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Abstract—Currently video streaming in heterogeneous network
environments is affected by limited network bandwidth availabil-
ity and consequent low and variable user Quality of Experience
(QoE) levels. In particular, for the case of live video streaming,
a very high number of end-clients request content at the same
time, generating huge concurrent traffic, and putting pressure on
the existing network infrastructure. An approach which helps
address this issue is deployment of emerging edge computing
technologies to smooth the live streaming traffic and improve QoE
by adapting client bitrates and caching content at the edge server.
In this context, this paper proposes a novel QoE-aware Adaptive
Video bitrate Aggregation scheme for HTTP live streaming based
on smart edge computing (QAVA). As an intelligent proxy server,
a “smart edge” which deploys QAVA aggregates all the traffic
requested by clients for the same live streaming service and
adapts their bitrates based on network conditions, client states
and video characteristics. The adaptation is performed based on
a Deep Reinforcement Learning (DRL)-based algorithm, which is
also proposed. The QAVA DRL algorithm is trained and modeled
based on a real client experience dataset. The experimental
evaluation results presented in this paper show how QAVA
outperforms other state-of-the-art adaptive bitrate algorithms in
terms of average QoE and QoE fairness.

Index Terms—HTTP live streaming, edge computing, video
adaptation, bitrate aggregation, reinforcement learning, QoE

I. INTRODUCTION

THE live video streaming industry has experienced a huge
growth in the last few years [1]. In addition to the natural

demand for higher video quality, lower re-buffering and fewer
quality switches, the live streaming clients have critical Quality
of Experience (QoE) [2] requirements in terms of low latency
in the current dynamic network conditions, which are different
from those of traditional Video on Demand (VoD) services.

In the architecture supporting currently live video streaming
services, only a few data centers, hosted by Content Providers

X. Ma is with the Tsinghua-Berkeley Shenzhen Institute, Tsinghua Univer-
sity and also with Peng Cheng Laboratory (PCL), Shenzhen China (Email:
maxt17@mails.tsinghua.edu.cn).

Q. Li is with Peng Cheng Laboratory (PCL), Shenzhen, China (Email:
liq@pcl.ac.cn).

L. Zou and J. Zhou are with the Southern University of Science and
Technology and also with Peng Cheng Laboratory (PCL), Shenzhen, China
(Email: zoulh@sustech.edu.cn; zhouje@sustech.edu.cn).

J. Peng, J. Chai and Y. Jiang are with the Tsinghua Shenzhen Inter-
national Graduate School, Tsinghua University and also with Peng Cheng
Laboratory (PCL), Shenzhen, China (Email: pjk20@mails.tsinghua.edu.cn;
chaijm17@126.com; jiangy@sz.tsinghua.edu.cn).

G.-M. Muntean is with the School of Electronic Engineering, Dublin City
University, Ireland (Email: gabriel.muntean@dcu.ie).

Corresponding author: Qing Li (Email: liq@pcl.ac.cn)

(CP), are deployed in a core-regional network to serve millions
of end-clients [3]. Therefore, it is no surprise that the large
amount of generated traffic makes very challenging to guar-
antee high client QoE for the live video streaming services.
Adaptive Bitrate (ABR) algorithms are generally employed
to enhance QoE. However, existing ABR approaches have
limitations which include the following ones. Some ABR
solutions greedily consume large amounts of bandwidth by
selecting the highest bitrates possible [4]–[6], affecting the
stability and fairness of client QoE. Other ABR schemes do
not consider the client device type and video characteristics,
wasting precious network bandwidth and negatively affecting
device performance. For example, such schemes would display
higher quality videos on low-resolution devices [7] or would
play videos containing many static scenes with low temporal
and spatial complexity encoded at very high bitrates [8]. In
general, these existing ABR solutions cannot ensure that the
QoE of all live video streaming clients remains at a high level.

Moreover, end clients located in the same area are likely
to request similar video content. Especially as the emerging
5G network solutions will encourage the exchange of a large
amount of traffic and the use of rich media formats such as
omnidirectional, 4K/8K, immersive video content [9], [10].
Therefore, redundant multimedia transmissions may consume
huge network resources under the traditional network architec-
ture, affecting the latency and efficiency of video distributions
[11]. This situation would be exacerbated by the large-scale
user requests of live video services [12].

The emerging edge computing technologies [13]–[15] are
offering new possibilities to improve the QoE of live video
streaming by alleviating transmission redundancy and reducing
bandwidth competition. Taking the 5G Multi-access Edge
Computing as an example, it helps to aggregate the large-
scale nonredundant client requests and allocate the video traffic
intelligently, which highly releases the traffic pressure on the
links of 5G User Plane Function, 5G core and the corre-
sponding Internet Content Delivery Network (CDN) servers.
Compared to traditional data centers, the edge computing
servers are deployed widely at the network edge, “closer”
to end clients. By utilizing various intelligent mechanisms,
the edge computing servers can handle client requests, predict
network conditions, and optimize QoE more accurately and
efficiently.

This paper proposes QAVA, a smart QoE-aware adaptive
video bitrate aggregation scheme for HTTP live streaming
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based on edge computing. QAVA is deployed at the edge
nodes of an access network where bandwidth competition
mostly happens [16]. By monitoring network performance and
availing from edge storage and computation, QAVA provides
live video services to all the clients within the same access
network, at improved QoE levels. Specifically, QAVA first
aggregates the demands for the same video from end clients,
then requests the content at an appropriate bitrate from data
centers, and finally delivers it to the clients. However, QAVA
needs to overcome variations in network conditions, diversity
of client behaviors and characteristics, and difficulty in con-
trolling client QoE. In order to address these, QAVA employs a
Deep Reinforcement Learning (DRL)-based control policy to
adjust video bitrate selections intelligently in real-time based
on network conditions, client states, and video characteristics.

In order to assess the performance of QAVA, a prototype
based on Nginx [17], uWSGI [18] and Django [19] is em-
ployed.The performance of QAVA is evaluated under different
network conditions. The results show how, when compared
with several state-of-the-art ABR approaches based on the
edge nodes, QAVA improves average QoE by between 7%
and 64% and QoE fairness by between 19% and 52%.

The main contributions of this paper are as follows.

• The paper formulates the QoE-aware adaptive video
streaming aggregation and globally optimizes video bi-
trate adaptation problems to maximize users’ QoE and
minimize QoE unfairness, utilizing edge computing.

• QAVA adaptive algorithm based on a novel DRL model is
proposed to perform intelligent bitrate adaptation during
video streaming. A general reward function that allows
QAVA to improve the QoE fairness among multiple
online clients and ensures that the QoE of the clients
remains at a high level under dynamic bottleneck band-
width is also introduced.

• QAVA is assessed using a full system, employed to train
and validate QAVA and its performance. The experimen-
tal results indicate that QAVA outperforms several other
state-of-the-art ABR solutions, in terms of average QoE
and QoE fairness.

The remainder of this paper is organized as follows. Section
II gives a brief review of related works. Section III describes
the proposed QAVA framework. In Section IV, the bitrate
aggregation problem for HTTP live video streaming that
considers both QoE and QoE fairness among online clients is
formulated. The original problem is solved using a DRL model
which makes the intelligent bitrate aggregation decisions.
DRL is described in Section V. Prototype implementation is
described in Section VI and QAVA performance evaluation is
presented in Section VII. Finally, conclusions and future work
directions are discussed in Section IX.

II. RELATED WORKS

Major related works are discussed next by focusing on
ABR solutions for multimedia transmissions and DRL-based
schemes for efficient distribution of multimedia and other
traffic types.

