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Abstract—The current global pandemic crisis has unques-
tionably disrupted the higher education sector, forcing edu-
cational institutions to rapidly embrace technology-enhanced
learning. However, the COVID-19 containment measures that
forced people to work or stay at home, have determined a
significant increase in the Internet traffic that puts tremendous
pressure on the underlying network infrastructure. This affects
negatively content delivery and consequently user perceived
quality, especially for video-based services. Focusing on this
problem, this paper proposes a machine learning-based resource
allocation solution that improves the quality of video services
for increased number of viewers. The solution is deployed and
tested in an educational context, demonstrating its benefit in
terms of major quality of service parameters for various video
content, in comparison with existing state of the art. Moreover, a
discussion on how the technology is helping to mitigate the effects
of massively increasing internet traffic on the video quality in an
educational context is also presented.

Index Terms—video quality, machine learning, resource allo-
cation, quality of service, technology enhanced learning.

I. INTRODUCTION

THE latest advancements in technologies have enabled the
recent evolution of mobile device connectivity towards

high-generation networks like 4G and 5G. The higher band-
width availability and increased affordability and popularity of
powerful high-end mobile devices have led to a wide spread
and adoption of advanced multimedia applications on mobile
devices. However, this in turn has determined a significant
increase in mobile and wireless traffic that puts pressure on the
underlying network connectivity. According to the predictions
provided by Cisco [1] it is expected that by 2022 the number of
Internet users will reach 60% of the global population, video
traffic will account for 82% of all IP traffic, and the number
of online connections and devices will surpass 28 billion.

However, these predictions might have been exceeded by
reality due to the current global pandemic that forced most of
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the industries to rely on digital technologies. This global crisis
revealed the importance of reliable and high speed mobile
and wireless communication technologies and has opened up
new directions around the issues of digital inclusiveness and
connecting the unconnected [2]. The importance of broadband
connectivity for mitigating the economic aftermath of the
pandemic and boosting the digital access and inclusivity were
aspects emphasized by the International Telecommunication
Union (ITU) during an emergency virtual meeting of the
Broadband Commission for Sustainable Development [3].
Another aspect, especially in the field of education, is digital
equity, meaning that all regions of the world, not just the
developed countries, can cope with it [4].

COVID-19 containment measures forced people to stay at
home which fuelled the rapid digitalization of many sectors,
including education. The actors in these sectors have started to
deliver remotely large amounts of media content using diverse
technologies across the existing network infrastructure.

Focusing on education, advanced multimedia applications
delivered over current and next generation mobile networks,
with improved support for seamless augmented reality (AR),
virtual reality (VR) and mix reality (MR) are seen as key
enablers for efficient e-learning [2]. These applications are
efficient in a situated and practical learning context. However,
to be able to accommodate good online learning for everyone
and provide an appropriate level of e-learning for students and
teachers, there is a need to go beyond the basic requirements
of access to a digital device and stable internet connectivity.
Quality in all its facets plays a fundamental role and supporting
optimal experience for increasing number of users which
exchange larger amounts of rich media content across the
existing networks is of paramount importance [5].

This paper introduces Hierarchical Multi-Agent Reinforce-
ment Learning (HiMARL), a novel machine learning solution
to support optimized network resource allocation. HiMARL
can accommodate a large number of learners consuming video
content through mobile devices at acceptable quality within an
educational wireless environment for remote education. In this
context, this paper has the following contributions:
• it presents a subjective study involving diverse educa-

tional video content that analyses the impact of video
quality levels on learning achievements. The results show
that the video quality levels can be reduced with no
significant impact on learning achievements, regardless
of the video content.

• it proposes a dynamic scheduling solution that applies
a controlled adjustment of video quality for learners
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requesting educational content simultaneously.
• it proposes HiMARL, a novel machine learning-based

framework that increases the number of mobile learners
that could be served over an Orthogonal Frequency
Division Multiple Access-based (OFDMA) network with
good quality video content and no impact on their learn-
ing experience.

• it deploys a prioritization policy that enables a dynamic
prioritization of learners requesting heterogeneous video
content from different classes to maximize the overall
Quality of Service (QoS) provisioning.

• it introduces a novel hierarchical decision-making process
based on multi-agent Reinforcement Learning (RL) that
makes use of a master and a slave controller. The master
controller is used to learn the most suitable prioritization
sequence for diverse video classes. The slave controller is
responsible to approximate the best scheduling rules that
can be used for each video class. This novel approach
enables scalability and flexibility of the overall proposed
solution.

The rest of the paper is structured as follows. In Section II,
the impact of increased internet traffic among others, driven
by the consequences of the COVID-19 pandemic is discussed
in terms of the perceived video quality and the resulting
improved learning experience. Section III presents the results
of the subjective tests focused on studying the effect of video
quality variation. Section IV introduces the system model and
optimization problem. The details of the HiMARL multi-agent
RL framework are presented in Section V, whereas testing
results and discussions are included in Section VI. Finally,
Section VII concludes the paper.

II. QUALITY-ORIENTED VIDEO-BASED LEARNING

The rapid spread of COVID-19 has determined a forced
mass migration to online delivery of content to remote users.
Unlike any other sectors, in education, this migration has
been almost total and has involved delivery of rich media
content to remote users with highly heterogeneous operational
environments, mostly in terms of device specifications and
network characteristics. These aspects have severely affected
content delivery and consequently, viewers’ quality of expe-
rience and learners’ level of education. To address this, of
paramount importance is integration of innovative technology-
based techniques and approaches in remote education [6].

In order to take into account the rapid transition to on-
line learning, two approaches were chosen: synchronous and
asynchronous learning, often integrated in a so-called blended
learning approach. During synchronous learning sessions, stu-
dents attend online live lectures and there is a real-time
interaction between teachers and learners through various
online platforms, such as Zoom, Google Classrooms, Kaltura
Newrow, Microsoft Teams, Webex, etc. However, to be able
to deliver a successful online learning experience through
these online platforms, some aspects need to be taken into
account: accommodate a high number of students to the video
conferencing, easy two-way interaction between teachers and
students, stable internet connectivity, availability of teachers
and students, availability of teaching material, formative and

summative feedback and assessment [7]. During asynchronous
learning, students have access to prepared learning material,
such as texts, pre-recorded video material, various forms of
assessments, often provided through a learning management
system (LMS) with the aim of either preparing or following
up the synchronous phases. These two avenues made possible
digital learning during the global pandemic period, although
there are some quality-related concerns [8].

A. Quality of Learning Studies

Khattar et al. [9] studied the impact of the pandemic on the
learning styles for students in India. The concern about their
educational attainment motivated the students to adjust to an
online-only learning method. However, the results show that
almost half of the participants are facing broadband bandwidth
and download speed limitations while only a few of the
participants feel that the online classes provide them with
appropriate structured learning activities during lockdown.

Mobile learning (m-learning) is also seen as a valuable
solution for students and teachers in distance learning setups
[10]. Apart from the fact that learning can occur at any-
place, anywhere and at anytime, m-learning students benefit
from developing their technological, conversational and high-
ordered thinking skills [11]. The confinement circumstances
caused by the global pandemic together with the necessity
of continuing the education places m-learning as an essential
educational technology component [12]. Romero-Rodriquez et
al. [13] conducted a study to analyze the socio-demographic
factors that influence m-learning during the pandemic in Spain.
The study identified six such factors: teacher status, type of
institution, educational technology, regular use of pedagogical
innovations, use of mobile devices, belief in m-learning.
However it noted that the lack of teacher technology training
severely affects the adoption of m-learning. In this context,
making use of the advancements in technologies like VR, AR,
MR, 360-degree videos or images could enable the creation
of a virtual learning environment that could prompt or guide
efficient learning [14] and that could actually compensate
for the lack of face-to-face interaction between teachers and
learners. However, for a successful adoption and integration of
m-learning while also supporting rich media content, there are
several key factors that need to be considered: (1) availability
of high specification devices; (2) availability of appropri-
ate online materials; (3) good Internet connectivity and (4)
technology-based solutions to bridge any gap which exists in
terms of (1), (2) or (3). Next some solutions proposed in the
context of (4) are discussed.

B. Quality-aware Multimedia Delivery Solutions

Recent research has focused on devising solutions for
providing high user quality of experience (QoE) levels when
delivering multimedia in variable network delivery conditions.
Adaptive delivery solutions are among the most promising
approaches proposed. Various multimedia adaptive delivery
solutions have been described in the literature including server-
located adaptive decision making solutions [15], client-located
DASH-based approaches [16], solutions which focus on video
adaptation only [17] or schemes which target rich media such



IEEE TRANSACTIONS ON BROADCASTING 3

Fig. 1: Educational video content types used in the study

as multiple sensorial content delivery [18] or omnidirectional
video [19] and finally generic adaptive solutions [20], device
adaptation mechanisms [21] or network characteristics-aware
adaptive schemes [22]. There are also commercial adaptive
streaming solutions like Apple’s HTTP Live Streaming (HLS),
Microsoft’s Silverlight and the more recent security-enhanced
adaptive solution proposed by Akamai. Adaptive rich media
delivery solutions help increase user QoE in general, and in
the specific context of learning, research studies show that
they also have potential to increase learner QoE and academic
performance. However this is not simple and the proposed
solutions have become increasingly complex. If the solutions
also consider performing network resource allocation in a
heterogeneous environment, there is a need for innovative
approaches such as use of Machine Learning (ML). As an ex-
ample, the ML-based OFDMA scheduling approach proposed
in [23] can accommodate up to 50% more connections in terms
of 360-degree and traditional video content when compared to
state-of-the-art multi-class schedulers.

III. VIDEO QUALITY IMPACT ON LEARNING
ACHIEVEMENTS

This section presents a study on the impact of educational
video content and video quality level on learning achievements
of mobile learners [24].

A. Educational Video Content

The cognitive theory of multimedia learning [25] suggests
that one can achieve better learning by structuring the multi-
media materials effectively. The study shows that the capacity
to remember can be increased and the learning experience can
be maximized by presenting the educational content both audio
and visually.

Seven educational content video clips belonging to seven
categories were selected [26], as illustrated in Fig. 1 and
defined as: (1) Interview - one or more participants answers
questions; (2) Talk/Presentation - the speaker and the accom-
panying slides are presented; (3) Documentary - higher num-
ber of scene changes with outdoor locations; (4) Animation

- computer generated clip of virtual world; (5) Lab Demo -
a person demonstrates how to do a certain practical thing;
(6) Screencast - recordings of the computer screen; and (7)
Slideshow - recordings of voice over slides. Figure 1 also
presents an estimation of the amount of educational infor-
mation spread across audio and visual components for each
video sequence. The educational content selected meets the
requirements of various audiences from different domains, and
avoids the potential situation that participants are interested in
particular media types.

