
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 1

Edge Intelligence: A Computational Task
Offloading Scheme for Dependent IoT Application
Han Xiao, Changqiao Xu, Senior Member, IEEE, Yunxiao Ma, Shujie Yang, Lujie Zhong, and Gabriel-Miro

Muntean, Senior Member, IEEE

Abstract—Computational offloading, as an effective way to
extend the capability of resource-limited edge devices in Internet
of Things (IoT), is considered as a promising emerging paradigm
for coping with delay-sensitive services. However, on one hand,
applications commonly include several subtasks with dependent
relations and on the other hand, the dynamic changes in net-
work environments make offloading decision-making become a
coupling and complex NP-hard problem, difficult to address. This
paper proposes an intelligent Computational Offloading scheme
for Dependent IoT Application (CODIA), which decouples the per-
formance enhancement problem into two processes: scheduling
and offloading. First, a prioritized scheduling strategy is designed
and its complexity is analyzed. Then, an offloading algorithm
with offline training and online deployment is introduced. Due
to the temporal continuity between subtasks, the dependency
relation is transformed into a transition of device state, and the
overhead for the whole application is considered to be the long-
term benefit. CODIA leverages an Actor-Critic-based solution,
where the IoT devices are able to deploy intelligent models
and dynamically adjust the offloading strategy to achieve low
latency, while controlling energy consumption. Finally, a series of
experiments are conducted to verify the robustness and efficiency
of the proposed solution in terms of convergence, latency, and
energy consumption.

Index Terms—Edge Intelligence, Computational Offloading,
Dependent Application, Deep Reinforcement Learning

The latest rapid development of the Internet of Things
(IoT) makes possible interconnection of increasing number
of devices (e.g. Cisco estimates there will be about 75.4
billion interconnected devices by 20251). These devices will
support the next generation of applications including virtual
reality-based (VR)2, autonomous driving3, etc. Compared with
traditional services that only require a few computational steps,

Manuscript received April 5, 2021; revised August 23, 2021; revised
January 18, 2021; accepted March 2, 2022. This work is supported by
the National Natural Science Foundation of China (NSFC) under grant No.
61871048, 61872253, and 62001057 and by the 111 Project (B18008). G.-
M. Muntean wishes to acknowledge the Science Foundation Ireland (SFI)’s
support via grant nos. 16/SP/3804 (Enable) and 12/RC/2289 P2 (Insight).
(Corresponding author: Changqiao Xu.)

H. Xiao, C. Xu, Y. Ma and S. Yang are with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, P.R. China. E-mail: {xiaohan, cqxu,
myx, sjyang}@bupt.edu.cn

L. Zhong is with the Information Engineering College, Capital Normal
University, Beijing 100048, China. E-mail: zhonglj@cnu.edu.cn.

G.-M. Muntean is with the Performance Engineering Laboratory, School
of Electronic Engineering, Dublin City University, Dublin 9, Ireland. E-mail:
gabriel.muntean@dcu.ie.

1https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

2https://arvr.google.com/
3https://www.grandviewresearch.com/industry-analysis/autonomous-

vehicles-market

Fig. 1. The dependency task graph of a recognition application

the emerging applications have much higher demands in terms
computing resources [1]. The level of support for these compu-
tational requirements closely influences the associated quality
of experience (QoE) of users. However, following the latest
invalidation of Moore’s Law4 and the exponential increase
in computing resource demands of emerging applications, it
is no longer feasible to expect that all resource requests are
addressed locally in time. In this context, providing support for
users with resource-limited IoT devices in order to have access
to high QoE services is a challenge that must be addressed.

Edge computing (EC)5 is regarded as a promising emerging
paradigm to solve the IoT problem mentioned above [3]–[6].
According to a report from App Annie, the average usage time
of edge IoT nodes (e.g. phone, pad, etc.) is only 4.2 hours/day
[2], so their associated computing resources are available most
of the time. This phenomenon provides available condition for
EC. By offloading computational tasks at the edge, close to
the task generator (i.e. requester), the results can be returned
to the requester quickly and the overload of the core network
can be avoided. This also enables support for various other
IoT scenarios such as wearable computing [8], industrial-level
applications [9], and the Internet of vehicles [10]. However,
there are still several challenges which reduce the effectiveness
of deployed computational offloading strategies in real-world
environments. They motivate continuing the work to propose
innovative new solutions to address these challenges and are
summarized as follows:

1) The IoT devices at the edge are generally battery-
powered and need to control their energy consump-
tion, while still providing high QoE to users [11],
[12]. Although computational offloading expands the
available resources, it also increases the pressure put
on devices [13]. Therefore, these IoT devices have to
balance between the QoE (e.g. latency) and their energy
consumption. However, there are different understand-

4https://www.investopedia.com/terms/m/mooreslaw.asp
5https://en.wikipedia.org/wiki/Edge computing

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 2

ings of this balance for different IoT applications [13]–
[15], and therefore there is a strong requirement in terms
of proposing flexible energy-quality control strategies.