A. ABR Solutions for Multimedia Transmissions

Researchers have been working on finding solutions for
improving the efficiency of multimedia transmissions for many
years. Several studies have proposed server-side ABR solu-
tions [20], [21] and more recently client-side ABR schemes
[4]–[6], [8], [22] in different contexts. In general, server-side
solutions perform fairer bandwidth sharing, but as they rely on
client feedback, they may introduce latency in the adaptation
process. Muntean et al. [20] proposes the QOAS scheme,
which uses an innovative estimation of client perceived quality
in the ABR feedback loop and Muntean et al. [21] applies
bitrate adaptation in the presence of wireless loss. The clients
are the better position to perform the adaptation based on
performance data which the client can direct access. K. Spiteri
et al. [4] use Lyapunov optimization to select bitrates solely
considering buffer occupancy and Zhou et al. [5] propose
a Markov Decision based scheme for bitrate adaptation.
Moldovan et al. [23] designs a novel DQAMLearn method
that aims to support a good learner QoE under educational
multimedia content. Mao et al. [6] and Huang et al. [8] utilize
DRL techniques to learn an ABR control policy instead of
using fixed rules for Video on Demand (VoD) services and
live streaming, respectively. These algorithms do not know
other client state information, and therefore may suffer from
unstable and unfair performance distribution among clients
mostly due to their bandwidth sharing competition.

In order to make use of a global view of the multi-client
state, several network-assisted QoE-aware bitrate aggregation
and joint optimization algorithms were proposed [24]–[30].
Cofano et al. [24] allocates network bandwidth slices to
video streams, or guides bitrate selections by using a network
controller and Software Defined Network (SDN) switches.
Bentaleb et al. [25] leverages SDN capabilities of assisting
large-scale heterogeneous clients in making better adaptation
decisions. By using a central coordinator to receive quality
and buffer level from clients and publishing the aggregate
statistics, Lu et al. [26] helps clients make bitrate decisions.
By adding a tracker that records all client states at the server-
side, Detti et al. [27] solves the unstable performance caused
by proxies/caches. Ma et al. [28] determines bitrates for live
streaming clients based on their service levels and manages
well network bandwidth sharing, ensuring fairness. However,
such methods cannot realize fine-grained state tracking and
control for many clients, so low bandwidth utilization and
poor QoE caused by bandwidth competition still exist. Ma
et al. [29], Zhang et al. [30] and Shi et al. [31] propose QoE
optimization frameworks for VoD services based on the smart
edge. However, such models are not applicable to the low-
latency demands of live streaming.

B. DRL for Improving Transmission Efficiency

Recently, several DRL-based methods are proposed to ad-
dress various problems of multimedia delivery systems. Jawad
et al. [32] proposes a DRL-based framework to decide the
most suitable routing algorithm to be applied on the QoS-based
traffic flows to improve QoS provisioning. Comsa et al. [33]
introduces a hierarchical DRL method to support optimized
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Fig. 1. QAVA-based System Overview.

network resource allocation for video delivery. Zhang et al.
[34] employs DRL to find an effective proactive caching policy
for multi-view 3D videos in the fifth generation (5G) networks.
Zhang et al. [35] utilizes DRL to dynamically adapt to the
variation of both client traffic and CDN performance to effi-
ciently schedule large-scale clients. Yeo et al. [36] uses DRL
to better leverage the advantages of combining video super-
resolution with multimedia transmission. The above works
indicate the potential of DRL for applications in multimedia
transmissions. The multimedia transmission system generally
can get immediate feedback on the state of the environment,
enabling the DRL agent to interact with the environment in
real-time. Due to the diversity of state features, DRL utilizes
the deep neural network to model the states, which can incor-
porate more dimensional features than traditional modeling
approaches, thus allowing for better state representation.

Apart from multimedia transmissions, DRL has also been
applied to resource scheduling for multitasking in diverse envi-
ronments. Chinchali et al. [37] applies DRL to cellular network
traffic scheduling and enables mobile networks to carry 14.7%
more data with minimal impact on existing traffic delivery
quality. Mao et al. [38] uses DRL to design a multi-resource
management scheduler to minimize average job slowdown
or completion time. Chen et al. [39] develops a two-level
DRL system to handle flow-level traffic optimizations in data
centers. The above schemes demonstrate that DRL can achieve
intelligent scheduling among multiple tasks, thus reducing the
negative impact caused by multitasking competition.

This related work discussion demonstrates that DRL is very
beneficial for proposing solutions for highly efficient transmis-
sions, especially of multimedia content. However, DRL is very
sensitive to the design of states, actions, and rewards, and the
above DRL model are difficult to migrate to release multi-
clients competition for HTTP live streaming. In this paper,
we will discuss and design how to take advantage of DRL
to alleviate the problem of multi-clients resources competition
for HTTP live streaming.

III. QAVA FRAMEWORK DESIGN

A. Challenges

QAVA mainly faces three practical challenges that increase
the difficulty of designing a good bitrate adaptation algorithm
which involves aggregation:

• Predicting the current state of the network is chal-
lenging. The available network bandwidth changes dy-
namically over time. In this case, the adaptive bitrate
aggregation algorithm needs to accurately predict the
network available bandwidth and respond quickly to
network changes, which is challenging.

• Tracking clients’ behavior is challenging. The arrival
and exit of a client introduce performance fluctuations
to the services of other clients who share the bottleneck
bandwidth. However, predicting when clients join or leave
is very difficult.

• Controlling client QoE is very difficult. First, the
algorithm should balance a variety of conflicting QoE
metrics (e.g., perceptual quality, re-buffering event, qual-
ity switch, latency and chunk skip), not only for a single
client, but also for multiple clients, which is a difficult
task. Besides, since the content of a requested chunk
during live video streaming is generated in real-time, its
perceptual quality is difficult to measure in advance. This
increases the difficulty of controlling the QoE of clients.
Second, the bitrate selection for a given chunk can have a
cascading effect on a client. For example, overestimating
the available bandwidth may cause the client to choose
a higher bitrate, while a long download time may cause
the client to select a lower bitrate when making a bitrate
decision for the next chunk, resulting in oscillations of
client QoE. Third, the control decisions available to the
current ABR algorithms are coarse-grained, thus it is
difficult to control client QoE accurately.

In order to overcome these challenges, this paper introduces
a new DRL-based control policy based on edge computing for
adaptive video delivery. The proposed solution improves the
video transmission efficiency in diverse network conditions.

B. System Overview

QAVA is deployed as a smart network function at the
edge node (called “smart edge”). The smart edge is located
at the entrance of the access network or at the edge of an
Internet Service Provider (ISP), where it maintains stable
communication with end clients. It is the best place to realize
bitrate aggregation for live video streaming, mostly due to the
following advantages:

• Network Perception. The bottleneck bandwidth com-
petition is more likely to happen among clients in the
same access network [16]. The edge closed to clients can
perceive the bottleneck performance and client state with
a lower cost. A solution deployed here can improve QoE
fairness among clients.

• Storage. The edge node can collect client request mes-
sages, temporarily store requested video chunks, and
deliver bulk content to end clients with low delay and
high stability to eliminate redundant transmissions and
reduce bandwidth resource consumption.

• Computation. The edge has the computing power to
apply complex computation of quality prediction and bi-
trate aggregation. Moving the DRL-based ABR algorithm
deployment from the clients to the edge node removes
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Fig. 2. Typical Chunk Download Situations.

the load of ABR computation from the client devices.
Each client device is required to compute simple ABR
metrics and select predicted quality levels of video when
QAVA is not available. Otherwise, the edge-based QAVA
will gather information on the global network conditions,
differentiate the client requests, and then make the final
selection for the cluster accordingly, while the clients’
own ABR is disabled.

• Locality. The popularity of video content is spatially
local, and local end-clients are likely to request the same
video services [11]. The smart edge can make bitrate
aggregation decisions according to the regional popularity
of the video content to satisfy better clients’ demands.

Fig. 1 illustrates the live video delivery with the smart edge.
First, Video Producers (VP) upload their video segments to
the Internet Data Center (IDC) or CDN servers through the
public Internet in real-time. Then the IDC/CDN servers encode
these video segments into multiple bitrates and save them in
cache servers. The clients who use the same type of devices
(e.g., HDTV and phone are considered in this paper) and
watch the same video are clustered together. The clients of
a cluster send chunk requests to the smart edge. The smart
edge makes the bitrate aggregation decision and requests a
specified bitrate chunk and broadcasts it to the clients after
finishing its download.