B. Subjective Tests

The aim of this subjective study is to understand if the
mobile learners could achieve the desired learning experience
across different video content categories, regardless of the
video quality. A total of 54 participants (72% male, 28%
female) aged from 19 to 57 have participated in the study.
Each educational video content type was encoded at two
different quality levels (e.g., bit rate): low quality level (i.e.,
600kbps) and high quality level (i.e., 1Mbps). Each participant
watched all the video sequences at both quality levels in a
randomized order. Standard recommendations for subjective
assessment of video quality were followed as described in
[27]. After watching each video, the participants rated the
overall quality level using the classic 5-point scale: 1-Bad, 2-
Poor, 3-Fair, 4-Good, 5-Excellent and following the Absolute
Category Ranking (ACR) method. Apart from assessing the
user perceived quality of the educational content, the subjects
were also given pre- and post-video watching questionnaires
related to the video content, in order to measure their learning
achievements.

C. User Perceived Educational Video Quality Results

The users were instructed to rate the video quality using the
Mean Opinion Score (MOS) scale only and not the educational
content as such. The MOS results for the seven categories are
presented in Fig. 2. On average, across all seven categories
both low and high quality levels were perceived as Good with
MOS of 3.85 and 4.29, respectively. Considering the category
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TABLE I: Student t-test Results

Talk Documentary Animation Screencast Slideshow Interview Lab Demo
t-value -6.00 -4.79 -3.26 -6.84 -5.29 -1.30 -0.56
p-value <0.01 <0.01 <0.01 <0.01 <0.01 0.19 0.57

Fig. 2: MOS results

Fig. 3: Learning achievement for low quality educational video

type, the low quality level was perceived as Good across all
seven categories apart from Slideshow which was perceived
as Fair. The high quality level was perceived as Excellent
for Interview, Documentary and Animation, as Good for Talk,
Lab Demo and Screencast and Fair for Slideshow. It was
noted that the video clips that contain text (e.g., Screencast
and Slideshow) were rated slightly lower than the rest of the
categories. In order to perform statistical analysis, t-tests were
used [28] and the results are listed in Table I. While five
out of seven categories (i.e., Talk, Documentary, Animation,
Screencast, and Slideshow) show a statistically significant
difference between the ratings obtained for the two quality
levels, for the other two categories (i.e., Interview, Lab Demo)
no statistically significant differences were observed.

D. Learning Achievements Results

In order to determine the learning achievements, we com-
pared the pre- and post- questionnaire answers and defined
three levels of learning achievements: (1) Improved - wrong
answer to pre- questionnaire and correct answer to post-
questionnaire, (2) Stationary - the same answer to pre- and
post- questionnaires, and (3) Declined - correct answer to pre-
questionnaire and wrong answer to post- questionnaire. We
computed the percentage of users for each learning achieve-
ment level and for each educational content type as illustrated
in Fig. 3 and 4 for low quality and high quality levels,
respectively. We found that a statistical significant difference is
obtained regardless of the video quality level or video content
type with a confidence interval of 95%. The results show that
most of the learners have an improved learning achievement
or they maintain it at the same level, regardless of the video
quality level. This study shows that the students can learn
regardless of the educational content category or video quality
used (i.e., low or high quality levels).

Fig. 4: Learning achievement for high quality educational video

IV. SYSTEM MODEL

Based on the subjective studies previously conducted, this
section presents the system model, optimization problem and
the proposed solution when employing OFDMA as a radio
access technology. The choice of the OFDMA access scheme
is motivated by: a) simplicity and efficiency when compared
to non-orthogonal access technologies, and b), the proposed
framework is intended for educational systems in developing
countries where the beyond 4G communications systems are
not yet employed. The proposed model could be integrated in
more advanced radio access networks where the scheduling
and resource allocation must be adapted accordingly and the
HiMARL framework retrained.

The proposed system, illustrated in Fig. 5, is composed of
a mobile learning server that stores the educational content
to be streamed and an intelligent scheduler located at the
level of the Base Station (BS). We assume that there is no
communication loss on the wired link between the server and
BS. Multiple mobile learners are connected to the same BS
by using the OFDMA radio access technology. All mobile
learners have different requests in terms of the educational
video content that is downloaded simultaneously. The role of
the network scheduler is to share the radio resources among
multiple mobile learners to assure acceptable QoS for the
delivered educational content. However, an acceptable QoS is
challenging in OFDMA communications due to the variability
of wireless channels in both time and frequency domains.
Depending on the learner profile and device characteristics,
the type (i.e interview, talk, animation) and load of educational
video traffic can differ over time from one learner to another.
Moreover, given the pricing schemes imposed by the network
operator, a variety of video traffic characteristics are involved
since a lower video quality is preferred by those learners who
are not necessarily willing or cannot afford to pay too much
for this service, while high video quality can be requested
by other mobile learners with much better financial situation
[29]. Given the multitude of characteristics and requirements,
an intelligent network scheduler is needed in technology-
enhanced learning systems to accommodate a higher number
of mobile learners without degrading their learning experience.

The educational video content is organized in different
traffic classes that depend on video quality and encoding bit
rates, where each class is characterized by a specific set of
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Fig. 5: Proposed ML-based framework for mobile learners

QoS requirements in terms of throughput, packet loss and
latency. Given the COVID-19 pandemic situation, the network
operator needs to prioritize the disadvantaged mobile learners
requesting the educational video content at lower bit rates
compared to other learners being served at much higher video
bit rates. As seen in Fig. 5, at the scheduler level, data packets
belonging to video traffic class with the lowest bit rates are
waiting to be transmitted in data queues with priority 1 while
packets corresponding to learners with the highest bit rates
are awaiting in data queues with priority P , where P is
the total number of video classes. In general, the OFDMA
packet scheduler is designed to work in two stages [23]: a)
Time Domain Prioritization (TDP) where learners with more
stringent QoS requirements are prioritized over other learners
requesting video content with more relaxed QoS budget; and
b) the Frequency Domain Prioritization (FDP), where the pre-
selected group of learners are competing in getting the best
radio resources to receive the requested video services. Both
stages are iteratively performed at each Transmission Time
Interval (TTI) to respect the QoS requirements for all P
video classes. Since the networking conditions (variability of
wireless channels, learner profiles, traffic characteristics and
QoS requirements) are changing at each TTI, most of the
existing packet schedulers are unable to adapt at the newest
conditions leading to over-provisioning of some classes (i.e.
most prioritized learners with the lowest video bitrate) while
degrading the QoS provisioning of other learners requesting
higher bit rates traffic. In frequency domain, the most used
FDP schemes are rather static being focused on a particular
QoS target leading to unbalanced QoS multi-objective opti-
mization [30]. In this paper, we propose a dynamic network
scheduler able to adapt the prioritization in both time and
frequency domains in order to improve the QoS provisioning

of all learner classes. The proposed solution makes use of
Machine Learning (ML) to enhance decision-making for all
traffic classes and in different networking conditions. The
aim is to increase the number of learners that can access
heterogeneous education based on video with insignificant
decrease of their learning experience.

The proposed ML architecture employs an interaction at
each TTI between an intelligent controller and the network
scheduler as depicted in Fig. 5. The controller is designed to
learn the most appropriated scheduling actions based on the
current states. The scheduling decisions to be considered at
each TTI controls both TDP and FDP stages. In this sense, the
proposed controller employs a hierarchical ML architecture
organized as follows: a) a master controller that adapts the
TDP stage by deciding at each TTI, the order of video classes
to be prioritized in the frequency domain; b) a slave controller
that decides the scheduling rule for the resource prioritization
in the FDP domain for each video class. The role of the master
controller is to avoid the over-provisioning effect of some
video classes (low bit-rates, high priority) while helping other
classes with higher video bit rates to meet the corresponding
QoS requirements. The slave controller aims at meeting the
multi-objective target given the multitude of QoS requirements
in terms of packet loss, throughput and latency for each video
traffic class. The objective of the proposed hierarchical ML-
based framework is to accommodate higher number of learners
in the network from all classes of video traffic while keeping
good level of learning experience.

A. OFDMA Scheduling Model

Given a prioritization order, we define by P = {1, 2, ..., P}
the set of video classes, where class 1 represents the video
traffic with the highest priority to be delivered while class P
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TABLE II: List of Notations

Parameter Description
A Controller action space
a Controller action a ∈ A decided at TTI t
AM Master controller action space
c Master controller action c ∈ AM decided at TTI t
AS Slave controller action space
r Slave controller action r ∈ AS decided at TTI t
B Set of resource blocks
b Random resource block b ∈ B
B Max. no. of resource blocks
δp Time Difference error of slave agent p ∈ P
∆p Time Difference error of master agent p ∈ P
η Learning rate
γ Discount factor
O Set of heterogeneous objectives
Op Set of objectives corresponding to class p ∈ P
o Objective index belonging to a given set Op

Op Number of QoS objectives for the traffic class p ∈ P
P Set of video classes in the priority order given by [31]
p Random video class p ∈ P
P Max. no. of video classes
P∗(t) Set of scheduled video classes at TTI t
p∗ Random video class p∗ ∈ P∗(t)
P∗ Max. no. of video classes scheduled at TTI t
P⊗(t) Set of unscheduled video classes at TTI t
p⊗ Random video class p⊗ ∈ P⊗(t)

P⊗ Max. no. of video classes unscheduled at TTI t
R Set of scheduling rules
rp Random scheduling rule rp ∈ R for class p ∈ P
R Max. no. of scheduling rules from R
πp Policy value of slave agent p ∈ P
Πp Policy value of master agent p ∈ P
Qp Action-Value Function of slave agent p ∈ P
Vp Value Function of slave agent p ∈ P
Wp Action-Value Function of master agent p ∈ P
V Value Function of the entire controller state s ∈ S
S Continuous and multi-dimensional scheduler state space
s Momentary scheduler state s ∈ S at TTI t
Sp Continuous and multi-dimensional state space of class p ∈ P
sp Momentary scheduler state sp ∈ Sp at TTI t
L Set of heterogeneous learners
L Number of heterogeneous learners
Lp Set of learners corresponding to class p ∈ P
Lp Number of learners in class p ∈ P
l Learner index belonging to a given class Lp

xp,l,o KPI indicator of o ∈ Op and learner l ∈ Lp

x̄p,l,o KPI requirement of o ∈ Op and learner l ∈ Lp

t TTI index
θp Set of neural network weights for slave agent p ∈ P
Θp Set of neural network weights for master agent p ∈ P

ρ(s, a) System reward when applying action a ∈ A in state s ∈ S
%p Reward value of slave agent p ∈ P

is assigned with the lowest priority over P number of classes.
A mobile learner is characterized by a mobile equipment (i.e.
tablet, smartphone or laptop with broadband connectivity) and
can request educational video content belonging to one of the
class p ∈ P . In this sense, we define by L = {L1,L2, ...,LP }
the set of all mobile learners requesting heterogeneous video
content with different QoS requirements, where Lp is a subset
of mobile learners requesting educational video content from
class p ∈ P . To achieve the desired learning experience, the
delivery of the requested video content must respect the QoS
requirements associated with traffic class p ∈ P . The list of
notations used in this paper is given in Table II.

