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Abstract—Virtual reality (VR) content, including 360
panoramic video, provides users with an immersive multimedia
experience and therefore attracts increasing research and devel-
opment attention. However, the requirement of high bandwidth
and low latency of virtual reality service demand puts forward
greater challenges to the current infrastructure, especially mobile
networks. Inspired by the sharable nature of virtual reality
content tiles, we further considered the potential opportunities
for computing, caching, and multicast to address the challenges
of transmission of panoramic content. This paper proposes
a novel transcoding-enabled VR video caching and delivery
framework for edge-enhanced next-generation wireless networks.
Firstly, an edge cooperative caching scheme based on multi-agent
reinforcement learning is introduced to improve the utilization
efficiency of computing and storage resources, and then reduce
service delay. Second, a two-tier NOMA-based base station-
multicast group matching mechanism is designed to solve the
collaboration challenge during the edge delivery process. A series
of experiments have demonstrated the advantages of the proposed
scheme in terms of cache hit rate, latency and other aspects in
comparison with alternative approaches.

Index Terms—Virtual Reality, Multicast Delivery, Cooperative
Cache, Deep Reinforcement Learning

I. INTRODUCTION AND MOTIVATION

Benefiting from the support of 5G, virtual reality (VR)
has been deemed as a representative use case of the next
generation applications, aiming at further improving the daily
life of human beings. Unlike traditional flat video, VR video
allows users to enter the scene as a participant. This enables
users to gain a strong sense of immersion and enjoy a rich
detailed experience. It is therefore no surprise that, according
to a Cisco research report [1], VR headset market is expected
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to grow five-fold, from $18 million in 2016 to nearly $100
million in 2021.

However, the VR content characteristics place higher re-
quirements on the next-generation mobile networks and be-
yond (i.e. 5G/B5G). On one hand, the panoramic VR video
requires delivery of multiple screens-worth data in order to
cope with the dynamic viewpoint change, which tremendously
increases the transmission overhead. For example, the bitrate
of a VR video (400Mbps) is larger than that of a 2-D
video (30Mbps) by an order of magnitude [2]–[4]. On the
other hand, ultra-low latency (≤ 30ms) is required to avoid
viewer motion sickness. Supporting both high bitrate and low
latency simultaneously hinders the wide use of VR content
transmissions and is an important issue to be solved urgently.

Naturally, edge caching is considered as a viable solution
to alleviate this situation. The popular content is cached in
proximity of the viewers at the network edge, generally at
base stations (BS). The redundant duplicated traffic on the
backhaul link is significantly reduced and the service delay
is lowered. However, compared to traditional video caching,
some issues need to be further explored.

The first issue is what content needs to be cached. Caching
a whole VR video is both impractical and unnecessary. Based
on the VR bitrate mentioned above, a five-min video requires
a storage space of 15GB [2]. Even a solution with a BS backed
by a powerful edge server would not be scalable. At the same
time, typically, a head-mounted display (HMD) is equipped
with a screen with a field of view (FoV) with limited height
and less than a third of the 360 degree range1. It means that the
content viewed takes up only a small portion (about 12−20%
[5]) of the VR frame. Caching integrally the VR content is
essentially a waste of bandwidth and storage space. Instead,
each panoramic video frame is usually projected and involves a
transformation from an omnidirectional view to a 2-D plane.
Furthermore, the video is tiled and a FoV-based adaptation
transmission is employed. However, the direction of view is
dynamic and there is a need to carefully determine which tiles
are worth caching.

A second important issue is coping with demands for
content of various bitrates. Depending on the buffer state of
the client and network conditions, the requirements of viewers
for bitrate vary greatly. In general, the multi-bitrate video
encoding using DASH is adopted to provide viewers with

1The FoV of a HTC Vive is 110◦ and that of an Oculus Quest is 100◦.
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diverse video versions and enable adaptive delivery flexibility
[6], [7]. This results in an increase complexity of the cache
decisions. Caching is not limited to the content selection, but
also needs to accommodate changes in the bitrate. The high-
bitrate tiles can be converted to low-bitrate tiles provided
there are enough computational resources. However, which
encoded video versions should be cached remains an important
factor which influences the user experience. In this context,
the transcoding-enabled cache provides support for flexible
increased quality video services. In difficult network delivery
conditions, transcoding converts high bitrate content into low
bitrate content, avoiding emptying of the viewer buffer and
freezing of the display, which would negatively affect viewers
quality of experience. In such conditions, a lower content
bitrate is selected, less information is transmitted, which
eventually goes through the congested network, filling the
video buffer and ensuring the smoothness of video playback.
This continuous playback of video, although at slightly lower
bitrate, is much preferred to one interrupted by buffering
and results in increased user experience [8]. Transcoding2 is
used to complement caching when the high quality content
is not available and not to replace it. When a high bitrate
content request comes in and the cache has it, it will serve it,
supporting high quality of service.

In addition, edge delivery is a primary bottleneck during
VR content service due to the limited communication resource
availability. Benefiting from the fact that shared tiles exist
in the FoV of multiple viewers3, multicast can be employed
to support VR service delivery. By multicast delivering the
shared tiles to multiple viewers, the spectrum efficiency is
improved while also reducing the average latency of edge
delivery. Among the existing solutions, NOMA-based edge
multicast [10] has recently attracted researchers’ attention due
to its positive performance. Through power domain division
multiplexing (PDM), the edge BSs can transmit superposed
messages in the same frequency band, satisfying the requests
of multiple multicast groups. This is regarded as an effective
advanced solution for content delivery in the next-generation
wireless networks, especially in the presence of both macro
BSs (MBS) and small BSs (SBS).

However, the amount of superposed content is limited
and therefore the content to be multicast should be well
determined. At the same time, the coverage of MBSs and
SBSs differs greately4. Therefore, realization of a MBS-SBS
collaborative multicast is an important problem and needs to
be considered.

Summarizing, on one hand, the tiled virtual reality content
presents a fragmented state, and the heterogeneous availability
of resources such as computing and storage determines a
multi-dimensional and multi-scale state space, which increases
the difficulty of caching decision-making and transmission
scheduling. On the other hand, the edge BSs already enable

2The conversion from low bitrate to high bitrate can be achieved by
employing for instance the super resolution technology [9]. This is out of
the scope of this paper.

3Common scenarios include cinemas, shopping malls, airports, etc.
4MBSs cover a wide area and can multicast content to more users, while

SBSs cover a smaller area.

transmission of a large amounts of data and processing of user
requests and can further help, including by hosting data-driven
agents to be trained and employed in enhanced data delivery.
In addition, the natural intersection of multiple viewers’ FoVs
provide great multicast opportunities. In this context, this paper
proposes a novel transcoding-enabled VR video caching
and delivery framework in edge-enhanced next-generation
wireless networks and its major contributions are summarized
as follows:

1) An innovative edge service framework which integrates
caching and multicast delivery is introduced in order
to achieve service latency minimization. The framework
jointly considers collaboration of edge BS, dynamic as-
pect of network and time variability of requests, decom-
posing the problem into two subproblems: caching (de-
livery preparation phase) and delivery (execution phase).

2) Transcoding is included in the cache sub-problem, en-
abling the cached content to be converted to a lower
bitrate and serve more viewers. Further, the collaborative
caching of edge MBS and SBS is formulated as a
networked multi-agent Markov decision process [11]. The
concept of team-average-reward is introduced to describe
the global cache performance at the edge. A multi-
agent Actor-Critic algorithm is proposed to minimize the
latency of delivery preparation.

