The goal
here is to extend the FoV coverage by adding non-overlapping
tiles of the second FoV tiles set to the first FoV tiles set
to deal with possible head movement prediction errors. With
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Algorithm 2: CFOV Bitrate Allocation Algorithm
Input :
{L1 (8), ...,L 9 (8), ...,L# (8)}← Video bitrate-levels set for each tile in (8)Cℎ segment
T (8)← Tiles set containing " tiles for the (8)th segment
T E (8),T 4 (8)← Tiles sets for the viewport and external regions computed from Algorithm 1
|T E (8) |, |T 4 (8) |← Number of tiles in viewport and external regions
)̂ ℎ(8)← Estimated throughput for (8)th segment
Result :
FT

E (8), FT4 (8)← Priority related weights for viewport and external tiles
)ℎE (8), )ℎ4 (8)← Estimated throughput for the viewport and external tiles
LT (8),LTE (8),LT4 (8)← Video bitrates selected for the tiles of (8)th segment

1 if (1 + Δ ∗ )̂ ℎ(8) ≤ ∑
:∈T (8) L:1 ) then

2 LTE (8) = <0G
9∈[1,# ]

{L:
9
(8) |∑:∈TE (8) L:9 (8) ≤ )̂ ℎ(8)}

3 else
4 LT (8) = L:1 (8), ∀: ∈ T (8)
5 )ℎ(8) = )̂ ℎ(8) −∑:∈T (8) L:1 (8)
6 if (T 4 (8) = ∅) then
7 )ℎE (8) = )ℎ(8)
8 LTE (8) = <0G

9∈[2,# ]
{L:

9
(8) |∑:∈TE (8) L:9 (8) ≤ )ℎ

E (8)}

9 else
10 FT

4 (8) = ( |T 4 (8) |/(2 ∗ |T E (8) | + |T 4 (8) |))
11 FT

E (8) = 1 − FT4 (8)
12 )ℎE (8) = )ℎ(8) ∗ FTE (8)
13 )ℎ4 (8) = )ℎ(8) ∗ FT4 (8)
14 LTE (8) = <0G

9∈[2,# ]
{L:

9
(8) |∑:∈TE (8) L:9 (8) ≤ )ℎ

E (8)}

15 LT4 (8) = <0G
9∈[2,# ]

{L:
9
(8) |∑:∈T4 (8) L:9 (8) ≤ )ℎ

4 (8)}

no external tiles in Extended FoV case, the rest of the tiles
belong to the background region. Due to the abrupt user
movements, different mechanism’s predicted viewpoints can
be far from each other. In this case, we can stream both
FoVs by executing priority-based bitrate budget distribution
to facilitate differentiated quality streaming. Fig. 3b represents
the Fixed FoV case, where the two FoVs do not have common
tiles for the (8+1)th segment. The first FoV tiles are classified
as viewport tiles, while the second FoV tiles set includes
external tiles for the (8 + 1) segment. The external tiles can
be streamed in higher resolution than the background tiles,
which are always streamed with the lowest resolution.

Algorithm 1 describes the Tiles Selection mechanism in
CFOV. For each segment, the tiles belonging to the different
regions are chosen dynamically based on the performance of
the prediction mechanisms. Algorithm 1 begins by finding the
intersection of two predicted FoVs and then selects the tiles
for each of the three regions. The viewport tiles set (T E (8)) is
determined by adding all the unique tiles of two predicted tiles
sets if the intersection of two predicted sets is not empty for
the (8)th segment (lines 1-2). In Extended FoV case, the set of
external tiles (T 4 (8)) does not contain any tiles (line 3). All
the remaining tiles are classified as background tiles (line 4).
If the tiles in both FoVs are identical, then similar tiles of both
FoVs, referred to as viewport tiles, along with the background

tiles, are inputted to the bitrate allocation unit. For the Fixed
FoV case, where the two predicted FoVs do not overlap, the
tiles belonging to the first and second FoVs are labeled as
viewport and external tiles, respectively (lines 6-7). The range
of background tiles set is then computed for the (8)th segment
(line 8).

C. CFOV Bitrate Allocation

In adaptive streaming, a key challenging aspect is to predict
the network throughput correctly [70]. An under-estimation of
the actual throughput may lead to requests for lower quality
segments, while an over-estimation may result in signifi-
cant rebuffering events. The HTTP clients infer the network
throughput from prior measurements [71]. The calculation of
the throughput for the (8)th segment is defined in Eq. (13).