Now, we define an objective as the intent of respecting a
given QoS requirement for a specific video service requested
by a given mobile learner. By Op we mean the set of all
objectives associated to class p ∈ P in terms of meeting the
corresponding QoS requirements. Precisely, objective o ∈ Op
is met for the provided video service of leaner l ∈ Lp, if the
corresponding online Key Performance Indicator (KPI) xp,l,o
respects its QoS requirement x̄p,l,o. Extending a little bit this
concept in the direction of the multi-objective optimization of

mobile learner l ∈ Lp requesting the video traffic p ∈ P ,
we consider by xp,l = [xp,l,o1 , ..., xp,l,oOp

] the vector of KPIs
of all objectives Op and by x̄p,l = [x̄p,l,o1 , ..., x̄p,l,oOp

] the
associated requirement vector, where Op is the number of
QoS objectives of class p ∈ P . Thus, learner l ∈ Lp meets
all objectives Op if xp,l respects x̄p,l. When considering the
multi-objective optimization at the level of all mobile learners
of class p ∈ P , then the vector xp = [xp,l1 ,xp,l2 , ...,xp,lLp

]
represents the online KPI vector of class p ∈ P and
x̄p = [x̄p,l1 , x̄p,l2 , ..., x̄p,lLp

] is the corresponding requirement
vector, where Lp is the number of mobile learners receiving
video content from class p ∈ P . In this case, the entire set
of mobile learners Lp meets all QoS objectives Op if xp
respects x̄p. When considering both multi-objective and multi-
class optimization problem, we store in x = [x1,x2, ...,xP ]
the online KPIs of all mobile learners and we keep the set of
QoS requirements in x̄ = [x̄1, x̄2, ..., x̄P ]. To this extent, the
entire set of objectives O = {O1,O2, ...,OP } is met in all
video classes P , if x respects its requirement vector x̄. The
aim of the proposed hierarchical-ML approach is to solve the
multi-objective and multi-class optimization problem at each
TTI such that the KPI vector x meets the requirement x̄ in
the highest possible measure.

According to the employed scheduling strategies in both
TDP and FDP domains, the KPI vector x is adjusted to respect
its requirement x̄ in a certain measure given the wireless and
network conditions. However, most of the schedulers aims to
split the multi-objective optimization between the TDP and
FDP stages. As a matter of this fact, in [32]–[34] users are
prioritized in time domain based on the throughput, delay
and packet loss indicators, while the frequency prioritization
addresses the trade-off between system capacity maximization
and meeting certain fairness criteria. Or some other schedulers
are oriented more on minimizing the throughput loss caused
by the time domain prioritization and employ heuristic-based
resource allocation methods [35], [36]. From the perspective
of multi-class scheduling, most of the existing strategies aims
to prioritize a mixture of users from different classes for
which the QoS requirements are not met without any precise
consideration of prioritization order given by the sequence
[1, 2, ..., P ]. As a consequence, some lower prioritized classes
can get overall more resources than that of other classes with
higher priority level. Moreover, most of the existing TDP-FDP
strategies are unable to react to the changeable networking
conditions, leading to the over-provisioning of some traffic
classes. However, to deal with these challenges, in [5] a
Reinforcement Learning(RL)-based solution is proposed to
dynamically prioritize one traffic class (i.e. [p, 1, ..., P ], ∀p ∈
P) each time among others. Given the COVID-19 pandemic
situation and the video content diversity, this solution may
limit over time the mobile learners to get the requested services
with enhanced level of QoS provisioning.

Once the mobile learners are prioritized, in frequency do-
main the available system bandwidth is divided into B number
of equally distributed Resource Blocks (RBs), where each
RB is the smallest radio resource that can be allocated. We
define by B = {1, 2, ..., B} the set of RBs to be allocated
by the FDP scheduler at each TTI, where B is the maximum
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number of RBs. The allocation of B is conducted according to
some scheduling rules that are considered various and oriented
on particular QoS objective(s) [37]–[39]. Given this variety,
let R = {1, 2, ..., R} be the set of scheduling rules with R
elements. The problem is that once selected a scheduling rule
r ∈ R, the multi-objective optimization can be unbalanced in
the frequency domain since only a particular QoS objective is
addressed. Alongside of the traffic class prioritization, in [5]
a particular scheduling rule r ∈ R is decided to be applied at
each TTI for all traffic classes. However, since the needs in
terms of QoS provisioning may differ from one traffic class
to another, then a separate scheduling rule may be required.
In this sense, a separate decision-making entity would be
necessary to select an appropriate scheduling rule rp ∈ R
for each video class p ∈ P .

This work proposes a hierarchical RL-based framework able
to control the decisions for both TDP and FDP schedulers with
the goal of accommodating a higher number of mobile learners
requesting video content from all classes while keeping the
desired level of the learning experience. The proposed archi-
tecture makes use of two controllers: a) the master controller
decides based on the current network conditions the best
prioritization sequence (i.e. [p, P, 1, ..., p + 1, p − 1]) at each
TTI; b) the slave controller selects a particular scheduling
rule rp ∈ R for each class from the prioritization sequence
according to the available bandwidth. Compared to [5], this
approach can offer better scalability options and enhanced
heterogeneous QoS provisioning.

B. Multi-Class and Multi-Objective Optimization

In the following, we formulate the aggregate multi-objective
and multi-class optimization problem addressed at each TTI
t, such as:

max
m,n,i

∑
r∈R

∑
p∈P

∑
l∈Lp

∑
b∈B

mr,p(t) · np,l(t) · il,b(t) · Γr,p[xp,l(t)]

·λl,b(t), (1)

s.t.∑
l
il,b(t) ≤ 1, b = 1, ..., B, (1.a)∑

p
np,l(t) = 1, l = l1, ..., lLp , p = 1, ..., P, (1.b)∑
p∗

∑
l
np∗,l(t) =

∑
p∗
Lp∗ , p∗ ∈ P∗,P∗ ⊆ P, (1.c)∑

p⊗

∑
l
np⊗,l(t) = 0, ∀p⊗ ∈ P⊗,P⊗ = P\P∗, (1.d)∑

r
mr,p∗(t) = 1, p∗ ∈ P∗, (1.e)∑
r
mr,p⊗(t) = 0, p⊗ ∈ P⊗, (1.f)

mr,p(t) ∈ {0, 1}, ∀r ∈ R,∀p ∈ P, (1.g)
np,l(t) ∈ {0, 1}, ∀p ∈ P,∀l ∈ Lp, (1.h)
il,b(t) ∈ {0, 1}, ∀l ∈ Lp,∀b ∈ B. (1.i)

where t is the TTI index from a given period of the
optimization time, mr,p ∈ {0, 1} assigns a scheduling rule
to each learner class (i.e. mr,p = 1 if r ∈ R is assigned
to p ∈ P , and mr,p = 0, otherwise), np,l ∈ {0, 1} pre-
selects learners for the frequency allocation (i.e. np,l = 1

if learner l ∈ Lp is preselected, and np,l = 0, otherwise)
and il,b ∈ {0, 1} allocates the preselected learners to get the
available RBs (i.e. il,b = 1 if RB b ∈ B is allocated to learner
l ∈ Lp, and il,b = 0, otherwise). Variable np,l is related more
to the TDP scheduler while mr,p and il,b are the variables that
are determined at each TTI t by the FDP scheduler.

In (1), each scheduling rule r ∈ R of each video class is
associated with the utility function Γr,p : R→ R, that takes as
input the KPI indicator xp,l and gives as an output value the
priority of allocating learner l ∈ Lp in the frequency domain
[40]. However, due to the changeable wireless channels in
the frequency domain, the prioritization decision must be
determined RB-by-RB, by calculating the following metric:
Γr,p(xp,l) · λl,b, ∀b ∈ B, ∀l ∈ Lp, ∀r ∈ R [40]. Here,
parameter λl,b is the achievable rate that would be obtained if
RB b ∈ B is allocated with learner l ∈ Lp. The calculation of
the achievable rate at each TTI depends on the Channel Quality
Indicator (CQI) vector that is reported by each learner l ∈ Lp
to the serving BS. The solution to (1) aims to find at each
TTI the best preselection decision of learners l ∈ Lp in time
domain and the best scheduling rule rp ∈ R to be followed
to optimally allocate learners in the frequency domain. The
target is to increase as much as possible at each TTI the learner
benefit when the KPI vector x respects its requirement x̄.

Compared to other TDP strategies where users from differ-
ent classes may be pre-selected according to their QoS budget
[32], [33], the proposed scheduler aims to prioritize classes by
deciding at each TTI a new prioritization sequence. However,
the order of classes to be scheduled at each TTI is decided
based on the performance of x over the requirement x̄ and
not on the occupancy degree of the available spectrum. As a
consequence, depending on the traffic load, some classes may
remain unscheduled since all RBs are allocated to learners
from classes with higher priorities decided at TTI t. In this
sense, let us consider the set of video classes being composed
as follows: P = {P∗(t),P⊗(t)}, where P∗(t) is the set of
scheduled classes while P⊗(t) are the classes that remain
unscheduled at TTI t. When P⊗(t) = {∅}, then all classes P
are allocated in frequency given the prioritization sequence.

Solving the multi-class and multi-objective optimization
problem in (1) involves a set of constraints that must be re-
spected. For example, constraints (1.a) indicate that one RB is
allocated to at most one preselected learner l ∈ Lp. To simplify
the optimization model, in (1.b) each learner is constrained to
request one traffic class with a given video quality at once.
Only a number of Lp∗ learners with p∗ ∈ P∗ is preselected
to get allocated in the frequency domain as indicated by
constraints (1.c), while learners from classes p⊗ ∈ P⊗ remain
unscheduled as constrained by (1.d). A separate scheduling
rule rp∗ ∈ R is decided for each class p∗ ∈ P∗ as shown in
(1.e). However, to reduce the computational complexity, the
selection of scheduling rules for classes p⊗ ∈ P⊗ that remain
un-allocated at TTI t should be deactivated, as indicated
in constraint (1.f). Finally, constraints (1.g)-(1.i) make the
proposed optimization problem combinatorial.

In real practice, finding optimal solutions in (1) is difficult
to achieve due to the very high searching space and time
constraints. Also, the performance of applying a certain class
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Fig. 6: Internal functionality of the proposed controller

prioritization sequence with the associated scheduling rules
can be measured once the system evolves to the next state
at TTI t + 1. To this extent, the initial optimization problem
is divided into three smaller sub-problems: a) the first sub-
problem aims to find based on the actual networking condi-
tions the most suitable prioritization sequence of video classes
as part of the TDP process; b) the second sub-problem aims
to find a proper scheduling rule rp∗ ∈ R for each class
p∗ ∈ P∗; c) the third sub-problem performs the resource
allocation of B given the priority order decided in a) and the
scheduling rules obtained with b). The proposed framework
aims to intelligently allocate the radio spectrum at each TTI
while providing solutions to a) and b) in order to maximize
the QoS provisioning in all video classes.