3) A two-tier BS-multicast group matching algorithm to
support collaborative MBS and SBS multicast content
delivery is designed. The stability and Pareto optimality
of the matching are proved and the computational com-
plexity of the solution is analyzed.

4) A series of experiments conducted have verified the
effectiveness of the proposed approach on a testbed based
on the Aframe Player [12]. The results demonstrate that
the proposal outperforms alternative solutions in terms of
hit rate, time delay and multicast coverage ratio, etc.

This paper is organized as follows. Section II discusses
related works. Section III introduces the system model and
section IV formalizes the problem. Section V designs the
transcoding-enabled cache scheme and section VI proposes
the multicast mechanism. Section VII presents and discusses
the simulation results and section VIII draws conclusions.

II. RELATED WORKS

VR content delivery has attracted the attention of many
relevant researchers, due to its wide application. This section
gives an overview of the related works and explain how the
work presented in this paper is different.

A. Edge Caching

Edge caching has been widely studied in relation to tra-
ditional multimedia due to the benefits of proximity delivery
[13]–[17]. Lately the scope of its application has been ex-
panded to cover VR [18]–[22]. Georgios et al. [18] studied
the case of cached tile streaming encoded by DASH or SVC,
respectively. They minimized the error between requested and
cached content under viewport, and further transformed it into
a K-Medoids problem in the data cluster. The work shows how
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to cope with the various bitrate requirements under different
coding rules. A FOV-aware cache strategy was proposed in
[19] and a Naive-Bayes-based scheme was adopted to learn the
probabilistic model of tile access, so as to determine the prior-
ity of the cache replacement when the storage space overflows.
Machine learning is introduced in this scheme, which improves
the adaptability of nodes to the dynamic environment to some
extent. Maniotis et al. [20] introduced the innovative concept
of virtual viewport. The cache decision was simplified to the
cached video and the cached virtual viewport. A DQN-based
method was designed to determine the optimal placement strat-
egy of the cache, so as to maximize the quality of the delivered
video. Benefiting from the powerful fitting ability of a neural
network, an agent is designed to cope with the dynamic and
complex communication environment more flexibly. The joint
optimization of transcoding and caching was considered. Jacob
et al. [21] proved that the problem is NP-hard and designed
an improved dynamic programming scheme for solving the
problem within polynomial time. Zhou et al. [22] proposed
a joint optimization scheme of cache and transcoding. The
solution was more targeted to the heterogeneous network of
ICN and MEC, and lacks sufficient reference value for cellular
networks. We also studied the problem of transcoding and
transmission of multimedia content, and proposed a solution
based on augmented graph [23], [24]. However, the scheme
mainly solved the demand of livecast of traditional media, and
cannot be directly applied to VR panoramic video scenes.

B. Multicast Delivery
In addition, multicast has been employed by researchers as

an effective tool for supporting VR delivery. For example,
based on the correlation between FOV and location of viewers,
Perfecto et al. [25] proposed a mmWave physical layer
multicast scheme. It decoupled the multicast process into two
sub-problems, i.e. request access and scheduling that can be
solved independently. Long et al. [26] considered two kinds
of quality requirements (i.e. absolute smoothness and relative
smoothness) and multicast modes (i.e. without transcoding and
with transcoding). The opportunity of multicast was extended
in comparison with original natural multicast and the resource
utilization was improved. This motivated us to think whether
the cache strategy with transcoding can further optimize the
efficiency and performance of multicast. At the same time,
TDMA-based multicast content delivery from one server to
multiple users was studied in literature [27]. By optimizing
transmission power and latency, the quality of received video
was maximized. Tan et al. [28] presented an energy efficien-
t resource allocation scheme with non-orthogonal multicast
and unicast transmissions. The available data rate was given
and the energy efficiency was optimized. The performance
of multicast millimeter-wave wireless networks was studied
from the perspective of stochastic geometry and a cooperative
NOMA-based multicast scheme was proposed in literature
[29]. Finally, stochastic optimization of edge multicast was
focused on in our previous work [30].

There is a definite benefit of using NOMA in VR transmis-
sion. The emerging multimedia content imposes higher capac-
ity requirements to the network. Specifically, when multiple

viewers request video content at the same time (i.e. in cinemas,
shopping malls, etc.), the FoVs of viewers have some areas
which are different, but also many areas that overlap. This
means a lot of content has to be delivered repeatedly, results
in unnecessary use of the limited bandwidth resources and
adds to the existing pressure on delivery. Employing NOMA-
based multicast can provide support for such VR transmission,
making NOMA attract the attention of researchers.

For example, in literature [31], the author studied cooper-
ative and non-cooperative NOMA-based transmission scheme
design in the context of VR livecast. By deriving outage
probability and designing an innovative solution for pow-
er allocation optimization, the average outage capacity was
significantly increased, and the quality of user experience
was improved. In [32], the authors combined NOMA with
mobile edge computing and designed a dynamic computing
offloading scheme to reduce the computational cost. The
proposed solution considered the computing requirements of
target recognition, human pose estimation and visual tracking
in a VR context. The authors of [33] focused on the concurrent
support of vision and touch in wireless cellular networks. For
downlink transmission optimization, the authors deduced the
closed-form average rate under OMA and NOMA, respective-
ly, and concluded that the latter has better performance than
the former. Additionally, other researchers stated that NOMA
technology has an important impact on advanced multimedia
applications (e.g. VR) in terms of improving wireless capacity
[34] and resource optimization efficiency [35].

Unlike existing works, this paper introduces a combined
transcoding-enabled VR video caching and delivery frame-
work for edge-enhanced next-generation wireless networks,
proposed in order to increase the quality of the delivered
VR content. The framework includes a novel adaptive content
delivery scheme which uses video tiles, employs innovative
FoV content selection and relies on multicast to improve the
VR content delivery performance. The former provides a novel
cooperative caching scheme to improve the probability that
request can be satisfied at the edge. The latter is applied
to obtain tractable solutions to combinatorial problems in
a distributed manner. The stability and Pareto optimality of
the proposed scheme are demonstrated in order to show its
effectiveness. In addition to the differences from other works,
the testbed used to implement a real VR transmission process
is also an interesting contribution.

III. SYSTEM MODEL

The scenario considered in this paper is illustrated in Fig.
1. The remote server stores all the created VR videos and
transmits the content to the edge via backhaul links to serve
users. An edge network is considered as a heterogeneous
network, consisting of a MBS and one small cell tier. MBS
and SBSs are peer nodes during the caching process and MBS
acts as a regional controller during multicast. Similar to [37]
and [38], the location of edge BSs and viewers is modeled
as an independent homogeneous Poisson point process (PPP)
with the density λB and λU , respectively. In this section,
we introduce the system model involved in this paper, which
includes network, content and cache models.
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Fig. 1. VR service scenario considered in this paper. The remote server
and edge BSs are connected to each other by optical fiber links. Edge
heterogeneous networks provides services to viewers via wireless links.

Notably, we use lowercase italic symbols as scalars, e.g u, b.
The lowercase italic bold symbol is vector. The calligraphic
symbols are sets, e.g. U ,B. The norm | · | denotes the size of
a set/vector. The mathematical notations commonly used are
summarized in Table 1.

