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Abstract—The latest increase in HTTP-based adaptive video
streaming over the Internet enables a growing number of clients
to compete for a shared bottleneck bandwidth. This competi-
tion may affect users’ Quality of Experience (QoE) negatively,
especially in terms of fairness and stability. This paper presents
Flex-Steward, a solution that performs multi-client joint QoE
optimization for adaptive video streaming during bottleneck
bandwidth sharing. Joint QoE optimization refers to improving
QoE fairness among clients with various video devices and
availing from differentiated services with different priorities.
Flex-Steward deploys an adaptive bitrate delivery algorithm
based on Neural Networks (NN) and reinforcement learning at
the network edge. It relies on a trained NN model to make
appropriate bitrate recommendations in terms of video chunks to
be requested by clients sharing the same bottleneck bandwidth.
Flex-Steward is assessed in comparison with alternative state-
of-the-art algorithms under different network conditions using
a real-life prototype. Results show how Flex-Steward reduces
the unfairness in terms of joint QoE optimization with between
10.9% and 41.7%.

Index Terms—Bitrate Recommendation, Edge Computing, Re-
inforcement Learning, Joint QoE Optimization

I. INTRODUCTION

LATELY, video streaming traffic has become mainstream
in the Internet, especially in terms of bandwidth share [1].

In the context of massive amounts of video traffic, exchanged
by very diverse devices, guaranteeing high quality of experi-
ence (QoE) for video clients becomes a significant challenge
[2]. It is crucial for content providers (CP) to improve QoE
for their client services in order to increase client engagement,
which profoundly influences their revenue [3].

HTTP-based adaptive streaming (HAS) is becoming the
predominant form of video delivery. Some previous works
designed efficient adaptive bitrate (ABR) algorithms to op-
timize the QoE of a single client based on HAS [4]–[8].
In general, these algorithms run on client-side video players
and dynamically select the most appropriate bitrate for each
video chunk (e.g., 2-second block) based on various client-
side observations. These algorithms improve the QoE of a
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single client without considering other clients that share the
common bottleneck bandwidth. Such an approach encourages
competition among all flows and results in poor performance
in terms of stability, fairness and bandwidth utilization [9].
Such competitions are common at the access point between
the edge network (e.g., a campus or enterprise network) [10]–
[13] and the public network. Moreover, the latest increase in
the use of high-resolution devices has also put pressure on
the backbone network, which makes the problems caused by
bottleneck bandwidth competition more prominent [14].

To increase their revenues, CPs are keen to realize joint QoE
optimization among clients sharing the bottleneck bandwidth.
Joint QoE optimization refers to improving QoE fairness
among clients with diverse video devices and achieving differ-
entiated service for clients with different priorities. Achieving
joint QoE optimization targets an increase in the number
of clients satisfied with the service offered by CPs. On the
one hand, clients should have fair QoE if they are equally
important to the CP. However, in general, the bandwidth is
fairly shared in terms of QoS rather than QoE [15], which is
unfair to clients with high-resolution devices. For instance,
two devices with different resolutions have different user-
perceived qualities despite supporting video services with the
same bitrate. However, they request the same bitrate video
content if they observe QoS fairness. Consequently, the lower-
resolution client may get excessive bandwidth share, while the
higher-resolution client may suffer from poor video quality
due to insufficient bandwidth allocation. On the other hand,
CPs would like to provide differentiated service among clients
to improve their revenue. They provide different priorities for
clients based on how much the clients pay for their service. At
the same time, a client who pays more to CPs is more likely
to quit when getting poor QoE. Therefore, CPs should ensure
that high-priority clients have better QoE.

The conventional QoE optimization methods, client-side
[5]–[8] or server-side [16]–[22], are end-to-end control solu-
tions and regard the network as a black box. Such approaches
have difficulties in measuring the bottleneck bandwidth as
well as gathering client and network information. In order to
overcome these drawbacks, some network-assisted approaches
were proposed [12], [23]–[27]. However, due to the limited
computing capabilities in the network, it is difficult to track the
client status changes and do the control in real time, resulting
in sub-optimal performance in joint QoE optimization.

The latest advent of edge computing supports performance
improvement of joint QoE optimization [28]. Some projects
such as Open Edge [29] and CORD [30] start to work on edge
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computing. They transfer the computing power from the cloud
to the edge of the network, where it is closer to the end clients.
Such solutions make the edge servers (e.g., DSL-boxes, WiFi
access points, and base stations) offer resources through open
and standardized mechanisms to any applications, enabling
computation at the edge. Since the competition for bottleneck
is more likely to occur among clients in the same edge network
[10]–[12], [31], CPs can deploy an ABR agent as a smart
network function on the edge servers where it is close to the
end clients. The ABR agent can collect client and network
status data in real time and operate the control to clients
according to the CP’s business model.

This paper proposes Flex-Steward, an innovative solution
that teaches ABR of multiple clients how to achieve joint
QoE optimization by flexibly adapting to dynamic changes
in network conditions. Flex-Steward employs an ABR agent
which is deployed as a network function on the edge servers.
Compared with the client-side-based ABR schemes, the ABR
agent on distributed edge nodes at network edge has in-
formation gathered from multiple managed clients near the
edge server and reduces the computational pressure on the
clients. At the same time, compared with server-side-based
ABR schemes, the edge supports a more timely interaction
with the clients.

An innovative reinforcement learning (RL) approach is
designed to be employed in the Flex-Steward ABR agent to
provide bitrate recommendations for the clients. Flex-Steward
represents its control policy as a neural network (NN) that
maps raw observations (e.g., bottleneck bandwidth samples,
all clients’ status) to the next chunk’s bitrate decision for
a client. The NN provides an effective and scalable way to
incorporate continuous observations into the control policy,
so that Flex-Steward can employ such observations as input,
without quantifying their correlation.

Unlike previous end-to-end learning-based ABR algorithms
[5], [32], [33], it is challenging to build a numerical simulator
to accurately simulate the bandwidth allocation during the
bandwidth competitions to pre-train the NN model. Thus, we
pre-train the designed RL model for Flex-Steward based on a
system prototype with various network conditions and client
characteristics. A NN model is then deployed at edge servers
to offer bitrate recommendations and perform online training.

Flex-Steward is evaluated using a full prototype system
implementation, considering typical edge network topologies
and multiple DASH players based on dash.js [34] to emulate
request and download processes. Flex-Steward is compared
with other algorithms that aim to achieve QoE optimization
under different network conditions. We define a utility function
to represent the client’s evaluation of the service provided by
CPs. Compared with other algorithms, Flex-Steward main-
tains the QoE of all clients at a high level and reduces
between 10.9% and 41.7% the utility unfairness. These results
demonstrate that Flex-Steward has an excellent performance
in achieving joint QoE optimization.

The main contributions of this paper are as follows:

• An intelligent solution to achieve joint QoE optimization
for clients sharing the bottleneck bandwidth is designed.
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Fig. 1: The quality and size characteristics under different
devices for typical static video v1 and dynamic video v2.

• A RL-based learning algorithm for the ABR agent that
learns the control policy through experience data is
proposed. Such an experience-driven approach has ad-
vantages in terms of learning the client behavior and
predicting the effect on QoE caused by bitrate adjustment
decisions.

• A general reward function that allows the ABR agent to
guarantee QoE fairness among diverse video devices and
realize differentiated service offerings according to client
priorities in order to increase CP’s revenue is devised.

• To validate the performance of all considered ABR
algorithms, a full prototype system which extends the
dash.js reference player [34] was built. Testing results
show that Flex-Steward outperforms other algorithms
when realizing joint QoE optimization in diverse dynamic
network conditions.

Next, Sec.II of the paper highlights the background and
motivations of joint QoE optimization. As this paper extends
a short conference article appeared in [35], the difference
between this paper and [35] is discussed in Sec.II. The
system design is detailed in Sec.III and the RL formulation is
elaborated in Sec.IV. The RL agent and video delivery system
implementation details are presented in Sec.V. The results
of extensive evaluation experiments are described in Sec.VI.
Sec.VII presents related works in relation to QoE optimization.
Finally, the paper is concluded in Sec.VIII.

II. BACKGROUND AND MOTIVATIONS

A. Adaptive Video Streaming for QoE Optimization

Nowadays, HTTP-based adaptive streaming (HAS) has be-
come the predominant form of video delivery. Videos are
encoded into multiple bitrate versions and saved in source
servers (i.e., the data center of the CP or its leased CDN
cluster). In the video download and playback process that is
widely deployed today, the client requests for a chunk n with
appropriate bitrate r according to the network status to ensure
that the video can be played smoothly with high quality. After
receiving the client’s requests, the source responds chunks to
the client according to its request. However, it is extremely
difficult to decide the appropriate bitrate of each chunk for
the client due to highly dynamic network conditions (i.e.,
bandwidth, latency, and packet loss).

To evaluate the effectiveness of bitrate adjustment decisions,
the following three QoE-related metrics are usually used [5]–
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Fig. 2: Three scenarios when two clients sharing the same
bandwidth.

[8], [33], [36]–[38]: 1) Average bitrate/Average perceptual
quality High bitrate indicates clients have higher perceptual
quality, which is associated with better client QoE. Recent
work [33], [39] proves that Video Multi-method Assessment
Fusion (VMAF) [40] can better characterize clients’ perceptual
quality. Fig.1a shows the relationship between average bitrate
and average VMAF. It illustrates that the marginal improve-
ment in perceived quality decreases at higher bitrates. Besides,
the average VMAF varies among videos and devices with dif-
ferent screen resolutions. Note that v1 is a video that contains
mostly static scenes and v2, represents a video with highly
dynamic scenes. 2) Rebuffering time. The rebuffering time
is defined as the total time that the video buffer stays empty
during video playback, which greatly damages clients’ QoE. 3)
Bitrate/Perceptual quality switch. Quality fluctuations caused
by bitrate switches can also reduce clients’ QoE. Recent work
[33] also shows that VMAF’s fluctuations characterize well
the impact of bitrate switches on clients’ QoE.