C. Proposed Solution

The proposed controller from Fig. 5 is employed to find
good solutions at each TTI in terms of the prioritization
scheme and scheduling rules to be used for each video class.
Based on the scheduler-controller interaction, these decisions
can be learnt over time to maximize as much as possible the
QoS provisioning for all traffic classes. However, due to the
high dimension of the scheduler state space, these pairs cannot
be exhaustively enumerated and hence, the optimal decisions
can be only approximated. Thus, the aim is to learn the
parameterization of some non-linear functions to approximate
the best decisions afferent to sub-problems a) and b).

To increase the scalability and flexibility of our solution,
the internal structure of the proposed controller employs a
hierarchical decision-making process as shown in Fig. 6. At
the first level, the master controller learns to approximate
the best prioritization sequence at each TTI. A number of
P master agents are separately trained to claim the priority
value of each video class. A separate entity is needed to order

the agents′ decisions and to form a joint action. At the second
level, the slave controller is responsible to approximate the best
scheduling rules that can be used for each video class from the
prioritization sequence by training a group of P slave agents.
Given the characteristics’ diversity of different traffic classes,
each Slave Agent (SA) is associated with a particular class
and learns R number of non-linear functions to approximate
the best selections of scheduling rules. In the learning stage,
both master and slave agents are learnt to approximate the
best decisions based on the RL algorithms. In the exploitation
stage, the hierarchical structure applies the learnt decisions in
terms of the class prioritization and the type of scheduling rule
to be employed in the frequency domain in each state.

V. THE PROPOSED HIMARL FRAMEWORK

The scheduler-controller interaction as depicted in Fig. 5 is
modeled based on: states, actions and rewards. At each TTI
t, the controller observes the current state, takes an action
and the scheduling process is conducted accordingly. At TTI
t+1, a new state is observed and the rewards are computed to
measure the performance of the applied action in the previous
state. The proposed controller aims to explore high number of
state-action-reward-state experiences and to learn over time to
approximate the best actions to be applied in each state.

Given the hierarchical decision-making scheme in Fig. 6,
the states, actions and rewards must be identified for each
controller. The master and slave agents consider as states the
current observations associated with the video class. At the
master level, agents provide a joint action in terms of the
prioritization sequence. At the slave level, agents provide the
scheduling rule to be employed by each particular video class
when the resource allocation is performed in the frequency
domain. The rewarding scheme is organized as follows: a) the
master controller receives a reward that quantifies the impact
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of applying the prioritization sequence in the previous state;
b) for the slave controller, the reward of each agent should
quantify the impact of the applied scheduling rule from the
perspective of the multi-objective QoS. These rewards are
obtained only by those agents that represent the scheduled
classes p∗ ∈ P∗(t). Since all agents learns on different states
and reward functions, then the master and slave controllers
work under the Multi-Agent RL (MARL) regime.

The complexity of HiMARL framework depends on how
many video classes and scheduling rules are used since a
number of P (R+ 1) function approximators must be trained.
By training the slave and master controllers concomitantly,
the impact of the applied actions cannot be differentiated. As
an example, when scheduling video class p∗ ∈ P∗(t), the
reward amount afferent to the slave agent is influenced by the
prioritization decision. To this extent, we train the framework
in two steps: a) train first the slave controller and b) train the
master controller while exploiting the slave decisions.
A. State Space

We define by Sp = SUp
⋃
SCp the measurable, multi-

dimensional and continuous state space of video class p ∈ P ,
where SUp and SCp are the uncontrollable and controllable
sub-spaces, respectively. On one side, the uncontrollable sub-
space SUp contains some stochastic elements such as CQI
reports, number of active learners per video class, etc. On
the other side, data points in SCp evolves as the result of the
scheduling decisions each TTI. If vp(t) ∈ SUp and yp(t) ∈ SCp
are the uncontrollable and controllable sub-states, respectively,
at TTI t, then we define by sp(t) = [vp,yp] ∈ Sp the
current state of video class p ∈ P at TTI t. The controllable
sub-state is defined as: yp = [xp,xp,qp], where xp =
[xp,l1 ,xp,l2 , ...,xp,lLp

], xp,l = [xp,l,o1 ,xp,l,o2 , ..,xp,l,oOp
] and

xp,l,o is the difference between KPI value xp,l,o and its as-
sociated requirement x̄p,l,o calculated for each QoS objective
differently. One important objective is to ensure a Guaranteed
Bit Rate (GBR) to each requested video service. Another
important QoS objective is to keep the delay of video packets
waiting in the queues under a certain threshold specific for
each class. Last but not least, each delivered service must
respect a given Packet Loss Rate (PLR) requirement for an
appropriate video experience. If we consider o1 = GBR,
o2 = DELAY and o3 = PLR, then we have:

xp,l,o =


x̄p,l,o − xp,l,o, o = o1, x̄p,l,o > xp,l,o,

xp,l,o − x̄p,l,o, o ∈ {o2, o3}, xp,l,o > x̄p,l,o,

0, otherwise.

(2)

The vector qp(t) = [qp,l1 ,qp,l2 , ...,qp,lLp
] represents the

amount of data in each learner queue.
At the macro level with P number of video classes, the

overall state at TTI t becomes s(t) = [s1, s2, ..., sP ] ∈ S,
where S is the controller state space with the dimension of
Sp multiplied by P . Each master and slave agent p ∈ P takes
decisions based on its own state sp ∈ Sp, by making the
proposed framework a decentralized approach.
B. Action Space

We define by AM the P dimensional action space of the
master controller, where c(t) = [c1, c2, ..., cP ] ∈ AM is the

current action at TTI t. Each element in the prioritization
sequence is given by ck ∈ P , 1 ≤ k ≤ P and ck 6= ck′ ,
∀k 6= k′. Here, parameter k ∈ {1, 2, ..., P} denotes the
element index in the prioritization sequence c(t) decided at
each TTI t, while p ∈ {1, 2, ..., P} is the prioritization index
given by 3GPP [31]. By AS we define the action space
of the slave controller with the action at TTI t defined as
r(t) = [r1, r2, ..., rP ] ∈ AS , where rp ∈ R and 1 ≤ p ≤ P .

We consider now A = A1×A2×...×AP the overall action
space, where Ak = P ×R, 1 ≤ k ≤ P . The action at TTI t
becomes a(t) = [a1,a2, ...,aP ], and each ak(t) = [ck, r(ck)]
gives the k-th instantaneous priority to video class ck ∈ P to
be scheduled and selects the scheduling rule r(ck) ∈ R given
by slave agent ck to perform the resource allocation. In Fig.
6, c1 = p ∈ P is the first prioritized class while r(c1) = rp ∈
R is the scheduling rule selected for p ∈ P . By following
the same reasoning, cP = 1 ∈ P is the last prioritized class
while r(cP ) = r1 ∈ R is the scheduling rule decided by slave
agent 1. However, due to the network conditions of each class
and the limited bandwidth, in some cases, only P ∗ number
of classes are passed in the frequency domain, while mobile
learners in other classes remain un-allocated at TTI t.
C. Transition Functions

Given the actual state s(t) ∈ S and action a(t) ∈ A, the
controllable state y′ = y(t + 1) ∈ SC at TTI t+1 can be
modeled as a function of s and a. Specifically, if we consider
y′a ∈ SC the controllable state at TTI t + 1 as the result of
applying action a(t) in state s(t), then the transition function
f : S ×A → SC can be written a follows:

y′a = f(s,a), (3)

where y′a = [y′c1 ,y
′
c2 , ...,y

′
cP ] is vector y′ = [y′1,y

′
2, ...,y

′
P ]

reordered according to the prioritization sequence decided at
TTI t. The transition function can be decomposed as f = fc1 ◦
fc2 ◦ ...◦fcP , where ◦ is a repetitive operator that allocates the
remaining bandwidth once class ck ∈ P has been scheduled,
and fck : Sck × Ak → SCck . Then, any controllable element
can be determined based on:

y′ck = fck [sck ,ak]. (4)

D. Reward Functions

The goal of the reward function is to measure at each TTI
the multi-class and multi-objective QoS performance when
applying the action a(t) ∈ A in state s(t) ∈ S . Following
the original definition from [41], this function becomes:

ρ(s,a)
(def)

= E
[
ρt+1|s(t) = s,a(t) = a

]
, (5)

where ρt+1 is the reward at TTI t+1 and E[·] is the expectation
showing that s(t) ∈ S is considered as random such that
P[s(t) = s] > 0 and P[a(t) = a] > 0 holds for all possible
actions a ∈ A. By employing the transition function from
(3) and splitting the action in master and slave decisions, the
reward function can be written as follows [23]:

ρ(s,a)
(3)
= ρ(y′,a) =

∑P

k=1
χ(ck) · %ck [y′ck , r(ck)], (6)

where χ : P → R, χ(ck) = (P+1−ck)/
∑P
h=1 h is the weight

function and %ck : Sck×R → [0, 1] is the reward of slave agent
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ck ∈ P that measures the impact of applying scheduling rule
r(ck) ∈ R in state sck ∈ Sck , while respecting the property

of %ck [sck , r(ck)]
(4)
= %ck [y′ck , r(ck)] with sck = sp the state of

class p ∈ P being scheduled at TTI t with the k−th priority.
Although the rewards % in (6) are calculated in the same

way, their meaning is different for the video classes in P∗
and P⊗. On one side, reward %ck∗ [y′ck∗ , r(ck∗)] measures the
impact of using rule r(ck∗) ∈ R in class ∀ck∗ ∈ P∗ and
k∗ = 1, 2, ..., P ∗. On the other side, %ck⊗ (y′ck⊗ ) evaluates if
the objectives Ock⊗ are met when the traffic class ck⊗ ∈ P⊗
is not scheduled, and k⊗ = P ∗ + 1, ..., P . By weighting the
QoS revenues of each mobile learner, we have:

%p(y
′
p) =

∑lLp

l=l1

1

Lp
· %p,l(y′p,l), (7)

where y′p,l = [x′p,l,x
′
p,l, q

′
p,l] are the controllable state ele-

ments of learner l ∈ Lp at TTI t + 1. The reward of each
mobile learner is computed by considering the revenues of
each QoS objective, such as:

%p,l(y
′
p,l) =

1

Op

∑oOp

o=o1
%p,l,o(y

′
p,l,o), (8)

and y′p,l,o = [x′p,l,o, x
′
p,l,o, q

′
p,l]. For the particular case of

Op = 3, the sub-rewards %p,l,o are calculated as follows:

%p,l,o =


1− xp,l,o

x̄p,l,o
, o = o1, xp,l,o > 0, qp,l 6= 0,

1− xp,l,o

xp,l,o
, o = {o2, o3}, xp,l,o > 0, qp,l 6= 0,

1, otherwise.
(9)

When %p,l,o = 1, then objective o ∈ O of leaner l ∈ Lp
requesting video content from class p ∈ P is met. The
HiMARL framework aims to decide the multi-dimensional
action a(t) in each state s(t) such that the total reward in
(6) reaches its maximum level at each TTI.