A. Network Model

The main network elements include a remote server, edge
BSs and viewers (users). The remote server collects rich
VR video content. The set of viewers is represented as
U = {1, 2, ...u, ..., U}. The set of BSs is denoted as B =
{1, 2, ...b, ..., B}, where B1 is the macro BS (MBS) and
others are the small BS (SBS). Each BS is equipped with
an edge server, which endows the edge BSs with the ability
of computation and storage. The BS bound to the user u is
represented as Bu. It is worth noting that the fiber links are
established between BSs for the convenience of exchanging
the data, which enables the BSs to communicate with each
other and realize collaborative caching. BSs provide services
to viewers over the wireless link.

B. Content Model

All VR video content is recorded and processed in advance.
Then, it is stored in the remote server and can be freely
obtained by any viewer u. In order to simplify the presentation,
the content requested by the viewer is represented as the
v-th video in the video library, and we omit the subscript
when it is not necessary. Due to the spherical feature of the
video content, it is projected to a two-dimensional plane5.
For the convenience of transmitting, the panoramic video is
encoded into G sequential Group of Pictures (GoP)6, denoted
as G = {1, 2, ..., g, ...G}. Each GoP is further encoded with
|D| different versions, D = {1, 2, ..., d, ...,D}, following the

5A variety of projection methods can be used including equirectangular,
cube maps, pyramid maps, equal-area projection, etc. [39].

6The GOPs has segments with fixed duration, e.g. 3 seconds.

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
B,U The set of edge base station and viewers
G,D The set of GOP and various bitrate of the VR video
Zg ,Zug The set of tiles and the FoV of viewer u
M The set of multicast group during delivery process

Hb, Hu The content cached at edge and requested by viewers
sz,d The size of the tile z of version d

Pb, Pbg The transmit power of edge BS b and the g-th content
db,u The distance between edge BS b and viewer u
gb The maximum number of superposed content of b

Ra,b The transmission rate between a and b
c The computational cost for implementing transcoding
k Tiles number in FoV of viewer

Tup, Tud The latency of preparation and delivery
I{·} The indicator of {·}. 1 for true and 0 for false
Ob, Cb The storage space and computational resource
S,A,R Symbols about state, action and reward
V πb , Qb Value-function and the state-action function
Ψ,Υ Different matching for the edge VR delivery

DASH standard to suit various demands from viewers7. To be
specific, it is further cropped as the tiles with equal size. The
set of tiles is denoted as Zg = {1, 2, ..., z, ..., Z} (the z-th tile
of the g-th GoP is denoted as Zg,z).

Note that the higher the VR content bitrate, the better
the service is for the viewers. Correspondingly, the data size
of the content increases with the bitrate level at the same
time. The size of the tile z of version d is represented
as sz,d(sz,D...>sz,d+1>sz,d>sz,d−1>...sz,1). And the tiles
within the FoV is denoted as the set Zug ⊆ Zg . Thus, the
number of tiles within the FoV is denoted as k = |Zug|, u ∈ U .

C. Cache Model

The edge BS is enabled with storage and computation
functions. On one hand, it stores the content most likely to
be requested by viewers nearby and realizes rapid delivery of
the content. On the other hand, the BS has the ability to spend
computational resources and transcode the video locally, thus
converting the content of version d to the content of a lower
version d′ (d′<d) to meet the requirements of more viewers 8.
The storage space of BS b is represented by Ob. The number
of cached high bitrate tiles per GoP is set to k, which is
considered the size of FoV. Fewer cached high quality tiles
require additional tile requests from the remote server, which
puts additional pressure on both network and server. A larger
k implies a higher cache storage space share allocated for this
viewer from the limited total storage space. Therefore, in a
desired solution, the k tiles cover the whole size of viewer
FoV. This is to improve efficient storage space utilization
and encourages the edge BS to cache beneficial tiles without
wasting valuable space. The difference is that these tiles can
be nonadjacent and form a virtual viewport. The computing
resources of BS b are represented by Cb. The computational
cost9 for implementing the transcoding of content from bitrate

7DASH has extended its standard to virtual reality with the amendment on
Spatial Representation Description (SRD) [40].

8The adaptive bitrate (ABR) algorithm deployed at the client determines
dynamically the content bitrate according to the state of the buffer and network
conditions.

9Our test show that the transcoding cost is weakly correlated with the span
of bitrate level, but closely correlated with the target bitrate level [36].
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Fig. 2. System Architecture Diagram. The panoramic VR video is processed (projected and tiled) at the remote server and transmitted to the edge network.
Edge networks serve as many users as possible through caching and transcoding. The edge BS delivers content to the viewers through multicast scheduling.

d to bitrate d′ is denoted as cd,d′ . This cost can be measured
by a transcoding program such as ffmpeg10.

D. Delivery Model

During the delivery process, a NOMA-based edge multicast
is considered in this paper. With the help of power domain
division multiplexing-based NOMA, edge BSs can transmit
a mixture of messages of most gb contents on the same
time-frequency-code resource [50]. The amount of superposed
content is considered as the maximum number of concurrency
for NOMA-based edge multicast. The maximum transmit
power of edge BSs is assumed to be Pb and

∑gb
n=1 Pbn = Pb,

where Pbn is the transmit power for n-th content.
In relation to the decoding process of NOMA, the data

traffic of the VR video service mainly traverses the downlink
from edge BS to viewers. Therefore, we mainly discuss the
decoding order on the downlink NOMA. We sort the viewer
set in terms of the channel gain. If the channel gain of one
viewer is greater than that of another viewer, the former viewer
is considered to be a stronger signal user and the latter is a
weaker signal user. During the decoding process of downlink
signals, the viewers with poor channel quality need to be
allocated higher transmission power to ensure their basic data
rate requirements. Therefore, among viewers sharing a NOMA
cluster, the interference to viewers mainly comes from the
weaker signal viewers. As such, the decoding order is set as
follows.

The weaker signal viewers directly modulate the data (i.e.
the signals from strong signal viewers are regarded as interfer-
ence in this process). The stronger signal viewers first modu-
late the data of the weak signal viewers, then the successive
interference cancelation (SIC) is applied, and finally the data
they want to receive is modulated.

Thus, for the viewer u, the received signal-to-interference
ratio (SIR) (after successfully decoding the symbols from n-th
content) is computed as follows.

SIRu =
hb|db,u|−αPb∑

b′∈B\b
hb′ |db′,u|−αPb′ + hb|db,u|−α

gb∑
n′=n+1

Pbn′

(1)

10https://github.com/FFmpeg/FFmpeg

where db,u is the distance between edge BS b and viewer u.
α is the path loss exponent. The links between the viewers
and edge BS are assumed to be subjected to Rayleigh fading.
hb is the channel coefficient of the link between edge BS
b and the viewer, which follows an exponential distribution
with mean one, i.e. hb ∼ exp (1). Thus, the transmission rate
during delivery can be denoted as Rb,u = Wulog2 (1 + SIRu).
The content of the data sub-layers can be correctly decoded
by viewers through successive interference cancellation (SIC)
when the minimum rate limit is satisfied [28], [29].

IV. PROBLEM FORMULATION

First, in this section, the content service process is sum-
marized as follows. The viewer u sends the content requests
Hu = {f, d, l} to the edge BS b, where f is the content, d
is the version and l is the tiles within FoV. The edge node
checks whether the corresponding or higher version of the
content is cached. When the content is already cached, it can
be quickly and directly delivered to the viewer. If content of
higher versions is available, it can also be delivered to the
viewer following transcoding. In cases where the content is
not cached, the viewer can obtain it from the collaborative
BSs through fiber links. Otherwise, the content has to be
fetched from the remote server. For avoiding motion sickness,
we formalize the VR video service process as a latency
minimization problem next. The problem explicitly includes
the caching and transcoding latency in the edge network (the
delivery preparation phase) and the multicast latency (the
delivery execution phase) during the delivery process. The
major components of latency considered are communication
latency and computational latency.