Nevertheless, the control of clients’ QoE is a challenging
task. First, an ABR algorithm should balance a variety of
conflicting QoE metrics [5]. For example, when the network
bandwidth is limited, consistently requesting high bitrate
chunks increases video quality, but results in rebuffering
events which eventually decrease the quality. Secondly, bitrate
selection for a given chunk can have a cascading effect on the
state of the client. Thirdly, the control decisions available to
ABR algorithms are coarse-grained, so that it is difficult to
control the client QoE accurately. Finally, the quality and size
of different video chunks of the same video are different, as
shown in Fig.1b. The video player should weigh the benefits
of improving video quality and the risk of rebuffering caused
by increasing the chunk size, and make a reasonable bitrate
adjustment decision.

B. QoE Degradation Caused by Bandwidth Competition

To increase revenue, CPs hope to increase the number
of clients who are satisfied with their QoE given limited
resources. However, when multiple clients are competing for
the same bandwidth, the clients have a high risk of suffering
from poor performance in terms of stability, fairness and
bandwidth utilization [9], which makes it difficult for CPs to
guarantee high QoE for a wide range of clients. To explain the
issue clearly, Fig.2 shows the temporal overlap of the ON-OFF
periods among two competing clients as an example. Assume
that the bandwidth capacity of the sharing bandwidth is C
and a single active connection obtains the whole bandwidth,
while two active connections share it fairly. We denote C1 and

C2 as the throughput observed by two clients. The ON period
indicates that the downloading session is active (i.e., the client
is downloading a chunk), while the OFF period implies that
the downloading process is off.

Scenario 1 shows that the two clients are perfectly aligned,
and both of them observe that C1 = C2 = C

2 . However,
the fairly shared bandwidth may result in unfair QoE among
clients. On one hand, as shown in Fig.1b, the quality and
size of chunks are different. When two clients download two
chunks of the same quality, but different sizes, the client who
downloads the large chunk will experience a long downloading
time, which damages the buffer and has a risk of causing re-
buffering or quality degradation decisions. On the other hand,
the buffer status of clients are also different. Fairly sharing the
bandwidth may cause a low-buffer client to suffer from bad
QoE. Scenario 2 shows how the ON period of client 2 falls in
the ON period of client 1. It may happen when client 2 requests
a chunk with a smaller size. Client 1 observes throughput C1

> C
2 and client 2 observes throughput C2 = C

2 . Thus, client
1 continues to request a higher bitrate, and client 2 requests
a lower bitrate, resulting in unfair QoE distribution among
clients. Scenario 3 shows the case that two clients have no
overlap of ON periods. Each client monopolizes the available
bandwidth during ON period so that C1 = C2 = C. In this
case, both clients overestimate their fairly shared bandwidth,
which results in each client’s requests for large chunks and
causes congestion on the shared link. The congestion makes
the clients to reduce their estimated bandwidth in the next
request. This phenomenon will cause frequent fluctuations in
the bitrate requested and achieved by clients, which leads to
instability of their QoE.

Moreover, from the perspective of CPs, the hope is to
achieve differentiated services among clients with different
priorities in order to improve their revenue. CPs provide dif-
ferent priorities for clients based on how much the clients pay
for their services. Therefore, it is expected that high-priority
clients are less susceptible to suffer from QoE decrease.

In summary, to retain more clients, CPs should provide
fair QoE for clients with the same priority and differentiate
service among clients with different priorities according to
their business strategy. To achieve theese, CPs should define
a utility function to weigh QoE fairness and differentiated
services.

C. Introducing Learning-based ABR at the Edge

Several works are proposed to address the QoE degradation
problem caused by bottleneck competition [20], [21], [41]–
[45]. However, these solutions have limited success in tracking
heterogeneous clients’ states and realizing joint QoE optimiza-
tion. As detailed in Sec.II-A, the control of a single client’s
QoE is a challenging task. Combining the QoE of multiple
clients to perform joint optimization is a more difficult task.
In this context, this paper proposes an experience-driven
ABR to improve the performance by performing joint QoE
optimization for video streaming under multi-client bandwidth
competition. This approach uses NN to represent the status of
multiple clients, and utilizes RL to train the solution to make
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Fig. 3: Video delivery system with edge server.

optimal decisions to achieve joint QoE optimization. The RL
trains the policy that can select actions with long-term value
through learning multi-dimensional state data, so as to achieve
the goal of satisfying the QoE demands of multiple clients as
much as possible.

The real-time information collection and real-time control
of the managed clients are required to achieve joint QoE
optimization. Fig.3 shows a typical video delivery system with
an edge server [35]. Compared with the client and the server,
deploying the ABR agent at the edge is a better choice for the
following reasons:

• The edge server can have frequent message exchanges
with clients it serves with low latency and high sta-
bility, which implies that the edge server can monitor
the client status in real-time; this is critical for real-
time control over clients. The delivery path between the
HTTP DASH Server (DS) and the access point is volatile,
so that it introduces high latency and packet loss [13],
[46]. To realize fine-grained control over the QoE of
clients, the ABR agent should collect fresh client state
data to make proper bitrate decisions and send bitrate
recommendations rapidly to the corresponding client. On
the other hand, the ABR agent only needs infrequent mes-
sage exchanges with DS, such as the Media Presentation
Description (MPD) file and the client’s priority, which
does not have such strict performance requirements.

• The edge server can measure the bottleneck perfor-
mance with a lower cost. DS has difficulty in perceiving
bottlenecks for millions of clients, which introduces high
measurement costs. Furthermore, measurement at the
client-side does not have a global view of the status of
clients, so that the client-side ABR only has sub-optimal
performance input in joint QoE optimization. Thus, we
deploy the ABR agent at the edge server to locate and
measure the bottleneck for groups of clients and realize
joint QoE optimization.

• The edge server has the computing power to perform
NN computation and online training, and moving
the ABR algorithm from the clients to the edge server
alleviates the load NN computation would put on client
devices.

In conclusion, considering diverse potential locations, the
edge server is the best place to deploy the ABR agent to
manage heterogeneous clients. The edge server are generally
deployed by the network providers on a large scale. However,
from the perspective of information security and information
integrity, the content provider should operate the ABR agent

at the smart edge. The network provider can offer resources
through open and standard mechanisms to any applications.
Thus, the content providers can deploy the agent of Flex-
Steward as a smart network function on the smart edges. In
this way, the network providers can benefit by renting out
edge servers’ computing power to content providers. On the
other hand, content providers can jointly retain more users by
optimizing clients’ QoE and increasing revenue.

In the next section, we will describe the design of Flex-
Steward in detail. Note that this paper extends a short confer-
ence article which has appeared in [35]. The initial conference
paper does not consider the chunk-level quality and size
variations of a video, which influences the performance of
ABR. Additionally, different from [35], this paper refers to the
quality-aware QoE model [33], which makes the design of the
ABR algorithm consider the quality difference among videos
and be closer to the optimization of the real clients’ QoE.
Finally, the conference paper used a Mininet-based [47] eval-
uation, whereas this paper validates the performance of Flex-
Steward using a full system prototype based on an extended
dash.js reference player. The feasibility and performance of
Flex-Steward is demonstrated with various network traces and
client characteristics.

III. FLEX-STEWARD DESIGN

A. Overview

Fig.3 illustrates the principle behind the Flex-Steward so-
lution, which adaptively delivers video from an HTTP DASH
Server (DS) of a CP to clients via a smart edge [35]. The
”Smart Edge” label indicates the deployment of the proposed
intelligent ABR algorithm at the edge servers. The bandwidth
between the smart edge and end hosts is generally reliable,
while the bottleneck bandwidth competition often occurs in
the Public Internet [13], [46]. The Flex-Steward includes the
following major components:

1) Clients: There are a variety of device types, as shown
in Fig.3. The perceived service quality on various devices is
different due to their various resolutions, which implies that
different types of devices have different optimal bitrates. A
rectangle in Fig.3 represents a single chunk. A larger chunk
size implies a larger bitrate. The figure suggests that a client
with a high-resolution device should request a higher bitrate to
satisfy its quality demand. The client can be a Thin Client with
simple ABR decision logic at the client-side. (i.e., when the
buffer is less than a certain threshold, the client only requests
the lowest bitrate). The client requests chunks according to
the bitrate recommendations sent by the smart edge. After
finishing downloading a chunk, it sends a finish signal to the
smart edge and waits for bitrate recommendations for the next
chunk. As the transmission delays for bitrate recommendations
are much smaller than a chunk’s playback duration (generally
more than 2 seconds), the extra delay caused by sending bitrate
recommendation is ignored.1

1ping was used to measure the round-trip time (RTT) from a PC and
a mobile phone to the servers on our campus and data center in our city,
respectively. The results show that the RTTs to the server range from 2 to 10
milliseconds, and RTTs to the server in the data center range from 3 to 24
milliseconds.
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2) Smart Edge: The measurement function and the ABR
agent at the smart edge are two main functions that realize
joint QoE optimization. On the one hand, the measurement
function monitors the network condition from edge network to
DS in real-time. On the other hand, the measurement function
records the observation of client states by sniffing online
client’s request packets containing single client information.
Then the ABR agent learns the states through this information
by NN and makes bitrate decisions for online clients aiming
to achieve joint QoE optimization.

The smart edge collects the observation of client states
at the beginning of chunk downloading and evaluates the
effect caused by the bitrate recommendation after finishing
downloading a single chunk. It is important to note that, due
to the TCP slow-start-restart enabled [41] and ON/OFF period
while DASH chunk downloading, the throughput is related
to the bitrate of the downloading chunk. Fig.4 shows the
measured throughput of two clients requesting the same video
but have different bitrates. Clients requesting a higher bitrate
content generally get a higher bandwidth share. Therefore,
the bitrate recommendation method can realize differentiated
bandwidth resource allocation among clients.

It is worth mentioning that the smart edge pays attention to
the joint QoE optimization requesting the same HTTP DASH
Server. As long as the bottleneck bandwidth competition
occurs between the edge node and the source node, the smart
edge can realize joint QoE optimization among clients in the
same cluster. We can regard all the links from the smart edge
to the source server as a link. The bandwidth competition
occurs on the most congested link. The congestion level
of the congested link determines the probed delay by the
client, which is used as the global information by the smart
edge. Therefore, when the bottleneck appears between the
smart edge and the HTTP DASH Server, the smart edge can
adaptively adjust the bitrate recommendation for clients in its
corresponding edge cluster.