The amount of inter-class fairness depends on the traffic
load for each video class that may change over time. When
the traffic load is high for all classes, the network gets saturated
and the corresponding sub-rewards are %(y′p) < 1 for all
p ∈ P . In this case, the inter-class fairness could be ensured
by prioritizing classes while respecting the order given by
χ(ck). In other cases when the reward ρ(s,a) can still be
maximized due to favourable network conditions and traffic
load, the lower prioritized classes with %(y′p′) < 1 could be
prioritized at first in the detriment of other higher prioritized
classes with %(y′p) = 1, where p < p′ ∈ P . In this case, the
inter-class fairness given by χ(ck) is not respected anymore
since the goal of the master controller is to maximize the
overall QoS outcome at each TTI.

E. Policies and Value Functions

Based on the elements introduced in the previous sections,
we define now a stochastic game for the slave controller as a
tuple formed by 〈S1, ...,SP ,A1, ...,AP , f1, f2, ..., fP , ρ〉 with
P number of fully cooperative intelligent agents since each one
acts to maximize a common reward ρ [42]. Each slave agent
p ∈ P is committed to learn over time its own policy function
πp : Sp × R → [0, 1], that is, the probability of selecting
scheduling rule rp ∈ R in state sp ∈ Sp [41]. At each TTI,
each agent p ∈ P decides to apply the scheduling rule with the

highest policy value from vector πp(t) = [πp,1, ..., πp,R]. By
considering each class policy values πp, we get the sequence:

π(t) = [π1, π2, ..., πP ].

The goal of the slave controller is to learn over time the
optimal sequence of policies π∗(t) to be followed such that
the optimal action r∗(t) = [r∗1 , r

∗
2 , ..., r

∗
P ], ∀r∗p ∈ R of all

slave agents would have the highest QoS revenue at each TTI.
However, training such MARL system is difficult to achieve
in practice since the agents with lower priority are updated
much less than other agents that represent the video classes
with higher priorities from P . To avoid this drawback, we
propose to train each slave agent separately based on the
tuple 〈Sp,R, fp, %p〉. Each agent learns the best scheduling
rule rp ∈ R to be employed on each particular state sp ∈ Sp
from the perspective of reward %p with the premise that the
entire bandwidth is available for video class p ∈ P . Precisely,
we are interested in computing the optimal functions that map
states sp ∈ Sp to actions rp ∈ R. To do so, value-functions-
based RL are needed while considering the past experiences
of each slave agent p ∈ P . One of such functions is the action-
value function Qp(sp, rp) defined as the expected cumulative
discounted future reward if agent is in state sp ∈ Sp, executes
action rp ∈ R, and follows the policy πp afterwards [41]:

Qp(sp, rp) = E
[∑∞

t=0
γt%t+1|sp(0) = sp, rp(0) = rp, πp

]
,

(10)
where 0 ≤ γ ≤ 1 is a discount factor that gives more
importance to the immediate rewards than that to the later
ones. In optimal case, each agent p ∈ P selects the optimal
scheduling rule with probability π∗p(sp, rp) = 1 and,

rp = argmaxr′∈RQ
∗
p(sp, r

′). (11)

A value function Vp(sp) can provide the expected cumulative
discounted future reward if the slave agent p ∈ P is in state
sp ∈ Sp and underlies policy πp afterwards [41]:

Vp(sp) = E
[∑∞

t=0
γt%t+1|sp(0) = sp, πp

]
. (12)

By extracting the reward at TTI t = 0 from (12), we get the
following transition between two consecutive states sp and s′p:

Vp(sp) = %p(sp, rp) + γ · Vp(s′p). (13)
When training the master controller separately, the slave

actions r ∈ AS are already known on each particular state and
then, the overall action becomes a(t) ≈ c(t) ∈ AM . The scope
is to decide the traffic prioritization each TTI while consider-
ing the stochastic game with the tuple 〈S1, ...,SP ,AM , f, ρ〉.
Here, each master agent p ∈ P learns based on its own state
space Sp to cooperate with other agents to maximize the total
QoS revenue given by the reward in (6). Each master agent
p ∈ P keeps its own policy Πp : Sp × AM → [0, 1] that
gives the probability of applying the prioritization sequence
c ∈ AM in state sp ∈ Sp. Then, the joint policy of master
controller can be defined as the following sequence:

Π(c) = [Π1,Π2, ...,ΠP ].

Together with policy Πp, each agent keeps an action-value
function Wp(sp, c) that represents the expected cumulative
discounted future reward if agent p ∈ P is in state sp, executes
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the joint action c ∈ AM by getting the k-th priority to be
scheduled, and the joint policy Π is followed afterwards:

Wp(sp, c) = E
[ ∞∑
t=0

γtρt+1|sp(0) = sp, c(0) = c,Π
]
. (14)

Under optimal conditions, an action c ∈ AM is selected with
a sequence of probabilities Π(c) = [1, 1, ..., 1] and:

c = solvep∈P [W ∗p (sp, ·)]p=1,2,...,P , (15)

where solve performs the descent ordering of all action-values
and returns the arguments of the obtained sequence.

In our approach, we make also use of value-function V (s)
of the entire state space that starts with the initial state s(0) =
s ∈ S and underlies the joint policy Π afterwards:

V (s) = E
[∑∞

t=0
γtρt+1|s(0) = s,Π

]
. (16)

The role of V (s) is to enhance the training process of the
master controller and to coordinate the master agents to update
their action-value functions when the applied actions have
positive impact in the system performance. Moreover, the
transition between two consecutive states can be used as well:

V (s) = ρ(s, c) + γ · V (s′). (17)

The HiMARL framework presented above is more concep-
tual as long as the state space Sp of each agent is continuous
with a variable dimension given the number of active learners
of each video class p ∈ P . Hence, it is impossible to
exhaustively enumerate all possible combinations of state-
action pairs and to store the value functions. To overcome
some of these problems, in a first instance, each agent state
space must be transformed to a compact representation with
a constant dimension. In the second instance, the function
approximators must be employed and trained to approximate
the optimal value functions of master and slave controllers.
F. State Space Compression

The dimension of the current state s ∈ S depends on the
number of active mobile learners that may change over time
for each traffic class p ∈ P . This aspect leads to a variable
dimension of the entire state space S that contains observations
collected from the interaction between the intelligent controller
and network. To reduce the framework complexity, the variable
dimension must be reduced to some constant representation
regardless of the changeable networking conditions. Since the
proposed system takes decisions separately based on the obser-
vations collected from each traffic class, then the compression
procedure involves the following transformation:

S̄p = T (Sp), (18)

where S̄p is the compressed state space of class p ∈ P with a
fixed dimension. Since the original state space is divided into
controllable and uncontrollable spaces, then the compression
framework should follow the same trend.

We denote by S̄Cp = Tc(SCp ) the compressed controllable
state space as the result of the compression operator Tc over
the original version SCp . The instantaneous controllable state
becomes ȳ = τc(y), where ȳ ∈ S̄Cp and τc can be a set of
statistical functions employed to extract the relevant data from

a vector of Lp elements. We adopt the same statistical model
proposed in [23], where the controllable elements {xp,xp,qp}
can be modeled as normally distributed variables and then, τc
employs the mean and standard deviation functions based on
the maximum likelihood estimators. As result, the dimension
of ȳp is reduced from Lp · (2Op + 1) to 2 · (2Op + 1), that
depends only on Op number of objectives that must be met to
keep high service quality for the delivered educational content.

A different compression approach should be employed for
the uncontrollable space S̄Up = Tu(Sup ), where Tu differs from
Tc due to the CQI information which is considered as a band-
width dependent vector that is periodically reported by each
mobile learner to inform the BS on its channel quality. Let us
assume that vp ∈ SUp refers strictly to the CQI observations
for class p ∈ P . This uncontrollable vector takes the form of
vp = [vp,1, ...,vp,Lp ] where vp,l = [cqip,l,1, ...., cqip,l,B ] and
cqip,l,b ∈ {1, ..., 15} for OFDMA radio access. To compress
the large dimension of vp, we employ the compression func-
tion τu, where v̄p = τu(vp). Here, τu aims to classify and
predict each CQI report vp,l in patterns or CQI clusters based
on unsupervised and supervised learning techniques [40]. If
we denote by Z the number of CQI classes to best represent
the space SUp , then according to τu, the dimension of vp ∈ SUp
is reduced from Lp ·B to Z, where Lp > 1 and Z < B.

To conclude, a compression mechanism is possible in order
transform the state representation from sp ∈ Sp to s̄p ∈ S̄p
and its dimension from Lp ·(2Op+1+B) to 2 ·(2Op+1)+Z.

G. Function Approximation with Reinforcement Learning

Once applied the compression mechanism, the entire state
s̄ ∈ S̄ is still multi-variable but, with a fixed dimension. There-
fore, the classical tabular representation of value functions is
not possible and function approximations must be adopted
instead for both master and slave controllers. In this paper,
we adopt the use of feed-forward neural networks to represent
such approximations. However, more complex architectures of
neural networks can be employed by considering the time con-
straint given by the TTI duration. Without going through very
precise details about the internal structure of a feed-forward
neural network, we resume to consider such a structure as a
parameterizable function F (·; θ), where θ represents the set of
interconnecting weights between the internal nodes that must
be optimized by the proposed RL and HiMARL strategies.

Considering now the training process of the slave controller,
neural networks are used to approximate the look-up table
of Q-values for each agent. We focus only on a particular
slave agent, let us say, p ∈ P , while the rest of them follows
exactly the same reasoning. Slave agent p ∈ P is characterized
by R number of neural networks, where each such entity
approximates the action-value function for a given scheduling
rule rp ∈ R. Let Qp(sp, rp) ≈ Qp(s̄p, rp; θp,r) be such
approximations, where θp,r denotes the set of weights corre-
sponding to the neural network that represents the schedul-
ing rule rp ∈ R. To improve the training quality of our
framework, the additional approximation of value function is
considered, such as: Vp(sp) ≈ Vp(s̄p; θp). The entire set of
weights {θp,1, θp,2, ..., θp,R, θp} ∈ [−1, 1] are randomized at
the beginning and they are expected to converge to optimal
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values as the training process evolves. During training, the
exploration of the state space is achieved by picking at each
TTI an action with the following probability [43]:

πp =

{
1− ε rp = argmaxrQ(s̄p, rp; θp,r),

ε rp = argmaxr[randr]r=1,2,...,R,
(19)

where randr gives a set of random action-values to enhance
the problem exploration. Parameter ε ∈ [0, 1] can be varied
from high to low during training to permit more explorations
at the beginning and more exploitation of Q-functions as the
training process approaches it its end. Once the action rp ∈ R
is decided in state s̄p ∈ S̄p, the system gets the reward value
%p(s̄p, rp) and a new state s̄′p ∈ S̄p is perceived. Therefore,
at each TTI t + 1, we use the experience set e(t + 1) =
{s̄p, rp, %p, s̄′p} to update the neural network weights of slave
each agent p ∈ P .