2) A typical IoT application (e.g. the recognition appli-
cation of Google glasses6, etc.) is composed of a set
of subtasks with complex dependencies [7], [17]–[22],
as shown in Fig. 1. Offloading the application as a
whole simplifies the scheduling decision, which is the
premise of most research efforts [8]–[15]. However, the
parallelism within the application is not being fully
utilized in this way [19], [23]. At the same time, current
dependent task offloading schemes are mostly applied in
specific scenarios and difficult to meet the requirements
of diversified computing applications [16], [19], [25].
There is a need for a dynamic approach for offloading
that can be applied to a large range of IoT applications
with dependencies.

3) The network environment presents complex and dy-
namic characteristics due to the time-varying wireless
communication conditions and highly variable user re-
quests [26], [27]. On one hand, optimal decisions in
an IoT scenario are not always beneficial to long-term
scheduling [20], [23]. On the other hand, even in similar
conditions, it is not unusual for the computational tasks
to make different offloading choices when faced with the
same alternatives. These indicate the need for designing
solid performance-oriented offloading solutions.

These challenges make computational offloading complex
and finding an efficient and flexible solution is non-trivial. Un-
der these circumstances, the progress of artificial intelligence
(AI) technology in recent years contributed with new ideas in
the quest to address the challenges mentioned above [28]. By
training an intelligent model (e.g. deep neural network) on a
platform with rich computing resources [29], it can help the
decision-maker to identify the best choice according to the
current state. This gives it the ability to respond to various
environmental challenges with a mature strategy. Noteworthy
is that the EC paradigm provides support for AI. Today’s
mobile chips are endowed with considerable computing power
(comparable to computing servers of a decade ago [30]) and
have the potential to execute complicated models at the edge.
In this context, this paper proposes an innovative solution
with edge intelligence for Computational tasks Offloading for
Dependent IoT Applications (CODIA). A series of experi-
mental tests are carried out to verify the effectiveness of the
proposed CODIA solution in terms of convergence, energy
consumption and latency. The experimental results show that
CODIA reduces the latency by 25% compared with other
schemes, while maintaining very good energy efficiency.

The main contributions of this paper are as follows.
1) We introduce a performance-aware application-level of-

floading model and adopt a general directed acyclic
graph to establish parallelism for dependent subtasks. We
transform the formulated overhead minimization problem
into a traveling salesman problem and prove its property
of NP-hardness through a rigorous theoretical proof. The

6https://www.google.com/glass/start/

dependencies are clearly considered in this model, unlike
in the sequential subtask model, which alleviates the
coupling of dependencies and improves the universality
of proposed solution.

2) We design a generator-executor Multi-Queue Priority
scheduling algorithm (MQP) focused on task finishing
time. This algorithm transforms successive offloading
processes into queue updates to decrease scheduling
latency and achieves this with reduced overhead and low
complexity.

3) We propose an intelligent offloading algorithm for offline
learning and online deployment, which adopts the deep
reinforcement learning framework based on an Actor-
Critic approach. A penalty term for timeout is added
to the reward function and the Monte-Carlo method is
applied to estimate the obtainable benefit and improve the
adaptability to the dynamic environment. This algorithm
makes our solution more responsive to diverse applica-
tion requirements and is applicable to complex network
environments.

4) We design a complete experimental environment and
evaluate the offloading efficiency of the proposed scheme
for application-level tasks through a series of experi-
ments, including convergence verification, overhead anal-
ysis with the specific component, etc. CODIA outper-
forms other four state-of-the-art schemes in terms of
delay and overhead.

The rest of this paper is organized as follows. Section II
discusses the related works in the field published in the recent
years. In Section III, the system model is designed and the
minimization problem is formalized. The dependent subtask
scheduling scheme is presented in Section IV. A detailed
description of the offloading scheme is provided in Section
V. The experimental testing is described and its results are
analyzed in Section VI. Finally, Section VII concludes this
paper.

I. RELATED WORKS

In recent years, the goal of computational offloading is
gradually changing from the whole application to the level
of atomic subtasks. This section provides a brief overview of
the related works on computational offloading and highlights
the differences between this article and previous research.