3) HTTP DASH Server: The HTTP DASH Server in Fig.3
illustrates the content storage and provision is located in the
cloud of the CP. Video chunks encoded at multiple bitrates are
stored in this server. Chunks with diverse bitrates are aligned
to support seamless quality transitions. The servermay receive
thousands of concurrent requests from all over the world.
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Fig. 5: Flow diagram of a video download session.

B. Adaptive Video Streaming Process

Fig.5 illustrates the flow diagram of the video download
session. The client communicates with edge and DASH Server
with end-to-end encrypted traffic, respectively. When a client
starts to request a video from the server, a ”session up”
message that includes the URL of the video and the client
information (e.g., device resolution, operating system, and
client IP) is sent to the edge and the server to establish the
communicating session, respectively. Meanwhile, the server
replies with the Media Presentation Description (MPD) file
to the client. The MPD file describes chunk information (i.e.,
timing, URL, media characteristics like video resolutions and
bitrates) as the reference of video chunks for clients. We also
add the chunk-level quality and size to MPD file to enable
quality-size-aware ABR decision-making. On the other hand,
if the smart edge receives the ”session up” message form the
client and does not find the client’s priority or the video’s
MPD file, it sends an explicit request to the DS.

The client starts to download the video chunk when it
received the MPD file. If for some reason (e.g., edge server
failure) the client does not receive bitrate recommendations
from the smart edge, it uses the buffer-based ABR algorithm
[6] run at the client-side to make the bitrate-adaptive decision.
Moreover, Flex-Steward excludes clients whose last-mile is
the bottleneck based on the client’s download speed. If a
client downloads a large chunk with low throughput than other
clients, it implies that the bottleneck of this client may appear
at the last mile. At this time, this client should change Flex-
steward to the client-side ABR.

The client sends the request to DS to fetch each chunk. Then
DS sends the chunk to the client after receiving the request
(”chunk downloading” in Fig.5). When receiving the whole
chunk, the client sends a ”finish signal” to the smart edge
then the edge sends ”bitrate recommendation” to the client.
According to our statistics, 98% the time between the client
sending ”finish signal” and receiving ”bitrate recommenda-
tion” is under 25ms, which is much smaller than the chunk
duration (e.g., 2s). The ”finish signal” contains the client’s
playing status (i.e., play or resume) and current buffer. The
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TABLE I: Notations Table

Notation Description
i, v The client id, the video id
o
(t)
i The observed state of client i at time t

a
(t)
i The determined action of client i at time t

r
(t)
i The reward of the action at time t by client i
γ A factor discounting future rewards, γ ∈ (0, 1]

n
(t)
i The requested chunk id of client i at time t
Nv the total chunk number of video v
g, G The id of the RL thread. The total number parallel threads.
Q

(t)
i The QoE of client i at time t

α, β, ζ, λ The parameters to describe the aggressiveness of each QoE
metric

τ
(t)
i The bitrate of the chunk downloaded by client i at time t
q(·) The function that maps the bitrate to perceived quality
T

(t)
i The rebuffering time caused by downloading chunk n

(t)
i

QL
(t)
i The QoE loss of client i at time t

qexpi The expected quality of the client i
wi A weight factor related to the priority of client i
U

(t)
i The utility value of client i at time t

⃗d(t)
The vector that contains delay measurements that indicates
network congestion

U(t) The utility mean of all online clients
b
(t)
i The buffer occupancy of client i at time t
p⃗i The priority list of client i
⃗
q
(t)
n The quality list of all alternative bitrates of the next chunk
⃗
s
(t)
n The size list of all alternative bitrates of the next chunk
K The number of alternative bitrate at each decision

client stops requesting a new chunk if its buffer occupancy
exceeds a threshold. At this time, the client does not have
data exchange with edge server. When the client’s buffer falls
below the max buffer threshold, the client sends a new request
to the smart edge for ”Bitrate Recommendation” and then it
requests the new chunk to the DS. The time of requesting data
from edge depends on when the client finishes downloading
a chunk from the source server. Note that the request to the
smart edge contains the client’s playing and buffer status to
update the client information recorded by the smart edge. In
the end, the client sends the ”session down” message to the
smart edge, and the server tears down the session. This results
in the smart edge ABR agent stop making bitrate-adaptive
decisions for the client.

IV. LEARNING-BASED JOINT QOE OPTIMIZATION

A. ABR Decision and Model Training Process

As mentioned, Flex-Steward employs a neural network
(NN) based reinforcement learning (RL) method for bitrate
recommendation to achieve joint QoE optimization. The RL
approach attempts to learn an ABR policy from observations
through interaction between the ABR agent and the environ-
ment. At time t, the agent which makes recommendations to
client i makes also observations o(t)i and chooses an action a

(t)
i

according to o
(t)
i . After applying the action, the observation of

the environment transitions to o
(t+1)
i and the agent receives a

reward r
(t)
i . The goal of learning is to maximize the expected

cumulative discounted reward: E[Σ∞
t=0γ

tr
(t)
i ], where γ ∈ (0,1]

is a factor discounting future rewards. Fig.6 summarizes how

the NN-based RL makes the bitrate recommendations for
client i and updates its NN online.

1) ABR Decision: As is shown in Fig.6, the RL thread
makes bitrate recommendations to client i. The decision
process is as follows: (1) When the smart edge perceives
that client i is going to request chunk n, the ”Measurement”
function in the smart edge sends its measurement to the
waiting queue of the RL thread g. (2) When it is the turn
to make a bitrate decision for client i, the queue sends the
observation vector o

(t)
i to the NN and the memory function

(i.e., (o, a, r) memory) of the (observation, action, reward)
tuples. The actor-network infers the bitrate recommendation
a
(t)
i based on o

(t)
i [48]. Note that 98% of NN decision is under

10ms. (3) The RL thread g sends a
(t)
i to its (o, a, r) memory

and client i. (4) The client i fetches the chunk from the source
server. (5) The smart edge updates the client measurement with
respect to the information contained in the new request. (6)
The ”Measurement” function sends the reward r

(t)
i of action

a
(t)
i to the (o, a, r) memory of the RL thread g.
2) Model Training Process: To speed up training process

and be able to make bitrate recommendations to multiple
clients, multiple RL threads are spawn in parallel. The ABR
agent contains a central thread and G parallel RL threads.
At each decision time for a thread, the thread takes personal
observation of the client as input and makes the bitrate recom-
mendation. Note that the client should be in its corresponding
client cluster. Thus, each thread is configured to experience a
different set of input observations. However, the threads send
(observation, action, reward) tuples to the central thread,
which aggregates them to generate and train a single RL
model. For every fixed number of sequences of tuples of a
client, the central agent computes a gradient and performs a
gradient decent step. The central thread then updates the actor
and critic network and then pushes out the new model to the
RL thread which sent this sequence of tuples. This mechanism
makes Flex-Steward scalable to cover large number of clients
in the edge network.

B. Experience-Driven Network Model

In this section, we formulate the experience-driven model
as a RL model. It is represented as a discrete time and action,
continuous observation control model, by defining observation
o ∈ O and action a ∈ A spaces and a reward function r.
Service quality Q is assessed using the quality-aware QoE
model for ABR proposed by Comyco [33], as follows.

1) Definition: QoE Q
(t)
i of client i at time t is defined as:

Q
(t)
i =


αq(τ

(t)
i )− βT

(t)
i n

(t)
i = 1

αq(τ
(t)
i ) + ζ|q(τ (t)i )− q(τ

(last)
i )|+−

λ|q(τ (t)i )− q(τ
(last)
i )|− − βT

(t)
i n

(t)
i > 1

(1)
where n

(t)
i ∈ [1, Nv] and τ

(t)
i are the sequence number and

bitrate of the chunk downloaded by client i at time t and
q(τ

(t)
i ) maps the bitrate to the quality perceived by the client.

T
(t)
i represents rebuffering time caused by downloading the



MA et al.: LEARNING-BASED JOINT QOE OPTIMIZATION ON SMART EDGE FOR ADAPTIVE VIDEO STREAMING 7

Fig. 6: The diagram of ABR decision and model training process

chunk n
(t)
i . |q(τ (t)i ) − q(τ

(last)
i )|+ indicates a positive chunk

quality switch which means that the chunk switches from a
lower bitrate to a higher bitrate, while |q(τ (t)i )− q(τ

(last)
i )|−

is a negative chunk quality switch. Note that α, β, ζ and λ
are parameters to describe the aggressiveness of each metric.

When a client downloads a chunk that reaches its expected
quality and does not suffer from rebuffering or quality switch,
we state that the client has a satisfactory QoE level. We also
define the difference between the client’s actual QoE and a
satisfactory client QoE level as QoE loss QL

(t)
i and use it to

represent the playback status of client i. The QoE loss QL
(t)
i

of client i at time t is defined as follows:

QL
(t)
i = αqexpi −Q

(t)
i (2)

where qexpi is the expected quality of the client i. When the
client’s QoE declines from the satisfactory value, the proba-
bility of the client not continue to watch the video increases
rapidly [3]. Therefore, in comparison with the QoE value
alone, QoE loss represents more accurately the probability
that a client stops the video playout. Besides, to achieve
differentiated service for clients with various priorities, we use
the weighted QoE loss as the utility function U

(t)
i to reflect

the impact on the potential revenue of the CPs when the client
i suffers from QoE loss. This utility is defined as follows:

U
(t)
i = −wi ∗QL

(t)
i (3)

where wi is a weight factor related to the priority of client i.
2) Inputs: After downloading chunk n − 1 by client i at

time t, the ABR agent located at the smart edge collects
network and client state information and transforms them into
an observation vector. This vector contains eight dimensions

of observation o
(t)
i ={d⃗(t), U (t), b

(t)
i , U

(t)
i , q

(t)
(n−1), p⃗i,

⃗
q
(t)
n ,

⃗
s
(t)
n }

as input for the RL model. The observation vector is com-
posed of both global observation and individual observation
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Fig. 7: Bottleneck delay vs throughput.

components of client i, providing relevant information to the
adaptive bitrate recommendation process.

