
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 1

Distributed Data Backup and Recovery for Software
Defined-WAN Controllers

Yi Zhang, Lujie Zhong, Shujie Yang and Gabriel-Miro Muntean

Abstract—Software-defined wide area network (SD-WAN) is a
new type of network architecture that has developed rapidly
in recent years. SD-WAN inherits the centralized control ar-
chitecture of Software-defined networking (SDN), but supports
more diverse access methods and equipment types and covers
a wider area. It is also associated with greater uncertainty
in the network environment. These characteristics make the
fault management of the SD-WAN controller more challenging,
so that the existing SDN-based data backup methods cannot
adapt to SD-WAN scenarios. This paper proposes an SD-WAN-
oriented Distributed Data Backup and Recovery method (DDBR)
based on an improved secret sharing algorithm. To deploy this
method, we design an online-offline dual backup framework
based on the data freshness requirements of the controller. Under
this framework, dynamic data of the controller is divided into
different shares, and then stored into the storage of switches.
When the controller fails, data recovery can be performed on the
backup controller quickly, which greatly improves the network
availability. The outstanding feature of the proposed DDBR
method is that it ensures the integrity and confidentiality of
the backup data in an unreliable network environment, even
when some of the storage nodes fail. Theoretical analysis and
evaluation results on file backup example show that the proposed
solution has significant advantages over existing methods in terms
of backup data storage size, communication overhead, scalability
and backup success rate.

Index Terms—SD-WAN, data backup, distributed storage,
Shamir’s secret sharing, controller

I. INTRODUCTION

With the rapid development of 5G networks and cloud
computing technologies, enterprise businesses are gradually
migrating to the cloud. Meanwhile, the demand for telework-
ing has also entered a stage of rapid growth with the outbreak
of COVID-19. Accessing Enterprise resources through public
network has become a regular requirement for employees. The
wide-area access requirements make the physical perimeter
of enterprise networks no longer relevant, bringing great
challenges to the management of enterprise networks [1]. As it
brings a new approach to the wide area network management,
Software Defined Wide Area Network (SD-WAN) has received
extensive attention from the Industry.

By deploying an SD-WAN, enterprise network managers
can implement fine-grained configuration of network re-
sources, optimize network performance, reduce management

Y. Zhang and S. Yang are with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China. (e-mail: pili@bupt.edu.cn, sjyang@bupt.edu.cn)

L. Zhong is the corresponding author. She is with the Information Engi-
neering College, Capital Normal University, Beijing 100048, China. (e-mail:
zhonglj@cnu.edu.cn).

G. Muntean is with School of Electronic Engineering, Dublin City Univer-
sity, Glasnevin, Dublin, Ireland. (e-mail: gabriel.muntean@dcu.ie)

complexity, and save maintenance expenses, so the service
efficiency of the overall network can be greatly improved [2].
A large number of enterprises have already invested in this
emerging field. The consulting company Futuriom predicted
that the total market size of SD-WAN will reach $2.85
billion in 2021 and $4.6 billion by 2023 [3]. However, as an
application of Software-Defined Networking (SDN) in a wide
area network, SD-WAN inherits some vulnerabilities of SDN,
for example, the security issues of SDN controllers. On the one
hand, the wide-area accessibility of SD-WAN and the more
heterogeneous terminal devices make its controller completely
exposed to a large number of security threats, such as DDoS
attacks, thereby causing its inherent single point of failure
more prominent. On the other hand, security incidents such as
power outages, fires, and operational errors may also cause the
SD-WAN control servers to go down, thereby paralyzing the
entire enterprise network. Therefore, providing a data backup
method for the SD-WAN controller is a core issue that affects
the availability and security of the whole network.

Fault-tolerant methods are important aspects that continue
to receive attention in SDN-related research fields, as they
directly affect the availability of the network [4]. Fault-tolerant
management includes fault detection, location, correction and
prevention, etc. It mainly addresses two types of problems:
the single-point failure of the controller, and link failures. The
recovery of link failure is involved in the routing strategy
design of the control plane and has nothing to do with data
backup and recovery. It also has relatively little impact on
network performance [5]. In a WAN scenario, some scholars
have also carried out related research [6]–[8]. These work
mostly focus on quickly recalculating the forwarding rules
after link failures without causing network congestion, and
cannot be used to solve the single point of failure of the
controller. In a SD-WAN context, the recovery after a single
point failure of the controller requires the backup of the entire
control plane, and the impact on the network performance is
very significant. This is the main problem studied in this work.
Different from the traditional SDN control plane data backup
and recovery method, the data backup process of the SD-
WAN control plane may involve frequent remote backup and
remote data synchronization, which has higher requirements
for the design of backup schemes and data synchronization
mechanisms. Besides, considering that the backup data may
also be damaged or disabled, the persistence of the backup
method should also be considered. However, most of the
existing studies pay no attention to these aspects, but focus
on a classic SDN context [9]–[11].

To fill this gap, in this paper we propose a Distributed

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 2

Data Backup and Recovery method (DDBR) for the SD-WAN
architecture based on a secret sharing scheme. The DDBR
method utilizes the storage of the switches and performs an
online-offline dual backup of the control plane data. The
advantage of the proposed method is twofold. On the one
hand, DDBR ensures that the backup controller can be quickly
restored by extracting backup data from the switches when the
main controller is disabled. On the other hand, it ensures the
security of the backup data. Even though an external intruder
obtains the backup data of multiple switches, it cannot obtain
any control plane information. The main contributions of this
paper are as follows.

• We propose DDBR, a distributed data backup and re-
covery method based on an improved Shamir’s Secret
Sharing (SSS) scheme, to solve the problem of distributed
data backup in SD-WAN.

• We design an online-offline dual backup method based
on SD-WAN architecture, which significantly reduces the
communication overhead and storage cost of data backup
while maintaining the freshness of the backup data.

• We create a comparative file backup instance to verify
the effectiveness and efficiency of the proposed method.