A. Edge Computational Offloading

Benefiting from the improvement in computing capabilities
of edge devices, edge computing emerged in the second decade
of the current century as a key paradigm for addressing
the performance limitations of cloud computing. It involves
provision of computational support by means of offloading.
Up to now, edge computing offloading has been divided into
two main categories. The first category includes application-
level (full) offloading (i.e. binary offloading) [32]–[36], where
the entire application is transferred to another powerful node
for processing. For example, Chen et al. [32] deployed a
three-tier mobile computing framework involving the cloud,
edge nodes, and users. Through vertical cooperation between

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 3

hierarchical nodes, computing overhead was significantly re-
duced. Our research group has employed an idea from the
game theory to optimize the multimedia service supported
by edge computing, in order to realize efficient services and
guarantee the reliability of transmission [34], [35]. We have
also designed an augmented graph model to realize a joint
optimization of computation and transmission [36].

The second category is partial offloading [37], [38], in-
volves offloading a part of the original task by splitting the
application. For example, Liu et al. [37] proposed a price-
based method to manage computational resources, where the
computation data is assumed to be arbitrarily divided bit-wise.
Similarly, You et al. [38] consider the data can be split for
separate computing in the context of resource allocation in a
multiuser edge offloading system. In many works, the pattern
of the proposed partial offloading is idealistic because the seg-
mentation of tasks can hardly be regarded as continuous. For
example, the driverless application-level task in the Internet
of vehicles. The terminal needs to perceive the road condition
first, then plan the driving path according to the information,
and finally adjust the speed of the vehicle. It is difficult to
offload partial task data to another device, which violates the
execution rules of computer program. Therefore, researchers
proposed to represent application tasks by special models and
use those in the offloading process.

B. Dependent Application Tasks

At present, researchers subdivide the application tasks into
atomic subtasks with different responsibilities according to
requirements [17]–[25]. However, many computing subtasks
are dependent on each other, like the example of driverless
mentioned above. Before a precursor of a dependent subtask
completes, the subsequent task is locked because it has not
received the input data it requires to complete. This makes
offloading difficult and diverse scholars have considered using
discrete task description models to represent applications [24],
[25]. For example, Mehrabi et al. [24] designed a three-
node MEC system to minimize the energy consumption during
offloading and considered the application task as a group of
sequentially dependent tasks. Kao et al. [25] treated a task as
a serial trees and proposed an online offloading algorithm to
reduce processing latency.

Actually, the proposed serial sequential task model is only
applicable to tasks in some special scenarios and unfortu-
nately it cannot be applied to broader application service
requirements. Therefore, a more general graph structure task
model needs to be considered. In [19], Han et al. proposed a
heuristic algorithm to solve the task offloading by employing
a graph structure and minimizing the overhead in an ultra-
dense edge network. Liu et al. [22] developed an efficient
task scheduling algorithm to guarantee the completion time
constraints of graphic applications. And it mainly considers
roadside units as the computing execution node and ignores
other available devices, such as adjacent vehicles, which makes
the idle computing resources underutilized. And unfortunately
even the most representative solutions discussed (i.e. heuristic
search [19] and convex relaxation [23]) cannot guarantee

Fig. 2. Computational Communication Scenario

superior performance as they can easily be limited to a local
optimum solution. Additionally, the dynamic time-varying
wireless environment and frequent computations caused by
the various application service requirements make them less
practical.

C. Artificial Intelligence-driven Offloading

Driven by the latest advancements in neural networks and
not only, many Artificial intelligence (AI)-based solutions have
been proposed lately [28]–[30]. As an efficient function ap-
proximator, a deep neural network can map high-dimensional
and multi-scale states to actions by expanding the number of
neurons or network layers. At the same time, reinforcement
learning provides a basis for action selection through state-
action values, thus improving the decision-making efficiency.
These aspects make AI-based schemes have unique advantages
in dealing with a dynamic environment and diversified task
requirements, and have attracted increasing research interest.
For example, Qiu et al. [39] adopted a blockchain-empowered
mobile edge computing approach based on reinforcement
learning to accommodate highly dynamic environments and
address the large computational complexity. Qi et al. [40]
formulated the offloading decision as a long-term planning
problem and employed the deep reinforcement learning to
obtain the optimal solution. Tang et al. [41] incorporated the
LSTM structure and a deep Q-network to reduce the ratio of
dropped tasks and average delay. However, the above work is
mainly used to solve application-level task offloading and to
date there is a lack of effective solutions for dependent tasks
offloading.

Unlike the existing work mentioned above, this paper
combines queue control-empowered task scheduling and AI-
based offloading scheme to improve the performance of edge-
enhanced IoT services for task dependent applications in
highly dynamic network environments.