QAVA architecture includes five modules that help achieve
intelligent QoE-aware adaptive bitrate aggregation: (1) The
Client State Monitor Module (CSMM) collects HTTP re-
quests from clients and monitors online client QoE in real-time
based on the information contained in their requests. (2) The
Network Monitor Module (NMM) records the throughput of
the bottleneck bandwidth every T seconds. (3) The Quality
Prediction Module (QPM) uses the deep Nerual Network
(NN) to infer the future chunk’s quality. (4) The Aggregation
Decision Module (ADM) is the core decision module in
QAVA and makes bitrate decisions based on DRL for live
video streaming. ADM utilizes the data collected by CSMM,
NMM, and QPM, and makes bitrate decisions for each chunk
of each video. (5) The Video Cache (VC) is used to cache
live content, reducing the number of redundant transmissions
dramatically. Section V describes the module functionality.

C. Video Streaming

Fig. 2 illustrates four typical chunk download situations
during live video streaming. A new chunk is generated by
the IDC/CDN servers every Lc seconds. A block on the

TABLE I
NOTATIONS USED IN SECTION IV

Notation Description
Mt The number of online clients at any time t
Nt The number of online videos at any time t
K The number of bitrate levels
bnk The bitrate value of the bitrate level k for the video n
xt
mn Binary: 1 if the client m is watching the video n at any

time t; 0, otherwise
ytnk Binary: 1 if the aggregated bitrate level is k for the video

n at any time t; 0, otherwise
ltm The chunk bitrate requested by the client m at time t
q(l) The Perceptual quality of the video chunk l
swt

m The absolute value of quality switching between the current
chunk at time t and the last chunk

rtm The re-buffering time for m during the request at time t
sktm The number of chunk skips for the client m from the

current request at time t to the next request
etm The real-time latency of the client m at time t
Qt

m The QoE for client m at time t
Qht

m The high QoE unfairness factor of m at time t
Qltm The low QoE unfaireness factor of m at time t
Yt The set of requested bitrate levels for all videos at time t
W t The bottleneck bandwidth

dotted lines implies the download of a chunk, and a block
on the timeline axis indicates the latest chunk at a certain
time. In situations 1, 2 and 3, the clients always request the
latest chunks. Situation 1 has enough bandwidth for smooth
downloading with some delay, but no chunk skip. Situation 2
has surplus bandwidth and therefore it does not suffer from
delay and chunk skips. For ABR solutions with no global view
of client states, the idle periods of Situation 2 may cause other
clients to overestimate the available bandwidth, resulting in
oscillations of client QoE. Situation 3 has scarce bandwidth
with unavoidable delay and chunk skips. Frequent chunk skip
events may cause a severe QoE decrease. Consequently, chunk
skip events are suppressed until the chunk to be requested falls
behind more than P chunks compared with the latest one.
Situation 4 illustrates the suppressed request behavior for the
case of P = 1.

IV. PROBLEM FORMULATION

In order to understand the challenges of QoE-aware adaptive
video bitrate aggregation, we formulate the problem as a linear
optimization problem. In this way, we explain the problem
more clearly. Besides, based on the problem formulation, we
analyze the problem complexity and shortcomings of using
optimization methods to solve it. We also discuss the necessity
and advantages of using DRL to solve this problem. The
notations in this section are summarized in Table I.

Assume that M t and N t are the number of online clients
and videos at any current time t, respectively. Each video is
encoded into K bitrate levels, and bnk (n ∈ [1, N t], k ∈
[1,K]) represents the bitrate value of the bitrate level k for
the video n. Two binary variables x and y denote the video
viewed by a client and the aggregation decision for a video,
respectively. xt

mn = 1 (m ∈ [1,M t], n ∈ [1, N t]) indicates
that the client m watches the video n at any time t. ytnk = 1
(n ∈ [1, N t], k ∈ [1,K]) indicates that the aggregated bitrate
level is k for the video n at any time t. Following the proposed
specific objective QoE models in [6], [40], the detailed metrics
and definition of QoE at time t are stated next.
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Perceptual Quality: The Video Multi-Method Assessment
Fusion (VMAF) [41] is used to evaluate the perceptual quality
of a video chunk. The VMAF Development Kit (VDK)
includes the VMAF models covering mobile phone and HDTV
viewing conditions. The mapping between bitrates and VMAF
for mobile phone and HDTV are denoted as qph(•) and
qhd(•), respectively. It is worth mentioning that the phone
model is also suitable for laptops, TVs, etc. The bitrate
of the chunk requested by the client m is defined as ltm
=

∑(Nt,K)
(n,k) xt

mny
t
nkbnk. Thus, the perceptual quality of the

chunk requested by the client m is qph(l
t
m) when the client

m watches the video by phone.
Quality Switch: The penalty of quality switch is denoted as

swt
m = |q(ltm)− q(llastm )|, where q(llastm ) indicates the quality

of the last requested chunk. The Quality Switch represents the
quality variation of the video chunk and penalizes the impacts
on the watching smoothness, which is computed by the edge.

Re-buffering: Clients send the buffer information to QAVA
through the requests for a new chunk. Let f t

m be the latest
buffer size at any time t, which is received by the edge from
the client m. Each new request from m updates f t

m according
to the real-time buffer size of m. Let tlatestm be the time when
the edge received the latest request of m. Let dtm = t− tlatestm

be the duration from the time of receiving the latest chunk
request to any current time t. Thus, the re-buffering time
computed by the edge-side for the client m is rtm = |dtm−f t

m|+
(i.e., in seconds). The re-buffering implies any stalling event
in the video streaming for each client.

Chunk Skip: Let ztm be the sequence number of the chunk
being requested by the client m at any time t. The edge makes
the decision for the client m whether to skip some chunks
after the current requested chunk (ztm). If the edge instructs
the client to request the next chunk of znextm , instead of the
next chunk in order (i.e., ztm + 1), the number of skipped
chunks is denoted as sktm = znextm −ztm−1. The corresponding
QoE penalty for the video playback non-continuity, namely
the chunk skip information, will be computed by the edge.
Therefore, the edge will instruct the client to request the
appropriate next chunk after the computation of potential
QoE. Note that the client’s perception of chunk skip is also
correlated with the video content characteristics. We have done
a subjective experiment to explore the relationship between the
number of skipped chunks and client perception for different
videos and we have found that the continuity of video content
plays a major role in client perception. Therefore, in this paper,
we use the number of skipped chunks to represent the impact
of chunk-skip events on client QoE. The subjective experiment
studying the chunk-skip influence on client’s QoE is described
in Section VII-D.

Latency: Assume that the client m is watching the video
n. As shown in Fig. 3, the latency (i.e., in seconds) of the
client m computed by the edge-side is etm = |f t

m − dtm|+ +
(ctn − (zlastm + 1))Lc + (t − tnewn ), where ctn is the sequence
number of the latest chunk of the video n recorded in the
client-side, Lc represents the time interval of new chunks
appearing in the IDC/CDN servers collected by the edge-
side, zlastm is the sequence number of the last requested chunk

Fig. 3. An example of latency. The latest request from the client m received
by the edge at time tlatestm contains the information of f t

m and zlastm (i.e.,
10 in the example). Besides, in this case, Ct

n = 13 and zlastm = 10.

and tnewn is the generating time of the latest chunk of the
video n at the IDC/CDN servers collected by the edge-side as
well. The values of f t

m and zlastm are updated by the request
received by the edge at time tlatestm . The Latency defined in
the proposed QoE model consists of the startup delay (i.e.,
when the first chunk arrives) and other delay features within
the video streaming procedure.

Related to the QoE model, we follow the industry definition
[42] The QoE Qt

m for client m at time t is represented as:

Qt
m = q(ltm)− α1sw

t
m − α2r

t
m − α3sk

t
m − α4e

t
m, (1)

where α1, α2, α3 and α4 are the non-negative term weights, in-
dicating how each component affects client QoE. A relatively
small α1 indicates that the user is not particularly concerned
about video quality variability; A larger α1 is, the more
effort is made to achieve smoother changes of video quality.
A large α2 indicates that a user is deeply concerned about
Re-buffering. If users care about the video content playback
continuity, we set α3 to a relatively large value. In cases where
users prefer low latency, we employ a larger α4. Generally, the
values of q(ltm), swt

m, rtm, sktm and etm would vary in [0,1]
depending on the evaluation results.