This paper is a summary of our in-depth research based on
our previous work which will be presented in IEEE Globecom
2021 [1]. The rest of this paper is organized as follows. We
introduce the related works in Section II. In Section III, we
propose the data backup method. The dual backup scheme
is presented in Section IV. We analyze the system perfor-
mance theoretically in Section V. Performance evaluations are
included in Section VI and Section VII concludes the paper.

II. RELATED WORKS

A. Shamir’s Secret Sharing Method in SD-WAN Context

In cryptography, secret sharing refers to an information
protection mechanism in which a set of authorized subsets
of participants work together to recover secrets, while also
ensuring protection from enemy attacks. The principle of
secret sharing is to divide a secret into several shares. These
shares are distributed to different users. Only when a specific
subset of users provide their own shares together can the initial
secret be reconstructed. Secret sharing can effectively prevent
attacks by enemies outside the system and betrayal by users
inside the system. As a pioneer work, SSS method, proposed
in 1979 [12], is a kind of (t, n) threshold scheme. SSS divides
the secret into n shares and distributes them to different users.
When any t shares are known, it is easy to calculate the secret,
and when any less than t shares are known, the secret cannot
be obtained. SSS has many useful properties including being
secure, minimal, extensible, dynamic and flexible.

In recent years, researchers have carried out some research
on the application of SSS to communication networks and
distributed storage systems [13], [14], even in distributed and
multi-user scenarios [15]. However, these works are limited to
theoretical analysis. Empirical research in application fields
are still required. Therefore, how to apply SSS in actual
communication scenarios is still an open issue.

Applying SSS method in an SD-WAN scenario mainly
faces the following problems: 1) SSS is a multi-node sharing
method of one secret. The backup of SD-WAN control plane
should backup many data files, which is a backup task of
many secrets on multiple nodes. 2) SD-WAN is a mixed
network environment with wired and wireless channels, the
communication links are sometimes unreliable. Network con-
gestion, equipment failure, or malicious hijacking can all cause
backup failures, and then data recovery cannot be achieved.
3) SSS requires each device to keep a complete backup of
the secret. Distributed backup of dynamic SD-WAN controller
may require frequent data transmissions, which consumes lots
of communication resources. So a solution to address these
issues is still in need.

B. Fault Management Methods in SDN

There are many works which focus on the fault management
problem including data backup and recovery [16], [17]. Sasaki
et al. proposed a rollback architecture which periodically
reverts the process of an OpenFlow switch to its pristine state
after handling a flow to protect the data plane of SDN [9].
In [18] and [19], the authors proposed a control plane fault-
tolerant backup architecture in SDN from different perspec-
tives respectively.

In a WAN scenario, by pre-calculating a new traffic engi-
neering solution and installing a backup tunnel, Zheng et al. [7]
came up with a new traffic engineering solution which ensures
that when the link failure occurs, the switch can redirect the
traffic to the backup tunnel, so as to achieve the rapid recovery
of the data plane function, and avoid the common transmission
congestion in the recovery process. In [20], the authors paid
special attention to the consistency problem in the SDN control
plane replication process. They focused on optimizing the
processing delay, and proposed a fast and consistent controller
replication mode. Aiming at the service quality requirements
in network multimedia transmission services, Basu et al.
proposed a fault-tolerant backup framework for transparently
migrating controller loads by applying real-time centralized
cloud storage strategies to store data flow status and virtual
connection management units [21].

In [22], the authors proposed a multi-dimension storage
selection strategy to decide the optimum distributed storage
location for flow tables in SDN networks. However, their work
only considered the efficient backup and recovery of the flow
tables, rather than the entire control plane, which is quite
different in applications. Besides, there is no design of security
and privacy considerations during the data backup process.
Authors of [23] proposed a novel validation framework to
verify the control plane’s performance across various failure
scenarios and multiple failure recovery strategies. They mod-
eled the validation problem of the distributed control plane as
a optimization problem, which was also a notable contribution.

Most of these works only consider the recovery issues
of individual data errors and they seldom pay attention to
the backup and recovery issues of the entire controller data.
Meanwhile, the backup of controller data mostly relies on
third-party organizations such as cloud storage, and lacks any

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 3

security considerations for backup data. Besides, in SD-WAN
applications, data backup is a high-frequency operation, while
recovery is a low-frequency operation. The existing backup
methods did not consider reducing the communication cost of
high-frequency backup operations to save the communication
resource of control channels. We propose DDBR in this paper,
an innovative data backup and recovery solution to address
these limitations.

III. DISTRIBUTED DATA BACKUP METHOD IN SD-WAN

Traditional data backup and recovery solutions usually use
dedicated storage devices or cloud services for remote disaster
recovery. When this kind of methods are applied to SD-WAN
controller backup, two problems may emerge. First, the data
freshness cannot be guaranteed. Remote backup takes time
and can only be carried out periodically, so it cannot meet
the freshness requirements of the controller’s dynamically
changing data. Second, the remote backup data is usually still
stored in centralized manner or third-party hosted, and the
backup data faces availability and privacy risks. Therefore,
this paper proposes a distributed data backup solution that
maintains both data freshness and privacy.

As already mentioned, the data backup in SD-WAN needs
to overcome the challenges caused by unreliable network
environment, so the error-tolerant and correcting performance
of the backup method are important. Recently, the distributed
storage system erasure coding technology is widely used in
the communication industry and it can solve certain error
correction problems [24]. However, there are three problems
when applying it to SD-WAN controller backup. 1) The
encoding process causes the data length to increase, which
introduces additional transmission overhead; 2) The decoding
process often involves solving the inverse matrix, which has
high computational complexity; 3) The original data has no
security protection and is easy to be obtained by attackers.

In such a context, this work improves SSS and proposes
DDBR, a new data backup framework. DDBR is not only tol-
erant to the unreliability of the WAN communication channels,
but also ensures the security of backup data, and optimizes the
design for application requirements of SD-WAN. This section
introduces the DDBR framework.