)̂ ℎ(8) =
∑
:∈T (8) L:9 (8 − 1) ∗ g
F (8 − 1) (13)

where L:
9
(8 − 1) represents the bitrate of all the tiles, g is the

playback duration of the segment, and F (8 − 1) represents the
total fetching time of the (8 − 1)th segment.

Algorithm 2 allocates the bitrate to the outputted tiles of
the Tiles Selection module to achieve the optimization aims
described in Eq. (1) and Eq. (12). The adaptation for the (8)th
segment is performed after completely fetching the (8 − 1)th
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TABLE II: Average video bitrates for the Boxing, Conan, Football, and Spotlight videos [Mbps]

1s 2s 3s
Video QP 4x3 6x4 8x6 4x3 6x4 8x6 4x3 6x4 8x6

Boxing

22.00 24.81 25.39 26.13 49.63 50.80 52.29 74.44 76.18 78.41
27.00 13.38 13.75 14.28 26.78 27.53 28.60 40.16 41.27 42.87
32.00 7.21 7.45 7.83 14.44 14.92 15.69 21.65 22.37 23.50
37.00 3.95 4.12 4.39 7.92 8.26 8.81 11.88 12.37 13.19
42.00 2.19 2.30 2.52 4.39 4.63 5.07 6.58 6.93 7.57

Conan

22.00 10.60 10.68 10.88 21.22 21.37 21.77 31.63 31.85 32.44
27.00 5.05 5.12 5.30 10.10 10.25 10.63 15.05 15.26 15.83
32.00 2.43 2.51 2.68 4.87 5.02 5.39 7.26 7.48 8.01
37.00 1.24 1.32 1.50 2.49 2.66 3.03 3.71 3.95 4.49
42.00 0.72 0.80 0.98 1.44 1.62 1.99 2.14 2.40 2.94

Football

22.00 6.90 7.02 7.19 13.88 14.12 14.48 20.69 21.04 21.56
27.00 3.55 3.64 3.81 7.14 7.34 7.68 10.64 10.92 11.41
32.00 1.97 2.07 2.23 3.98 4.16 4.50 5.92 6.19 6.68
37.00 1.15 1.24 1.40 2.31 2.49 2.82 3.44 3.70 4.18
42.00 0.69 0.77 0.93 1.39 1.56 1.88 2.06 2.31 2.78

Spotlight

22.00 13.63 13.93 14.31 27.18 27.77 28.55 40.76 41.64 42.80
27.00 7.21 7.44 7.77 14.37 14.84 15.50 21.54 22.25 23.23
32.00 4.06 4.24 4.50 8.11 8.47 9.01 12.15 12.69 13.48
37.00 2.36 2.49 2.72 4.70 4.98 5.44 7.04 7.46 8.13
42.00 1.35 1.46 1.66 2.69 2.93 3.35 4.03 4.38 4.99

segment. Algorithm 2 ensures that the segment size does
not exceed the available bandwidth budget in fulfilling the
constraints from Eq. (2). Suppose the lowest available video
bitrate for the entire 360◦ segment is (1 + �) times greater
than the estimated network throughput. In that case, only the
viewport tiles with the highest permitted video bitrate are
streamed to ensure a seamless video playback corresponding
to Eq. (3) for the actual spatial smoothness defined in Eq. (11)
(lines 1-2). Otherwise, the bitrate allocation is carried out for
the entire frame by firstly assigning the lowest bitrate to all
the tiles (Eq. (4)) to achieve a lower background penalty for
the actual background tiles, defined in Eq. (9) (line 4). The
bandwidth budget is revised then (line 5). Next, the viewport
throughput is determined to select the best possible video
bitrate for the viewport tiles if there are no external tiles (lines
6-7). All the viewport tiles are streamed with the same selected
rate to improve the perceived visual quality levels mentioned
in Eq. (8) (line 8). Next, if the external tiles set is non-empty,
the proposed algorithm ensures that similar to the constraints
in Eq. (5) and Eq. (6), the bitrate of the viewport and external
tiles is not higher than the throughput of the viewport and
external tiles, respectively. The bitrate allocation is performed
for viewport and external tiles after calculating their priority-
related weights. The weights are determined depending on the
number of tiles in the viewport and external regions (lines 10-
11). As the viewer is more interested in watching the viewport
content at higher quality levels; therefore, viewport tiles are
assigned with double weights compared to the external tiles
to fulfill the constraints in Eq. (7). After that, the throughput
for the viewport and external tiles are computed based on
computed weights (lines 12-13). Finally, the video bitrate
levels for the viewport and the external tiles are calculated.
The maximum available video bitrates not exceeding each
region’s corresponding throughput budget are allocated to each
viewport and external tiles (lines 14-15). Noteworthy is to state
that Algorithm 2 provides a solution to achieve an important
balance between different quality objectives defined in Eq. (8)-
Eq. (11) under constraints in Eq. (2)-Eq. (7) and maximize the
optimization goal defined in Eq. (12).