CPs would like to offer satisfactory or good QoE to an
increased number of clients to improve revenue. Those with
poor QoE are more likely to quit watching, which leads to a
decline in CP’s revenue. Based on the above considerations,
we introduce the unfairness factors of Qht

m and Qltm to
indicate the QoE unfairness caused by bandwidth competition.
Qht

m implies how much higher the QoE of the client m is,
compared with other clients of higher QoE than the client m.
Qht

m is larger if there are more clients with lower QoE than
the client. Qht

l implies how much lower the QoE of the client
m is, compared with other clients of lower QoE than the client
m. Qht

l is larger if there are more clients with higher QoE than
the client m. The definitions are as follows:

Qht
m =

∑
Qt

p<Qt
m

Qt
m −Qt

p

M t − 1

Qltm =
∑

Qt
p>Qt

m

Qt
p −Qt

m

M t − 1
.

(2)

Qht
m and Qltm can be calculated at any time t. The optimal

goal is that all clients have equal QoE and thus Qht
m = Qltm =

0, which implies that clients share bandwidth resources fairly
with respect to their individual QoE.
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Based on the above analysis, CP expects to improve the
QoE fairness among online clients and guarantee that client
QoE remains at a high level by deploying QAVA at the smart
edge. Therefore, we have the following optimization objective
that maximizes the sum of QoE and minimizes the sum of
QoE unfairness. Since QAVA takes control of client QoE by
choosing a bitrate for the chunk to be requested, the control
variable for this optimization problem is defined as Yt =
{Y t

1 , ..., Y
t
n, ..., Y

t
Nt}, which represents the set of requested

bitrate levels for all online videos at time t, where Y t
n is a

one-hot vector and is denoted as {ytn1, ..., ytnk, ..., ytnK}.
Thus, the bitrate adaptation problem at time t on QAVA can

be formulated as:

max
Yt

Mt∑
m=1

(Qt
m − η1Qht

m − η2Qltm), (3)

s.t.

xt
mn, y

t
nk ∈ {0, 1},∀m ∈ [1,M t],∀n ∈ [1, N t],∀k ∈ [1,K]

(4)
Nt∑
n

xt
mn ≤ 1,∀m ∈ [1,M t];

K∑
k

ytnk ≤ 1,∀n ∈ [1, N t] (5)

Nt∑
n

K∑
k

ytnkbnk ≤ W t, (6)

where η1 and η2 are weighted parameters to tune the penalty
of the QoE unfairness [43]. Although due to the property of
symmetry,

∑Mt

m=1 Qht
m =

∑Mt

m=1 Qht
l , in the real scenario,

the decision is made incrementally for each live streaming
video n. Therefore, the parameters of η1 and η2 are retained for
the problem formulation to maintain consistency in expression
with the following part of this paper. Eq. (3) indicates the
objective of QAVA, which is to maximize the QoE of online
clients and minimize the QoE unfairness among all clients.
Eqs. (4) and (5) guarantee that each client chooses at most one
video and QAVA chooses at most one bitrate among chunks
with the same content at time t. Eq. (6) indicates that the
total bitrates requested by all clients should not exceed the
bottleneck bandwidth W t.

The problem can be reduced to a multi-dimensional knap-
sack problem. However, solving this problem through tradi-
tional linear optimization is a significant challenge when the
number of videos increases. In addition, the decision at time
t will affect the user experience in the future. For example,
a too high bitrate may cause rebuffering or increase the real-
time latency in the future. Therefore, employing DRL trained
with real experience data is a potential approach to solve this
problem in real-time. More significantly, it can learn from the
training data for a better decision, which fully considers the
impact on the future QoE.

V. DRL-BASED ADAPTIVE AGGREGATION DECISION

QAVA uses DRL to make adaptive bitrate aggregation
decisions. At time t, the agent which makes adaptive bitrate
aggregation decisions for the video n observes the state stn and

Fig. 4. The Proposed Deep Reinforcement Learning Model Design.

TABLE II
NOTATIONS USED IN SECTION V

Notation Description
stn The Observed state of the video n at time t
atn The determined action of the video n at t
Rt

n The received reward of the video n at t
V (st) The estimated value of state st

π(at|st) The probability distribution of actions
θ⃗tg The global state
d The number of sample periods for bandwidth estimation

qht
n The high quality unfairness factor of the client m at t

qltn The low quality unfairness factor of the client m at t
θ⃗tv The video state
Qt

n The avg. QoE of the clients watching the video n at t

chooses an action atn based on stn. After applying the action,
the state of the environment transitions to st+1

n and the agent
receives a reward Rt

n. The goal of learning is to maximize
the expected cumulative discounted reward: E[

∑∞
t=0 γ

tRt
n],

where γ ∈ (0, 1] is a factor discounting future rewards. A3C
[44] is employed and is formulated as a discrete time and
action, continuous state model, by defining the state s ∈ S ,
the action a ∈ A and the reward function R, which will be
measured and computed by the modules introduced briefly in
Section III-B. A3C uses an actor-critic model, where the critic
network outputs the estimated value V (st) of state st and
the actor network outputs the probability distribution of each
action π(at|st). A detailed description of these components
and working procedures for Section III-B modules follows.

A. States

QAVA aggregates the requested bitrates of a cluster of
clients into one bitrate. When QAVA receives the first request
for a new chunk of the video n, ADM makes a bitrate decision
based on the real-time state st, including network conditions,
client states, and video characteristics collected from NMM,
CSMM, and QPM. Then all the following clients in the same
cluster adopt this bitrate. As shown in Fig. 4, we divide the
input state into global state and video state.

Global State: To understand the bottleneck throughput
(i.e., available bandwidth) and the state of clients in real
time, NMM and CSMM collect the global state into a vector
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θ⃗tg = {µ⃗t, btsum, q⃗td, c⃗n
t}. NMM measures the bottleneck

throughput of the past d sample periods and the sum of all
downloading chunks’ bitrates, which are denoted as µ⃗t and
btsum, respectively. At the same time, q⃗td and c⃗nt, which relate
to clients, are measured by CSMM. q⃗td contains qht

n and qltn,
which indicate the comparison between the average perceptual
quality of the video n and those of other videos. qht

n implies
how much higher the average perceptual quality of the video
n is than those of other videos, while qltn indicates how
much lower the average perceptual quality of the video n is
than those of other videos. The definitions of qht

n and qltn are:

qht
n =

∑
qtn>qtp

qtn − qtp
N t − 1

, qltn =
∑

qtn<qtp

qtp − qtn
N t − 1

, (7)

where qtn and qtp are the average perceptual quality of the
video n and p, respectively. Besides, to assist the QoE trade
off between phone clients and HDTV clients, we input the
client number vector c⃗nt to the neural network, which con-
tains the number of online clients using phone and HDTV,
respectively. The deep NN learns the best aggregation decision
under different phone and HDTV clients through historical
experiences. The global state indicates the shared bandwidth
status and the status of clients watching other videos. With
this information, DRL can avoid using the shared bandwidth
greedily for a single video.

Moreover, for some CPs, clients can be subscribers on
different price tiers of a streaming service. Under this cir-
cumstance, QAVA can perform the aggregation on a per-tier
basis. The deep NN makes the aggregate bitrate for each
tier respectively. From the perspective of business strategy,
to obtain more benefits, different QoE weights can be set for
clients of different tiers, so as to achieve flexible QoE control
between users of different tiers. However, this problem in-
volves complex network economic models and client behavior
pattern analysis, which is beyond the scope of this paper.