A. Distributed Data Backup Architecture and Principle

The traditional SDN data plane is responsible for data
forwarding, and the switches store only a small amount of
information such as routing tables and flow statistics. With the
rapid development of storage technology, the RAM of switches
produced by mainstream manufacturers generally accounts for
more than 4GB, and the storage capacity of hard disks usually
is in excess of 32GB. These storage capacities far exceed the
storage requirements of SDN data forwarding, enabling the
switches to back up some control plane data. Meanwhile, the
data transmission between the SDN controller and switches
is implemented through dedicated encrypted tunnels, which
are highly reliable. So it is feasible to use the switch to back
up the controller data. The proposed framework is based on
the switch storage for controller data backup. The overall

Fig. 1. System architecture of the proposed distributed data backup method.

architecture of the proposed data backup system is shown in
Fig. 1.

In the control plane, the data files to be backed up are
segmented into many data segments (e.g., r segments) with
identical data length. After being encrypted and uniformly
numbered, each data fragment are then divided into m data
shares by implementing the secret sharing algorithm. Con-
sidering the actual needs for SD-WAN controller backup,
we improve the original SSS algorithm in terms of two
aspects. One is to encrypt the data segments first, and then
implement the secret sharing algorithm, and the other is to add
a unified number to the encrypted data fragments to facilitate
their subsequent management. This is because there are many
secrets to be shared rather than only one.

There are two considerations for introducing the encryption
operation. One is that the original SSS requires that the sharers
of the secret can self-organize to reconstruct the secret, while
in a controller backup task, this is unsafe and unnecessary. The
backup controller can perform decryption and restore the data
uniformly. The encryption operation can ensure data integrity
and avoid collusion within the compromised switches to obtain
backup data. Since the mainstream asymmetric encryption
algorithms have requirements for key length (usually longer
than 256 bits), and generate long encrypted data blocks, which
does not help in terms of data recovery and transmission
efficiency. This architecture employs a one-time encryption
method, and a key with equal length is added to each data
block by XOR. This operation will not change the original data
length, but it ensures confidentiality. The key can be pre-stored
on the backup controller as offline backup data. Next, the data
shares are ready to be stored in the data plane switches.

In the data plane, we assume that there are a total of k
switches available. The controller randomly selects m switches
and among them stores the data shares from the data segments,
m < k. Note that for each data segment, the m storage node
sets selected by the controller may be completely different.
This is another adaptive improvement made to SSS. Typical
SSS applications usually allocate a data share to each storage
node by default. The advantage of this setting is that in
all k switches, at most k − m switches are allowed to fail
to complete the backup operation due to link congestion
or equipment failure, and the backup process will not be

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 4

affected. In addition, reducing the number of storage nodes can
also reduce the channel resource overhead during the backup
process. Under this setting, the probability of a single storage
node storing the data shares of all r data segments will also
be reduced to

pu =

(
k

m

)r

. (1)

When r is large, this probability will be very small, which
will further disperse the backup data and play a good role in
data privacy protection.

B. DDBR Data Sharing Method

This subsection discusses in detail the DDBR specific
methods of data sharing and reconstruction. Assuming that F
is the file to be backed up. At the very beginning, F is divided
into data segments of equal length l according to the actual
needs, e.g., l = 12 bits for each fragment. Assume that the
number of segments finally obtained is r and the segments
are denoted by Di, where 1 ≤ i ≤ r. It does not matter if
the length of the last segment is less than l. Then, F can be
presented as:

F = D1D2 · · ·Dr. (2)

We execute the data sharing algorithm for each data segment
separately. Without loss of generality, take D1 as an example.
Choose a key of length l as a one-time key, denote it by K1,
and perform XOR operation with D1, then we get the secret
s1 to be shared.

s1 = D1

⊕
K1. (3)

Choose a prime number p, such that p > s1 (treat s1 as an
integer). Both the secret sharing and reconstruction process
will be completed in the p-element finite field. We take the
(t,m) threshold scheme to share the secret. We need to split
the secret into m shares, with at least t shares needed to
reconstruct the secret s1. To achieve this goal, we need to
construct a polynomial of degree t − 1 and take s1 as the
constant term [12]. For this we generate t−1 random numbers
in the finite field, denote them as c1, c2, · · · , ct−1. Then we
can build the polynomial as:

f(x) = s1 + c1x+ c2x
2 + · · ·+ ct−1x

t−1 mod (p) (4)

We number all k switches as 1, 2, 3, · · · , k. Assuming that we
randomly select m from the available switches as sharers of
s1, and denote their numbers by v1, v2, · · · , vm. Substituting
them for x in (4), we get m data shares (in the sense of modulo
p) as follows:

y1 = f(v1), y2 = f(v2), · · · , ym = f(vm) mod (p) (5)

Now the controller can distribute y1, y2, · · · , ym to
v1, v2, · · · , vm respectively as backup data.

By performing the process described above on all the data
segments in sequence, the file F can be fully backed up. The
most important difference between the proposed data sharing
method and SSS is that we do not generate data shares for
all switches, but randomly select m accessible ones. By doing
this, on the one hand, redundancy is introduced to improve
the fault tolerance of the backup system, in case of unreliable

Algorithm 1: DDBR Data Sharing Algorithm
Input: One time key K; Key identifier α; Set of

switches V ; File F ; Number of data shares m;
Threshold number of recovery nodes t;
Segment length l; Prime number p.