II. SYSTEM MODEL

Fig. 2 illustrates a computational communication scenario
in IoT, considered in this paper. The edge IoT device (e.g.
smart car, google glasses, mobile phone, etc.) plays the role
of the requester, generating computational tasks based on
the applications(e.g. navigation, multimedia, recognition, etc.)
invoked by the user. The application consists of a set of
dependent subtasks. Thus, computational offloading is defined

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 4

as sequential migrations of subtasks. The subtasks are suc-
cessively transmitted to a set of edge nodes(e.g. laptop, pad,
base station with edge server, etc.) and wait for execution.
We assume that, by means of an incentive mechanism such as
[42], the idle nodes are motivated to participate in computing
cooperation. Due to the dependent relations, the transitivity of
the transmission between executors is presented. Finally, after
a series of computations and deliveries, the result is returned to
the requester. Next, the system model is introduced. It includes
the following three components: network model, task model,
and overhead model.

Note that we use calligraphy symbol as set or graph, e.g.
G,N . The bold type corresponding vector or function. The
regular symbols indicate element or variable, e.g. cm, Pi.
And the space is denoted by blackboard bold, e.g. S, R. The
size of set or vector is expressed by norm, e.g. |Qw

i |. More
mathematical notations are listed in Table I.

A. Network Model

The various devices in the communication system is rep-
resented by the node set N = {1, ..., i, ..., N}. And node i,
located at (xi, yi),∀i ∈ N , is equipped with a processor7 that
can perform the computational tasks. In order to guarantee
the computation collaboration of edge nodes, the availability
identifier ςi is designed. ςi = 0 when the node is unavailable
(e.g. out of communication range or in CPU-hungry working
mode, etc.), and ςi = 1 otherwise. And the tasks arriving
at node i are placed at the end of the task waiting queue
Qw

i . The first come, first served (FIFO) principle is adopted
in this process. Additionally, wireless communication links
are considered between the nodes. On one hand, cellular
communications are established between devices and base
station with edge server. On the other hand, device-to-device
(D2D) communications based on a 5G protocol [43] are
adopted between the edge IoT nodes. The edge server is
considered to have rich computing resources so it can quickly
complete the tasks offloaded from a requester.

B. Task Model

Assume a node (task generator) produces one application-
level tasks at a time. The application consists of several
dependent atomic subtasks, which can be offloaded to a group
of adjacent edge nodes(task executor). In this paper, the
application is represented as a directed acyclic graph (DAG)
G = {T , E , τ}. T = {T1, ..., T|T |} is the point set in G,
corresponding to the dependent subtasks. E = {E1, ..., E|E|}
is the edge set, which represents the dependency relation.
Specifically, each dependency relation is denoted as a tuple
(m,n), which is formalized as a directed line from subtask
m to n. This indicates that the input of subtask n requires
the output of task m, that is, n depends on m. In other
words, m is the precursor of n and n is the successor of
m. For clarity, we set up two functions p(·) and s(·) to
represent the relation of precursor and successor, respectively

7This assumption can be easily extended to multiple processors with the
FIFO principle. And the single processor is assumed here for readability.

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
N The communication element set
G The directed graph for the application invoked by user

h,m, n Symbols for different dependent subtasks
i, j, k Symbols for different communication nodes

Qw
i , |Qw

i | Subtask waiting queue and its length
T , Tm Subtask set and a dependent subtask m

τ The deadline of the whole application
E, Em,n Edge set and a element of the dependency relations
p(·), s(·) Precursor function and the successor function
SINRi,j The signal-to-interference-plus-noise ratio between node i and j

dmi Offloading decision for subtask m on node i
Zi,j The interference in the same channel for node i
κi The constantly architecture parameter for node i

OG
i The overhead of the application G

tls,mi Latest start time of subtask m
S,A,R The space of state, action and reward

St,At,Rt The state, action and reward in slot t
s, a A specific state and action

φ(φ′), ϑ(ϑ′) Actor and Critic(current network and target network)
µ(µ′), θ(θ′) The parameter of Actor and Critic

Qp
i Subtasks priority queue for the subtasks

Qf Latest finished subtasks queue
Qe Current schedulable subtasks queue

(i.e. m ∈ p(n) and n ∈ s(m)). It is worth noting that
for complex applications, a subtask can depend on multiple
precursors or can have multiple successors simultaneously. τ is
the final deadline, which indicates that the application should
be completed with this time constraint. For instance, in the
case of entertainment applications, not meeting this deadline
results in the decrease of service satisfaction, and in the case
of industrial applications, overtime leads to economic loss and
even life risk (i.e. driverless applications).