Video State: A seven-dimension vector θ⃗tv =
{q⃗tph, q⃗thd, ⃗qtlast, ϵ

t
n, τ

t
n, sk

t
n, ζ

t
n} is used to indicate the

characteristics of the chunk to be requested and smoothness
of the video download process. Due to the different screen
resolution of devices among clients, the perceptual quality of
the same video can also be different. Thus, to assist the QoE
trade-off between phone clients and HDTV clients, we input
q⃗tph and q⃗thd, which are the vectors of the chunk’s predicted
quality of all K bitrates based on the phone model and
HDTV model, respectively, which are predicted by QPM. The
last five items represent the client states that are influenced
by downloading the past chunks and are recorded by CSMM.
⃗qtlast contains the quality of the last requested chunk based

on the phone model and HDTV model, respectively. ϵtn and
τ tn are the download rate and download duration of the last
chunk, respectively. sktn is the number of skipped chunks
caused by the download of the last chunk. ζtn indicates the
average real-time latency of all the clients at time t. The
client buffer level is not included in the states. As in the live
streaming transmission system, the real-time latency is an

implicit indicator for the client buffer level. For example, a
high client buffer level means a high real-time latency.

B. Actions
The agent in ADM makes the bitrate decision for the next

chunk based on the measured states. The action space is a
K-dimension vector for K alternative bitrates.

C. Rewards
When the agent for video n in ADM requests a new

chunk ztn, it computes the reward Rt
n according to the last

chunk zlastn . A reward function is introduced to measure how
the impact of the last action is in line with our objective.
Specifically, the reward Rt

n is set at time t as:

Rt
n = Qt

n − η1qh
t
n − η2ql

t
n, (8)

where Qt
n is the average QoE of the clients watching video

n, which is monitored by CSMM. The definitions of qht
n and

qltn are detailed in Eq. (7). In the problem formulation part,
the unfairness factors (i.e., Qht

m and Qltm) are defined based
on the QoE differences among clients, according to Eq. (2)
and (3). In this part, we replace the QoE differences with
the perceptual quality differences to calculate the unfairness
factors, because the negative effects of QoE (e.g., re-buffering
events) cause drastic oscillation of QoE, making the model of
deep NN difficult to converge. It is worth noting that because
Rt

n contains the QoE Qt
n, the result of DRL targets improving

QoE and not only the perceived quality. Each online agent in
ADM aims to maximize their rewards so that the proposed
objective can be realised.

D. DRL Model
As is shown in Fig. 4, we propose the DRL model for the

intelligent real-time decision of online video streaming. For
actor-network, we first use the Fully Connected (FC) layer to
preprocess the data of different features, so that each feature
has the same dimension. For throughput prediction, we use
1D-CNN to capture time-series features; for video quality, we
use ELU [45] as the activation function of FC to enhance the
model’s sensitivity to video quality which frequently changes
during video playback. Other features use the general RELU
activation function for FC. We employ a two-layer FC with
RELU for the core learning model, which is fast enough to
guarantee the real-time requirement and the accuracy of online
decision-making. Unlike the actor-network, the critic network
uses RELU as the activation function of the preprocessing
layer of the video quality because the critic network should
not be too sensitive to the policy gradient. Besides, the final
output of the critic network is a linear function to regress the
value of the state st. The experiment results in section VII-F1
verifies the effectiveness of this model.

VI. PROTOTYPE IMPLEMENTATION

To validate the performance of QAVA, the QAVA-based
video delivery system with the quality prediction and DRL
agents is implemented.
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TABLE III
TEST SETTINGS

Description Value
(a) Quality Prediction Model

The number of videos in train/test dataset 42/6
The learning rate 10−4

(b) Deep Reinforcement Learning Model
The discount factor γ 0.99
The learning rate of actor network 3× 10−4

The learning rate of critic network 3× 10−3

(η1, η2) in the reward function Eq.(8) (0.8, 1)
(c) Implementation

The Poisson arrival rate λ 0.08
Network Traces FCC [46]
(α1, α2, α3, α4) in QoE model (Eq.(1)) (1, 0.5, 0.3, 0.03)
The number of hosts 20
Maximum cached chunk number for each
video on smart edge 2

The chunk skip tolerant factor P 0
The duration of a chunk (in seconds) 2

A. QAVA-based Video Delivery System in the Real Test-bed

The real testbed involved three x86 servers configured with
two Intel Xeon E5-2600 CPUs to support the live video
delivery process. All three servers run Ubuntu 16.04 system,
and are used for video source server, smart edge, and end-
clients, respectively. The video source server is based on
Nginx [17], a lightweight and highly stable HTTP server.
QAVA prototype is mainly written in Python 2.7 based on
Nginx, uWSGI [18], and Django [19], a common deployment
in production environments1. After QAVA receives a HTTP
request from a client, QAVA makes a bitrate aggregation
decision, requests the chunk from the source server, sends
the chunk to the client and temporarily stores in VC if the
request is the first one for a new chunk. Otherwise QAVA
sends the chunk stored in VC directly to the client. In order
to guarantee the real-time video streaming service, the storage
capacity in the smart edge is set to 2 video chunks. To simulate
the dynamic bandwidth between the IDC/CDN servers and the
smart edge, we utilize the Linux Traffic Control tool to control
the sending rate of the video source server. We create 20 virtual
hosts to simulate the clients. The client request packets are
modified to include the clients’ current buffer occupancy.

B. Quality Prediction Agent

In order to predict the perceptual quality of the next chunk
that is the input of the DRL Video State (i.e. Phone Model
Quality or HDTV Model Quality shown in Fig. 4), we refer
to the NN architecture in QARC [8] to extract the features of
the past video chunks and implement the agent in TensorFlow
[47]. We pass past 2 chunks, each of which sampled 12 frames,
so totally 24 frames with a size of [96, 64] with 3 channels are
inputted into the feature extraction layer. It consists of a convo-
lutional layer with 64 filters, each of size 3 with stride 1, a max
pooling layer with a 3×3 filter, and another convolutional layer
with the same settings, a max pooling layer with a 2× 2 filter
and a fully connected layer with 256 nodes. Then, we pass
24 256-dimension vectors to two gate recurrent unit (GRU)

1QAVA code is shared on Github: https://github.com/chaijm/QAVA/.
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Fig. 5. The Quality Prediction Model.

layers with 256 hidden units. In addition, we connect GRU
layers’ output with a 2-dimensional device vector through the
2-hidden-layer fully connected layer with 513 and 256 nodes
respectively to generate a 10-dimension vector, in which each
value represents the VMAF-based perceptual quality score
normalized in [0,1] for all alternative bitrates using different
devices (i.e., Phone and HDTV). Note that the nodes of the
neural network use ”RELU” as the activation function except
for the output layer of Phone Quality Prediction (QP) and
HDTV QP parts. The output layer of the Phone QP and
the HDTV QP parts utilize the ”linear” activation function.
Additionally, the Adam gradient optimizer with a learning
rate 10−4 is used to train the prediction network. The filter
number, feature dimension number, and learning rate are the
best parameters used in multiple sets of experiments. The
critical parameters’ values of the quality prediction agent are
summarized in Table.III(a).

C. Deep Reinforcement Learning Agent

A3C [44] is employed to realize parallel bitrate decisions
for all videos and the agent is implemented in TensorFlow
[47]. Each agent in ADM uses the NN-based actor-critic model
to represent the policy π(a|s). QAVA feeds an 11-dimension
vector (i.e., all the items in θ⃗tg and θ⃗tv) into the NN. In
the actor network, the dimension containing the throughput
measurements of the past d = 8 sample periods is passed into
a one-dimension convolutional layer with 128 filers, each of
size 4 with stride 1. The other 10 elements are each passed
into a fully connected layer with 128 nodes. Then we splice all
the output and pass them into a 2-hidden-layer fully connected
layer with 1024 and 512 nodes respectively. The second layer’s
results are applied to the Softmax activation function to output
the probability distribution of the policy π(a|s). The selection
of the activation function is detailed in the next section. The
critic network has the same NN architecture as the actor
network except that its final output is a linear neuron without
activation functions. The discount factor γ = 0.99 and the
learning rate for the actor and the critic network are configured
as 3× 10−4 and 3× 10−3, respectively. η1 and η2 in Eq. (8)
are set to 0.8 and 1, respectively. We have tried extensive (η1,
η2) combinations in order to identify the combination which
results in good performance. The ablation study of η1 and η2
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is detailed in Section VII-E1. The critical parameters’ values
of the deep reinforcement learning agent are summarized in
Table.III(b).