Output: Data shares for switches Y1, Y2, · · · , Yk.
1 Initialize r = length(F)/l, Yi = φ, 1 ≤ i ≤ k;
2 D1D2 · · ·Dr = Segment(F) by length l;
3 for j = 1 : t− 1 do
4 Cj = Randnum();
5 end
6 foreach Di do
7 si = Di ⊕K(α+ (i− 1) · l + 1 : α+ i · l);
8 Randomly select m switches v1, v2, · · · , vm from

V ;
9 foreach vd, 1 ≤ d ≤ m do

10 yd = si + C1vd + C2v
2
d + · · ·+ Ct−1v

(t−1)
d

mod (p);
11 Attach yd to Yvd ;
12 end
13 end
14 Distribute Y1, Y2, · · · , Yk to V1, V2, · · · , Vk

respectively;
15 return

network condition. On the other hand, this approach reduces
the communication cost to distribute m data shares instead of
k (m < k). Since the backup nodes are randomly selected for
each segment, it is unlikely that one node stores all the backup
data segments. This reduces the risk of potentially hijacked
nodes to steal the complete data set.

The complete data backup process is shown in Alg. 1.
Note that the one-time key used in the input part of the
algorithm should be stored as static data on the backup server
in advance. The algorithm receives the current key identifier
α as input. After the file segmentation, the encryption process
is performed for each data segment. The used key segment is
intercepted according to the specified segmentation length l,
and the bitwise XOR (Line 7) is implemented for encryption.

In the subsequent distribution process of data shares,
the corresponding key identifier will also be distributed
and backed up along with the data shares. The function
RandomNum(·) refers to selecting random numbers as the
polynomial coefficients of the secret sharing algorithm. In-
tegers or real numbers can be randomly selected as needed,
and the security of secret sharing algorithm is not affected.
Generally speaking, considering that the modulo operation
will be performed later, positive integers are usually selected.
Note that these coefficients do not need to be backed up with
data shares, and these coefficients will not be used in the data
recovery process.

C. DDBR Data Recovery Mechanism

In the data recovery process, since the backup nodes are
randomly selected for each data segment while sharing, there
is no guarantee that each data segment can get at least t

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 5

shares, if only the backup data from t nodes is collected. Our
solution is to collect the backup data of k −m + t switches
for data recovery. In this way, even if all the unselected m− t
switches have a share of the data segment, it can still be
guaranteed that at least t data shares are collected. This method
introduces higher requirement than the typical SSS for secret
reconstruction. However, considering that data backup of the
SD-WAN controller is a high-frequency operation, while data
recovery is a low-frequency one, it is still cost-effective to have
a slightly higher communication cost in the recovery process
and a substantial cost reduction in the backup process.

After the backup controller finished collecting t data shares
of D1, the data recovery method can still use the classic
Lagrange polynomials to find the constant s1 = f(0). Specif-
ically, suppose that v11, v12, · · · , v1t are the index values of
the t collected switches, the following formula is used for
calculation:

D1 =

 t∑
i=1

yi
∏

1≤j≤t,j 6=i

v1j(v1j − v1i)−1 mod (p)

⊕K1

(6)
It should be pointed out that the inverse operation in eq.

(6) is the process of finding the inverse element on the p-
element finite field. The complete process of data recovery is
shown in Alg. 2. The main difference between this algorithm
and the backup process is that the file and data segments are
ordered in the backup phase. While after the backup controller
extracts all the backup files from the switches, the data shares
and files will become disordered. Therefore, the relevant index
information must be backed up along with the corresponding
data shares. The relevant details of the data index structure
will be presented in the next section.

When performing recovery, the extracted data shares should
be clustered according to the File ID, and all data shares
belong to each cluster should be sorted into the same bucket
(Line 2). In each bucket, all data shares need to be further
clustered according to Segment ID to confirm which data seg-
ment it belongs to (Line 4). Then we can use the Checksum
field to verify the integrity of the data. Shares that fail the
Checksum verification will be discarded. We select t shares
from the cluster and perform data recovery calculations by
(6) (Line 16). Then intercept the key according to the key
identifier for decryption (Line 17). Finally, concatenate the
recovered data segments into the original file in order (Line
19). This completes the entire data recovery process.

IV. THE DDBR DUAL BACKUP FRAMEWORK

In actual SD-WAN applications, as a network operating
system, the controller not only undertakes network equipment
management, routing rule formulation, network statistics col-
lection, but also supports upper-layer applications. Its software
system is very complex and has a large amount of data.
Therefore, it is impractical to rely on the above method to
perform a full backup. In order to solve this problem, we must
propose a practical backup framework.

Algorithm 2: DDBR Data Recovery Algorithm
Input: Backups Y1, Y2, · · · , Yk; One time key K; Key

identifier α; Set of switches V ; Threshold
number of recovery nodes t; Segment lengh l;
Prime number p.

Output: File set F .
1 Extract data shares from Y1, Y2, · · · , Yk;
2 Cluster the extracted data shares by File ID into

different buckets, B1, B2, · · · , Bn;
3 foreach Bucket Bi do
4 Cluster data shares in Bi by Segment ID into

different sets, S1, S2, · · · , Sr;
5 foreach Sj do
6 foreach Data shares in Sj do
7 Calculate Checksum of the header;
8 if Checksum incorrect then
9 Discard the error data share;

10 end
11 end
12 Select t error-free data shares from Sj , say

y1, y2, · · · , yt;
13 Find the IDs of the corresponding backup

switches, say v1, v2, · · · , vt;
14 Extract Key Identifier form y1, say α;
15 Kj = K(α+ 1 : α+ l);
16 sj =

∑t
u=1 yu

∏
1≤e≤t,e6=u ve(ve − vu)−1

mod (p);
17 Dj = sj ⊕Kj ;
18 end
19 Fi = Concat(D1, D2, · · · , Dr);
20 end
21 return F = {F1, F2, · · · , Fn}

A. Data Inventory

Before performing controller data backup, we must make an
inventory of all data resources and classify them according to
their dynamic characteristics and freshness requirements. The
data consists of:
• Static and quasi-static data. This type mainly refers to

the data that remains unchanged or does not change for
a long period of time. It includes the controller operating
system data, basic configuration files, network topology,
network device management files, and other supported
applications and related configurations. This type of data
is the vast majority of all data to be backed up. In order to
support the operation of the proposed backup architecture,
quasi-static data should include the one-time encryption
key, the switch index and prime number p.