In order to provide a more general task model, two virtual
nodes are added to DAG G, identifying the start and end points
of the application, respectively. Therefore, the task graph can
be identified as a structure from the start point to the end point.
In this structure, each subtask is specifically represented as a
tuple. For subtask m, Tm = {cm, qm, pm,dm}, where cm is
the required computing resources (e.g. CPU cycles), qm is
the input data size, pm is the output data size and dm =
{dm0 , ..., dmN} is the decision vector for offloading subtask m.
Each element dmj can be expressed as follows:

dmj =

{
1 if subtask m is executed on node j
0 otherwise

, (1)

where m ∈ [2, |T | − 1], j ∈ [1, N]. It is worth noting that
i denotes the requester and task m is executed locally when
j = i.

Note that T1 is the start point and has no precursor, whereas
T|T | is the end point and has no successor. The computational
resources required for both the start and end points are 0.

C. Overhead Model

As the subsequent subtasks depend on the execution of
their predecessor subtasks, the overhead model is more com-
plex than when a single task is processed. This subsection
introduces the overhead model considering the following two
aspects.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 5

1) Latency: From a macro perspective, the latency of
executing a subtask mainly consists of transmission delay
(including the offloading delay from the requester, the delivery
delay between the edge nodes performing of dependent sub-
tasks, and the delay associated with the return of results, etc.),
computational delay, and waiting delay (i.e. the time consumed
when the subtask waits for allocating computing resources in
the task waiting queue).

First, the transmission delay mainly depends on the data
size and transmission rate.For clarity, we denote the latency
of offloading subtask m from requester i to node j as to,mij

and the latency associated with returning the execution result
as tr,mji . The latency of delivering the results of the precursor
task h from the node k(the executor of h) to the node j (the
executor of m) is denoted as td,hkj . It is worth noting that when
the node j is not reachable for the node k, it has to be delivered
to the former with the requester i as the relay. So in this case,
td,hkj = tr,hki + to,hij .

We assume the edge nodes adopt the Orthogonal Frequency
Division Multiplexing (OFDM) [51] for accessing the base
station. Different subcarriers are orthogonal and do not in-
terfere with the others. However, the interference occurs to
multiple adjacent BSs using the same subcarrier. The signal-
to-interference-plus-noise ratio (SINR) [52] for the channel
model with path loss and Rayleigh fading is:

SINRw
i,j =

Pihi,js
−α
i,j

Zi,j +N0
, (2)

where Pi is the transmission power of sender i, hi,j is the
channel gain following exponential distribution, i.e. hi,j ∼
exp(1) [3], si,j =

√
(xi − xj)

2
+ (yi − yj)

2 is the distance
between node i and j. The background noise is considered
as the additive white Gaussian noise (AWGN) with the noise
power N0. Zi,j is the interference from the adjacent BS set
Θ in the same channel (which can be measured at edge IoT
nodes), which is expressed as:

Zi,j =
∑

k∈Θ\i

Pkhk,js
−α
k,j , (3)

where α is the path loss exponent.
Therefore, the communication rate of this process is:

rwi,j = wilog2
(
1 + SINRw

ij

)
, (4)

where wi is the transmission bandwidth allocated by node i
to the subtask to be offloaded.

Similarly, when the D2D mode is adopted and both sides
during the communication process use an exclusive D2D
frequency band (i.e. it can also be considered as the uplink
frequency band of wireless mode with multiplexing), interfer-
ence occurs due to the same reason. The communication rate
in D2D mode is expressed as follows:

rdi,j = wilog2

(
1 + SINRd

ij

)
, (5)

where SINRd
ij is the SINR between nodes i and j.

SINRd
i,j =

Pihi,js
−α
i,j∑

k∈Ξ\i
Pkhk,js

−α
k,j +N1

, (6)

and Ξ is the the node set using the same frequency band. The
noise power in D2D communications mode is denoted as N1.

The computing latency depends on the computational re-
sources required by the subtask and the capability of the
processor inside the edge node. This latency can be specifically
expressed as tc,mj = cm/fj , where cm is the required CPU
cycles of subtask m and fj is the the number of CPU cycles
per second that the node j processor can run.

The waiting latency depends on the time the subtask spends
in the waiting queue. When subtask m is placed at the end
of the task waiting queue Qw

j in node j, this time can be
expressed as follows:

tw,m
j =

∑
n∈Qw

j ,n̸=m

tc,nj , (7)

where tc,nj is the computational latency of subtask n, which
is the task ranked higher in Qw

j than m.
In conclusion, the total latency tmi for subtask m of re-

quester i is computed as follows:

tmi = max{ζto,mij ,max{td,hkj , k ∈ p(m)}}+ tw,m
j + tc,mj

(8)
where i is the task generator node and j is the execution node
(i.e. dmj = 1 and ςj = 1), k is the precursor of task m and
ζ ∈ [0, 1] is the flag for identifying whether the task needs to
receive offloading data from the requester i or not. Note that
the delivery latency and offloading latency are 0 when m = 0
or m = |T |.