The objective in the training process is to minimize over
time the following cost function [44]:

Cp(θp) = Ee(t)
[1

2
(ηδp)

2
]
, (20)

where η ∈ [0, 1] is the learning rate and δp = FTp (·; θp) −
Fp(·; θp) is the Time Difference (TD) error calculated as the
difference between the target value and the actual estimate of
the neural network. The TD error is back-propagated through
the neural networks to update the weights [23].

Conceptually, the weights of each layer are updated through
the online training process while employing the Stochastic
Gradient Descent (SGD) algorithm [43]:

θp ← θp + η
∂Fp
∂θp

(·; θp) · δp, (21)

where Fp takes the form of value and action-value functions.
The target value function is determined according to (13) and
becomes: V Tp (s̄p; θp) = %p+γ ·Vp(s̄′p; θp). However, when the
TD error of value function is δp ≥ 0, then the action rp ∈ R
applied in state s̄p is a good option and such actions should
be used in future. To do so, we set the target function of the
action-value with the corresponding learning rates as follows:

QTp (s̄p, rp; θp,r) =

{
1 with η = α if δp ≥ 0,

−1 with η = β if δp < 0,
(22)

where {α, β} ∈ [0, 1] are two possible values for the learning
rate η, constrained always by α > β. When δp ≥ 0, agent
p ∈ P learns more from such positive experiences and
consequently, η = α. When δp < 0, the proposed algorithm
learns less from the negative experiences and η = β. It is
worth to notice that the same RL algorithm is followed by
each slave agent p ∈ P to learn its own policy π∗p based on
the video traffic characteristics and network conditions. The
principles of RL training for the slave agent p ∈ P are detailed
by Algorithm 1.

The master controller makes use of P number of action-
value functions that are parameterized with feed-forward neu-
ral networks, such as: Wp(s̄p, c) ≈ Wp(s̄p, c; Θp), p =
1, 2, .., P . Compared to slave controller where the action-value
functions are used to approximate the look-up tables, here
these functions are trained to provide the prioritization deci-
sion at each TTI. To increase the efficiency of our framework,

Algorithm 1: RL Training of Slave Agent p ∈ P

1: for each TTI t+1
2: calculate the reward %p(sp, rp) based on (7)-(9)
3: recall the experience ep(t+ 1) = (sp, rp, %p, s

′
p)

4: compress {sp, s′p} ∈ Sp based on (18)
5: calculate the value function error δp(θp)
6: back-propagate δp(θp) and update weights based on (21)
7: // criticize previous action rp ∈ R
8: if δp(θp) ≥ 0, then η = α, else η = β
9: determine the target function based on (22)

10: calculate error δp,r(θp,r)
11: back-propagate δp,r(θp,r) and update θp,r based on (21)
12: // act based on the learned policy
13: apply the scheduling rule r′p ∈ R with policy (19)
14: perform resource allocation according to selected r′p ∈ R
15: end for

we employ the value function given the entire state s̄ ∈ S̄
and approximated by V (s̄) ≈ V (s̄; Θ). Similar to the slave
controller, we assume the number of layers and nodes are
fixed and the activation functions of each layer known. To
this extent, we denote by {Θ1,Θ2, ...,ΘP ,Θ} as the set of
weights that must be tuned during the training process of the
master controller. In the training stage, each agent takes a joint
action c ∈ AM according the following policy:

Πp(c | s̄p) =

{
1− ε c = solve[Wp(·; Θp)]p=1,..,P ,

ε c = solve[randp]p=1,..,P ,
(23)

where randp ∈ [0, 1] is a sequence of random numbers and
solve performs the descent ordering of a given sequence.
Please note that ε may vary during the training process but
the same value is used by all agents at each TTI.

At TTI t, we apply the joint action c ∈ AM in state s̄ ∈
S̄, the scheduler grants this decision with reward ρ(s̄, c) and
new observations s̄′ ∈ S̄ are perceived at TTI t + 1. Let us
define by E(t+ 1) = {s̄, c, ρ, s̄′, P ∗(t)} the experience of the
master controller at TTI t + 1, where P ∗(t) is the number
of video classes being scheduled at TTI t. The master agent
p ∈ P experiences the following set Ep(t+1) = {s̄p, c, ρ, s̄′p}.
Experiences {E1, E2, ..., EP , E} are used at each TTI with the
scope of minimizing the following cost function of each agent:

C(Θ) = EE(t){
1

2
[η ·∆(Θ)]2}, (24)

where ∆(Θ) = FT (·; Θ) − F (·; Θ) is the TD error with
function F (·; Θ) representing all Wp(·; Θp) and V (·; Θ). By
back-propagating the TD error from layer-to-layer, the weights
are updated with the same SGD principle as follows [43]:

Θ← Θ + η
∂F

∂Θ
(·; Θ) ·∆(Θ), (25)

where (25) is employed for each master agent p ∈ P and value
function. The target value function is determined according to
(17) and then, V T (s̄; Θ) = ρ+γ ·V (s̄′; Θ). The corresponding
TD error becomes in this case ∆(Θ) = V T (s̄; Θ)− V (s̄; Θ).
Logically, when ∆(Θ) ≥ 0, then the previous experience has
a positive impact on the overall structure of master controller.
However, even if the action c ∈ AM has a positive impact,
some traffic classes with %p = 1 (all QoS objectives are met)
can get higher priority than that of other classes with %p < 1,
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Fig. 7: Training process of the master controller

leading to the over-provisioning effect. To avoid this issue
and efficiently allocate the available bandwidth, the master
controller must be trained to avoid prioritizing video classes
with fulfilled QoS requirements over other classes where the
set of QoS requirements is partially met. To this respect, we
employ the following function h : P∗ × [0, 1]P → {0, 1},
such that: when h(ck∗ , %1, ..., %P ) = 1, then traffic class
ck∗ = p∗ ∈ P∗ respects all QoS requirements and gets higher
priority than that of other classes that need more resources
to meet their QoS requirements; when h(ck∗ , %1, ..., %P ) = 0,
then scheduling the traffic class ck∗ = p∗ ∈ P∗ with the
k∗− th priority is a fair option. Consequently, we employ the
target action-value function as follows:

WT
ck∗

=


P

(P+1−k∗) with η = α if ∆ ≥ 0 and h(·) = 0,

−0.5 with η = α if ∆ ≥ 0 and h(·) = 1,

−1 with η = β if ∆ < 0,
(26)

where WT
ck∗

(s̄ck∗ , c; Θck∗ ) is the target action-value function
of class ck∗ ∈ P∗ being scheduled with the k∗-th priority at
TTI t. If some traffic classes remain un-scheduled and P ∗ <
P , then the afferent agents are not updated.

Even when the previous applied prioritization sequence has
a positive impact in terms of heterogeneous QoS provisioning
(∆ ≥ 0), the prioritization of class ck∗ = p∗ ∈ P∗ over other
classes must be penalized when h(ck∗ , %1, ..., %P ) = 1. In this
way, the neural networks of the master controller are trained
to avoid the over-provisioning effect between video classes
with low and/or high bit-rates by considering the target values
determined based on (26) at each TTI.

Figure 7 presents the MARL training principle of the
master controller. At each TTI, experience E(t + 1) is used
by the value function approximator (critic) to evaluate the
quality of the joint action previously applied. Consequently,
the values of two consecutive states {V (s̄), V (s̄′)} are deter-
mined and the corresponding TD error ∆(Θ) is computed and
back-propagated. Based on (26), a set of target action-value
functions {WT

c1 ,W
T
c2 , ...,W

T
cP } is determined, meaning that

Algorithm 2: MARL Training of Master Controller

1: for each TTI t+1
2: calculate %p(sp, rp) for each slave agent p based on (7)-(9)
3: calculate ρ(s, c) according to (5) and (6)
4: recall experiences {E1, E2, ..., EP , E}
5: compress states {sp, s′p}p=1,..,P and implicitly {s, s′} - (18)
6: calculate the value function error ∆(Θ)
7: back-propagate ∆(Θ) and update weights based on (25)
8: // criticize previous action c ∈ AM

9: if ∆(Θ) ≥ 0, then η = α, else η = β
10: for k∗ = 1, 2, ..., P ∗

11: determine target function WT
ck∗ based on (26)

12: calculate error ∆ck∗ (Θck∗ )
13: back-propagate ∆ck∗ (Θck∗ ), update Θck∗ based on (25)
14: end for
15: // act based on the joint policy
16: determine new action c′ ∈ AM based on policy (23)
17: // prioritization and scheduling with c′ ∈ AM and r′ ∈ AS

18: while B 6= ∅
19: pick video class c′k = p, ∀p ∈ P
20: exploit slave agent c′k = p and get r′p ∈ R
21: perform scheduling and resource allocation based on (1)
22: k = k + 1
23: add c′k = p in the set of scheduled video classes P∗
24: P ∗ = P ∗ + 1
25: end while
26: end for

P = P ∗ in this particular case. Each master agent p = ck ∈ P
reinforces its TD error ∆p(Θp) calculated as the difference
between the target value WT

ck
and the actual estimate Wck . To

better highlight the concept of training the master controller,
Algorithm 2 presents the most important steps.

VI. RESULTS AND DISCUSSION

The proposed HiMARL framework is implemented in the
5G-Scheduler C/C++ Simulator [23] that inherits the LTE-
Sim simulator [45] in terms of: protocol stack functionalities,
OFDMA radio access technology, and scenario settings. The
5G-Scheduler simulator [23] brings some new features, such
as: decoupled TDP and FDP schedulers, state space compres-
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sion mechanisms as discussed in Section V.F, neural networks
as function approximators and different RL algorithms. The
goal of this section is to validate through objective numerical
results the proposed HiMARL framework in order to make
it a suitable option when scheduling mobile learners with
different needs in terms of the educational content. To this
extent, we organize this discussion as follows: a) first we
present the parameter settings and the considered scenario;
b) then, through various numerical results, the advantage
of implementing the slave controller is presented; c) the
performance of the HiMARL framework is analysed in the
third instance based on the comparison with state-of-the-
art schedulers; d) and finally, the remarks on the obtained
subjective and objective assessments are analyzed in terms of
mobile learner satisfaction.

A. Network and Controller Settings

The number of video classes to be analysed is fixed to
P = 4. To determine the composition of each video class,
the subjective results from Section III are combined with
the findings from [26]. Moreover, the QoS requirements for
the considered video content of each class are determined
according to the 4G technical specifications [31].