• Dynamic data. This type of data mainly refers to data that
continues to change in a short period of time, including
device status, network statistics, routing rules, and the
dynamic configuration parameters of related software and
hardware, controller cache data, etc.

The purpose of data inventory is to clarify the backup re-
quirements according to their dynamic characteristics, so as
to design targeted backup strategies. For dynamic data, online

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 6

Fig. 2. The proposed data backup implementation framework.

backup methods should be adopted to improve its freshness,
while for static and quasi-static data, regular offline backup
methods are more suitable to save communication resources.

B. Data Backup Implementation Framework

According to the results of the data inventory, we design an
online-offline dual backup implementation framework based
on the SD-WAN architecture. The composition and working
mode of the framework are shown in Fig. 2.
• Offline backup. The static data can be stored once at

the beginning of the backup controller deployment. Since
quasi-static data also has update requirements under a
longer time scale, data can be synchronized regularly be-
tween the SD-WAN controller and the backup controller.
In order to ensure security, offline backup methods are
generally used for data synchronization.

• Online backup. For dynamic data, updates are required
frequently. The online backup scheme is a combination of
regular backup and condition-based backup. Condition-
based backup is usually a partial data update, which is
executed when the dynamic data file undergoes important
changes. The original shares are replaced by the newly
generated ones, and the data file stored by each switch
remains unchanged. Regular backup is replacement of all
data, which is performed when the network is relatively
idle. Each switch will clear all the original data shares
and receive new assigned backup data.

C. Data Structure

Since the original backup files are split into disordered
data segments, a data indexing system must be constructed to
facilitate the data recovery. The solution is to design a new data
structure for backup packets. This structure not only considers
the retrieval convenience and efficiency of data shares, but
also considers the key identification requirements in the data
recovery process and the integrity of the data fields. The
structure of the backup data we designed is shown in Fig.
3.

This data structure is mainly composed of three parts: an
index part, an integrity verification part, and a data share part.
The index part should mainly consist of two fields, one is File

File ID Segment ID

Data Share

Key Identifier Checksum

Fig. 3. The proposed data structure of backup packets.

ID, which is used to mark the file to which the share belongs.
The proposed length is 12 bits, which can identify up to 4, 096
files. This field is long enough to cover the online backup
task of current SD-WAN controllers. The other is Segment
ID, which is used to identify the data segment corresponding
to the share. The length is set to 20 bits, which can identify
at most 1, 048, 576 segments. Even if the length of each data
segment is only selected as 12 bits, this field can still identify
files up to 12 MB. For text messages, this file size is sufficient.
If not, the length of each field can also be adjusted according
to actual requirements. The relevant information can be backed
up to the backup server as quasi-static data. The integrity
verification part consists of two parts, which are 16 bits for
Key identifier and 16 bits for Checksum. The Key identifier
is used to mark the starting position of the Key (e.g., K1 in
(3)) which was used to encrypt the data share in the codebook.
The maximum length that this field can identify is 65,536.
The maximum length that this field can identify is 65,536. In
practical applications, if the length is insufficient, it can be
restarted from 1. This mechanism is similar to the fragment
identification of IP packets, and the length of 16 bits is usually
not likely to lead to confusion. The length of the Data Share
part is the same to the size of data segments specified by the
backup method.

When a single backup node stores a large amount of data
shares, the proposed data structure of backup packets makes
it possible to quickly identify and retrieve the file to which a
specific data share belongs, accurately locate the key segment,
and quickly recover the backed up data segment. The length
of the extra packet introduced is only 64 bits, which is quite
efficient. In addition, the introduction of checksum also adds
an error discovery mechanism, which reduces the risk of
backup data failure due to transmission errors. In practical
applications, this data structure can be further streamlined for
bandwidth resource constrained links by removing the key
identifier and checksum filed, and only keeping the data index
part. In this case, the starting position of the key needs to
be recalculated based on the file ID and segment ID, and
all backup files must be restored in order. The storage and
communication resources are saved at the expense of some
efficiency.

V. PERFORMANCE ANALYSIS

In this section, we will analyze the performance of DDBR
in terms of backup success rate and recovery success rate.

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 7

A. Backup success rate

Recall the backup algorithm, for each data share s, we
independently selected m from k routers to complete the
backup. In the SD-WAN environment, due to the uncertainty of
the network environment, the link between the control plane
and the data plane may fail temporarily. This situation will
cause the backup to fail. Since the backup process has no
timeliness requirements, the controller can distribute data after
confirming the network status of the target switch, or through
the backup feedback information, to learn about the failure of
the backup in time, so as to select another target switch to
store the data share. In such case, the backup fails if and only
if the number of routers available in the network is less than
m.

Assuming that the average failure rate of the link between
the control plane and the data plane is 1 ≥ p0 > 0, and let the
random variable X denote the number of unreachable routers,
then the backup fails if and only if X > k −m. Since link
failure events are independent, X obeys a binomial distribution
with a mean p0. Thus the backup failure rate can be formulated
as

P (X > k −m) =

k∑
i=k−m+1

(
i

k

)
pi0(1− p0)k−i. (7)

Therefore, the backup success rate is

Pb = 1−
k−m∑
i=1

(
i

k

)
pi0(1− p0)k−i. (8)

To save storage space, m is usually much smaller than k,
and p0 is also very small, so the backup failure rate is almost
negligible. For instance, when k = 20, m = 8, p0 = 0.001,
P (X ≤ k −m) < 0.02, the back up success rate Pb > 0.98.
Therefore, our proposed DDBR has a vary high reliability.