A. Communication Latency

Communication latency is mainly embodied in two stages.
On one hand, the latency appears in fetching data from the
remote server if the content is not hit at edge. Since BS b is
connected to the remote server through the optical fiber link,
the transmission rate on the link is denoted as Rr,b, then the
latency is denoted as tr,b,z,d = sz,d/Rr,b. Similarly, the rate
between BS b and another BS b′ is denoted as Rb′,b and the
latency is tb′,b,z,d.

On the other hand, the latency appears when delivering the
content from edge to viewers. In order to reduce the load
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at edge network and the average latency of viewers in the
region, the delivery process is considered as a combination
of unicast and multicast. The viewers who watch the same
content are bundled into a multicast group. The set of multicast
groups is denoted as M = {1, 2, ...,m, ...,M}. Mm =
{Mm,U ,Mm,Z ,Mm,D}, whereMm,U is the group member
set and Mm,Z is the tile set of shared vision. Mm,D is the
version requested. And the transmission rate Rb,d = Rb,u is
employed to complete the delivery. The delivery latency is
tb,u,z,d = sz,d/Rb,d.

B. Computational Latency

In the case of caching higher versions of content, the viewer
can be served by transcoding, which avoids the communication
latency from the remote server. Instead, it takes a certain
amount of computing resources and causes the associated
computational latency. Consider the content cached by BS
b as Hb = {f, d′, l}. The computational resources required
for transcoding can be denoted as cb,u,d′,d = cd,d′ . The
corresponding computation latency is tb,u,c = cb,u,d′,d/Cb.

Therefore, the total latency Tu of the service process for
viewer u can be summarized as follows, including the latency
of preparation phase Tup and delivery execution phase Tud:

Tu =Tup + Tud

= I{u,e}tr,b,z,d + I{u,b,b′}tb′,b,z,d + I{u,b}tb,u,c︸ ︷︷ ︸
preparation

+ tb,u,z,d︸ ︷︷ ︸
delivery

(2)
where I{u,e} indicates whether the content requested by u
should be delivered by the remote server, I{u,b,b′} means that
the content can be provided (directly or by transcoding) by
another collaborative BS b′, other than BS b, and I{u,b} shows
whether the content can be located (directly or by transcoding)
on BS b. There exists the following relationship for each
indicator:



I{u,b} =
∑

∀Obi∈Sb

I{Obi,Qu} (3a)

I{u,b,b′} =
(
1− I{u,b}

) ∑
∀b′∈B,b′ 6=b

I{u,b′} (3b)

I{u,e} =!
(
I{u,b}&&I{u,b,b′}

)
(3c)

where IObi,Qu means that Obi is the content requested by
u. Iu,b ∈ [0, 1],∀b ∈ B means that only one version of
each content can be cached in edge BS. && is the AND
operator and is used to combine the two cases described in
sub-equations (3a) and (3b). ! is the NOT operator and is used
to denote an opposing logical value.

The average time latency of the viewer at edge is then
expressed as follows.

TU =
1

U

∑
∀u∈U

Tu (4)

(a)
=

1

U

∑
∀u∈U

Tup +
1

U

∑
∀u∈U

Tud

Through the equation item (a), the average latency is
decomposed into the average preparation latency and the av-
erage delivery latency. The transformation can be extended by
formula (2). Thus, the average latency minimization problem
is formulated.

min TU

s.t. b ∈ B, d ∈ D, u ∈ U
Iu,b ∈ {0, 1}, Iu,b,b′ ∈ {0, 1}, Iu,e ∈ {0, 1}
U∑
u=1

IBu,bcb,u,d′,d ≤ Cb∑
g∈G

∑
z∈Zg

Iz,bsz,d′ ≤ Ob

(5)

where IBu,b is the indicator of b = Bu and Iz,b denote whether
the tile z is cached in BS b.

In the problem (5), we have two undetermined variables.
The first variable is where the content can be fetched from,
which is a binary variable (i.e. base station or remote server).
The second indicates how to deliver the content to viewer,
which is a discrete variable (i.e. unicast delivery, multicast
delivery from MBS or SBS). In fact, as shown in equation
(2) and equation (4), the optimization process is primarily
divided into two separate phases, which are associated with
two subproblems: delivery preparation phase (i.e. caching and
transcoding) and delivery execution phase. Next these two
subproblems are focused on and the goal is to determine
optimal values for the two variables, respectively.

V. CACHE AND TRANSCODING-ASSISTED DELIVERY
PREPARATION PHASE

This section describes the cache and transcoding-assisted
delivery preparation phase. The cache of each BS changes
following the viewer requests at every moment. In order to
model this complex dynamic process, we represent it as a
Markov decision process (MDP).

A. Markov Decision Process

The MDP of edge BS is summarized as a 4-tuple K =
{S,A, P,R}.
• S = {Ss, Sr, Sv, Sl} is the state, including the current

cache state Ss, the request information from viewer Sr,
the tile information for various versions Sv and the
capacity limit Sl = Ob. Ss = {ss1, ss2, ..., ssz},∀ssz ∈
(0, 1) is a vector with the size of tiles in the video
(e.g. G ∗ Z). Each element is used to represent whether
the tile is cached (i.e. 1 for cached and 0 for no hit).
Sr = {sr1, sr2, ..., srz} is used to denote the request in-
formation. srz ∈ [0,+∞) is denoted the requested times
for the tile in the past h slot. Sv = {sv1, sv2, ...svD}.
Each element is the unit size of a different version.

• A = {Agz}, Agz ∈ [0, D],∀g ∈ G,∀z ∈ Z is the cache
action for the video content with the unit of tile. Agz = 0
mean that the tile is not cached. Other options mean that
the corresponding version of the tile is cached.
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• P (s′|s, a) is the transition probability from state s to
another state s′ through the action a. In other words, P
represents the impact and the model of the environment.

• R is the reward. It is determined by the state and action
(i.e. S × A → R), including the service latency of
the viewer within the range of the edge BS and the
capacity penalty Ω. The former is denoted as T bp =
1
N

∑
∀u,Bu=b Tup,∀b ∈ B, where N is the number of

viewers within the range of BS b. The latter is a negative
constant for punishing the cache overflow phenomenon.

B. Markov Game

In fact, due to the cooperation between BSs, the caching
decision of each BS has a significant impact on the service
performance of other BSs. In other words, BS b receives
rewards not only from its own action, but also from the actions
of other BSs (e.g. b′). Therefore, we extend the MDP of
a single agent to a Markov Game (MG) for a multi-agent
setting by taking the relation between agents into account.
A MG is denoted as V = {B,S,A,R, γ}. B is the set of
participant (i.e. edge BSs), each of whom is also referred to
as an agent. S = {sb},∀b ∈ B, sb ∈ S is the joint state
space. A = 〈a1, a2, ..., aB〉 , ab ∈ A is the joint actions.
R = {Rb},∀b ∈ B, Rb ∈ R is the immediate joint reward.
γ is the discount factor. In a MG, the environment faced
by each agent is non-stationary, affected not only by the
evolution of the underlying communication system, but also
by the decisions made by other agents which are improving
their strategies. This makes most single agent-based schemes
ineffective.