Global observation: The global observation includes
probed bottleneck delay and mean QoE loss for the clients
sharing the bottleneck. Multiple clients are selected to send
probe packets to detect network delays characterizing the
network congestion. As shown in Fig. 7, the transmission
delay of the bottleneck bandwidth is approximately inversely
proportional to the available bandwidth. We use past z = 6
delay measurements d⃗(t) = {d(t), ..., d(t−z+1)} to assess the
bottleneck congestion level. Pensieve [49] and Comyco [33]
suggest that the number of past measurements is set to 8. We
try to set k = 4, 6, 8 respectively and find that set k = 6 and k
= 8 has equal performance while the reward decreases when
k = 4. Thus we set k = 6 in our experiment.

Note that the content providers should select clients with
low network fluctuations and high bandwidth as clients who
send probe packets. The probe packets are set every one sec-
ond. In a real-world deployment, multiple clients are needed to
probe global congestion. Then we use box-plot method to re-
move outliers and determine the current bottleneck congestion.
We use the utility mean of all online clients U (t) to indicate
the current playback status of all clients.



MA et al.: LEARNING-BASED JOINT QOE OPTIMIZATION ON SMART EDGE FOR ADAPTIVE VIDEO STREAMING 8

Individual observation: The individual observation indi-
cates the detailed state of client i when it requests the next
chunk. It includes the current buffer occupancy b

(t)
i ; the utility

U
(t)
i following the download of the last chunk; the quality of

the last chunk q
(t)
(n−1); the priority list p⃗i = {p1, ..., pl, ..., pL}

where pl = 1 if the priority of client i is l otherwise pl =

0; the quality list
⃗
q
(t)
n = {q(t)n1 , ..., q

(t)
nk , ..., q

(t)
nK} and size list

⃗
s
(t)
n = {s(t)n1 , ..., s

(t)
nk, ..., s

(t)
nK} of all alternative bitrates of the

next chunk. b(t)i , U (t)
i and q

(t)
(n−1) reflect the client’s real-time

playback status and p⃗i indicates how important the client i is
to the CPs. Note that we regard the priority as a categorical
value rather than a scaler value. When we input the priority
value as a categorical value, we find that the neural network
converges faster and gets a higher reward. So we choose to
input the priority as a categorical variable into the neural
network. Meanwhile, motivated by Fig. 1a and Fig. 1b, we

employ
⃗
q
(t)
n and

⃗
s
(t)
n as input to the NN model to indicate the

potential impact that each action may have on the environment
and client’s QoE.

3) Action: The ABR agent provides bitrate adaptive rec-
ommendations to client i according to the measured obser-
vations. The action space includes alternative bitrates for the
next chunk. We have a K dimensional action vector for K
alternative bitrates.

4) Reward: The primary objective of this system is max-
imizing utility fairness while satisfying the QoE demand.
We craft the reward signal to guide the agent towards good
solutions for our objective. Specifically, we set the reward r

(t)
i

at each time t as:

r
(t)
i = U

(t)
i − |U (t) − U

(t)
i | (4)

The reward value includes two metrics: individual utility and
utility fairness. The first term indicates the preference of
high utility (i.e., low weighted QoE loss). The second term
implies fairness among multiple clients’ utility. The client i
experiences a punishment when its utility is different from the
average utility value among online clients. When all online
clients have a fair QoE distribution, the second term becomes
zero. Note that we normalize r

(t)
i based on historical data in

the training phase to make the NN easier to converge.

C. The Case of ABR Decision in Realizing Joint QoE Opti-
mization

To make the decision principle of Flex-Steward clearer,
we use a case to show the logic of bitrate recommendation
in this section. As described in section IV-B2, all threads
have the same observation of bottleneck bandwidth as the
global observations which indicate the amount of available
bottleneck bandwidth and the status of managed clients. Then
the client observations help the ABR agent handle the resource
allocations among clients. Note that the competition is not
among threads but clients. The multi-thread mechanism is to
avoid creating a neural network for each client and causing
insufficient memory at smart edge. Fig.8 shows how Flex-
Steward make the bitrate decisions under perceived total
available bandwidth to handle the competition among clients.

ABR Agent

Thread 1
client 1-1 [p1, buf H, PH, q70, …]
client 1-2

Thread 2
client 2-1 [p2, buf L, HD, q80, …]

client 2-2

[p3, buf H, 4K, q90, …]

……

[p3, buf H, PH, q90, …]

……

G
lobal O

bservations(G
O

)
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elay

Average U
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Fig. 8: Flex-steward decision logic

At time t, the ABR agent perceives the total available
bandwidth and average utility of online clients, then record
them in the Global Observations (GO) module. Assume that
the ABR agent estimates that the total available bottleneck
bandwidth is about 10Mbps according to the bottleneck delay
(Motivated by the results in Fig.7).

On the other hand, there are four online clients connected to
the ABR agent. At time t1, thread 1 in ABR Agent receives the
bitrate request from client 1-1. Then, thread 1 feeds the client
observations and global observations to the neural network
(NN) model. Although the buffer of client 1-1 is high, its
device resolution and priority are relatively low, so that the
model recommends that the client 1-1 requests the chunk at
0.8Mbps. At time t2, thread 1 receives the bitrate request
from the client 1-2. Because client 1-2 has high priority and
high-resolution devices, the model recommends that client 1-
2 request the chunk at 5.6Mbps by NN according to the the
information from GO and client observations. Thread 2 also
uses the same principle to make bitrate decisions for client
3 and 4 to realize joint QoE optimization by NN based on
global and client observations.

V. FLEX-STEWARD IMPLEMENTATION

This section details the implementation of Flex-Steward’s
RL-based agent and describes the prototype system employed
in testing.

A. Reinforcement Learning Agent

TensorFlow [50] is used to implement the RL architecture
and train the ABR agent through asynchronous advantage
actor-critic (A3C) method [51]. The network architecture,
which includes actor and critic networks is shown in Fig.6.
In the actor network, we use a 2-hidden-layer fully connected
neural network with 400 and 150 hidden nodes in the first
and second layers, respectively. Results from the second
layer are applied to a softmax function to output the bitrate
recommendation. The critic network also uses a 2-hidden-
layer fully connected neural network with 250 and 60 hidden
nodes in the first and second layers, respectively. However, the
final output is a linear neuron without an activation function.
During training, we use a discount factor γ = 0.9, which
implies that current actions can be influenced by ten future
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steps. The central agent updates the actor and critic network
after it receives 10 (observation, action, reward) tuples from
a client. The learning rate for actor and critic networks is
configured to be 2 × 10−4 and 10−4, respectively. Note that
we have tried several combinations of NN hyper-parameters,
including layer number, node number, learning rate, discount
factor, and the number of forwarding steps, and find that the
agent performs well for a wide range of hyper-parameter.

B. Video Delivery System

We use one, one, and two x86 servers (running Ubuntu
18.04 system) with two Intel Xeon E5-2600 CPUs to emulate
the source server, edge server, and clients, respectively. The
source server is based on Nginx [52], a lightweight and
highly stable HTTP server. All the DASH standard videos
are saved at the source server. We use the Linux Traffic
Control tool2 to control the sending rate of the source server
in order to determine the impact of background traffic on
the bottleneck. The smart edge is based on Nginx, uWSGI
[53], and Django [54], a common deployment in production
environments. Redis [55], a popular in-memory data structure
store, is employed to maintain the network and client status.
We run multiple dash.js players in Google Chrome browsers
(v83) on servers that emulate the clients’ behaviors. The
request packets of the clients are modified to include additional
information about the client state, such as buffer occupancy
and bitrate of the last requested chunk.

VI. FLEX-STEWARD EVALUATION

A. Video and Network Datasets

1) Video Dataset: We employ 39 4K videos, from 5 to
10 minutes long which cover content ranging between static
and highly dynamic. We use FFmpeg [56] to encode videos
into H.264 and MP4Box [57] to convert them to MPEG-
DASH chunks of 2-seconds duration. Each video is encoded
into 10 discrete bitrates: {334, 595, 791, 1200, 1800, 2500,
4200, 8000, 12000, 24000} Kbps. We use the Video Multi-
method Assessment Fusion (VMAF) [40], a state-of-the-art
indicator to reflect clients’ perceptual quality. The value of
VMAF ranges from 0 to 100. Moreover, we utilize VMAF-
PHONE, VMAF-HD and VMAF-4K models to evaluate the
VMAF value for diverse devices: PHONE, HDTV, and 4KTV,
respectively. The resolutions of the reference videos for the
three models are 1280 × 720, 1920 × 1080 and 4096 ×
2160, respectively. We divide the video dataset into a training
dataset and a testing dataset, which contain 29 and 10 videos,
respectively. Both datasets contain multiple types of videos
with identical distribution.

2) Network Traces: To simulate dynamically changing
background traffic of the bottleneck, we employ the broadband
network traces provided by FCC [58] and wireless network
traces from [59]. The bandwidth of broadband traces changes
smoothly while the bandwidth of the wireless network has
a large variance. We have conducted experiments under the
above two types of bandwidth scenarios to demonstrate the

2https://linux.die.net/man/8/tc

TABLE II: Ratio of [device, priority] configurations among
clients

Priority
Device Configuration 1 Configuration 2

PH HD 4K PH HD 4K
1 0.25 0.15 0.1 0.117 0.117 0.117
2 0.15 0.08 0.067 0.117 0.117 0.117
3 0.1 0.067 0.033 0.1 0.1 0.1

0 50 100 150 200
Time

60
80

100
120
140
160
180

Ba
nd

wi
dt

h 
(M

bp
s)

Train
Test 1
Test 2

(a) wired network traces

0 50 100 150 200
Time

0
100
200
300
400
500
600

Ba
nd

wi
dt

h 
(M

bp
s)

Train
Test 1
Test 2

(b) wireless network traces

Fig. 9: Part of training and testing network traces

versatility of Flex-Steward. The dataset contains traces of
average throughput with a five-second granularity. We multiply
the throughput by 60 to simulate the bandwidth of bottleneck.
We divide the network traces into training traces and testing
traces with a ratio of 8:2. Fig. 9 shows a part of the training and
test traces of wired and wireless bottleneck in our evaluation.