B. Recovery success rate

For each data segment, the data recovery process needs to
extract at least t error-free backup shares from m. We still
assume that the random failure rate of the link is p0, then
data recovery will fail if and only if the number of reachable
switches is less than t. That is, at most m−t data shares among
m cannot be collected to the backup controller. Similarly, due
to the independence of link failures, the success rate of data
recovery can be roughly estimated as

P (X < m− t) =
m−t−1∑
i=1

(
i

m

)
pi0(1− p0)m−i. (9)

More accurately, assume that s storage nodes that are
disabled in the recovery process. If s ≤ m − t, the recovery
is unaffected. The recovery success rate will be 1. Otherwise,
s > m− t, the recovery fails if at least m− t+1 data shares
of one segment was distributed to these s disabled nodes. The
probability of such events can be formulated as

Pd(s) =

s∑
j=m−t+1

(
j
s

)(
m−j
k−s
)(

m
m

) . (10)

Then the recovery failure rate of DDBR can be formulated as

Pf =

k∑
s=m−t+1

 s∑
j=m−t+1

(
j
s

)(
m−j
k−s
)(

m
m

)
(s

k

)
ps0(1− p0)k−s.

(11)
Thereby the recovery success rate is

Pr = 1− Pf . (12)

Eq. (12) gives the accurate recovery success rate of each
segment. Assuming that a file F has r segments, its recovery
success rate may be more complicated since the success rates
of segments is dependent. Generally, if r is large, Pr may
not reach a satisfactory value. Therefore, the selection of
the data segmentation length needs to consider its impact on
the recovery performance to ensure that r is not too large,
so that Ps remains within an acceptable range. In practical
applications, since p0 is usually very small, the impact of
this accumulation of errors on the application effect is not
significant.

VI. PERFORMANCE EVALUATION

In order to evaluate the effectiveness of the proposed DDBR
backup solution, we apply it to a data backup instance, and
evaluate its performance in terms of the average storage
size on each node and backup success rate. We select two
mainstream distributed backup methods for comparison: SSS
and Blockchain, since they are similar to our method in terms
of backup modes and security considerations.

A. The Storage Size

We select a file of 240 bits. The length of the data segment
is set to 8, 10, 12, 16, 20 bits, respectively. For our method
and SSS, the data index structure adopts the simplified 32
bits version proposed in the previous section. The number of
transactions in the Blockchain is set to 1 and the transaction
input content is the file to be backed up. All backup data
is stored in one block, and its data structure includes block
size (4 bytes), header (80 bytes), transaction count (1 byte),
transaction content (39 bytes, including version 4 bytes, input
count 1 byte, input content 30 bytes, time 4 bytes). The
experimental evaluation network employed consists a total of
10 backup nodes. We employed the (6, 4) threshold scheme.
After the selected file is stored in a distributed manner by the
three methods, the average storage sizes of each storage node
is illustrated in Fig. 4.

It can be noted that our proposed method DDBR occupies
the smallest storage space of the backup node on average, and
the storage size decreases with the increase in the segment
length. In the Blockchain based method, since the file is not
segmented, the storage size is not affected by the segment
length. But the storage size is generally at a high level due to
the fact that the block header is very long. For the SSS-based
method, the average storage size decreases as the segment
length increases, but the storage size is always significantly
larger than in our method. It can be concluded that DDBR
performs significantly better than the alternative methods in
terms of storage occupation.

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 8

8 10 12 14 16 18 20
Length of data segment / bits

60

80

100

120

140

160
S

to
ra

g
e

si
ze

 o
f

ba
ck

 u
p

da
ta

 /
 b

y
te

s
DDBR
SSS
Blockchain

40

Fig. 4. Average storage size comparison of different segment lengths.

10 12 14 16 18 20 22 24 26 28 30
Number of storage nodes

0

20

40

60

80

100

120

140

S
to

ra
g

e
si

ze
 o

f
b
ac

k
 u

p
 d

at
a

/
b
y

te
s

DDBR
SSS
Blockchain

Fig. 5. Average storage size comparison of different number of storage nodes.

To verify the scalability of our proposed DDBR, we im-
plement another experiment by setting the number of storage
nodes range from 10 to 30. The segment length is fixed to 16
bits. Other parameter settings keeps unchanged. The results are
shown in Fig. 5. As the number of storage nodes increases,
the average storage size of SSS and Blockchain based methods
are constant since both methods backup all the data shares
to each nodes. While the storage size taken by our proposed
DDBR decreases, which indicates the very good scalability
performance of DDBR compared with benchmark methods.

B. The Communication Overhead

In order to verify the communication overhead of DDBR
in the control data backup and recovery process, we designed
another set of experiments. The length of the backup file we
chose is still 240 bits as described in the previous section. The
methods we use for comparison are still SSS and Blockchain
based method. In the backup process, DDBR randomly selects
6 nodes to store backup data shares each time, while SSS
and Blockchain based methods store backups to all nodes
by default. In the recovery process, DDBR and SSS requires
at least 4 backup copies of each data segment for recovery.

1 2 3 4 5

Times of backup process before recovery

5

10

15

20

25

30

35

40

45

50

A
v

er
a
g
e

co
m

m
u
n
ic

at
io

n
 o

v
e
rh

ea
d
 /

 k
b

DDBR
SSS
Blockchain

0

Fig. 6. Communication overhead of each node in multiple backups and a
single recovery processes.

The length of data segment is fixed to 12 bits. Considering
that in practical applications, the backup process is a high-
frequency operation, while the recovery process is a low-
frequency operation. Therefore, we have considered the case
of performing a data recovery operation after 1, 2, 3, 4, and
5 backups respectively. The total communication overhead is
used as the evaluation index. The experimental results are
depicted in Fig. 6

As the number of backups before data recovery increases,
the total communication overhead corresponding to all three
methods are increasing approximately linearly. In the case
of only one round of backup process, the Blockchain-based
method is better than SSS in total communication cost. But
when implementing more than 2 rounds of backups before
recovery, SSS showed more and more significant advantages.
The main reason for this results is that although the backup
overhead of the Blockchain is high, the recovery overhead is
relatively low. Data recovery can be completed by extracting
only the backup data of one node in Blockchain based method,
while SSS requires four. In any case, DDBR is significantly
better than SSS and Blockchain based methods in the total
communication overhead of backup and recovery processes.
Especially with the increase in the number of backups, this
advantage is still expanding. These results show that our
proposed DDBR has significant advantages over the baseline
method in terms of total communication overhead during data
backup and recovery processes.