It is worth noting that the benefits of caching are generally
not clear in the short term. Actually, the edge BS needs
a caching strategy that can obtain the superior long-term
cumulative benefits. On the other hand, the reward of each BS
is different from each other. For the convenience of expression,
the utility of edge is denoted as Re =

∑
b∈B Rb. Further, the

team-average reward is defined.

Definition 1. Team-Average Reward allows more heterogene-
ity among agents and facilitates the development of decentral-
ized algorithms. It is defined next.

R := B−1 ·
∑
b∈B

Rb (6)

Thus, the long-term reward can be denoted as follows.

R =
1

T
lim
T→∞

T∑
t=1

R =
1

TB
lim
T→∞

T∑
t=1

∑
b∈B

Rb

=
1

TBN
lim
T→∞

T∑
t=1

∑
b∈B

∑
∀u∈U,Bu=b

(Tup + IboΩ)

(7)

where Ibo is the indicator for overflow.
The purpose of the agent b is to find a best policy πb : S→

ab to maximize the benefits. And the joint policy of all agents
is denoted as π (a|s) =

∏
b∈B πb (ab|s), where s ∈ S, a ∈ A.

For the sake of representation, let −b denote the set of all agent

Video 
Capture

Video 
Encoder

Video 
Tiled

Scheduler

Agent 1 Agent 2
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Transcoder
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Transcoder

Cache
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(Team-Average 

Reward)

Local information exchange

A1 A2
Tile Tile...

S1 S2
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LossLoss

Networked
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Fig. 3. Cooperative cache. Each agent can make the cache decisions
according to the joint state.

in B except b next. For example, A−b represent the action of
BS other than b. π−b is the policy set except b. Hence, the
value-function of agent i is defined as follows.

V π
b (s) = E

[ ∞∑
t=0

γtRt (st, at, st+1) |abt ∼ πb (·|st) ,∀abt ∈ at

]
(8)

where st and at are the instances of s and a at the t-th slot,
respectively.

As can be seen from the above, in order to obtain the
maximum benefits, b not only needs to consider the service
status of the viewers within its own scope, but also needs to
consider the impact of its decision on the viewers in the range
of other BSs. This makes the evolution even more dynamic.

In this case, the purpose of an agent is to find an optimal
strategy π∗b to obtain the maximum value. However, the
state is ever-changing and the relationship between agents is
coupled, which makes very challenging for an equilibrium to
be achieved. On one hand, the multi-dimensional and multi-
scale characteristics of the state space makes the solution space
of the problem very large. The problem is difficult to be
solved within polynomial time by an optimal algorithm. On
the other hand, the complex time-varying environment makes
the heuristic algorithm have to repeat the solution process,
which reduces the flexibility. Next, we introduce a multi-agent
reinforcement learning method to handle this problem and try
to find the equilibrium point.

C. Multi-Agent Deep Reinforcement Learning

In order to solve the non-stationary nature of the en-
vironment, in this subsection, we propose a Networked
Decentralized paradigm of Multi-agent Actor Critic algorithm
(NDMAC), based on the framework of centralized training and
decentralized execution [43]. In the networked decentralized
multi-agent reinforcement learning, multiple agents perform
decisions in a common environment without the coordination
of any central controller. This also allows each agent to
exchange information with their neighbors over the available
communication networks, as shown in Fig. 3.

1) Actor-Critic architecture: Actor-Critic combines the ad-
vantages of policy-based and gradient-based methods, which
can realize simultaneously the off-policy learning and the
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Algorithm 1 Multi-agent Actor-Critic Algorithm
1: Input: The edge BSs B. The viewers U . The information

of the video G,D,Z . The information of the BSs C, O.
2: Initialization: For each agent b ∈ B, the initial neural

network ϕ, ϑ is set with parameter θb, µb, respectively.
The state s and joint actions a = {a1, ..., aB} are set.

3: t = 0;
4: while t ≤ max-epidode-length do
5: /* Action */
6: for Agent b ∈ B do
7: Collect the state information s from the edge BSs

and generate the action ab = ϕb (s).
8: Execute the cache action ab for regional viewer

in current slot and generate the new state s′. And the
transition is stored in replay buffer.

9: Obtain the local reward Rb and share it with the
other edge BSs.

10: end for
11: The team-average reward is obtained based on equa-

tion (7).
12: /* Evaluation and Update */
13: for Agent b ∈ B do
14: Critic: Calculate the target Q value and the loss

based on equation (10)-(11).
15: Actor: The gradient of the expected return of actor

ϕb is obtained.
16: end for
17: end while

rapid update. Specifically, Actor ϕ is used to output the
action and Critic ϑ is used to judge the advantages of the
action. And θ and µ are the parameter of these two networks,
respectively. The above two structures form an agent together.
Thus, NDMAC includes B Actor and Critic, respectively. And
for any critic ϑbµ, in order to measure how good the action is
in current state, the action-value Qb, which is also called Q
value, is given as follows.

Qb
(
s, a|ϑbµ

)
= E [Rt + γQb (s′, a′)] (9)

where s = {stb, st−b} and a = {atb, at−b},∀atb = ϕbθ (s).
Similarly, s′ and a′ denote the corresponding vector in t + 1
slot.

As shown above, the Q value is a recursive expression. In
this paper, the neural network (Critic) is used as a fitting
function to obtain the Q value. The loss during the back
propagation is:

L(t) (ϑ|µ, µ′) = E [(y(t)−Qb(s, a)|ϑµ)]
2 (10)

where y(t) is the target Q-value and expressed as follows.

y(t) = E[(1− β)Qb(s, a|ϑµ) + β (Rt + γQb(s′, a′|ϑ′µ) )] ,
(11)

In addition, we introduce the performance objective J to
measure the advantage of the actor policy, as follows.

Jδ (ϕθ) =

∫
S

ρδ (s)Q (s, a)ds

=Es∼ρδ
[
Q
(
s, ϕ1

θ (s) , ϕ2
θ (s) , ..., ϕBθ (s)

)] (12)

where ρδ is the PDF of state. And ϕbθ,∀b ∈ B is the param-
eterized neural network. Then, the gradient of the expected
return of agent b is denoted as follows.

∇θJδ (ϕb)
(1)
≈ Es∼ρδ [∇θϕ (a|s) · ∇aQ (s, a|µ)]

(2)
≈ 1

χ

χ∑
b

[
∇θbϕb (ab|s) · ∇abQ (s, a1, ..., aB |µb) |ab=ϕb(s)

]
(13)

where χ is the number of sampled minibatch from the replay
buffer. As shown in equations (10)-(14), the decision and
update of policy of any agent needs to know the actions and
state of other agents, which is not a particularly restrictive
assumption [44]. On the other hand, the edge BS within the
area can realize fast communication and information exchange
through an optical fiber link. Similar to [45], [46], the signaling
overhead is ignored here. The detailed algorithm is introduced
in Algorithm 1.

This solves the pre-delivery optimization problem. Next, we
consider the delay optimization in the edge delivery process.

VI. MULTICAST AND EDGE-SUPPORTED DELIVERY
EXECUTION PHASE

This section focuses on the delivery execution phase in
which the cached or transcoded tiled video is delivered to
the viewer. In an environment with large-scale user requests,
the delivery process puts great communication pressure on
the edge network, and may affect the QoE of viewers. As
discussed earlier, the shared FoV of viewers provides an
opportunity for multicast usage. However, on one hand, the
viewers requesting the same tiles are scattered in the range
of various SBSs, which increases the difficulty of multicast
scheduling. On the other hand, the multicast ability of the SBS
within a time slot is also limited. Additionally, the selection of
multicast content is also a key factor affecting user QoE. This
is actually a combinatorial problem between base station and
multicast group. In this context, a two-tier multicast scheduling
scheme based on matching theory [47], [48] is proposed next
for solving the scheduling problem mentioned above.