B. Experimental Setup

The number of DASH clients ranges from 0 to 100, with the
ratio between the number of clients using PHONE, HDTV, and
4KTV is 5:3:2. This ratio was set following a recent Cisco’s
report [1]. In order to achieve differentiated services, three
levels of client priorities are selected: levels 1, 2, and 3, where
the highest level being associated with the highest priority. The
ratio of clients with priority levels 1, 2, and 3 was also set to
5:3:2. Therefore, the ratio of clients with each [device, priority]
combination follows configuration 1 in Table II, where PH,
HD and 4K are abbreviations for PHONE, HDTV and 4KTV,
respectively. Additionally, to compute the utility value, we set
the weight factors wi in the utility function for priority levels
1, 2, and 3 to 1, 1.2, and 1.5, respectively. Note that the weight
can be modified according to the service strategy of the CPs.
Finally, according to our test of the RTT between the client
and server which is described in Sec.III.A, we set the RTT
between the edge server and DS to 24 milliseconds.

C. Methodology

1) Comparison with Baseline Methods: Flex-Steward is
compared with the following ABR algorithms which target
QoE optimization:

• Client-side ABR already integrated in dash.js: These
methods do not consider to optimizing fairness. We use
them as competitors to reflect the problems of the current
integrated methods in dash.js in achieving QoE fairness.

– Rate-Based (RB): chooses the highest available bi-
trate below the predicted throughput, which is pre-
dicted using the harmonic mean of the throughout
experienced during the last five chunk downloads.
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– Buffer-Based (BB) [7]: mimics the buffer-based al-
gorithm in [7] which uses a reservoir of 3 seconds
and a cushion of 11 seconds. i.e. it selects bitrates
with the goal of keeping the buffer occupancy above
3 seconds, and automatically chooses the highest
available bitrate if the buffer occupancy exceeds 14
seconds.

– Bola [6]: uses Lyapunov optimization to select bi-
trates solely considering buffer occupancy observa-
tions. Bola is an ABR algorithm widely used in
the industry, such as Bilibili3. This solution makes
clients greedily occupy network bandwidth to obtain
high QoE but ignore the QoE fairness among clients.
We hope to compare with Bola to show that Flex-
Steward can improve the fairness of QoE among
clients without reducing the QoE of clients.

• Client-side ABR only considers QoE fairness: We com-
pare Flex-steward with Festive to show the performance
on QoE fairness when we adapt the quality-aware model.

– Festive (Fes) [41]: uses the stateful and delayed
bitrate update strategy to decide bitrate for the next
chunk. In addition, the next chunk download time
is randomized considering buffer occupancy. This
strategy aims to improve stability and fairness for
clients sharing the common bottleneck bandwidth.

• Methods in achieving joint QoE optimization:
– Gta [44]: A client-side game-theoretic approach that

comprehensively considers the device screen reso-
lution, priority, and requesting video content type
to make the bitrate decision to realizing joint QoE
optimization.

– Fineas (Fin) [45]: A collaborative strategy between
the client and the server. The server monitors the
available bandwidth of the bottleneck and calculates
the fairness signal according to clients’ priority. The
client makes the bitrate decision with reference to
the fairness signal and the perceived bandwidth. The
fairness signal can be calculated as wi∑M

i wi
∗
∑M

i bwi,
where M is the number of online clients and bwi is
the measured bandwidth by client i.

We choose the above methods because these methods do
not shape the traffic in the network and increase the insta-
bility of network performance. Most server-side and network-
assisted solutions mentioned in our related work section use
the equipment in the network to allocate network resources.
For instance, the Server and Network-assisted DASH (SAND)
mostly use Software-defined Network (SDN) switches to al-
locate bandwidth to each cluster.

2) Training RL model for Flex-Steward: We pre-trained a
RL model for Flex-Steward based on our system prototype
before the deployment. During the training phase, the sending
rate of the source server changes according to the randomly
picked network traces in the training set, and the client picks
up the video randomly in the training video dataset. We test
the performance of the RL model every 20 minutes based on

3https://www.bilibili.com/

the test configuration. During the testing phase, the sending
rate of the source server changes according to the ”Test 1”
trace shown in Fig.9a, and the client picks up the video from
the testing video dataset. Each testing epoch lasts for 15
minutes, and we record the average reward during the testing
to illustrate the performance of the RL model. The training
lasts for 12 hours. In the evaluation phase, we deploy the RL
model with the highest average reward in Flex-Steward for
comparison with other methods.

3) Evaluation Metrics: In order to compare the perfor-
mance of Flex-Steward with other methods, we evaluate the
following metrics in each run.

Average QoE. The average QoE is the mean of QoE
values when a client downloads a video. We refer to the QoE
definition in Eq.(1) and set α = 0.8469, β = 28.7959, γ =
0.2979, δ = 1.061 according to Comyco [33]. In [33] [61],
the author proves that compared with the previous researches
on ABR [8], [49], Comyco’s QoE is closer to the clients’
real QoE, and the results obtained referring to Comyco’s QoE
model can be fed back to the ABR agent in real time as
a reward for RL. Thus, we use Comyco’s QoE model to
evaluate the performance of ABR decision. Besides, we use
ITU-T P.1203 [60], an established QoE model that trained by
the subjective test databases to be closer to the clients’ real
QoE. To measure the impact of video quality on QoE under
different resolution devices, we use P.1203 with input scores
coming from P.1204-type [62] quality models. ITU-T P.1204.3
is a short-term video quality prediction model that uses full
bitstream data to estimate video quality scores on a segment
level. The quality score of the P.1204.3 model claims that its
predicted score is closer to the Mean Opinion Score (MOS)
of humans than VMAF.

Detailed QoE Metrics. We record the average quality,
average positive/negative quality switch, and average ratio of
the rebuffering time during the evaluation for all clients when
all the considered methods are employed in turn.

QoE Fairness Metrics. According to Fig.1a and section
II-B, the bottleneck competition may cause QoE unfairness
among clients with the same priority. Flex-Steward considers
chunk quality and size as inputs to reduce the QoE unfairness
among clients with the same priority. To evaluate the quality-
and-size-aware ABR of Flex-Steward on improving QoE fair-
ness among clients with the same priority, we calculate the
QoE of all online clients every Ttest = 2 seconds. Then, for
clients with the same priority, we figure out both the Jain’s
fairness [63] and 5th percentile minimum value among their
QoE to illustrate the QoE fairness.

Utility Unfairness. We compute the standard deviation of
utility defined in Eq. (3) among I online clients at time t by
defining the following unfairness index:

Unfairness(t) =

√√√√1

I

I∑
i=1

(U
(t)
i − U (t))2 (5)

where U
(t)
i represents the utility of client i at time t. U (t) is

the mean of utility values of all online clients at time t, which
is defined as U (t) = 1

I

∑I
i=1 U

(t)
i

. Since the VMAF value of
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TABLE III: Average QoE under Comyco [33] QoE Model

ABR
Conf Wired Network Traces Wireless Network Traces

PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3 PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3
RB 79.5 79.4 79.7 61.2 62.8 61.8 57.2 58.7 57.7 78.9 77.6 76.3 60.9 63.9 62.9 58.2 59.4 58.1
BB 67.7 67.8 67.9 43.0 42.9 42.0 40.2 40.2 40.9 71.6 70.5 72.6 44.3 47.9 50.0 42.3 41.0 46.6

Bola 79.3 79.3 78.9 63.8 61.6 65.7 58.2 60.7 60.1 78.5 78.0 79.0 63.2 59.7 64.0 58.7 55.8 56.9
Festive 79.3 80.7 79.2 62.0 65.9 65.5 61.2 61.8 59.0 77.6 77.1 77.9 59.2 55.3 57.0 56.6 54.5 61.1

Gta 70.8 73.0 79.5 65.9 64.6 68.2 63.3 61.0 65.8 78.2 77.8 78.0 63.7 61.7 62.0 58.1 55.2 59.1
Fineas 77.3 80.2 80.5 60.9 59.6 64.8 58.1 62.8 61.4 77.4 76.4 78.2 56.7 59.6 60.5 57.7 57.1 58.6

Flex-Steward 75.2 78.5 80.3 64.5 69.6 72.6 64.8 65.7 70.2 75.1 75.7 75.4 60.3 63.7 66.5 63.4 63.5 68.5

TABLE IV: Average QoE under P.1203.3 [60] QoE Model

ABR
Conf Wired Network Traces Wireless Network Traces

PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3 PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3
RB 3.99 3.99 4.10 3.62 3.64 3.65 3.30 3.37 3.28 3.72 3.90 3.72 3.52 3.59 3.64 3.33 3.13 3.28
BB 3.39 3.40 3.40 3.04 3.04 3.03 2.68 2.68 2.69 3.89 3.95 4.07 3.76 3.73 3.60 3.20 3.23 3.29

Bola 4.08 4.07 4.08 3.84 3.71 3.98 3.46 3.67 3.57 3.95 3.84 3.89 3.73 3.61 3.60 3.28 3.13 3.19
Festive 3.99 4.01 4.10 3.76 3.86 3.87 3.65 3.27 3.32 3.80 3.88 4.05 3.50 3.45 3.65 3.38 3.19 3.42

Gta 3.54 3.75 4.09 4.01 3.96 3.99 3.81 3.77 3.89 4.03 4.03 3.91 3.89 3.87 3.67 3.52 3.24 3.59
Fineas 3.99 4.04 4.20 3.78 3.86 3.63 3.61 3.75 3.71 3.94 3.96 3.88 3.49 3.56 3.82 3.42 3.62 3.68

Flex-Steward 3.75 4.00 4.08 3.67 3.96 4.03 3.69 3.80 3.99 3.75 3.71 3.81 3.75 3.90 3.91 3.58 3.59 3.88

(a) [PHONE, Priority 3] (b) [HDTV, Priority 3] (c) [4KTV, Priority 3] (d) [4KTV, Priority 1]

Fig. 10: QoE Boxplot of clients with different characteristics among considered methods

0 20% 40% 60% 80% 100%
Proportion

PH
_v1

HD_v1

4K
_v1

PH
_v2

HD_v2

4K
_v2

120004200
8000 240002500

1800
1200
791334

595

Fig. 11: Distribution of
Requesting Bitrate based on

Flex-Steward.