The latency for the whole application is:

tGi =

|T |∑
m=1

tmi (9)

Let the start time of task m be ts,m; the end time is te,m =
ts,m+tmi . Analogously, the end time for the whole application
is expressed as: te,G = ts,G + tGi .

2) Energy: Energy consumption is another overhead aspect
of interest during the computing process. This includes the
computing energy consumption, transmission energy, and en-
ergy consumed in the waiting queues.

First, the transmission energy consumption is related to
the transmission power and transmission time. The energy
consumption about subtask m are summarized as follows:

eo,mij = Pit
o,m
ij

ed,mkj = Pkt
d,m
kj

er,mji = Pjt
r,m
ji

, (10)

where eo,mij is the energy consumed during offloading. ed,mkj

and er,mji are the consumption during delivering and returning,
respectively. For the convenience of expression, let et,mj rep-
resent the total transmission energy consumption during the
process of executing subtask m, i.e.

et,mj = ζeo,mij +
∑

k∈p(m)

ed,mkj + er,mji . (11)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 6

The computational energy consumption is related to the
attributes of the processor and required computing resources.
Similar to reference [53], this energy is computed as:

ec,mj = κjqm(fj)
2 (12)

where κj is a constant related to the device architecture and
qm is the input data size of the computation task m.

Last, but not the least important is the task idle energy
consumption while waiting to be executed. As this value is
almost negligible, we describe this energy as a constant: ew,m

j .
Following summation, the energy consumed by task m

requested by node i is:

emi = et,mj + ec,mj + ew,m
j . (13)

where i is the task generator and j is the execution node (i.e.
dmj = 1 and ςj = 1). And the total application energy is:

eGi =

|T |∑
m=1

emi . (14)

In conclusion, the optimization problem of overhead for
performing the computational dependent application G is:

minimize OG
i = tGi + εeGi

s.t. dmj ∈ {0, 1},
|N |∑
j=1

dmj = 1,∀j ∈ N ,∀m ∈ T

ts,mi > te,ki ,∀k ∈ p(m)
(15)

where ε is the balance factor between latency and energy.

D. Problem Analysis

1) NP-hardness: The system model has been introduced.
And there are several key obstacles to solve the optimization
problem described in eq. (15). The complex dependency
relations among subtasks greatly increase the difficulty. For
example, the successor must be executed after all the prede-
cessors and the delivery delays between the executive nodes of
dependent subtasks need to be considered. The minimization
problem (15) is NP-hard [22], so it cannot be solved optimally
within a polynomial time. In this subsection, we analyze and
prove the problem is NP-hard.

As discussed in [48], once a single problem is proved to be
NP-hard, the procedure for proving additional problems are
NP-hard is simple. For instance, given a problem A, NP-hard
proof involves showing that problem A can be transformed
(polynomial) to an already known NP-hard problem B. Thus,
the NP-hardness proof process which will be employed in this
paper consists of the following four steps: 1) Find problem B
and show that B is NP-hard. 2) formulate the new problem A.
3) construct a transformation f from A to B. 4) prove that f
is a polynomial transformation.

First, the definition of the well-known Traveling Salesman
Problem is introduced.

Definition 1. Traveling Salesman Problem (TSP). Given a
group of cities and distances between each pair of cities (i.e.
an undirected complete graph), the traveling salesman needs

to find the shortest path that traverses each city once and
returns to the starting point. TSP is a well-known NP-hard
problem [48].

Proof. To prove the NP-hardness, we first consider a special
case of our problem in eq. (15) (problem A). In problem A,
we assume that each node in N can perform one subtasks
at most during the offloading process. This special case is
used to keep the components of eq. (15) consistent with the
TSP problem (problem B). In the TSP problem, the goal is to
visit each city once without repetition. The difference between
problems A and B is the number of subtasks |T | to process and
required number of nodes N to traverse. Next, aim to perform
polynomial problem transformation. There exist three cases
for transformation from problem A to problem B, namely:

• N > |T |. The number of subtasks of A should be reduced
to N .

• N = |T |. The two problems are the same.
• N < |T |. The number of subtasks of A should be

increased to N .
Regardless of the case, it is obvious that the transformation

is polynomial and, as according to [48] problem B is NP-hard,
so is the special case problem A. If a special case like A is
NP-hard, the original problem formulated in eq. (15) is also
NP-hard.