Next, we consider the total communication overhead intro-
duced by the backup process to the whole network. We set the
number of storage nodes range from 10 to 30 and the segment
length to 16 bits again. We implement 2 backup processes and
1 recovery process. The communication overhead evaluation
results are illustrated in Fig. 7. As the scale of the network
increases, the total overhead of SSS and Blockchain based
methods increase linearly. While the overhead of our proposed
DDBR keeps constant. That is because we constantly select m
storage nodes for each data share, which has nothing to do with
the scale of the whole network. This verifies again that DDBR
has very good scalability performance in real applications.

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 9

10 12 14 16 18 20 22 24 26 28 30
Total number of storage nodes

0

100

200

300

400

500

600

700
DDBR
SSS
Blockchain

T
o

ta
l

co
m

m
u

n
ic

at
io

n
 o

v
er

h
ea

d
 /
 k

b

Fig. 7. Total communication overhead of the whole network in 2 backups
and a single recovery processes.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of backup node failure

B
a
ck

u
p
 s

u
c
ce

ss
 r

at
e

DDBR
SSS
Blockchain

Fig. 8. Backup success rate comparison in different probabilities of node
failure.

C. Backup and Recovery Success Rate

Consider that due to network congestion or equipment
failure in the wide area network, data shares may not be
transmitted to their backup nodes as planned during the backup
process, so the backup success rate must be considered. The
backup is successful if and only if all switch nodes receive
their backup shares, as planned. This is very strict for backup
algorithms with data segmentation. Blockchain-based method
stores a complete file copy to each node, which ensures its high
backup success rate with huge overhead. So only when more
than half of the backup nodes are disconnected, the backup
process based on Blockchain will fail. We continue to assume
that there are totally 10 backup nodes in the whole network,
and DDBR needs to distribute data shares to 6 randomly
selected nodes in the backup process each time, while SSS
distributes the data shares to all the backup nodes.

We choose the segment length to be 16 bits, so there are
15 segments in total. Assuming that the event of node failure
is random, consider five cases of failure probability: 0.001,
0.005, 0.01, 0.015, and 0.02 respectively. The corresponding
backup success rates are shown in Fig. 8.

B
a
ck

u
p
 S

u
c
ce

ss
 R

at
e

10 12 14 16 18 20 22 24 26 28 30
Number of Storage nodes

0.4

0.5

0.6

0.7

0.8

0.9

1
DDBR
SSS
Blockchain

Fig. 9. Backup success rate comparison in different numbers of storage nodes.

Since we assume that the node failure rate is very low (the
highest is not more than 2%), blockchain-based (marked by
the blue broken lines) backup method can back up data with a
success rate close to 100%, so its performance on this index is
significantly better than DDBR and SSS. But please note that
this superiority is based on huge storage and communication
costs. For other two methods, as the probability of node failure
increases, the backup success rate is significantly reduced. Due
to the small number of backup nodes selected each time, our
method is consistently superior to SSS in terms of backup
success rate under various node failure probabilities.

We also studied the scalability performance. The results are
illustrate in Fig. 9. Benefiting from the huge communication
and storage cost, Blockchain based method still performs best,
and DDBR is the second. However, as the scale of network
increases, the backup success rate deteriorates rapidly. The
decline in the backup success rate of DDBR is relatively
flat, which shows that DDBR has stronger adaptability to the
growth of network scale.

To sum up, the evaluation results in actual backup instance
show that DDBR has very good performance, not only in
terms of single-node storage size, but also the communication
overhead in backup and recovery process, as well as the
backup success rate and scalability.

VII. CONCLUSIONS AND FUTURE WORK

In order to reliably backup the controller data in SD-WAN
and improve network availability, we have proposed DDBR,
an innovative distributed data backup and recovery method
based on a secret sharing algorithm. This method first divides
the data file into segments, and then divides each segment into
several data shares and stores them in the switches. To reduce
the amount of data storage and communication overhead,
we propose an online-offline dual backup framework. Offline
backup adapts to the static and quasi-static data, while the
dynamic data are backed up to some randomly selected storage
nodes online. We have also introduced an encryption mech-
anism to further enhance data confidentiality, and designed
an index structure to facilitate the rapid data recovery. Future
work will mainly focus on the detailed implementation of the

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, VOL. X, NO. X, 2021 10

backup scheme in a prototype system and further optimization
of storage efficiency.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (2018YFE0205502).

REFERENCES

[1] Y. Zhang, C. Xu and G. Muntean, “A Novel Distributed Data Backup
and Recovery Method for Software Defined-WAN Controllers,” IEEE
Global Commun. Conf. (Globecom), Madrid, Spain, Dec. 2021.

[2] S. Ghosh, M. Iqbal, T. Dagiuklas, “A centralized hybrid routing model
for multicontroller SD-WANs”. Trans. Emerg. Telecommun. Technol.,
vol.32, no. 6, e4252, May 2021.

[3] R. Scott Raynovich, “SD-WAN Growth Report”, Futuriom, Jun. 2020.
[4] F. Benayas, Á. Carrera, M. Garcı́a-Amado and C. A. Iglesias, “A

semantic data lake framework for autonomous fault management in SDN
environments.” Trans. Emerg. Telecommun. Technol., vol. 30, ett.3629,
May 2019.

[5] Z. Yang and K. L. Yeung, “SDN Candidate Selection in Hybrid IP/SDN
Networks for Single Link Failure Protection,” IEEE/ACM Trans. Netw.,
vol. 28, no. 1, pp. 312-321, Feb. 2020.