VII. PERFORMANCE EVALUATION

A. Dataset

Video dataset: The quality prediction model is trained on a
large-scale video dataset containing music videos, cartoon, and
short movies, which includes two public datasets from [48] and
[49] as well as a self-collected video dataset of Tencent music
[50]. In order to guarantee the diversity of videos, we obtain
48 videos from these three sources. Among them, there are 4,
16 and 28 videos from [48], [49] and [50], respectively. We
have used 42 and 6 different video sequences to train and test
both the quality prediction agent and the deep reinforcement
learning agent, respectively. The video diversity enables agent
independence from particularities of a single video sequence.
The length of these videos ranges from ten seconds to tens
of minutes, and the resolution is configured to 1920 × 1080
by following the instruction of VMAF (version 0.6.1). These
videos are encoded by H.264 and MPEG-DASH using the
FFmpeg tool [51]. Each video is encoded into 10 discrete
bitrates: {334, 396, 522, 595, 791, 1000, 1200, 1500, 2100,
2500} Kbps. Each chunk represents about a 2 second video.

Network traces: A bandwidth trace dataset is created from
two public datasets: a broadband dataset provided by the FCC
[46] and a HSDPA mobile dataset collected in Norway [52].
The dataset contains average throughput trace at 1 second
granularity. We generate two one-hour throughput traces from
the FCC dataset (e.g. vary from 100Mbps to 200Mbps) and the
HSDPA dataset (e.g. vary from 0Mbps to 10Mbps) following
the [6], respectively. To simulate the bottleneck bandwidth,
we adjust the values of the throughput traces according to
the number of tested videos. Then we use the Linux Traffic
Control tool to simulate the dynamic bandwidth between the
video source server and the smart edge according to the
generated throughput traces.

Client behavior dataset: One million pieces of raw data
are generated using the described testbed, which represents
the behavior of all online clients sharing the bottleneck. The
global state and video state are extracted from the raw data
as the input of the DRL model. By using the generated 40-
hour data to train the model, the whole model training process
is completed in 30 minutes. To model the patterns of client
requests, we assume that each client follows a Poisson arrival
process with λ = 0.08 (The value of λ refers to the setting in
[24]) and selects a video based on a uniform distribution.

B. Methodology

The following baseline methods which fetch video content
directly from the IDC/CDN servers are considered:

• Rate-Based (RB): A client-side ABR that chooses the
highest available bitrate below the harmonic mean of the
past five-chunk download data rate.

• BOLA [4]: A client-side ABR that uses Lyapunov op-
timization to select bitrates solely considering buffer
occupancy observation.

The following advanced edge node approaches are consid-
ered demonstrating advantages of the proposed DRL solution:

• Rate-Based with Cache (RBC) and BOLA with Cache
(BOLAC): All clients implement RB and BOLA algo-
rithms, respectively. The edge node only sends a request
to the IDC/CDN servers containing the bitrate of clients’
first request for a video chunk.

• Tracker (TKR) [27]: A tracker-based approach aims to
solve the unstable performance caused by proxies/caches.

C. Evaluation Metrics

Average QoE: The definition of QoE for the client m is
shown in Eq. (1), where t is the time that the client m finishes
downloading a chunk. Then the average QoE is the mean of
all QoE values during the one-hour network trace test. The
parameters (α1, α2, α3, α4) in the QoE definition are set to
(1, 0.5, 0.3, 0.03), respectively. We refer to [6] [40] [42] to
set the relatively balanced values of each parameter, which is
better to perform the comparisons for the proposed QAVA and
the other benchmarks in this paper. Clients and CP can tune the
weights of the parameters according to their preferences. We
have performed an ablation study for the weights of different
components of Eq. (1) to illustrate how the QoE model can
be adjusted to suit various scenarios. The study and its results
are shown in Section VII-E2.

Detailed QoE Metrics: The quality, quality switch, re-
buffering ratio, chunk skip frequency and latency are measured
to offer a deep dive of the performance of all approaches.

Unfairness: The standard deviation σt of QoE among M t

online clients at any time t is used to indicate QoE unfairness.
This is defined as:

σt =

√√√√ 1

M t

Mt∑
m=1

(Qt
m −Qt)2, (9)

where Qt
m is the QoE of the client m and Qt is the mean

of QoE of all active clients at any time t, defined as Qt =
1

Mt

∑Mt

m=1 Q
t
m.

Minimum QoE: The minimum QoE of all the clients is
considered as the client suffering from the worst QoE is most
likely to quit watching.

D. Subjective Experiment of Chunk-skip Events

To explore the relationship between the number of skipped
chunks and client perception, we have invited 110 volunteers
to participate in a subjective experiment. We have chosen
three videos from the video dataset and cut out 20-second
video clips from each video. Then we used the clips of each
video to generate 15 test videos, respectively. Each test video
has a chunk-skip event from a particular playback position,
and the number of skipped chunks is between 1 and 3. The
volunteers have watched 45 test videos and rated them from
0 to 4 based on their perceptions when watching the video. A
score of 4 indicates that the volunteers are satisfied with the
video playback process, while a score of 0 implies that they
dislike the chunk-skip event. We normalize the volunteers’
scores and calculate a Mean Opinion Score (MOS) for each
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TABLE IV
ABLATION STUDY FOR (η1 , η2) COMBINATION

ID (η1, η2) Average QoE Unfairness Minimum QoEPH TV
1 (0, 0) 0.677 0.620 0.180 0.380
2 (0.08, 0.1) 0.734 0.667 0.136 0.505
3 (0, 1) 0.772 0.668 0.136 0.535
4 (0.4, 1) 0.720 0.648 0.160 0.436
5 (0.8, 1) 0.764 0.675 0.129 0.517
6 (1.6, 2) 0.585 0.508 0.166 0.425
7 (4, 5) 0.582 0.501 0.171 0.395
8 (8, 10) -0.36 -0.40 0.628 -1.47
9 (1, 0) 0.622 0.519 0.153 0.444
10 (1, 0.4) 0.610 0.531 0.153 0.446
11 (1, 0.8) 0.730 0.628 0.153 0.446

test video. Additionally, we measure the similarity between the
two frames before and after the skipped chunks by Structural
SIMilarity (SSIM) [53]. Next, we also measure the correlation
between MOS and frame similarity to assess the influence of
chunk-skip events’ influence on video contents with different
characteristics. Fig. 6 shows a correlation pair plot among
chunk skip numbers, frame similarity, and MOS. The scenes in
video 1 and video 3 are mostly dynamic, while most of scenes
in video 2 are static. We use the Pearson correlation coefficient
to measure the correlation of two variables. We find that the
correlation between MOS and the chunk skip numbers is -0.62,
while the correlation between MOS and the frames similarity
is only 0.18 in our experiment. Besides, the MOS has a similar
linear relationship with the number of skipped chunks among
different videos, according to Fig. 6. Thus, the result shows
that the number of skipped chunks plays a dominant role in
client perceptions so that we use the number of skipped chunks
to represent the impact of chunk-skip events on QoE in this
paper. On the other hand, we believe that adding the video
characteristic to the chunk-skip factor can further improve the
performance of QAVA.

E. Ablation Study

1) (η1, η2) combination: To find the (η1, η2) combination
that can achieve good performance, we have done an ablation
study of η1 and η2. The result is shown in Table IV. Comparing

the result with the ID ranging from 1 to 7, we find that when
η1 and η2 change between 0 and 1, clients experience good
QoE, and QoEs among clients are relative fair. When η1 and
η2 are higher than 1, DRL is more inclined to let the clients
have fair quality according to the definition in Eq.(8) and
results in Table IV, which makes clients suffer from poor QoE.
Besides, comparing the results of ID 3∼5 and ID 9∼11, we
find that when η1 < η2, QAVA can provide higher QoE and
maintain fair QoE allocation for clients. That is consistent with
the conclusion in [43]: the clients care more about inequity
when their QoE is lower than others so that η1 < η2 can
make QAVA tend to provide clients with high QoE. Moreover,
we find that QAVA has relatively poor QoE fairness when
η1 = η2 = 0 according to the result with ID 1. Meanwhile,
the second and third terms in Eq.(8) make QAVA request for
chunks with similar quality instead of similar bitrate, which
further improves the effective utilization of bandwidth, thus
making the client QoE promoted. Through our test, we find
that using the (η1, η2) combination with ID 2∼5 can make
QAVA have good performance. In the future section, if not
specified, we set η1 and η2 to 0.8 and 1 respectively.