Additionally, interferences during communication and wait-
ing queues within each node are updated continuously, result-
ing in significant dynamic characteristics of the environment.
In this case, even if the same strategy is adopted for the same
available nodes, the optimal offloading decision may be com-
pletely different. This suggests finding a different approach to
solve this dynamic and complex coupling problem.

2) Subproblem De-composition: In eq. (15), the optimiza-
tion objective mainly includes the overhead during data trans-
mission and task execution. The objective is similar to the
one in traditional task offloading, but the difference is in
the dependency relation present in the constraint condition.
This implies that the offloading order of subtasks needs to
be decided, which also determines the environment available
to every successor (i.e. remaining resources within nodes,
network conditions, etc.). Therefore, the original problem from
eq. (15) is actually broken down into two subproblems: sub-
task scheduling order (i.e. dependent subtask scheduling),
and decision of the node to perform the offloaded subtask
(i.e. dependent subtask offloading). These are addressed in
sections IV and sections V, respectively.

III. DEPENDENT SUBTASK SCHEDULING

Intuitively, the overhead is directly related to the offloading
decision of each subtask. However, in fact, due to the existence
of dependency relations, the subtask scheduling order is an
important factor that affects the computational offloading and
the order of delivery. Therefore, the scheduling problem of de-
pendent subtasks is focused on in this section. Specifically, the
subtask priority is addressed first and then the novel generator-
executor Multi-Queue Priority (MQP) scheduling algorithm

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 7

Fig. 3. Dependent Task Scheduling

based on latest finished time is introduced to handle the
offloading order of dependent subtask. Finally, the complexity
is analyzed at the end of this section.

A. Associating Subtask Priority

The purpose of associating subtask priorities is to make
the transition of subtask smoother and avoid the phenomenon
related to a subsequent subtask having to wait for the delivery
of output data from a precursor. This shortens the overall
latency and helps complete the computational application
within the deadline.

First, the latest start time (LST) of each subtask is defined
as the lowest limit for scheduling. Any start time later than
this value will lead to the overtime, i.e. the end time of the
application te,G will exceed the threshold τ . LST is used to
reflect the urgency of subtasks and judge their priorities. LST
of task m is expressed as tls,mi in eq. (16), where tmi is defined
in eq. (8).

tls,mi =

{
τ − tmi m = |T |
min

n∈s(m)
{tls,ni − tmi } otherwise (16)

Equation (16) shows the calculation process of the LST
for a subtask. To be specific, for the final subtask, namely
task |T |, the LST is the latency limit of the application τ
minus the latency associated with its execution (estimated by
the generator device). It should be noted that the estimated
latency is theoretical and mainly demonstrated the urgency
of the subtask. Thus, t

ls,|T |
i is τ − tmi . Noted that for any

subtask m except |T |, LST tls,mi is determined by the LST
of its subsequent subtasks n, ∀n ∈ s(m). Therefore, as shown
in equation (16), tls,mi is the LST of the successor subtask
tls,ni minus the estimated time tmi of subtask m. Since any

subsequent subtask can only be performed after the execution
of the predecessor subtask m, subtask m must be started
before the earliest LST of all subsequent subtasks. Function
(i.e. min{·}) is utilized in equation (16) to obtain the earliest
LST. And the priority queue Qp

i can be organized by sorting
the subtasks in descending order of their LST.

B. Multi-Queue Priority Task Scheduling

The scheduling of tasks depends not only on the priority,
but also on dependencies. One subtask cannot be selected until
all of its precursor subtasks are completed. In other words, the
computation of a subtask also requires all the data it expects to
be delivered, before it can be executed. Therefore, in addition
to maintaining the waiting queue Qw, the execution node also
needs to maintain another waiting delivery data queue Qd(i.e.
Pending Queue). The former is used to store the subtasks that
have arrived, while the latter is used to maintain those subtasks
from the former list which cannot be completed due to the lack
of data. The process of scheduling these subtasks is detailed
in Algorithm 1.

The MQP algorithm maintains three queues and an array.
Qp

i is used to store the subtasks in terms of their priority. Qf

stores the latest finished subtasks and Qe records the current
schedulable subtasks. In addition, array F contains the status
of each subtask, with values of 0 for waiting for execution
and 1 for finished. The MQP algorithm has four steps. First,
the requester i generates the priority queue Qp

i based on the
application dependency graph. Second, the current executable
task queue Qe is generated based on the recently finished
tasks Qf . The next subtask to be scheduled is then selected
according to subtask priorities. Finally, the data structure is
updated. In this way, the update structure with space for time
is implemented and the maintenance and computation latency
of data can be reduced.