TABLE III: Experimental Settings

Parameter Configuration

Video, Duration,
& Category

Boxing -2′52′′ (Sport)
Conan-2′44′′ (Performance)

Football- 2′44′′ (Sport)
Spotlight- 4′53′′ (Film)

Resolution & FPS

Boxing (3840x1920)-29FPS
Conan (3840x2160)-29FPS

Football (3840x2160)-25FPS
Spotlight (3840x2160)-30FPS

Tiling patterns 4x3, 6x4, 8x6
Encoding Versions QPs (22, 27, 32, 37, 42)

Segment Duration (g) 1s, 2s, 3s
Viewport Size 110°

Simulation Length Video duration

QoE Coefficients
(U = 1, V = 0.3, W = 0.1, X = 0.1)
(U = 1, V = 0.4, W = 0.2, X = 0.2)
(U = 1, V = 0.5, W = 0.3, X = 0.3)

Fig. 4: Bandwidth scenarios used in experiments.

V. EXPERIMENTAL EVALUATION

This section introduces the trace-driven evaluation of the
proposed solution compared to the existing tile-based solutions
under a wide variety of content and network characteristics.
Next, we present the experimental setup and the comparison
schemes. Then, for each of the streaming solutions, we show
the experimental results and their analysis.
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TABLE IV: Viewport Streaming Approaches for Tile-based Adaptive 360° Video

Works
Prediction

Mechanism
FoV

Selection Streaming Strategy

Single Combined Fixed
FoV

Extended
FoV

Viewport
Only

Viewport and
Background

Viewport, External,
and Background

UVP [39] X 5 X 5 5 X 5
CTF [39] X 5 5 X X 5 5
Hos [29] X 5 X 5 5 X 5
Pet [51] X 5 X 5 5 5 X
CFOV 5 X X X X X X

A. Experimental Setup

1) 360° Video Player: The modeling and evaluation of the
proposed system were conducted by employing an enhanced
version of a VR player2 running on an Ubuntu 16.04 machine
with a 64-bit Intel Core i7-7500U CPU 2.7 GHz quad-core and
16 GB memory. The 360◦ player requested video segments
from the HTTP server based on the available bandwidth and
estimated viewpoint coordinates.

2) 360° Videos and Head Movement Traces: The exper-
imental evaluation was performed using a trace-driven sim-
ulation involving real viewport traces of 48 VR users from
an open-source dataset [72]. This dataset is widely used,
including in [44], [47], [66], [73]. From this dataset, we
chose four videos which include a wide range of motion
content: SHOWTIME Boxing3, Conan360-Sandwich4, LOSC
Football5, and Google Spotlight-HELP6. The content category
also differed across the selected clips; the first and third
streams belong to the sports category, while the second and
fourth clips belong to artistic performance and action film,
respectively. These videos are referred to as Boxing, Conan,
Football, and Spotlight throughout this paper. All the videos
were rescaled to the 4K resolution using FFmpeg7 software.
The videos were spatially split into 4x3, 6x4, and 8x6 tiling
patterns. The tiles were encoded using an open-source Kvazaar
encoder [74] considering five different quantization parameters
(QPs) (i.e., 22, 27, 32, 37, and 42). Subsequently, DASH
video segments were generated using GPAC MP4Box8 with a
duration of 1s, 2s, and 3s, respectively. The average segment
sizes for each video and encoding rate are illustrated in Table
II. The value of Δ was set to 0.5, and the viewport coverage
was set to 110◦, as used in the head movement collection by
Wu et al. [72]. The length of each simulation was equal to the
duration of the video employed. Table III presents the content
characteristics and experimental settings.