[6] K. Qiu, J. Zhao, X. Wang, X. Fu and S. Secci, “Efficient Recovery
Path Computation for Fast Reroute in Large-Scale Software-Defined
Networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1755-1768,
Aug. 2019.

[7] J. Zheng, H. Xu, X. Zhu, G. Chen and Y. Geng, “Sentinel: Failure
Recovery in Centralized Traffic Engineering,” IEEE/ACM Trans. Netw.,
vol. 27, no. 5, pp. 1859-1872, Oct. 2019.

[8] A. K. Singh, S. Maurya, Na. Kumar and S. Srivastava, “Heuristic
approaches for the reliable SDN controller placement problem.” Trans.
Emerg. Telecommun. Technol., vol. 31, e3761, Oct. 2019.

[9] T. Sasaki, A. Perrig and D. E. Asoni, “Control-plane isolation and
recovery for a secure SDN architecture,” in Proc. IEEE Conf. Netw.
Softw. (NetSoft), Seoul, South Korea, Jun. 2016 , pp. 459-464.

[10] L. X. Yang, K. Huang, X. Yang, Y. Zhang, Y. Xiang and Y. Y. Tang,
“Defense against advanced persistent threat through data backup and
recovery,” IEEE Trans. Network Sci. Eng., early access article.

[11] X. Ren, G. S. Aujla, A. Jindal, R. S. Batth and P. Zhang, “Adaptive
Recovery Mechanism for SDN Controllers in Edge-Cloud supported
FinTech Applications,” IEEE Internet Things J., early access article.

[12] Adi Shamir., “How to share a secret”. Commun. ACM, vol. 22, No. 11,
pp. 612–613. Nov. 1979.

[13] R. Bitar and S. E. Rouayheb, “Staircase Codes for Secret Sharing With
Optimal Communication and Read Overheads,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 933-943, Feb. 2018.

[14] W. Huang, M. Langberg, J. Kliewer and J. Bruck, “Communication
Efficient Secret Sharing,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp.
7195-7206, Dec. 2016.

[15] M. Soleymani and H. Mahdavifar, “Distributed Multi-User Secret Shar-
ing,” IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 164-178, Jan. 2021.

[16] P. C. Fonseca and E. S. Mota, “A Survey on Fault Management in
Software-Defined Networks,” in IEEE Commun. Surveys Tuts., vol. 19,
no. 4, pp. 2284-2321, 2017.

[17] Y. Yu et al., “Fault Management in Software-Defined Networking: A
Survey,” in IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 349-392,
2019.

[18] M. Reitblatt, M. Canini, A. Guha, N. Foster., “Fattire: Declarative fault
tolerance for software-defined networks,” in Proc. 2nd ACM SIGCOMM
HotSDN, pp. 109-114, Aug. 2013.

[19] N. Katta, H. Zhang, M. Freedman, J. Rexford., “Ravana: Controller
fault-tolerance in software-defined networking,” in 1st ACM SIGCOMM
Symp. SDN Res., Santa Clara, CA, USA, Jun. 2015, pp. 1-12.

[20] M. Mohiuddin, M. Primorac, E. Stai and J. Le Boudec, “FCR: Fast
and Consistent Controller-Replication in Software Defined Networking,”
IEEE Access, vol. 7, pp. 170589-170603, 2019.

[21] K. Basu, A. Hamdullah and F. Ball, “Architecture of a Cloud-based
Fault-Tolerant Control Platform for improving the QoS of Social Mul-
timedia Applications on SD-WAN”, in Proc. 13th Int.Conf. Comm.
(COMM), Bucharest, Romania, Jun. 2020, pp. 495-500.

[22] W. Ren, Y. Sun, T. Wu and M. S. Obaidat, “A Hash-Based Distributed
Storage Strategy of FlowTables in SDN-IoT Networks,” IEEE Global
Commun. Conf. (Globecom), Singapore, Dec. 2017, pp. 1-7.

[23] J. Xie, D. Guo, C. Qian, L. Liu, B. Ren and H. Chen, “Validation of
Distributed SDN Control Plane Under Uncertain Failures,” in IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1234-1247, Jun. 2019.

[24] M. Sipos, J. Gahm, N. Venkat and D. Oran, “Network-Aware Feasible
Repairs for Erasure-Coded Storage,” IEEE/ACM Trans. Netw., vol. 26,
no. 3, pp. 1404-1417, Jun. 2018.

Yi Zhang received the M.S. degrees in Electronics
from Mid Sweden University, Sweden. She is cur-
rently pursuing her Ph.D. degree in Institute of Net-
work Technology, Beijing University of Posts and
Telecommunications. Her research interests include
network security, architecture design and robustness
analysis of network topology, network controllabil-
ity, etc.

Lujie Zhong received the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2013. She is currently
an Associate Professor with the Information En-
gineering College, Capital Normal University, Bei-
jing. Her research interests include communication
networks, computer system and architecture, and
mobile Internet technology.

Shujie Yang Shujie Yang (Member, IEEE) received
the Ph.D. degree from the Institute of Network Tech-
nology, Beijing University of Posts and Telecom-
munications, Beijing, China, in 2017, where he is
currently a Lecturer with the State Key Laboratory
of Networking and Switching Technology. His major
research interests are in the areas of wireless com-
munications and wireless networking.

Gabriel-Miro Muntean (Senior Member, IEEE) is a
Professor with the School of Electronic Engineering,
Dublin City Univ. (DCU), Ireland, and co-Director
of the DCU Performance Engineering Lab. He has
published over 450 papers in top international jour-
nals and conferences, authored 4 books and 22 book
chapters, and edited 7 other books. His research
interests include quality, performance, and energy
issues related to rich media delivery, technology-
enhanced learning, and other data communications
over heterogeneous networks. He is an Associate

Editor of the IEEE Transactions on Broadcasting, the Multimedia Communi-
cations Area Editor of the IEEE Communications Surveys and Tutorials, and
a reviewer for top international journals, conferences, and funding agencies.