2) Weights of metrics in the QoE model: As shown in
Eq.(1), the value of QoE is dependent on the influence of
multiple components. The weight of each component affects
the evaluation of the overall client QoE. Multiple weight
combinations were tried indicating that QAVA can be tuned to
suit various scenarios. To explore the influence of tuning the
weights on QoE, we replace the weight of the first component
in Eq.(1) from 1 to α0. Referring to the configuration men-
tioned in Section VII-C, we set the benchmark values of α0,
α1, α2, α3, and α4 to 1, 1, 0.5, 0.3, and 0.03, respectively. We
regard the experiment using the QoE model with benchmark
weights as the benchmark experiment. The results and analysis
are included in Section VII-F.

We conduct a total of five rounds of experiments. In each
round, we choose one of the benchmark values from α0 to
α4 and multiply it by the scale of 2−3, 2−2, 2−1, 2, 22,
and 23, respectively, while fixing other weights. We get six
combinations of weights through the above method. We use
QoE models with these weights combinations to train the DRL
on the same dataset as the benchmark experiment and test it
in the same environment as the benchmark experiment.

Fig.7 shows the test results of each round. We choose
the typical QoE metrics to illustrate the effect of tuning a
particular α. As shown in Fig.7(a), when the α0 is too large
or too small, the perceptual quality of clients is improved, but
the re-buffering ratio also increases significantly. When the α0

is too large, the QoE model indicates QAVA to pursue high
perceptual quality, resulting in lots of re-buffering, latency and
chunk-skip because of downloading too large chunks. While
the α0 is too small, the first term in the reward function
(i.e., Eq.(8)) is small so that the last two terms dominate the
reward function, resulting in pursuing high perceptual quality
which also causes lots of re-buffering, latency and chunk-skip.
Besides, Fig.7(b)(c)(d)(e) implies that increasing a particular α
can improve the performance of QAVA in the corresponding
metric. However, it also causes performance degradation in
some metrics. For instance, as shown in Fig.7(b), increasing α1
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Fig. 9. The Chunk Size CDF of Video Type v1 and Video Type v2

TABLE V
AVERAGE QOE AND UNFAIRNESS OF DIFFERENT INPUT VERSIONS

Input version Average QoE Unfairness
Phone HDTV

QAVA K 0.728 0.599 0.132
QAVA O 0.764 0.676 0.129

effectively decreases the quality switch while increasing the re-
buffering ratio. In this paper, we choose a weight combination
that has a balanced performance on each QoE metrics. Clients
and CPs could tune the weights according to their preferences
to suit various scenarios.

F. Experimental Results and Analysis

In this section, we compare the overall performance of
all the considered approaches. Our test video dataset mainly
contains two types of videos: v1 with mostly static scenes
and v2 with mostly dynamic scenes. Using the same encoding
method (H.264) and specifying the same bitrate, the perceptual
quality and size distribution of the two types of videos are
quite different, which is illustrated in Fig. 8 and Fig. 9. As
is shown in Fig. 8, v1 generally has higher perceptual quality
comparing with v2 if they are encoded at the same bitrate.
Meanwhile, the size distribution of chunks encoding into a
certain bitrate in video type v2 has a higher variance than v1.
In the future sections, if not specified, we use the FCC trace

TABLE VI
PERFORMANCE UNDER DIFFERENT ACTIVATION FUNCTIONS

Activation function Average QoE UnfairnessPhone HDTV
ALL ELU 0.666 0.588 0.153

ALL RELU 0.698 0.598 0.161
RELU+ELU 0.764 0.676 0.129
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Fig. 10. Comparison between QAVA and Other Methods in Terms of Reward.

to simulate the bottleneck bandwidth and set the chunk skip
tolerant factor P to 0. To facilitate the comprehension of the
experiments, Table.III summarizes the default values of key
parameters in the experiment implementation.

1) Exploring the DRL model: To improve the utilization of
bottleneck bandwidth, QAVA makes bitrate adaptive decisions
based on predicted perceptual quality rather than bitrate.

Different versions for predicted quality are employed and
the best two are selected. The first version uses the K-means
method to convert the 10-dimensional predicted values into
three categories based on their minimum, maximum, average
and standard deviation values, and then inputs them into a
fully connected layer. The second version inputs all predicted
quality values into the same fully connected layer. We call
the DRL model trained through the two input versions as
QAVA K and QAVA O, respectively. V shows the average
QoE and unfairness values generated by the two models.
The results show that although the average unfairness values
of the two versions are almost the same, the resulting QoE
of QAVA O is higher than that of QAVA K by 4.95% and
12.85%, respectively, which implies that using the original
10-dimensional predicted values can better mine video char-
acteristics. Therefore, the second version is used.

Additionally, to further increase the classification accuracy
for video characteristics, ELU [45] is employed as the acti-
vation function for the neurons used to classify the predicted
quality values and this model is called as RELU+ELU. Gen-
erally, all activation functions of a NN are RELU, and we
call this model as ALL RELU. Another model that employs
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Fig. 11. Comparing QAVA with Existing Methods on Average QoE, Unfairness and Minimum QoE

TABLE VII
COMPARING QAVA WITH EXISTING ALGORITHMS ON DETAILED QOE METRICS WHEN USING PHONE (PH) AND HDTV (TV).

Method
Metric Quality Quality Switch Re-buffering Ratio Chunk Skip Latency(/s)

PH TV PH TV PH TV PH TV PH TV
RB 0.778 0.652 0.133 0.129 0.264 0.267 1.771 1.688 6.542 6.378

BOLA 0.774 0.691 0.127 0.114 0.262 0.267 1.656 1.757 6.350 6.526
TKR 0.785 0.702 0.082 0.080 0.037 0.036 0.085 0.088 3.323 3.314
RBC 0.948 0.866 0.032 0.055 0.036 0.035 0.081 0.084 3.289 3.274

BOLAC 0.933 0.844 0.040 0.064 0.028 0.029 0.062 0.062 3.451 3.425
QAVA 0.957 0.879 0.034 0.058 0.020 0.024 0.054 0.043 2.950 2.941
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Fig. 12. Dynamic QoE for A Single Client When Downloading A Video

ELU as all activation functions is called ALL ELU. We make
a comparison among DRL models with RELU+ELU, ALL
RELU and ALL ELU activation functions, and the results are
shown in Table VI. The model with ALL RELU function
classifies video characteristics with lower accuracy, which
wastes the shared bandwidth and results in low average QoE
and fairness. Meanwhile, the model with ALL ELU is not
stable, so it often requests too high bitrates and results in
frequent re-buffering events. Therefore ELU only is used as
the activation function for the predicted quality neurons here.

In order to better understand the learning process of the
DRL agent, we visualize the reward curves of four considered
methods in Fig.10. Note that as the reward values for the RB
and BOLA methods are always at a very low level, we show
the reward curves for RBC and BOLAC instead and allow

the QAVA reward value curves to be seen more clearly. As
is mentioned in section VII-A, we pre-train the DRL model
based on 40-hours of data so that the reward of QAVA has a
high value at the beginning of the deployment. Then, as the
interaction with the real environment continues, the reward
value of QAVA gradually increases until it plateaus. As shown
in Fig.10, QAVA has the most stable trend compared to the
other methods. It indicates that QAVA can adapt well to the
dynamic changes in clients, videos, and networks.

2) General Performance: Fig. 11(a) shows the average QoE
of each method. The results show two key points.

On the one hand, we find that the existence of the edge node
with cache does bring huge benefits. Since RB and BOLA
fetch chunks directly from the IDC/CDN servers, the client is
unaware of other client requests for the same chunk, which
results in large redundant transmissions and a sharp drop in
QoE. In contrast, strategies with the edge node greatly reduce
redundant transmissions and improve client QoE when the
bottleneck bandwidth resources are insufficient.