A. Matching Formulation for Multicast Delivery

Matching theory is a powerful economic tool which can
describe the mutually beneficial relationships between par-
ticipants [49]. In the context of this work, it can help find
a tractable solution to improve the delivery between edge
BSs and multicast groups. The designed delivery matching
is given by a 4-tuple {B,M,�b,�m}, where �b and �m
are the preference profile of edge BS and multicast group,
respectively. M = {1, 2, ...,m, ...} is the set of multicast
groups. The match is defined as follows.

Definition 2. Match Υ is the solution for associating edge
BS and multicast group, which can be defined as the mapping
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function B∪M→ 2B∪M, where 2B∪M = {e|e ⊆ B∪M} is
the set of all the subsets of B ∪M.
• |Υ (m) | ≤ gb and Υ (m) ⊆ B ∪ φ, m ∈M
• |Υ (b) | ≤ 1 and Υ (b) ∈M∪ φ, b ∈ B
• Υ (b) = m if and only if Υ (m) = b

where 2(·) is the set of all subsets. |Υ (·) | is the cardinality
of the match result. Υ (m) = φ means that the content cor-
responding to multicast group m should be delivered through
unicast by its bound BS. Υ (b) = φ means that edge BS b
does not perform multicast in current slot.

B. Preference Profile for Participant

The preference profile is a complete, reflexive and transitive
binary relation between two rational participants sets B and
M. It can be used to characterize the selection tendency of u-
nilateral participants for matching. The preference relationship
�i, i ∈ (b,m) is used to describe the priority of participants
during the matching process. For the participants x, y on one
side (e.g. edge BSs or multicast groups) and the participant i
on the other side, the relation x �i y is defined next.

x �i y ⇔ Ui (x)>Ui (y) (14)

where Ui (·) is the utility function. The preference profile is
then introduced as follows.

1) Preference Profile for VR Multicast Group: Due to the
selfishness of the participants, the multicast group expects
the matching edge BS to minimize the delivery delay of
the multicast group, i.e. maximizing the transmission rate
for the member within the multicast group (minTud =
min

sz,d
Rb,u

→ maxRb,u). Meanwhile, the multicast group
can only bind one edge BS at the same time. Thus, the
utility function of a multicast group can be expressed as:
Um(b) = max

b∈B
1

|Mm|
∑
u∈Mm

Rb,u. The multicast group sorts
the edge BSs according to the utility and selects the one that
could provide the maximum average transmission rate as the
best match.

2) Preference Profile for Edge BS: Similarly, for the pur-
pose of reducing the average latency in edges, the edge
BS sorts all the multicast groups and selects the candidate
multicast group according to its own multicast capacity. In this
context, an utility function of BS is defined as a function of
transmission rate similar to the preference profile for multicast
group, i.e. Ub (m) = max

m∈M
avg{

∑
u∈Mm,b=Bu Rb,u}.

It is worth noting that a multicast group includes the viewers
from various SBSs and is just globally put together by MBS.
On the other hand, due to the limited range of SBS, in
generally a SBS cannot meet the service requirement for all
members in a multicast group. Therefore, the matching theory
cannot be applied directly to the current situation. Instead
we propose the following two-tier matching algorithm as a
solution.

C. A Two-Tier BS-Multicast Group Matching Algorithm

The idea behind the proposed two-tier BS-Multicast Group
Matching Algorithm includes the following two aspects. First,

Algorithm 2 Two-Tier Matching Algorithm
1: Input: The edge BSs B. The multicast group M.
2: /* Preference Profile Establishment */
3: Initialization: For each edge BS b ∈ B and each multicast

group m, the preference profile L is established according
to its utility function.

4: /* MBS Matching Stage */
5: MBS traverse its preference profile to select the global

multicasting content m′.
6: Multicast group delete MBS in their preference profile.
7: Multicast subgroup is generated according to the binding

relationship.
8: while ∀b ∈ B, |Υ (b) | = 1 or ∀m ∈ M, |Υ (m) | = 1

do
9: /* SBS Matching Stage */

10: for BS b ∈ B\{1}, multicast group m ∈M\{m′} do
11: b and m select the multicasting content with the

highest priority, respectively.
12: if Υb = m and Υm = b then
13: The matching between b and m is successful.
14: end if
15: end for
16: end while

according to the multicast capacity of BS, we split the edge
into two tiers (MBS multicast and SBS multicast) to imple-
ment sequential matching. Next, due to the various sources of
the members of the multicast group M, it is further divided
into several subgroups. The set of the subgroups is denoted as
Md.

The proposed BS-Multicast Group Matching algorithm,
based on the Gale-Shapley deferred acceptance (DA) algorith-
m, is detailed in Algorithm 2. In first tier (MBS multicast),
according to the utility function and multicast capability, MBS
ranks the set of multicast groups according to the lowest
latency. Similarly, the multicast group sorts the list of BSs
based on the utility function and outputs request preferences.
If both sides are mutually selected, the match is considered
successful. It is worth mentioning that no SBS participates in
the match until MBS completes the match. It can be seen that
this process is essentially a seller market of MBS, which can
be simplified as an unilateral matching of MBS in the first
stage. Next, in the second tier (SBS multicast), the multicast
groups are divided into subgroups and bilateral matching
is performed. Both the BS and the multicast group select
the corresponding results according to preference profiles as
shown in line 9-15. And in line 8, it determines whether to
enter the next round according to the matching results.

D. Stability and Pareto Optimality

In this subsection, the performance of the two-tier match-
ing is analyzed, including stability and optimality. First, the
definition of stability is given.

Definition 3. Stability. A match has entered the state of sta-
bility if and only if there are no blocked pairs (b,m) ∈ B×M
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such that

(b �
m

Υm) ∧ (∃m′ ∈ Υb,m �b m′) (15)

Proposition 1. The two-tier delivery matching can converged
to the stability.

Proof: To prove the proposition, we adopt the contradic-
tion. Consider the matching produce a result Υ with a blocking
pair (b,m), it means that equation (15) is established. For
b �m Υm, the multicast group m will adjust its selection
to b rather than the current matching result Υm according to
its preference profile. At the same time, m /∈ Υb means that
∀m′ ∈ Υb,m

′ �b m, which violates the right item of equation
(15). Thus, the proposition is proved.

Definition 4. Pareto-Optimal. The matching result Υ is Pareto
optimal if and only if there does not exist other matching
Ψ satisfying equation (16a) and one of the conditions from
equations (16b) and (16c).

Ψm%m Υm,∀m ∈M; Ψb%b Υb,∀b ∈ B. (16a)

∃b ∈ B,Ψb �b Υb (16b)

∃m ∈M,Ψm �m Υm (16c)

where equation (16a) means that the matching is better than
or equal to the original matching Υ for all participants. Equa-
tions (16b) and (16c) guarantee that there exists a participant
that can earn more benefit from the matching Ψ. The latter is
also called the Pareto improvement.

It is worth noting that Pareto optimality is a relative concept.
The comparison relation is established on a partial ordered set,
and participants can improve their own benefits on the basis
of not harming the benefits of others. Affected by the rational
setting, the participants never take actions that harm their own
interests, even if the actions can improve the total return. This
is different from the social welfare maximization.