According to figures 2, 3 and 4, a significant statistical
difference between high and low quality can be observed in
the case of slideshow content, while in the case of screencast
and animation contents, the learning achievement level is near
similar regardless of the video quality levels. We consider
two types of devices with the following resolutions [26]:
class_a 240p, denoting the class of mobile learners with
reduced financial possibilities; class_b 480p, that represents
the class of mobile learners with relatively better financial
situations. The aim is to prioritize the first class of learners
without penalizing too much the second class. To this extent,
we consider that learners from the first class request the
slideshow content with high and low quality, while learners
from the second class access the animation and screencast
contents at low quality. The animation video can be modeled
as Variable Bit Rate (VBR) traffic and the screencast content
as Constant Bit Rate (CBR). By correlating the information
from [26] and [31], the following video classes with the
corresponding QoS requirements are considered in terms of
o1 = GBR, o2 = DELAY and o3 = PLR, respectively:
• p = 1 : video_1 (slideshow, high quality), x̄1,l,o1 =

242kpbs, x̄1,l,o2 = 150ms, and x̄1,l,o3 = 10−3, ∀l ∈ L1;
• p = 2 : video_2 (slideshow, low quality), x̄2,l,o1 =

138kpbs, x̄2,l,o2 = 300ms, and x̄2,l,o3 = 10−6, ∀l ∈ L2;
• p = 3 : video_3 (animation, low quality), x̄3,l,o1 =

512 − 1024kpbs, x̄3,l,o2 = 300ms, and x̄3,l,o3 = 10−6,
∀l ∈ L3;

• p = 4 : video_4 (screencast, low quality), x̄4,l,o1 =
640kpbs, x̄4,l,o2 = 300ms, and x̄4,l,o3 = 10−6, ∀l ∈ L4.

By employing the proposed HiMARL meta-scheduler, the aim
is to create a dynamic prioritization and scheduling policy
to maximize the QoS outcome of lower prioritized classes
(i.e. video_3 and video_4) without affecting the learn-
ing achievement levels of individuals with higher prioritized
services, such as video_1 and video_2.

TABLE III: Parameter Settings

Parameter Value/Description
System Bandwidth/Cell Radius 20 MHz/1000m

Speed/Mobility (Learning) 30 Kmph/Random Direction
Speed/Mobility (Exploitation) Static/Uniform Distribution

Channel Model Jakes Model
Path Loss/Penetration Loss Macro Cell Model/10dB

Interfered Cells/Shadowing STD 6/8dB
Carrier Frequency/DL Power 2GHz/43dBm(equal on each RB)

Frame Structure Frequency Division Duplexing
CQI Reporting Mode Full-band, periodic at each TTI

PUCCH Model Errorless
PDSCH Model Wideband Error Model

based on Effective SINR [45]
Max. No. of Schedulable Users 32 each TTI

RLC ARQ Acknowledged Mode
(5 retransmissions)

AMC Levels QPSK, 16-QAM, 64-QAM
Target BLER 10%
Traffic Type Heterogeneous

(16.5% video_1, 16.5% video_2,
33% video_3, 33% video_4)

QoS Requirements
(GBR,Delay, PLR, p) (242kbps, 150ms, 10−3, 1),

video_1
(138kbps, 300ms, 10−6, 2)

video_2
(512− 1024kbps, 300ms, 10−6, 3)

video_3
(640kbps, 300ms, 10−6, 4)

video_4
Max. No. of Users 10 (video_1), 10 (video_2)

20 (video_3), 20 (video_4)
Frequency Schedulers SA1, SA2, SA3, SA4, BF [37],

EXP [38], OPLF [39]
Time-Frequency Schedulers HiMARL, RADS [33], FLS [34]

Learning/Exploitation Duration 10000s/10 × 51s
RL Discount Factor (γ) 0.99

Neural Networks Configurations (2 layers, 80 nodes)−SC,
(2 layers, 200 nodes)−MC.

On the network side, we consider the OFDMA downlink
transmissions with 20MHz system bandwidth with a number
of RBs B = 100. A macro urban cell model is considered
with the radius of 1km. The channel model is fast fading by
employing the Jakes model [45]. The inter-cell interference
model with other neighboring cells is considered, while the
intra-cell interference between other mobile and electronic
equipment is considered negligible in this case. It is worth
to mention that the performance of proposed HiMARL meta-
scheduler is compared with state-of-the-art schedulers by using
exactly the same networking conditions. More details on the
scenario settings can be found in Table III.

The network scheduler works with the Modulation and
Coding Scheme (MCS) that associates different levels of mod-
ulation schemes as shown in Table III necessary to transmit
the quota of data scheduled to each mobile learner. The Radio
Link Control (RLC) protocol works in the acknowledged mode
and considers a maximum number of 5 re-transmissions for
each erroneous packet for all video classes. Packets failing
to get successfully transmitted within this period are declared
lost. When computing the PLR rates and average user through-
put, a moving time window of 1000 TTIs is used to collect the
lost packets and instantaneous user throughput, respectively.
Then, these KPI indicators are matched to the correspond-
ing requirements for each class (Table III). In terms of the
scheduling process, the following strategies are employed:

a) FDP Scheduling: the slave controller is employed to
select for each of the considered video class the scheduling
rule to be followed in the frequency domain to maximize the
multi-objective QoS provisioning. To this extent, we consider
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Fig. 8: Training stage of the slave controller a) cost function of slave agent 1 (video_1); b) cost function of slave agent 2 (video_2); c)
cost function of slave agent 3 (video_3); d) cost function of slave agent 4 (video_4).

a number of R = 3 scheduling rules, being organized as
follows: r = 1 corresponds to Barrier Function (BF) [37]
oriented to meet the GBR objective, such that, the online
average throughput indicator respects its requirement; r = 2 is
the EXPonential (EXP) scheduling rule [38] employed to meet
the delay requirements; r = 3 implies the Opportunistic Packet
Loss Fair (OPLF) [39] scheduler oriented on minimizing the
PLR rates. During training, each slave agent randomizes the
number of active users in the following ranges: L1 ∈ [10, 50],
L2 ∈ [10, 165], L3 ∈ [10, 35] and L4 ∈ [10, 35]. Below
the lowest limit in terms of the number of mobile learners
L1 = L2 = L3 = L4 = 10, the QoS provisioning is
mostly ensured and there is no advantage of HiMARL versus
the alternative approaches. Above the maximum limits (i.e.
L1 = 50, L2 = 165, L3 = 35, L4 = 35), the network gets
saturated for the considered bandwidth, and the employment
of any scheduler would not bring significant improvement
when evaluating the QoS provisioning. During exploitation,
the performance is evaluated for each number of mobile
learners in the aforementioned intervals.

b) TDP Scheduling: considers the training and the exploita-
tion of master controller; during training, the slave controller is
exploited while, during the exploitation, the entire hierarchical
MARL framework is employed for real-time scheduling. The
aim of the master controller is to dynamically switch the
prioritization sequence every TTI such that the QoS provi-
sioning of video_1, video_2, video_3 and video_4 is
maximized every time. In both training and exploitation stages,
we consider the following ratio between the learner classes:
video_1 (16.5%), video_2 (16.5%), video_3 (33%),
and video_4 (33%). In training and exploitation stages, the
aggregate number of mobile learners are varied in the interval
of l ∈ [6, 60], and the maximum number of learners of each

video class are: L1 = 10, L2 = 10, L3 = 20 and L4 = 20.
In exploitation, the performance of HiMARL framework is
compared with very promising state-of-the-art strategies, such
as: Required Activity Detection Scheduler (RADS) [33] and
Frame Level Scheduler (FLS) [34].

The proposed HiMARL framework is trained in separate
stages, but some parameters are similar for both slave and
master controllers. The discount factor is set to γ = 0.99 to
provide higher importance to the value of the next-states when
computing the target functions as shown in (13) and (17). We
aim to set the learning rate β = 0 when the experiences are
not favorable (δp(θp) < 0, ∆p(Θp) < 0). Learning rate α is
decreased with a predefined step during the training process
for each slave and master agent, each time when δp(θp) ≥ 0
and ∆p(Θp) ≥ 0, respectively. Separately, the learning rates
for slave and master value functions are decreased at each
iteration. Parameter ε from (19) and (23) decreases exponen-
tially from 1 to 0, such that, more exploration steps would
be involved at the beginning of the training stage, while more
exploitation steps would be used at the end of this process.

In terms of the evaluation metrics, the numerical results
are organized as follows: a) metrics for training: we monitor
over time the mean cost functions for value and action-value
neural networks for the master controller and each slave agent;
b) metrics for exploitation: the mean and STandard Deviation
(STD) functions are implemented for each evaluation metric,
such as:

µp(mp) = 1/G ·
∑G

g=1
mp,g, (27.a)

σ(mp) =

√
1/G ·

∑G

g=1
(mp,g − µp)2, (27.b)

where G = 10 is the number of simulations in the exploitation
stage and mp is the metric that evaluates the performance of
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Fig. 9: Performance of the slave agents based on µp(mp) and σp(mp), where metrics mp are: a) normalized number of TTIs when all learners
meet the GBR requirement; b) 5th throughput percentile; c) normalized number of TTI when all learners respect the delay requirements; d)
95th delay percentile; e) normalized number of TTIs when all learners meet the PLR requirements; f) 95th PLR percentile.

the involved scheduling candidates for each video class p ∈ P .

B. Training and Testing the Agents of the Slave Controller

1) Parameterization, training and convergence of each
slave agent: The parameterization of the neural networks for
each slave agent is achieved through various a priori tests. It is
already known that, when a neural network is too flexible with
high number of hidden layers and nodes, then the obtained
function can overfit the input data [23]. When the configuration
is inflexible with low number of hidden layers and nodes, then
the trained function can give poor generalization on the given
state space. To minimize the impact of these problems, we set
the training stage for each slave agent to 107 TTIs, and the
number of active users is randomized once every 1000 TTIs.

Figure 8 illustrates the mean cost functions for each slave
agent when the neural networks are configured from one
hidden layer and 80 hidden nodes. As expected, the action-
value cost functions get lower than that of the value cost
functions in all cases since the target values QTp are fixed,
while V Tp depends on the calculated reward %p at each iter-
ation. The convergence of SA1 and SA2 looks similar since
both video_1 and video_2 classes are requesting relatively
the same bitrate levels. The convergence analysis is monitored
over the entire training period, where the value cost function of
each slave agent p ∈ P plays a crucial role. The set of weights
{θp,1, θp,2, θp,3} is saved each time when a new minimum in
the value cost function is discovered. As seen from Fig. 8.a
for SA1 (video_1), the value cost function gets minimized
at around 5×106 number of TTIs in the training stage. In the
case of agent SA2 that represents the video_2 class (Fig.
8.b), the value cost function is minimized at around 8.5× 106

TTIs in the training stage. This is explicable since video_2
needs more time to sweep the range of 165 active learners.
When training SA3 for video_3, the minimum value cost

function is localized at around 5.3×106 TTIs (Fig. 8.c), while
for agent SA4 of video_4, a period of 7×106 TTIs is needed
to minimize the value cost function, as illustrated in Fig. 8.d.