On the other hand, we note that clients using QAVA achieve
higher QoE than those of other methods. On average, QAVA
outperforms TKR, RBC and BOLAC by 54.03%, 7.00%
and 8.22% respectively when using a phone. QAVA also
outperforms TKR, RBC and BOLAC by 64.88%, 11.37%
and 13.42% respectively when using HDTV. The results show
that QAVA can exploit the difference in perceptual quality
among online videos to make appropriate adaptive bitrate
aggregation decisions, which makes more rational use of
available bandwidth resources.

3) Detailed QoE Metrics Analysis: To deeply explore the
reason why QAVA improves client QoE, the performance
analysis of each strategy is presented in Table VII with
detailed QoE metrics. When multiple clients compete for
limited bandwidth resources, RB and BOLA send a large
number of redundant requests due to the absence of the edge
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Fig. 14. Comparison of the Performance Achieved by QAVA and Existing Algorithms on Average QoE, Unfairness and Min QoE when P = 1

node, leading to mass re-buffering and chunk skip events and
then resulting in a significant drop in QoE. Since TKR does
not consider the simultaneous presence of multiple videos
and the dynamic change of available bandwidth, its probing
mechanism often fails to download high bitrate chunks due
to bandwidth competition, resulting in relatively low average
quality compared with other strategies with the edge node.
Thanks to the advantages of the DRL framework, QAVA
makes appropriate bitrate decisions according to the predicted
perceptual quality, which increases the average QoE and QoE
fairness among online clients, compared with other strategies.
As shown in Table VII, QAVA not only increases the average
perceptual quality, but also results in fewer negative effects
on client QoE (i.e., re-buffering events, chunk skip events,
and latency). The quality switch of QAVA is slightly higher
than that of RBC, but it is still acceptable.

4) Unfairness and Minimum QoE Analysis: As shown in
Fig. 11(b), QAVA has the best fairness compared with other
algorithms. The average unfairness of QAVA over RB, BOLA,
TKR, RBC and BOLAC has decreased by 99.19%, 98.66%,
52.57%, 19.37% and 31.38%, respectively. Fig. 11(c) shows
that QAVA reduces the risk of clients being affected by low
QoE. Clients have 28.36%, 35.42% and 38.97% possibility
of having QoE level below 0.5 when using QAVA, RBC and
BOLAC, respectively. It can be said that by making efficient
use of limited bandwidth resources, QAVA guarantees fairness
and maintains QoE for all online clients at a relatively high
level, reducing the probability of clients stop watching videos.

5) Single Client Performance: Fig. 12 shows the dynamic
changes of QoE for a single client when downloading a video.
QAVA outperforms TKR, RBC and BOLAC by 27%, 8% and
5%, respectively on average QoE. The QoE standard deviation
of QAVA is lower than for TKR, RBC and BOLAC by 29%,
38% and 23%, respectively. These results show that the QAVA
clients benefit from high bandwidth utilization and have a
higher and more stable QoE compared with other strategies.

6) Performance on the HSDPA Trace: To test the generality
of the pre-trained DRL model, we use the HSDPA trace to
simulate the bottleneck bandwidth, and the results are shown
in Fig. 13. Compared with the FCC trace, network throughput
in the HSDPA trace is smaller and changes more dramati-
cally. We find that QAVA still maintains good performance
when using the HSDPA trace. Compared with other methods,
QAVA still improves QoE fairness and minimum QoE without
decreasing QoE.

7) Performance when Changing the Value of P : As men-
tioned in Section III-C, QAVA can adjust the chunk skip
tolerant factor P to a higher value to improve the smoothness
of video playback. An experiment with P = 1 is run and
the results are shown in Fig. 14. Fig. 14 shows that QoE
using QAVA method is superior to those obtained when using
other methods, and QAVA also greatly improves fairness and
minimum QoE, which is similar to the results of P = 0.

8) Testing the overhead: Compared to other solutions,
QAVA introduces QPM and ADM, potentially introducing
additional time overhead. Therefore, to demonstrate that the
time overhead introduced by these two modules can meet
the time constraints required by the system, we measure the
decision time of these two modules. According to the results,
98% of bitrate aggregation decisions are under 2ms, while
95% of the decisions of quality prediction are under 25ms.
Therefore, in general, the use of QAVA introduces a 20-30ms
delay, which is much smaller than the duration of the video
chunk. Meanwhile, as shown in Table VII, the chunk skip and
latency of QAVA are smaller than those of other methods. It
implies that the time overhead saved by QAVA is greater than
the time overhead it introduces.

At the same time, as described in section III-B, the smart
edge collects information from the online clients in real-time.
The frequent information interaction between the clients and
the edge may cause additional bandwidth overhead. To verify
whether the bandwidth overhead caused by the additional
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information interactions affects the performance of QAVA,
we let 20 clients request a video with the minimum bitrate
(i.e., 334 Kbps) simultaneously. We find that the video size
is nearly one thousand times larger than the sum of all client
information interaction data sizes. Therefore, the additional
bandwidth overhead caused by the interaction between the
clients and the smart edge does not impact the performance
of QAVA.

VIII. DISCUSSIONS

The design and results presented in this paper demonstrate
that QAVA can intelligently realize QoE-aware video bitrate
aggregation by integrating network conditions, clients’ state,
and video characteristics at the smart edge. It effectively
reduces the congestion on the backhaul network and thus
improves average QoE, QoE stability, and QoE fairness among
multiple clients. However, the current design still has some
limitations.

First, QAVA cannot offer differentiated services for clients
with different priorities. For some CPs, clients can be sub-
scribers on different price tiers of a streaming service. Under
this circumstance, CPs should perform the aggregation on
a per-tier basis. The bitrate aggregation agent should make
decisions for each tier, respectively. From the perspective of a
business strategy, to obtain increased benefits, different QoE
weights can be set to clients of different tiers to achieve
flexible QoE control between diverse tier clients. Solving
this problem involves complex network economic models and
client behavior pattern analysis, and it is a challenging task.

Secondly, the QoE model used by QAVA may benefit from
further improvement. In this paper, the number of skipped
chunks is taken as an essential dimension of QoE. However,
for different video content, the impact of skipping the same
number of chunks on QoE is different. For instance, for low-
dynamic videos, clients are more tolerant of the number of
skipped chunks than for high-dynamic videos. Therefore, in
the future, QAVA could use more fine-grained video features
to predict the impact of different skipped chunks on clients’
QoE. This may further enhance the performance of the QoE-
aware video bitrate aggregation.

Thirdly, unfortunately, as it is designed, QAVA cannot be
applied directly to some emerging streaming applications, such
as Augmented Reality (AR) and Virtual Reality (VR). For
instance, in VR applications there are multiple tiles of video
content streamed at a time. Different tiles have different quality
and latency requirements. In order to realize smart QoE-aware
adaptive bitrate aggregation strategies for these emerging
applications, we need to fine-tune the aggregation mecha-
nism and consider aspects relevant to specific applications.
However, QAVA provides a reference solution for designing
other smart bitrate delivery mechanisms for distribution of
multimedia and diverse other rich media content in edge-
enhanced networks.

IX. CONCLUSIONS AND FUTURE WORK

This paper proposes QAVA, a novel QoE-aware Adaptive
Video bitrate Aggregation solution based on Deep Reinforce-
ment Learning (DRL) for improving the efficiency of live

video streaming. QAVA utilizes the network perception, stor-
age and computing power of the edge nodes and intelligence
of DRL to aggregate client requests and adapt the bitrates
based on network conditions and client states as well as video
characteristics. When comparing QAVA with several state-of-
the-art bitrate adaption algorithms based on the edge node,
QAVA has improved with 19%-52% QoE fairness among
online clients and has achieved high average client QoE
levels. In the future, we expect that QAVA can be applied to
emerging applications in an innovative 5G scenario, including
the delivery of Augmented Reality (AR) and/or Virtual Reality
(VR) content. The size of this data is much larger than that of
traditional video, and there are multiple tiles of video content
delivered at the same time. Different tiles have different
quality and latency requirements. In our future work, we
will personalize QoE-aware adaptive aggregation strategies for
these emerging applications, taking advantage of the large
number of edge nodes expected to be available in 5G network
environments.
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