Proposition 2. The two-tier delivery matching is Pareto-
optimal.

Proof: Let us assume the stable matching Υ and a new
matching Ψ exists. The latter is organized by the selection
adjustment from the multicast group m and m′ (i.e. Ψ =
Υ − (m,Υm) − (m′,Υm′) + (m,Υm′) + (m′,Υm)). For
convenience, the utility of the matching can be simply denoted
as U (·) =

∑
m∈M

∑
b∈B

Im,bUm (b), where Im,b is the indicator

for Υb = m. According to the concept of Pareto improvement,
obviously, U (Ψ)>U (Υ). From the definition of preference
profile, the higher ranked element is selected by the algorithm.
Due to the fact that Ψm �m Υm, Ψm must be contacted
first for m and rejected. Similarly, Ψm′ is contacted earlier
than Υm′ for m′ and rejected as well. It can be inferred that
UΨm<UΥm and UΨm′<UΥm′ , which violate the definition of
Pareto improvement. Thus, the Pareto-optimal of the matching
can be proved.
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Fig. 4. Experimental Environment. The location of viewers and SBSs obey
Poisson distribution. MBS is set in the center of the scene.

E. Completeness and Complexity Analysis

In order to demonstrate the practicability of the scheme,
the completeness is demonstrated and the complexity of the
algorithm is quantified in this section. According to [51], the
two-tier algorithm always finds a solution (i.e. Pareto optimal
here) if a solution exists or otherwise it determines that a
solution does not exist within a finite amount of time. Thus, the
completeness of the algorithm is obtained. First, the multicast
group information and the edge BS information are collected
by MBS and sorted by preference profile. Thus, according
to the standard sorting algorithm, the sorting complexity of
multicast group is O (BlogB), and the sorting complexity of
edge BS is O (MlogM). In addition, the two-tier approach
is applied in the matching phase and the worst-case perfor-
mance is considered. On one hand, due to the advantages of
coverage during multicast, MBS can select multicast groups
with the highest priority according to the preference profile.
On the other hand, multicast subgroup generation relies on
the number of viewers with the complexity of O (U). Finally,
during the matching process, the continuous conflicts between
BSs occur in the worst case and the complexity is O (B).
Therefore, the matching algorithm is mainly deployed in MBS,
the complexity is O

(
B2logB + U

)
. SBSs mainly complete

preference sorting, and the complexity is O (MlogM).
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VII. PERFORMANCE EVALUATION

In this section, the performance of our proposed solution is
evaluated. First, the experimental environment and parameter
settings are described. Then, the performance of our solution
is compared with several benchmark algorithms.

A. Experimental Environment

The testing environment considered is a two-layer hetero-
geneous network with an area of 500∗500m2. The edge SBSs
and the viewer are located in the area with the independently
homogeneous PPP with a density of 5 and 50, while the MBS
is considered placed at the center of the scene. MBS and
SBSs are connected to each other with a gigabit bandwidth.
Regarding the content, a VR video library is set to contain
30 files. The popularity of the videos is considered to follow
a Zipf distribution with a parameter of 2. The length of the
VR video clips is set to 60s. The resolution of the VR video
frame is considered 7680*3840 according to the detailed specs
of Insta360 Pro211. Each video is further divided into 30 GoPs
(i.e. each GoP is set to 2s and contains 60 frames with 30fps).
A GoP is split into 4*4=16 tiles. Each tile, with a resolution
of 1920*960 is further encoded with the help of the ffmpeg
library at four different bit rates: 15Mbps, 30Mbps, 60Mbps,
and 120Mbps. For a GoP, the transcoding overhead across one
level is considered to be 20GHz. For edge BSs, we consider
that a cluster of servers with [6,10]GB of storage space and
[50,100]GHz of computational resource is deployed in each
node. In addition, the arrival rate of the request of viewers
follows the Poisson distribution and the request is delivered to
the nearest edge BS for processing. According to the available
research, in general, only 12-20% of the frame area is visible
[5]. For instance, the FoV of HTC Vive12 is 110 degrees,
less than a third of the horizontal field and less than half
of the vertical field (i.e. the areas behind, under viewers feet

11https://www.insta360.com/product/insta360-pro2/
12https://business.vive.com/cn/product/vive-pro-eye/

and above viewers head cannot been watched). Thus, in this
paper, the scope of the content requested by the viewers is
fixed to 20% of the entire frame. The preference for tiles
follows a Gaussian distribution from the center to the edge of
frame [52], [53]. The experiment was deployed on an Aframe
Player-based13 testbed, as shown in Fig. 5. The architecture
includes three components: Remote Server14, Edge Server and
Client Viewer. At the remote server, a resource monitoring
(ResMonitor15) module is deployed to obtain the current
resource status (e.g. CPU usage, memory, etc.) of nodes (e.g.
remote servers or edge servers). The VideoHandler module
employs FFmpeg to encode, tile and segment VR videos. The
content is transmitted from the remote server to the edge server
via the HTTP protocol. The Edge Server provides Transcoding
and Caching functions. Transcoding supports caching, where
the cache module queries the storage space on request and
performs content replacement according to the cache decision.
The Edge Server multicasts content to the Client Viewers
using NOMA. The client deploys the FoV Forecast Module
and Adaptive Bitrate Module, which provide information about
FoV and the bitrate. The client plays the content using the
Aframe Player.

B. Performance Result Analysis

1) Transcoding-enabled Edge Cache: To test the perfor-
mance of NDMAC, it was compared with three benchmark
solutions: Central Cloud Services (CCS), Random Cache (RC)
and Greedy Cache (GC). The content requested by viewers
is obtained directly from the cloud in CCS and there is no
caching or transcoding strategy at the edge. The edge BS
caches the tiles randomly in RC, whereas in GC, the edge
BS caches content according to the history information within

13The aframe is a opensource VR player, which is opened at http-
s://github.com/aframevr/aframe

14The servers are located at Beijing University of Posts and Telecommuni-
cations (BUPT).

15The ResMonitor is also applied in our previous work in [24].
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Fig. 7. Average Reward Fig. 8. Reward of Agent Fig. 9. Transcode Latency of Agent Fig. 10. Transmit Latency of Agent

Fig. 11. Transmit Latency Fig. 12. Transcode Latency Fig. 13. Cache Hit Ratio Fig. 14. Cooperative Cache Hit Ratio

8 slots. Before the specific experimental results are analyzed,
the concepts of cache hit ratio and cooperative cache hit ratio
are introduced. First, the cache hit ratio is the probability of
resulting a hit when requesting the content at the edge network,
including the associated BS b and other BSs. The cooperative
cache hit ratio represents the probability that a hit will be
recorded at an edge other than the associated BS b when the
content is requested. Thus, the cache hit ratio is equal to the
cooperative cache hit ratio plus the cache hit ratio at BS b.

First, as shown in Fig. 7, the average team reward of
the scheme is plotted. Each point in the solid line is the
average of 10 episodes. The extended region is composed
of the range difference between the maximum and minimum
values within 10 episodes. It includes two processes, training
and deployment. Both of them present a relatively stable
fluctuating situation. Note that the rewards during training are
higher than those in the deployment phase. This is because in
the latter case, exploration strategies and critic are removed,
so that actors have to deal with complex state spaces on their
own. On the other hand, the reward fluctuates more in the
latter, which is the result of models responding to complex
environments. The change of reward for each agent (edge BS)
is shown in Fig. 8. Similar to the situation in the previous
figure, the points in the solid line show the average reward
of 10 episodes, while the dashed areas show the range of
fluctuations. All the agents can enter the equilibrium state, and
the reward increases and decreases in a staggered manner with
the change of the environment. To find out where the change in
reward came from, we conducted the following experiments.