PH,1 PH,2 PH,3 HD,1 HD,2 HD,3 4K,1 4K,2 4K,3
Device, Priority

0

20

40

60

80

100

Qo
E

Fig. 12: QoE of Clients with
Different Characteristics
bassed on Flex-Steward

only a few chunks can reach 100, we set qexpi in Eq. (2) to
95, which is enough to provide clients with high QoE.

We compute the unfairness index in every Ttest = 2 sec-
onds. The unfairness metric measures the performance of the
considered approaches in enforcing the joint QoE optimization
according to the control policy. We apply a fair utility alloca-
tion. Note that the lower the unfairness index is, the higher is
the utility fairness.

Maximum Weight QoE Loss. The client is more likely to
quit when suffering from a high weighted QoE loss. Thus, we
measure the maximum weight QoE loss among online clients
to indicate the possibility of a client quit watching. The weight
QoE loss WQL

(t)
i of client i at time t is defined as:

WQL
(t)
i =


wi ∗QL

(t)
i wi ∗QL

(t)
i <= αqexpi

αqexpi wi ∗QL
(t)
i > αqexpi

(6)

Note that when the QoE of a client is lower than a certain value
(i.e., αqexpi ), the client definitely quits watching the video. So
we define WQL

(t)
i as a segmented function.

D. Testing the Performance on Joint QoE Optimization

1) Overall Performance: In order to evaluate Flex-Steward,
we compare its performance with that when the other meth-
ods are used in turn. To identify the performance changes
caused by variations in bottleneck bandwidth, we assess the
performance with the bottleneck bandwidth and ”Test 1” traces
shown in Fig.9a and Fig.9b, respectively. Table III and Table
IV present the average QoE that each method achieves with
two types of bottleneck bandwidth under the Comyco [33]
and P.1203 [60] QoE model, respectively. To a certain extent,
both the results show that Flex-Steward improves QoE fairness
among clients with various devices and realizes different
services for clients with different priorities.

Table V shows the detailed QoE and QoE fairness among
clients with the same client characteristics (i.e., [device, pri-
ority] configuration). Fig.10 illustrates the QoE distribution
for clients with different characteristics for the considered
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TABLE V: Detailed QoE and QoE fairness metrics comparison

ABR
Conf Wired Network Traces Wireless Network Traces

PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3 PH1 PH2 PH3 HD1 HD2 HD3 4K1 4K2 4K3
(a) Average Quality

RB 95.5 95.4 95.6 75.4 77.6 76.2 70.3 72.3 71.4 95.1 93.9 92.3 75.3 79.3 78.1 72.1 73.9 71.8
BB 83.8 83.8 84.0 55.7 55.6 54.8 51.9 51.9 52.5 87.7 86.5 88.5 56.9 61.3 63.9 53.6 52.6 59.2

Bola 95.1 95.3 94.8 78.3 75.6 80.2 71.2 73.9 73.1 94.4 94.0 94.8 77.6 73.6 78.7 72.2 69.0 69.8
Festive 94.9 96.3 94.7 75.8 80.3 79.5 74.4 74.8 72.0 93.6 92.5 93.4 72.7 68.5 70.0 69.1 66.9 74.4

Gta 86.2 88.5 95.1 80.4 78.8 83.2 78.1 77.1 80.9 93.9 93.4 93.8 78.2 76.3 76.7 71.7 68.5 72.8
Fineas 93.2 96.2 96.6 75.1 73.1 79.7 71.5 77.0 75.2 93.5 92.6 94.7 70.6 73.7 75.5 71.6 70.2 71.9

Flex-Steward 90.6 94.3 96.0 79.1 84.6 87.9 78.4 79.4 84.7 90.4 90.9 90.4 73.8 77.7 80.9 77.0 77.2 82.6
(b) Average Rebuffering Ratio (%)

RB 1.7 1.7 1.4 2.1 2.1 1.7 1.8 2.8 3.0 3.3 3.9 1.6 2.0 5.6 3.9 4.2 4.7 1.2
BB 0.1 0.1 0.08 0.09 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.1 0.09 0.08 0.3 0.1 0.08 0.1

Bola 1.1 1.3 1.1 1.1 0.9 0.7 1.1 1.1 1.3 1.6 2.5 1.7 1.4 1.5 1.9 2.1 2.5 2.0
Festive 0.4 0.4 0.4 0.5 0.3 0.4 0.4 0.4 0.2 2.5 0.3 0.1 1.5 1.7 0.5 0.7 2.5 1.0

Gta 0.6 0.4 0.5 0.5 0.5 0.7 0.4 0.4 0.6 0.3 0.3 0.5 1.1 0.5 1.5 0.7 1.2 0.8
Fineas 0.7 0.6 0.9 0.5 0.7 0.6 0.4 0.6 0.8 1.5 1.7 2.6 2.2 0.8 1.5 2.1 0.4 0.8

Flex-Steward 0.4 0.5 0.5 0.5 0.6 0.8 0.5 0.8 0.9 0.2 0.3 0.3 0.4 0.6 0.3 0.9 1.6 0.7
(c) Average Positive Quality Switch

RB 1.22 1.33 1.16 3.14 3.17 3.23 2.61 2.82 2.89 1.31 1.59 1.94 3.27 3.07 3.40 2.98 3.04 3.15
BB 4.31 4.25 4.27 6.05 5.98 6.46 5.50 5.58 5.29 3.46 3.64 3.08 5.62 5.53 5.60 4.57 5.36 5.25

Bola 1.25 1.29 1.34 3.01 3.08 2.77 2.59 2.31 2.22 1.43 1.55 1.35 3.02 3.32 3.23 3.07 3.38 2.54
Festive 1.28 0.99 1.20 2.80 2.63 2.40 2.34 2.7 2.57 1.53 1.63 1.54 2.88 3.30 3.08 2.45 2.42 2.19

Gta 2.71 2.51 1.23 3.02 2.86 3.14 4.11 4.99 3.79 1.66 1.69 1.74 3.36 3.93 3.81 3.51 3.80 3.42
Fineas 1.94 1.36 1.37 3.72 4.14 3.59 3.26 3.26 3.24 1.91 2.26 2.12 4.17 4.48 5.35 3.89 4.11 3.80

Flex-Steward 1.92 1.73 1.16 3.20 2.62 2.26 2.21 2.15 1.94 1.81 1.72 1.78 3.01 2.96 2.63 2.35 2.44 1.78
(d) Average Negative Quality Switch

RB 1.19 1.30 1.14 3.01 3.10 3.11 2.45 2.71 2.80 1.28 1.55 1.87 3.13 2.98 3.33 2.86 2.94 3.06
BB 4.29 4.24 4.25 5.93 5.88 6.35 5.32 5.42 5.11 3.42 3.58 3.04 5.48 5.51 5.56 4.46 5.23 5.31

Bola 1.23 1.29 1.31 2.89 2.95 2.65 2.43 2.20 2.06 1.38 1.51 1.31 2.96 3.16 3.18 2.90 3.14 2.43
Festive 1.25 0.96 1.16 2.70 2.58 2.30 2.27 1.88 2.48 1.50 1.59 1.51 2.78 3.16 2.91 2.34 2.31 2.10

Gta 2.66 2.42 1.17 2.80 2.62 2.93 3.77 4.61 3.53 1.56 1.61 1.68 3.18 3.78 3.69 3.34 3.56 3.23
Fineas 1.91 1.34 1.37 3.59 3.97 3.51 3.15 3.26 3.28 1.90 2.23 2.09 4.04 4.36 5.19 3.76 3.93 3.82

Flex-Steward 1.86 1.65 1.08 3.03 2.38 2.11 1.93 1.86 1.73 1.76 1.64 1.69 2.76 2.73 2.44 2.10 2.18 1.63
(e) Average QoE Standard Deviation

RB 9.90 9.97 9.07 18.2 17.9 18.4 14.4 15.8 15.2 10.9 12.4 12.2 18.6 18.7 19.0 16.5 16.6 14.9
BB 18.7 18.4 18.6 23.2 23.2 23.6 19.9 20.3 19.9 17.0 17.6 15.7 23.5 23.3 23.7 19.3 20.4 20.9

Bola 9.88 10.0 10.1 18.3 17.9 16.9 15.0 14.5 15.0 11.3 12.2 10.6 18.4 19.6 18.7 17.4 18.2 16.4
Festive 9.51 7.91 9.62 16.7 15.9 15.2 13.5 12.9 14.4 12.5 11.6 10.5 19.8 20.8 18.9 15.1 16.6 12.4

Gta 15.9 15.3 8.53 16.4 16.4 18.8 20.9 23.1 19.4 10.5 9.99 10.7 18.2 19.7 20.1 18.2 18.6 18.1
Fineas 12.1 10.5 10.7 20.2 20.3 20.2 16.3 17.6 17.3 12.9 14.4 14.4 21.3 22.2 25.2 18.9 19.9 19.5

Flex-Steward 9.99 8.08 6.83 17.6 16.1 14.5 10.4 12.4 9.14 9.63 9.09 9.55 15.5 16.4 15.3 11.6 13.2 9.88
(f) The 5th Percentile Minimum QoE

RB 60.2 59.9 62.6 25.3 25.3 25.0 32.4 31.1 28.8 59.3 52.0 51.8 24.4 26.2 22.5 29.9 28.1 32.1
BB 30.3 31.2 30.8 -5 -4 -7 0.43 0.11 1.42 35.9 33.3 41.0 0 1.28 0.98 4.79 -2 -3