3) Bandwidth Scenarios: The experiments were performed
using the following dynamic bandwidth scenarios, also shown
in Fig. 4:

1) Scenario B1: The bandwidth of the link between the
HTTP client and server was varied for each video as
follows: 4 Mbps for the first 30% of the segments, 8
Mbps for the following 40% segments, and then back to

2https://github.com/jvdrhoof/VRClient
3https://www.youtube.com/watch?v=raKh0OIERew
4https://www.youtube.com/watch?v=FiClYLgxJ5s
5https://www.youtube.com/watch?v=lvH89OkkKQ8
6https://www.youtube.com/watch?v=G-XZhKqQAHU
7https://ffmpeg.org/
8https://gpac.wp.imt.fr/mp4box/

4 Mbps until the end of the video playback. Scenario B1
was used for the experiments performed for 1s segment
duration.

2) Scenario B2: A stepwise switch-up connection was
considered for the 2s video segment durations where the
bandwidth was set to 6 Mbps for the first 20% of the
segments, and then increased with 2 Mbps after every
20% of the playback.

3) Scenario B3: The bandwidth of the link between the
client and HTTP server varied in an on-off between 10
Mbps and 20 Mbps after each 20% of the playback for
all the videos. Scenario B3 was employed for the 3s
video segment duration.

4) QoE Weight Coefficients: To verify the effectiveness of
the proposed solution, the following sets of QoE coefficients
are chosen:

1) Coefficients C1: (U = 1, V = 0.3, W = 0.1, X = 0.1)
2) Coefficients C2: (U = 1, V = 0.4, W = 0.2, X = 0.2)
3) Coefficients C3: (U = 1, V = 0.5, W = 0.3, X = 0.3)

In practice, the QoE weight coefficients can be selected
in order to emphasize different QoE objectives such as to
maximize the viewport quality, minimize the background
content quality, and reduce the spatial and temporal quality
variations or their combination.

5) Baseline Algorithms: We compare the performance of
CFOV with four tile-based streaming solutions. All of the
reference tile-based delivery solutions incorporate viewer head
movements for adaptive bitrate selection. The first approach,
denoted as UVP [39], classifies the tiles into the viewport
and non-viewport regions; no external region is considered
here. It initially selects the lowest resolution for all the tiles;
then, it uniformly increases the quality of viewport and outer
tiles while respecting the available bandwidth budget. The
second method, referred to as CTF [39], increases the quality,
starting from the viewport center to the last tile. The third
approach denoted as Hos [29], performs priority-based bitrate
adaptation for tiles belonging to three zones, /1 (viewpoint
tile), /2 (viewpoint surrounding tiles), and /3 (background
tiles). The fourth approach, denoted as Pet [51], divides the
360◦ frames into the viewport, adjacent, and outside regions.
Different from the previous works, the external area in our
method is a special case. It could be adjacent to the viewport
or can reside at a distance from the viewport depending
on the difference of the prediction mechanisms. Table IV
illustrates the significant differences between the proposed and
the comparative schemes in terms of prediction mechanism,
FoV selection, and streaming strategy.
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(a) Segment duration: 1s (b) Segment duration: 2s (c) Segment duration: 3s

Fig. 5: Average tiles overlap achieved by CFOV and Spherical Walk methods for 1s, 2s, and 3s prediction horizons; results
from four videos watched by 48 users.

B. Experimental Results

1) Tiles Overlap: This metric directly calculates the frac-
tion of the actual viewport tiles T Ê (8) covered by the predicted
viewport tiles T E (8). For the (8)th segment, the tile overlap is
given as follows [75]:

)$ (8) = |T
Ê (8) ∩ T E (8) |
|T Ê (8) |

(14)