Fig. 9 and Fig. 10 record the change of transcoding latency
and transmission latency. The transcoding latency comes from
the change of the requests of viewers, which is positively
correlated with the difference of bitrate. The transmit la-
tency comes from the overhead of collaboration for edge
hits and cloud acquisition. The transcoding overhead of the

agent presents an upward trend, while the transmission delay
presents a downward trend. This indicates that more requests
from viewers are satisfied by the edge network, thus reducing
the frequency of the acquisition of content from the cloud.
Transmission latency are difficult to eliminate because some
content still needs to be retrieved from the cloud, and the
collaborative process of the edge BSs always exists.

In order to verify the performance of NDMAC, we further
compare it with other schemes. As shown in Fig. 11 and
Fig. 12, the transmission latency of each scheme is plotted.
Among them, the latency of the situation without cache is the
highest of all. Relatively, the random strategy can earn some
benefits from the cache mechanism and the greedy cache and
NDMAC can further reduce the transmission cost. Regarding
transcoding delay, the transcoding delay of the random cache
approach is low, due to the low hit rate. The transcoding
latency of the greedy strategy is relatively stable, while that
of NDMAC is relatively fluctuating.

Finally, the cache hit ratio and cooperative cache hit ratio are
illustrated in Fig. 13 and Fig. 14, respectively. NDMAC can
achieve a certain degree of benefit. In terms of cache hit ratio,
random cache has a low hit ratio. The cooperative caching
hit ratio of the greedy strategy shows a certain upward trend
with the increase in the number of viewers in the early stage,
and tends to be stable in the later stage, indicating that the
greedy strategy depends on the amount of observation data.
In contrast, NDMAC shows better cooperative characteristics.

2) NOMA-based Multicast Delivery: The shared tiles in
the viewport of viewer are considered as paramount for the
formation of a multicast group. The multicast capability of
each BS is considered to be according to a uniform distri-
bution of [3,6]. The transmitting power is set to 10W. The
proposed NOMA-based solution is compared to a FDMA-
based multicast scheme and a unicast scheme. The former
can only multicast once within one slot, while the latter
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Fig. 15. Performance versus BS Number Fig. 16. Performance versus Group Number Fig. 17. Performance versus Viewer Number

provides services to viewers with unicast. At the same time,
in order to improve the generalization of the proposal and the
representativeness of the results, we repeated the algorithm
10 times and took its average as the experimental data. The
specific tests are introduced as follows.

As shown in Fig. 15, we first tested the total transmission
rate Rtotal =

∑B
b=1

∑U
u=1Rbu of all viewers at the edge

during delivery, and observed the change of the total transmis-
sion rate over the number of edge BSs, multicast groups, and
viewers. First of all, limited by the minimum transmission rate
of a member in a multicast group, the total transmission rate
of the proposed scheme is the lowest. Unicast-based scheme
satisfy individual maximum rates of viewers and therefore its
sum of all rates is the highest. As the number of edge BSs
increases, the sum of all transmission rates shows an overall
upward trend for all schemes. Further it tends to be stable
when the number of edge BSs is larger. This is because with
the increase of the number of deployed BSs, the load of a
single BS is reduced and the transmission rate of serving
viewers is improved. However, due to the frequency utilization
efficiency of the NOMA-based multicast and the limitation of
the minimum transmission rate, the proposed scheme remains
in a stable state from beginning to the end. At the same time,
the average latency of our proposal is the lowest, as shown at
the right of Fig. 15. When the number of BSs is in the range
of [3,5], the proposed scheme achieves significant advantages
in terms of average latency. As the number increases, the
service capacity at edge rises and becomes redundant. The
other schemes can benefit from the trend and eventually their
latency approaches that of our proposal.

Then, the effect of the number of multicast groups on
performance is tested. On one hand, as expected, unicast is
not affected by the number of multicast groups. The overall
transmission rate is higher in the unicast-based scheme while
the average latency is also relatively high. On the other hand,
the multicast capacity of FDMA-based scheme is limited
by frequency and its performance is inferior to that of the
proposed scheme. In fact, with the increase in the number of
multicast groups, the members within more multicast group
cannot be served via multicast and content has to be delivered
by unicast, thus resulting in an increase of the overall trans-
mission rate and latency. Due to the advantages of NOMA
in multicast, its performance degrades slower than that of the
FDMA-based scheme when the number of multicast groups

increases.
In addition, the impact of viewers on performance is also

taken into account. As the number of viewers increases, the
overall transmission rate increases, and the average latency
of viewers shows a different trend. The latency of unicast
is relatively stable and the scheme with multicast can get a
significant benefit from it. Noteworthy is that the proposed
scheme reduces the average latency by 65% compared to the
FDMA scheme. In particular, due to the increase in the number
of viewers, the average latency of unicast and FDMA-based
schemes shows an upward trend within the range of [70,90],
while the proposed scheme is still able to maintain a low
latency.

And the pareto-optimal of the two-tier matching algorithm
is testing in Fig. 18. As a result, the utility of edge BS
Ub =

∑
Ub (m) ,m ∈M, which is defined in the preference

profile for edge BS, is increasing. The gradient of utility tends
to go down. Due to the limited multicast capacity of the
BS, it cannot provide services for all multicast groups. How-
ever, according to the above trend, the Pareto improvement
is monotonous, and our scheme can finally achieve Pareto
optimality.

Finally, the multicast probability and multicast coverage
ratio are assessed. Multicast probability represents the propor-
tion of the number of multicast groups whose requests are
satisfied among the total number of multicast groups. The
latter represents the ratio of the number of users served by
multicast to the total number of viewers. As shown in Fig.
19, the multicast probability of the proposed scheme is higher
than that of the FDMA-based scheme. When the number of
multicast groups is small, the probability can reach 70%,
which is far higher than the delivery capacity of the alternative
solution. This leads to the significant advantage in coverage
ratio. On the other hand, the smaller the number of multicast
groups, the more concentrated are the viewers. The proposed
scheme can cover nearly 80% of the viewers when the number
of groups is 5. As the number increases, the coverage ratio
decreases, but it is still three times as much as that of the
FDMA-based scheme. This demonstrates the superiority of the
proposed solution for VR content delivery.

VIII. CONCLUSIONS

This article proposes a novel transcoding-enabled VR
video caching and delivery framework in edge-enhanced next-
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Fig. 18. Pareto optimization of the utility Fig. 19. Multicast Coverage Ratio and Multicast Probability

generation wireless networks. In order to avoid viewer motion
sickness and increase their QoE, the VR content delivery is
formulated as a latency minimization problem. The problem
is split into two sub-phases: caching and transcoding-assisted
delivery preparation and edge-supported multicast delivery.
First, an edge cooperative caching strategy based on multi-
agent deep reinforcement learning is proposed, which makes
full use of the storage and computing resources deployed in
edge BSs. Then, based on cooperation between edge MBS
and SBSs and support from multicast, we design a two-
tier BS-multicast group matching algorithm, which provides
a practical and feasible solution for VR content delivery.
The proposed solution is tested in a series of simulation
experiments, and compared with benchmark algorithms. The
performance of our proposal outperforms those of state-of-the-
art alternative solutions in terms of several metrics, including
cache hit ratio, transcoding latency, delivery latency, etc.
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