Bola 59.6 60.2 59.0 27.4 27.4 30.0 31.4 36.0 32.0 56.9 54.5 58.2 26.0 21.5 23.4 23.7 21.9 28.0
Festive 61.2 64.2 60.1 29.7 33.3 35.8 36.1 38.4 33.2 52.9 51.2 55.6 22.0 14.9 20.6 29.1 26.8 38.0

Gta 37.6 39.1 62.1 32.9 32.3 29.2 13.0 2.49 15.0 57.0 57.4 57.0 28.5 23.5 22.5 25.1 23.9 24.3
Fineas 51.3 59.7 64.4 28.5 26.9 28.5 19.4 20.5 19.5 53.3 45.6 48.7 16.8 16.9 15.5 23.3 19.7 21.0

Flex-Steward 56.1 63.5 69.4 25.2 37.5 40.6 40.9 46.2 52.8 56.2 57.8 56.1 29.1 32.4 35.7 40.9 39.4 48.0

TABLE VI: Average QoE Standard Deviation under the
Same Priority

Trace Wired Network Wireless Network

ABR
Dev P1 P2 P3 P1 P2 P3

RB 17.59 17.25 17.02 17.10 16.72 16.82
BB 18.46 18.21 17.03 22.83 22.83 22.82

Bola 17.35 18.99 17.26 16.62 16.37 15.79
Festive 18.28 19.44 17.60 15.50 14.54 15.03

Gta 17.09 18.18 18.12 17.45 18.36 15.97
Fineas 19.99 19.89 21.19 18.54 17.72 17.92

Flex-Steward 13.91 13.21 13.56 11.18 13.14 12.82

methods. Additionally, Fig.11 and Fig.12 present diverse
distribution of requested bitrate by clients with the same
priority and the QoE distribution for clients with different

characteristics, respectively. Note that v1 and v2 respectively
imply videos with mostly static and dynamic scenes. There
are three takeaways following these results:

First, we find that when using Flex-Steward, the clients
with the same priority but different devices tend to request
chunks that support the same quality rather than the same
bitrate. As shown in Fig.11, clients watching videos on high-
resolution devices tend to request a higher bitrate than clients
using low-resolution devices. On the other hand, for the clients
with the same priority, those watching highly dynamic videos
tend to request a higher bitrate than the clients who watch
low dynamic videos. Since RB, BB, Bola, Festive, and Fineas
do not take the quality variation into consideration, their
bitrate decisions solely depend on their personal perceived
network conditions, which results in the fact that clients
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(a) [PHONE, Priority 1] (b) [PHONE, Priority 3]

(c) [4KTV, Priority 1] (d) [4KTV, Priority 3]
RB BB Bola Fes Gta Fineas Flex-Steward

Fig. 13: QoE variations among clients of different characteristics

(a) wired bottleneck (b) wireless bottleneck

Fig. 14: Comparison of utility fairness and maximum weighted QoE loss under wired and wireless bottleneck
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Fig. 15: Performance Comparison

with low resolution devices request high bitrate chunks and
waste bandwidth. Since Gta and Flex-Steward take chunk-level
perceptual quality into ABR consideration, the QoE of clients
watching videos with high resolution devices has improved
significantly. In contrast, the QoE of clients watching videos
on low resolution devices has only a slight decline as shown
in Table III and Table IV.

Secondly, Flex-Steward can achieve differentiated service
among clients with different priorities. Table III, Table IV and
Fig.12 illustrate that clients with higher priorities can obtain
higher QoE. Take the results in Table III as an example, the
QoE of clients with priority 2 and 3 is 4.8% and 8.6% higher
than the QoE of clients with priority 1, respectively when the

wired bottleneck is considered, and 1.9% and 4.2% higher
than the QoE of clients with priority 1, respectively when the
wireless bottleneck is used. Fig.10c, and Fig.10d and Fig.12
also show that the QoE of clients with high priority is higher
and more stable than that of clients with low priority.

Finally, although the average bitrates selected by Flex-
Steward are sometimes lower than those of other methods,
it improves the utilization efficiency of bottleneck bandwidth
due to its quality-size-aware adaptation and results in fewer
negative effects to the QoE of clients (i.e., rebuffering event
and quality switch), so that the clients using Flex-Steward
maintain a high QoE. On average, Flex-Steward outperforms
RB, BB, Bola, Festive, Gta, Fineas by 3.2%, 31.6%, 2.2%,
1.3%, 4.5%, and 3.3% when the wired bottleneck is con-
sidered, and 0.7%, 19.1%, 0.1%, 2.9%, 0.1%, and 2.5% for
the wireless bottleneck, respectively. Fig.10 shows that Flex-
Steward has significantly improved the QoE of a group of
clients by slightly reducing the QoE of other group of clients.
Comparing Fig.10a, Fig.10b, and Fig.10c, we find that Flex-
Steward significantly increase the QoE of clients with high
resolution devices, while slightly decreasing the QoE of clients
using low resolution devices. Therefore, the overall QoE of
clients at the same edge network is maintained at a high level.

2) Single Client Performance: This section discusses the
behavior of clients with different characteristics. Fig.13 shows
the QoE variations of clients who download the same video
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over the same bottleneck bandwidth (i.e., wired bottleneck).
The quality of video services is assessed in terms of average
QoE and QoE stability. According to Fig.13, Flex-Steward
has the best performance in achieving differentiated services.
Comparing Fig.13a and Fig.13b, we note that the clients with
priority 3 have higher QoE stability when compared with the
clients with priority 1 using Flex-Steward. Since a low bitrate
is sufficient to enable PHONE clients obtain high quality, the
QoE of clients with the two priority levels are similar at the
stable state. On the other hand, when comparing Fig.13c and
Fig.13d, we find that the clients at the priority level 3 have
a higher QoE when compared with clients at priority level 1
based on Flex-Steward.

The QoE of clients using Flex-Steward is more stable than
that of clients who use other methods. That is because the
ABR agent of Flex-Steward is deployed at the edge server
where it can perceive the status of the bottleneck and all
online clients in real-time, and integrate these factors to make
bitrate adaptive recommendations to clients, thereby reducing
the risk of QoE fluctuations caused by bandwidth congestion.
Additionally, Flex-Steward is based on reinforcement learning,
which enables learning through historical experience and as
decisions are based on the future state transition probability,
Flex-Steward further reduces the risk of QoE fluctuations.

3) Performance of Joint QoE Optimization: This section
compares the performance of joint QoE optimization across
the considered methods, including QoE fairness for clients
with the same characteristics and utility fairness between all
clients. As shown in Table.V.e, the average QoE standard
deviation of clients with the same [device, priority] config-
uration using Flex-Steward is significantly lower than those
using the other methods. Note that Flex-Steward prefers to
improving the QoE and QoE fairness of high-priority client.
Thus, for clients with the low priority, the QoE fairness may be
lower comparing with other configurations. Besides, one of the
objectives of joint QoE optimization is to improve QoE among
clients with various devices. Therefore, we measure the QoE
fairness of all online clients under the same priority but dif-
ferent devices. The results are shown in Table VI and implies
that Flex-Steward improves QoE fairness among clients with
same priority. Note that we also calculate Jain’s Fairness as an
indicator of QoE fairness. Each client group with same priority
using Flex-Steward has the highest Jain’s fairness. From the
experimental results, Flex-Steward surpassed the second place
by 0.5%to 3.4%. Due to the space limitation, we only add the
Table VI in this paper.

According to Table.V.f, Flex-Steward improves the QoE
of the client with the lowest QoE among all clients, helping
reduce the risk of the clients quitting watching videos. At the
same time, as shown in Fig.14, Flex-Steward has the lowest
utility unfairness and the maximum weighted QoE loss when
compared with the other methods. Compared with RB, BB,
Bola, Festive, Gta, and Fineas, Flex-Steward decreases the
average utility unfairness by 24.3%, 37.8%, 21.1%, 25.4%,
11.3%, and 10.9%, respectively, when the wired bottleneck is
used, and 23.2%, 41.7%, 17.6%, 24.2%, 11.1%, and 13.9%,
respectively, when the wireless bottleneck is employed. The
reason Flex-Steward has the lowest utility unfairness and
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Fig. 16: Performance under Different Online Clients Number

the lowest maximum weighted QoE loss as well as achieve
high average QoE is that it reasonably uses the bottleneck
bandwidth resources. Flex-Steward selects high bitrates for
clients with high-resolution devices or high priorities, while
it selects low bitrates for others, increasing the efficiency of
the bottleneck bandwidth.

4) Trade Off Between Utility Unfairness and Weighted
QoE Loss: We vary the bottleneck bandwidth and the client
characteristics in order to evaluate the performance of Flex-
Steward under network changes. We conduct 8 epochs of
evaluation for each method, and each epoch of evaluation
lasts for 15 minutes. After the evaluation of each epoch,
we record the average value of utility unfairness and the
maximum weighted QoE loss. The bottleneck traces include
two test wired traces shown in Fig.9a and two test wireless
traces shown in Fig.9b; the two configurations of clients’
characteristics are shown in Table II. We get a total of 8
combinations of bottleneck bandwidth and configurations of
clients’ characteristics. The scatter plot of the tradeoff between
average utility unfairness and average maximum weighted
QoE loss is shown in Fig.15. Flex-Steward improves utility
fairness without affecting too much the maximum weighted
QoE in comparison with the other methods. This is as the ABR
agent of Flex-Steward takes global information and personal
information of the client into consideration so that it reduces
the negative effects (i.e., rebuffering ratio and quality switch)
on QoE. At the same time, the quality-size-aware adaptation
and differentiate service mechanism of Flex-Steward improve
the bottleneck bandwidth utilization efficiency.

E. Varying Online Clients Number

Meanwhile, we also compare the performance of the Flex-
Steward with the baseline ABR algorithms for different online
clients number. (i.e., 20, 40, 60, 100, 150). Fig.16a shows
the average weighted QoE loss and utility unfairness under
different online clients number. Note that during this test, we
use the ”Test 1” trace shown in Fig.9a and multiply 60 to
simulate the bottleneck bandwidth.