We compare CFOV with a spherical walk approach pro-
posed in [39]. Fig. 5 illustrates the average tiles overlap
for four videos prepared with three segment durations and
three tiling patterns across the 48 head movement traces. The
spherical walk method is adopted in UVP, CTF, Hos, and Pet
streaming algorithms. A relatively low tile overlap is observed
for the 4x3 tiling pattern since both methods arrange the
tiles considering arc distance between the viewpoint and each
tile’s center. The viewers have relatively fast head movements
when watching the Football video since it is an outdoor sports
video and contains several fast-moving objects. A high average
tile overlap is observed for the Boxing video since the users
have more regular and stable head movements for this video,
which are easy to forecast. It is notable that proactive tile
selection in CFOV mainly yields high matching performance
and outperforms the spherical walk approach for different user
behaviors. In particular, for all four videos, CFOV experiences
an average tile overlap of more than 80% (Fig. 5a). The spher-
ical walk approach observes a low average tile overlap because
the actual and predicted viewport positions are far from each
other even when the head movements are stable. As seen,
for the Boxing video, CFOV outperforms the spherical walk
method by 10.46% for 1s (Fig. 5a), by 13.09% for 2s (Fig.
5b), and by 14.05% for the 3s prediction horizon (Fig. 5c).
Similarly, CFOV shows its superior capability in increasing
viewport match for the Spotlight video and outperforms the
spherical walk method for the 4x3 tiling pattern by 6.22% for
1s (Fig. 5a), by 10.6% for 2s (Fig. 5b), and by 12.62% for the
3s prediction horizon (Fig. 5c). Fig. 5a shows that for the 1s
prediction window, CFOV gets very close to a perfect viewport
match (e.g., 94.99% for the Boxing video, 87.35% for the
Conan video, 84% for the Football video, and 86.82% for the
Spotlight video) across all tiling patterns. At the same time, a
very small percentage of viewport mismatch is observed when

the prediction horizon is set to 2s (e.g., 7.78% for the Boxing
video, 20.69% for the Conan video, 24.9% for the Football
video, and 20.52% for the Spotlight video) (Fig. 5b). The
evaluation results show that our dynamic tiles selection method
ensures stable visual angles to provide users with a favorable
QoE. It is also notable from Fig. 5c that CFOV outperforms
the spherical walk approach by up to 14.89% for the Boxing
video, up to 11.84% for the Conan video, up to 11.46% for the
Football video, and up to 13.31% for the Spotlight video. This
is because the tiles selection cases in CFOV adapt better to the
varying user behaviors for different video characteristics. As a
result, it can be concluded that CFOV exploits user-watching
information better than the spherical walk method and reduces
the mismatch between the actual and predicted FoV tiles.

2) Average QoE with Coefficient Set C1: We computed
the average quality score based on the QoE metric defined
in Section IV-A. Fig. 6 presents the average QoE scores
achieved by each streaming algorithm under the three dynamic
bandwidth scenarios for the Boxing, Conan, Football, and
Spotlight videos, which are spatially and temporally split into
three tiling patterns and three segment durations, respectively.
The performance results are depicted for the QoE weight
coefficient set C1. The experimental findings reveal that CFOV
attains an optimal trade-off when selecting the streaming tiles
quality and the highest QoE among the approaches compared.
The algorithms’ performance decreases accordingly with the
increase of segment length. The Boxing video requires higher
bitrates for achieving a particular quality score compared to
those of the other videos (as can be seen in Table II). Hence,
it is more challenging to achieve higher QoE with limited
dynamic bandwidth. The Conan video has higher visual
quality levels than the Football and Spotlight videos since it
has higher average tiles overlap. This indicates that content
features and user interaction strongly influence the streaming
performance of 360° videos. It can be noticed that all of the
streaming methods achieve slightly higher performance for the
6x4 tiling pattern followed by the 8x6 tiling pattern for all
four videos. This is because the higher viewport overlap and
feasible segment sizes yield higher QoE levels.

The streaming results for 1s segment duration in dynamic
bandwidth Scenario B1 illustrated in Fig. 6a show that CFOV
achieves about 8.71%, 21.05%, 24.55%, and 27.74% higher
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(a) Segment duration: 1s, Bandwidth: Scenario B1 (b) Segment duration: 2s, Bandwidth: Scenario B2

(c) Segment duration: 3s, Bandwidth: Scenario B3

Fig. 6: Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C1; results
from four videos prepared in three tiling patterns and three segment duration.

quality scores than UVP, CTF, Hos, and Pet algorithms,
respectively, for the Boxing video. For Conan, the average
gain over all the tiling patterns of UVP, CTF, Hos, and Pet is
about 8.53%, 1.68%, 13.75%, and 19.60%, respectively. For
different motion contents, viewport mismatch leads to high-
quality degradation for tile-based methods. In CFOV, both
the Fixed FoV and Extended FoV cases favor high-quality
perception of the viewing area. Accordingly, CFOV achieves
up to 7.86%, 5.51%, 18.51%, and 27.22% higher QoE for
the Spotlight video compared to UVP 8x6, CTF 8x6, Hos
4x3, and Pet 8x6, respectively. The reason is that, instead of
sending all the tiles at the lowest quality, CFOV implements
an aggressive strategy by streaming only the viewport tiles at
the maximum possible quality when the available bandwidth
budget is limited.