2) Testing the Slave Agents: In the exploitation stage, we
compare for each video class the performance of the obtained
RL-based schedulers (slave agents) with the static approaches,
in terms of BF, EXP and OPLF. Figure 9a analyses the per-
formance of the considered strategies for each video class in
terms of the normalized number of TTIs when all mobile learn-
ers respect the GBR requirements. In the case of video_1
and video_2 services, this metric shows similar results.
However, when analyzing the performance of video_3 and
video_4, SA3 and SA4 follow the performance of BF and
OPLF schedulers and provide gains higher than 10% when
compared to EXP scheduling rule. The same trend can be
observed in Fig. 9b where the 5th percentile of user throughput
is monitored. Gains higher than 3% can be obtained when
employing the RL-based schedulers over the static EXP rule
for video_3 and video_4 services.

In figures 9c and 9d, the performance of FDP schedulers in
terms of delay is presented. As expected, the EXP scheduling
rule provides the highest amount of TTIs when the delay
objective is met by all learners (Fig. 9c). This aspect becomes
more obvious in the cases of video_3 and video_4 ser-
vices, where the EXP rule gets gains higher than 30% when
compared to BF scheduler. The RL-based slave agents get
nearly similar performance reported to EXP static rule, and
when the 95th delay percentile is analysed (Fig. 9d), the slave
agents indicate gains higher than 25% when matched against
BF for video_3 and video_4 services.

In terms of the PLR performance, all candidates provide
close numerical results for video_2 services when we mon-
itor the normalized number of TTI when all mobile learners
meet the PLR requirements (Fig. 9e). In case of video_1,
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Fig. 10: Training stage of the master controller

the slave agent SA1 and EXP scheduling rule act best showing
gains of 11% compared to BF. The gains get even higher
to about 35% when increasing the bit rates of video classes
such as video_3 and video_4. In Fig. 9f, we analyse
the performance of FDP schedulers in terms of 95th PLR
percentile for each video class. The EXP rule and the slave
agents afferent to classes video_1 and video_2 perform
best. For video_3 and video_4, RL-based approaches and
OPLF scheduling rule show the best results with gains of 36%
compared to EXP and BF scheduling strategies.

By analysing the performance of the slave controller, the
following conclusion can be drawn: a) the slave agents pro-
vides nearly or even better performance compared to the
static scheduling scheme that gives the best results for each
objective; b) the advantage of using the RL approach to
select the best scheduling rules becomes more obvious when
increasing the data rates of video services; c) the STD levels
induced by RL-based approaches are not much higher than that
of other static FDP scheduling schemes, making the trained
slave agents stable options to be employed in real practice.

C. Performance of Slave and Master Controllers

1) Training the master controller while exploiting the de-
cisions of the slave controller: Figure 10 shows the training
process of the master controller. In this case, the prioritization
sequences are learnt while exploiting the decisions given by
the slave controller. The master agents keep the same structure
of one hidden layer and 80 hidden nodes. For the neural
network approximating the value function V (s̄; Θ), we use one
hidden layer with 200 hidden nodes. This is necessary since
this critic neural network takes as input data the entire state
s̄ ∈ S̄ that comprises the observations gathered from all video
classes. Because of this aspect, the fluctuations of the value
cost function during a training period of 107 TTIs are higher
when compared to the case of a single slave agent. However,
as seen in Fig. 10, the costs of master agents get stabilized
over time since the target values are fixed to some specific
levels given by (26). By monitoring the value cost function, the
agents’ weights {Θ1,Θ2,Θ3,Θ4} are saved each time when
this function gets minimized and ∆(Θ) ≥ 0, meaning that,
the negative experiences are ignored.

2) Testing the master and slave controllers: The perfor-
mance of the HiMARL framework is presented in Fig. 11
under the traffic-mix conditions. In this case, both master and
slave agents are exploited and their performance is analysed

by using the comparison with the state-of-the-art and priority-
based schedulers, such as RADS and FLS.

In Fig. 11a we analyse the normalized number of TTIs when
the GBR requirements are respected by all mobile learners in
each video class. For the first prioritized services video_1
and video_2, HiMARL and FLS act best with gains of 19%
and 5%, respectively. In the cases of video_3 and video_4,
HiMARL is the best option by offering gains of about 45% and
15% when compared to FLS and RADS, respectively. Figure
11b plots the 5th user throughput percentile of each video
class. Similar performance of the employed schedulers can
be observed for video_1 and video_2 services. However,
HiMARL shows its superiority compared to FLS and RADS
when analysing the performance of video_3 and video_4
services. Compared to FLS, HiMARL provides 42% and
19% more throughput when learners request video_3 and
video_4 content, respectively.

In terms of delay, we represent in Fig. 11c the normalized
number of TTIs when the delay objective is met by all mobile
learners in each video class, while in Fig. 11d, the performance
of the involved schedulers is presented in terms of the 95th

delay percentile at the logarithmic scale. As seen in Fig. 11c,
similar numerical results are obtained by all schedulers for the
video_1 class. From Fig. 11d, it can be seen that HiMARL
can perform slightly better for the same video class. The same
trend can be observed for video_2 service, with the amend-
ment that, the FLS scheduler can get lower delay percentiles.
When delivering video_3 and video_4 content, HiMARL
is much faster with gains higher than 30% and 13% when
compared to FLS and RADS approaches, respectively (Fig.
11c). The same advantages can be observed in Fig. 11d, where
HiMARL can deliver much faster video_3 and video_4
services to learners with unfavorable channel conditions.

In Fig. 11e, the HiMARL framework obtains the highest
amount of TTIs when the PLR requirements are respected
for all video classes. In particular, similar to FLS scheme,
HiMARL gets gains higher than 40% and 5% for video_1
and video_2, respectively, when compared to RADS sched-
uler. For the rest of services, HiMARL is the best option
being able to get more than 33% and 13% of time when the
PLR requirements are respected, in terms of the video_3
and video_4 services, respectively. In conjunction with Fig.
11f, it can be observed that FLS obtains lower 95th PLR
percentile compared to HiMARL for video_2 while similar
performance between the two is shown in Fig. 11e. It can be
concluded that FLS aims to over-provision the mobile learners
requesting video_2 service. For mobile learners requesting
content from video_3 and video_4 classes, HiMARL is
the best option being capable to reduce the loss rates by more
than 70% and 30%, respectively, as indicated by Fig. 11f.

Based on the numerical results obtained by comparing the
performance of HiMARL with other scheduling candidates,
the following conclusion can be formulated: a) the proposed
HiMARL framework can increase the QoS provisioning of
video_3 and video_4 services without penalizing the
learners receiving educational content from video_1 and
video_2; b) the FLS strategy is over-provisioning the
first prioritized classes in the detriment of video_3 and
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Fig. 11: HiMARL framework performance in terms of µp(mp) and σp(mp), where metrics mp are: a) normalized number of TTIs when all
learners meet GBR requirements; b) 5th throughput percentile; c) normalized number of TTI when all learners respect the delay requirements;
d) 95th delay percentile; e) normalized number of TTIs when all learners meet the PLR requirements; f) 95th PLR percentile.

video_4 services; c) RADS is a fair option among all video
services, but since the prioritization order of video classes is
not considered at the TDP level, then this scheme is unable to
differentiate between the current QoS needs of each class.

D. Bridging the Subjective and Objective Assessments

According to the subjective assessments conducted in Sec-
tion III, students can learn in general regardless of the video
quality. The only statistical difference can be observed in
the case of slideshow content, where this service must be
differentiated between high and low quality, as considered by
video_1 and video_2 classes, respectively. However, these
experiments were conducted per each student in particular and
under the presumption of the perfect networking conditions.
Thus, the challenge is to address a more realistic scenario
where groups of students can access educational content
simultaneously, while taking into account the variability of the
network environment. In this case, an acceptable QoS provi-
sioning must be ensured by the network scheduler in special,
in order to provide to students similar learning achievement
levels as obtained in figures 3 and 4.

The proposed hierarchical meta-scheduler based on rein-
forcement learning addresses the challenges of scheduling
multiple mobile learners accessing different educational con-
tent at the same time, while considering the variable nature of
wireless and networking conditions. The aim is to maximize
the number of mobile learners that can get educational video
content with enhanced QoS provisioning and without sacrific-
ing their learning achievement level. As part of the proposed
HiMARL framework, the slave controller is designed to assure
an optimal resource allocation policy that can maximize the
QoS revenue for each video class. Figure 12a shows that the
slave agents can act in general better than other FDP sched-
ulers when the multi-objective QoS provisioning is monitored

separately for each class. By exploiting the decisions given by
the slave agents and training the master controller to decide the
prioritization sequence to be followed each time, the proposed
framework outperforms other candidates in terms of the multi-
objective QoS provisioning for each service class. As seen in
Fig. 12b, HiMARL ensures a better QoS provisioning in terms
of GBR, PLR and delay when delivering the slideshow content
at low and high quality (video_1 and video_2). When
scheduling mobile learners requesting the animation content
at low quality (video_3), HiMARL obtains a gain of about
35% compared to RADS and FLS. In the case of screeencast
content (video_4), HiMARL outperforms other candidates
by more than 17% of time when all QoS objectives are met.

Fig. 12c illustrates the normalized number of TTIs when
all QoS objectives are met in all classes simultaneously as
a function of aggregate number of mobile learners. It can
be observed a relatively similar performance for all involved
schedulers when L ≤ 18 since the radio resources are enough
to cope with low number of aggregate learners and hence, the
optimization of scheduling and resource allocation does not
bring any significant performance gains. When the network is
saturated and L ≥ 46, the number of TTIs when all QoS objec-
tives are simultaneous met is close to zero for all schedulers. In
this case, HiMARL and RADS share the available bandwidth
between all classes with a certain inter-class fairness, imposed
by the standardized prioritized order of P [31], as shown
in Fig. 11f. The FLS scheduler over-provisions the high
priority classes e.g. video_1 and video_2. However, for
heterogeneous learners in L ∈ [24, 42] range, HiMARL shows
significant performance gains when compared to FLS and
RADS. Since the level of heterogeneous QoS provisioning of
HiMARL for 34 learners is equivalent with the level obtained
by RADS and FLS schedulers for 24 learners, we conclude
that HiMARL can accommodate up to 41% more learners.
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Fig. 12: a) Performance of slave agents in terms of µp(mp) and σp(mp), where mp is the normalized number of TTIs when all objectives
are met; b) Performance of the HiMARL framework in terms of µp(mp) and σp(mp), where mp is the normalized number of TTIs when
all objectives are met; c) Performance of the HiMARL framework in terms of µ(m), where m is the normalized number of TTIs per total
number of mobile learners when all objectives are met.

VII. CONCLUSION

This paper proposes a novel machine learning-based re-
source allocation solution for the OFDMA-based networks that
makes use of a novel Hierarchical decision-making process
based on Multi-Agent Reinforcement Learning (HiMARL)
to enable access to video content to an increased number
of mobile learners without sacrificing their learning achieve-
ments. The proposed HiMARL framework employs a master
controller to learn the most suitable prioritization sequence of
educational video classes and a slave controller that approxi-
mates the best scheduling rules to be employed by each class
for the resource allocation. The performance evaluation results
show that the HiMARL framework can accommodate up to
41% more mobile learners for the same quality achievements
as compared to other state-of-the-art schedulers.
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