As shown in Fig.16a, when the number of online clients is
over 40, Flex-Steward has the best performance on Average
Weighted QoE Loss. That is because Flex-Steward reduces
the QoE of some low-resolution-device clients by reducing
the QoE of some high-QoE clients. Flex-steward is more
conservative than ohter baseline methods, so when the shared
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(a) measure the CPU utilization (b) measure throughput of source

Fig. 17: Verify the scalability

bandwidth is not large enough to become a bottleneck (e.g.,
20 clients), the weighted QoE loss of Flex-Steward is slightly
higher than other method. On the other hand, as shown in
Fig.16a, the utility unfairness is higher than Gta and BB
method. That is because Gta and BB lack the appropriate
quality-aware ABR algorithm, so that they tend to request
chunks with too small a bitrate to prevent clients from re-
buffering. Thus, both Gta and BB methods only maintain a
low QoE level for clients, and clients are easy to quit watching
videos.

Besides, we evaluate the 75th percentile maximum weighted
QoE loss to reflect the risk of clients quitting video watching
in the case of varying degree of multi-client bandwidth com-
petition. The result is shown in Fig.16b and illustrates that as
the fierce competition for bandwidth intensifies, Flex-Steward
can show more obvious advantages.

F. Testing the overhead

As mentioned in section II-C, the edge server needs to
receive some messages from clients. Thus, the scalability of
Flex-Steward emerges as an issue. To verify the scalability
of Flex-Steward, we measure the required resources in terms
of computation and overhead bandwidth for running Flex-
Steward on edge regarding the different numbers of clients.

1) Computing Resource Comsumption: For computing re-
source comsumption, we test it on an edge server with two
16-core CPUs. Fig.17 shows the relationship between the CPU
utilization of the ABR algorithm on the edge server and the
number of online clients. Since the server has two 16-core
CPUs, the maximum CPU utilization is 1600%. We measure
the CPU utilization of our ABR algorithm every two seconds.
When no online clients use Flex-Steward, the edge server loads
multiple neural networks but does not make bitrate decisions.
At this time, according to Fig.17, when no online clients are
using Flex-Steward, the median CPU utilization is 110%, and
the 95th percentile CPU utilization is 130%. As the number of
online clients increases, the CPU utilization increases. When
the number of online clients using Flex-Steward reaches 500,
the median CPU utilization is about 172%, and the 95th
percentile CPU utilization is about 240%. Take the statistical
value of the 95th quantile as the maximum CPU utilization
under the current number of clients, the max number of online
clients that the edge can provide services can be calculated as:

3200− 130

240− 130
=

nmax

500
(7)

TABLE VII: Size statistics of exchanged data between the
client and various source

Bitrate Sch
Src Cloud Edge

size ratio size ratio

334Kbps only cloud 9.29MB 100% 0 0%
cloud+edge 9.33MB 98.6% 0.13MB 1.4%

24Mbps only cloud 628MB 100% 0 0%
cloud+edge 628MB 99.9% 0.13MB 0.01%

It also is affected by other processes at the edge server and
the CPU scheduling strategy of the edge server. Note that the
edge node only covers a small cluster of clients (e.g., clients in
the same campus, family, or community), which generally do
not have tens of thousands of concurrent requests. Moreover,
if the edge cluster is large, we can use a server with stronger
computing power as the edge server.

2) Bandwidth Overhead: Fig.17b shows the relationship
between bandwidth utilization and the number of clients using
Flex-Steward. We limit the throughput of the source server up
to 500Mbit/s. In this experiment, the total number of clients
is set to 500 and divided into two categories. The result is
shown in Fig.17b, ‘rb’ indicates clients who request chunks
from the source server directly while ‘edge’ indicates edge-
assisted video downloading process (i.e., Flex-Steward). We
use “ifstat” in Liunx to measure the throughput of the source
server. As is shown in Fig.17b, the proportion of clients using
the edge-assisted method does not affect the throughput of the
source server.

On the other hand, we also investigate the amount of traffic
is caused by the communication between the client and the
edge. We test a client’s data exchange amount with the edge
server and the source server when downloading a video. As
shown in Table.VII, the data exchange between clients and
the edge node only accounts for a tiny proportion, so the Flex-
Steward method only brings a very small traffic overhead even
if the clients increase. We take two rounds of experiments. In
each round, we use “tcpdump” to capture all packets at the
server simulating clients. Table V shows clients’ data size and
ratio to the edge server and video source server, respectively.
In the first round, the client downloads a low-bitrate video at
334Kbps, and the result shows that the data exchange between
the client and edge only accounts for 1.4%. Moreover, the
second round of experiment results shows that when the client
downloads the same video, the size of data exchange between
the client and edge remains almost unchanged. Therefore,
the higher the bitrate requested by the client, the lower the
proportion of data communication between the client and the
edge in the total traffic.

VII. RELATED WORK

The Quality of Experience (QoE) for HTTP adaptive
streaming (HAS) is a widely investigated research field. Mean-
while, there are many studies that analyze the problem of
multi-client bandwidth competition and propose appropriate
bitrate adaptation strategies under different scenarios. Accord-
ing to the deployment location of the bitrate decision agent,
the joint QoE optimization scheme can be divided into three
types: server-side, client-side and network-assisted solutions.
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Server-Side Solutions The source server can have a global
view of client status. Meanwhile, servers are easier to allocate
their bandwidth resources, and then realize joint QoE opti-
mization for multiple clients from the network level. Akhshabi
et al. [20] limited the server’s throughput for each chunk to
avoid players staying idle during Steady-State, then avoiding
vacant bandwidth changes to improve fairness. Marai et al.
[21] leveraged a score matrix in throughput allocation to
ensure a fair share of the server’s bottleneck bandwidth.
Vikram et al. [22] designed an end-to-end transport protocol
for multi-client video streaming which employs client-server
cooperation . Despite their relative positive results, nowadays
few joint QoE optimization algorithms are deployed at the
server side, mainly because it is difficult to estimate the bot-
tleneck capacity for thousands of access networks. In addition,
real-time traffic shaping for thousands of clients is associated
with enormous computing costs at the servers, which is not
economically sustainable.

Client-Side Solutions Due to simple deployment and scal-
ability, most researchers deploy user experience optimization
modules at the client. Spiteri et al. [6] and Huang et al. [7]
select bitrates solely considering buffer occupancy based on a
heuristic method and a Lyapunov optimization, respectively.
Yin et al. [8] and Zhou et al. [64] use a control theory
method and a Markov decision method respectively, which
combine the buffer and network status perceived by the client
to make bitrate adaptation decisions. Furthermore, Mao et al.
[5] proposes a deep RL-based ABR method to improve QoE
of clients with limited network resources. Kumar et al. [65]
proposes an adaptation scheme based on finite-state machine
for scalable video coding videos to improve clients’ QoE.
Recently, following the deployment of image quality evalu-
ation technologies, quality-aware ABR algorithms have been
proposed at the client-side, such as [38] and [33], making ABR
optimization closer to the optimization of clients’ real QoE.
Several client-side based approaches supporting multiple HAS
were proposed to enhance efficiency, fairness and bandwidth
utilization [41], [43]. Jiang et al. designed FESTIVE [41],
which decides the next chunk’s bitrate and download time by
employing a stateful and delayed bitrate update strategy and
randomized scheduling. Li et al. designed PANDA [43] that
uses a probing mechanism to estimate the available bandwidth
and responds to network changes rapidly. Seufert et al. [66]
refers to the TCP scheme for improving fairness and proposes
a adaptation method to optimize the fairness of multi-client
QoE. Bentaleb et al. [44] utilizes a game-theoretic approach
at the client-side, which comprehensively considers the screen
resolution of devices, clients’ priority, and characteristics
of the requested video to make bitrate-adaptation decisions.
Client-side strategies are easy to deploy without any changes
to the network or servers. However, they may suffer from sub-
optimal performance due to limited information about other
clients’ states. It is necessary to find a solution that takes into
account scalability and global views of multiple clients.

Network-Assisted Solutions To strengthen the control
of multiple users while taking into account the scalability,
Thomas et al. [67] proposes the Server and Network-assisted
DASH (SAND) architecture. SDN is one of the main enablers

for the SAND architecture. Cofano et al. [12] discusses a
number of schemes for deploying multi-client ABR based
on SDN. Bentaleb et al. [23] [24] proposed a scalable way
to deploy an innovative ABR solution based on an SDN
network. The solution divides a wide range of clients into
multiple clusters and makes bitrate decisions for the cluster
based on the cluster characteristics. Lu et al. [25] took the
quality information of videos into account to guide the bitrate
adaptive decision on a centralized SDN controller. Bagci et
al. [27] proposed a dynamic value-based resource allocation
method for video delivery over SDN from the perspective
of Internet service providers. However, the above strategies
are implemented based on network architectures (e.g., SDN)
that have not been widely deployed. Meanwhile, this kind of
scheme shapes the traffic in the network and increases the
instability of network performance. Another type of solution
uses the resources of the base station to coordinate the man-
agement of multi-user QoE. Another type of solution is aimed
at mobile clients and manages multi-client QoE by allocating
base station resources [68], [69]. Nowadays, there are also
some researches that deploy the heuristic algorithm for joint
QoE optimization on the edge server [45]. They utilize the
edge server to monitor bandwidth status of managed clients
and send guidance signals to clients. However, these solutions
are difficult to manage the needs of large-scale heterogeneous
clients and make long-term benefit decisions for clients.

VIII. CONCLUSIONS

This paper introduces Flex-Steward, an innovative solution
that employs reinforcement learning and learns from historical
information to achieve joint QoE optimization between video
clients sharing a common bottleneck link. Flex-Steward em-
ploys a DASH-based adaptive approach and makes appropriate
bitrate decisions based on a model trained using observations
collected from clients and networks. Extensive experimental
results show that Flex-Steward outperforms alternative joint
QoE optimization algorithms. Under different network con-
ditions and with diverse client characteristics, Flex-Steward
increases QoE level, improves QoE distribution and reduces
utility unfairness between video clients. Future work will
explore how to use the computing and storage resources at
the edge servers and combine edge-side ABR algorithms with
efficient caching algorithms to improve joint QoE optimization
further.
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