Fig. 6b displays the average QoE values of the proposed so-
lution and four reference methods for the 2s segment duration
and stepwise switch-up bandwidth scenario B2. It is interesting
to note that CFOV always has better performance than the
reference methods. This is because our approach favors high
viewport quality. Compared to UVP and CTF methods, CFOV
can improve the average QoE by up to 12.57% and 30.83%,
respectively, for the Boxing video. The average improvements
in QoE over the Hos and Pet methods are 18.50% and 23.46%
for the Spotlight video. For the Conan video with a 6x4 tiling
pattern, CFOV achieves 3.64 on average QoE compared to
the scores of 3.38, 3.55, 2.84, and 2.86 achieved by UVP,
CTF, Hos, and Pet algorithms, respectively (Fig. 6b). Similar

to the 1s and 2s cases, CFOV mostly achieves the highest
average QoE value for all three tiling patterns when the
segment duration is set to 3s (Fig. 6c). The Football video
has the smallest average segment sizes; however, the head
movement traces for this video contain significant variations
in viewing directions. Therefore, the viewport-based methods
achieve slightly lower QoE values than the Conan video for
the bandwidth fluctuation scenario B3. The proposed method
achieves up to 25.97% and 27% on average higher QoE values
for the Boxing than Hos and Pet algorithms, respectively (Fig.
6c). The under-performance of the Hos and Pet methods,
even under stable head movements, is mainly because they
needlessly increase the quality of the adjacent tiles.

3) Average QoE with Coefficient Set C2: To better un-
derstand streaming approaches’ performance, we increase the
weights of the background quality and spatial and temporal
quality oscillations penalties. Fig. 7 compares the average
gains on QoE for different content types with the QoE weight
coefficient set C2. Fig. 7a indicates that CFOV outperforms
UVP, CTF, Hos, and Pet methods by 11.87%, 9.59%, 19.78%,
and 24.45%, respectively, for all four videos across all three
tiling patterns for 1s segment duration. CFOV is highly
vulnerable to imperfect viewport prediction because only the
viewport tiles can be streamed to the client when the network
bandwidth is low. However, streaming a lower amount of
data provides significant benefits for CFOV. Fig. 7b shows
that for the 6x4 Football video, the average QoE values of
CFOV, UVP, Hos, and Pet methods are 3.21, 2.94, 3.07, 2.88,
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(a) Segment duration: 1s, Bandwidth: Scenario B1 (b) Segment duration: 2s, Bandwidth: Scenario B2

(c) Segment duration: 3s, Bandwidth: Scenario B3

Fig. 7: Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C2; results
from four videos prepared in three tiling patterns and three segment duration.

and 2.7, respectively. CFOV improves QoE over UVP and
CTF due to its higher prediction performance. CFOV provides
improved performance over Hos and Pet methods because
it reduces the amount of data to send and contributes to
lower background quality. The average gain on QoE achieved
by CFOV for all four videos with 4x3, 6x4, and 8x6 tiling
patterns is about 28.88% (Boxing), 14.55% (Conan), 8.44%
(Football), and 17.95% (Spotlight) higher than the others when
the segment duration is set to 2s (Fig. 7b). It can be noticed
that with the more considerable difference between the actual
and predicted viewports, the average QoE in Fig. 7c is lower
than what is depicted in Fig. 7a and Fig. 7b. Interestingly,
all the comparative methods tend to download the highest
quality levels when bandwidth is higher than the available
quality levels. This leads to favor the QoE metric by lowering
spatial and temporal quality variations. CFOV’s average QoE
is the highest for Boxing and Spotlight videos, followed by
the UVP and CTF methods. This is due to the fact that CFOV
preserves the highest visual quality by dealing effectively with
the abrupt view switching during each adaptation interval.
CTF leads to better results than UVP for the Conan and
Football videos since it directly assigns the highest quality
to the viewpoint tile based on the available bandwidth budget.
Instead of completely relying on bandwidth, CFOV adjusts
the viewport quality by dynamically deciding the coverage
of the FoV. Moreover, CFOV incurs a lower bandwidth con-
sumption without noticeable quality degradation by streaming
background tiles at the lowest quality.

4) Average QoE with Coefficient Set C3: Next, the perfor-
mance of CFOV and those of the other approaches are tested
by setting the QoE weight coefficients to set C3. Fig. 8 illus-
trates the video quality experienced, averaged across the 48
users for the different videos and tile patterns. It can be noted
that with the increase of background quality and spatial and
temporal quality penalties, the average quality score in Fig. 8 is
lower than what is depicted in Fig. 6 and Fig. 7. Fig. 8a shows
that CFOV outperforms the existing streaming approaches by
achieving 26.41%, 18.78%, 17.48%, and 19.64% on average
QoE improvements for the Boxing, Conan, Football, and
Spotlightl videos, respectively. In particular, CFOV improves
the average QoE by up to 16.30% compared to the UVP, up
to 12.51% compared to the CTF, up to 24.22% compared
to the Hos, and up to 29.29% compared to the Pet method
for the entire test dataset. Fig. 8b shows the average QoE
comparison under Scenario B2 when the segment duration is
set to 2s. CFOV experiences only 6.25% and 19.10% viewport
deviation for the Boxing and Conan videos with a 6x4 tiling
pattern (Fig. 5b); therefore, it efficiently utilizes the available
bandwidth budget and achieves average QoE improvements of
up to 16.25%, 41%, 44.95%, and 40.28% for the Boxing video,
and up to 15.67%, 5.56%, 30.68%, and 30.64% for the Conan
video, in comparison to the other four methods. Similarly, Fig.
8c shows that for the Football video with a segment duration
of 3s, CFOV achieves with 10.29%, 7.01%, 13.11%, and
17.35% higher QoE in comparison to the UVP, CTF, Hos, and
Pet methods, respectively. Similarly, for the Spotlight video,
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(a) Segment duration: 1s, Bandwidth: Scenario B1 (b) Segment duration: 2s, Bandwidth: Scenario B2

(c) Segment duration: 3s, Bandwidth: Scenario B3

Fig. 8: Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C3; results
from four videos prepared in three tiling patterns and three segment duration.

CFOV has an effective QoE improvement between 14% and
32% in comparison with the other approaches.

C. Discussion

Most existing algorithms strive to balance different QoE
objectives, i.e., viewport quality, background quality, spatial
and temporal quality variations. For CTF and Hos algorithms,
the primary factor leading to performance degradation is the
per tile quality allocation starting from the center tile while
sacrificing the quality of the remaining tiles. As a result,
these algorithms struggle with the user-perceived quality and
visual smoothness objectives. UVP allocates bitrate for tiles
belonging to the same classification based on the estimated
bandwidth to reduce the spatial and temporal quality objec-
tives. However, for segment duration >2s, the visible tiles’ rate
is reduced substantially due to the limited prediction accuracy
(58∼78%), leading to inefficient bandwidth utilization. The
Pet method has significantly lower QoE values than the other
solutions under stable and drastic head rotations. This is
because the invisible tiles consume an essential share of the
bandwidth. Contrary, our proposed solution always results in
a higher QoE than the alternative methods for all VR users.
CFOV sends much less data for the background tiles than the
other algorithms; therefore, it results in a lower background
quality penalty for different viewport prediction results. Under
variable head movement traces, the Extended FoV or external
tiles of the proposed method provide improved QoE for
different videos across all tiling patterns. In conclusion, the

CFOV delivery of 360◦ videos is better than when the other
benchmark methods are employed.

VI. CONCLUSIONS

This paper presents CFOV, an innovative adaptive 360°
video streaming solution which improves end-user QoE. In
the context of quality-efficient 360° remote video services,
CFOV reduces the complexity of tile selection by adopting two
FoV prediction mechanisms to better accommodate the user’s
viewing region in response to the different head movements.
In addition, CFOV performs active and improved region-wise
bitrate allocations for selected tiles without incurring unnec-
essary bandwidth consumption. An extensive experimental
assessment was performed using four video streams prepared
in three tiling patterns and three segment durations under
three dynamic bandwidth scenarios. The experimental results
show that CFOV achieves with 9.28% higher average viewport
overlap and between 12.74% and 21.5% higher average QoE
than the other solutions under different testing scenarios.
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