C. Complexity Analysis

This subsection analyses the time complexity of the
MQP algorithm. First, the subtasks need to be traversed
in the priority generation phase. This has a complexity of
O(MlogM),M = |T | [54]. Then, the executable tasks gener-
ation depends on the number of latest finished subtasks and
number of precursors to the subtask. As mentioned above,
the latest finished subtasks refer to those subtasks which
have been finished with not-yet-executed successors. In the
breadth first search (BFS) graph algorithm, the successor node
cannot be retrieved until the predecessor node is processed.
As for the successor node with two or more predecessors,
it will be retrieved and added to the queue when either of
its predecessors pop from the front of the queue (this is more
relaxed than the proposal). Therefore, the number of the nodes
in the queue (i.e. unpopped) at any given time is the number of
currently retrieved subtasks with unretrieved successor nodes,
and is also the number of executable subtasks. Since it is
related to graph BFS, we call the maximum length of the queue
the maximum number of branches of the application graph and
express it as K. On the other hand, the number of precursors
and successors of a subtask can be regarded as the in-degree

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 8

Algorithm 1 Multi-Queue Priority Algorithm (MQP)
1: Initialization:
2: Qp

i = [] Qf = [] Qe = [0] F = zeros(1, |T |)
3: End Initialization
4: /* Task Priority Generate */
5: Input: Dependency Task Graph G
6: for Sub-Task m in G do

Compute the latest start time tls,mi

Qp
i .append(tls,mi)

7: end for
8: while True do

/* Executable Task Generation */
9: Input: Latest Finished Task Queue Qf , τ

10: for qf ∈ Qf do
11: for qtf ∈ s(qf) do
12: if F [qtf] == 0 and F [qt,pf] == 1,∀qt,pf ∈

p(qtf) then
Qe.append(qtf)

13: end if
14: end for
15: end for

/* Task Scheduling Selection */
16: Input: Waiting Execution Task Queue Qe, Qi

p

17: Tp = −1, Tp,max = −1
18: for qe ∈ Qe do
19: if Qp

i [m] > Tp,max thenTp = qe
Tp,max = Qp

i [m]
20: end if
21: end for

/* Update Queue Qf */
Qf .append(Tp)
Qe.remove(Tp)
F [Tp] = 1

22: if F [T p,s
p] = 1,∀T p,s

p ∈ s(T p
p),∃T p

p ∈ p(Tp) then
Qf .remove(T p

p)
23: end if
24: end while

and out-degree of the node. An efficient graph structure can
be represented with two orthogonal linked lists for each node
precursors and successors. Therefore, the number of precursors
and successors of any node can be obtained using O(N) by
getting the length of the appropriate linked list. If the length
is stored, the complexity can be reduced to O(1). The average
number of precursors and successors is expressed as N .

The maximum number of branches and average number
of precursors/successors of nodes are properties of the graph
itself. In fact, these two values can be pre-fetched and included
in the application information. The complexity of this step
is O(KN2) [22]. The task selection is performed from the
current executable subtask queue according to task priority.
If the queue length is K, the task selection complexity is
O(K). Finally, the queue should be updated. The finished
subtask is removed from the schedulable subtask queue. Then,
the subtask is added to the latest finished subtask queue and
the queue is updated next. For example, those subtasks, for

which all their successors are finished, should be removed
from the queue. Since only one subtask is scheduled at a time,
the update process only needs to obtain the precursor list of
that subtask and further determine whether all the successors
have been finished. As the length of the precursor/successor
list is N , the complexity of queue update process is O(N2).
In conclusion, the overall complexity of the algorithm is
O(MlogM)+O(KN2)+O(N)+O(K)+O(N2) = O(M +
KN2).

IV. MODEL-FREE DEPENDENT TASK OFFLOADING

As mentioned above, due to the coupling dependencies,
the optimization problem eq. (15) is an NP-hard problem
that is difficult to be solved within exponential time. Due
to the highly dynamic fluctuations of the environment, the
optimal solution found in the current time slot has a limited
effect in time. Fortunately, model-free reinforcement learning
emerges recently and provides an effective way. Different
from model-based schemes, it does not need to model the
environment, and obtains a large number of samples through
continuous interaction with the external environment, thus
approximating the strategy to the optimal solution. Benefit
by the improvement of hardware performance, the training
efficiency of model-free algorithm has been greatly improved.
Next, the detailed solution is described in this section for
solving the offloading decision problem and minimizing the
long-term overhead. And the main idea is stated as follows.

First, the offloading process of dependent subtasks is con-
sidered as a Markov Decision Process (MDP). Then, the
information required by decision-making is simplified from
the graph structure to the vector structure of one subtask. The
dependency relations between subtasks are further expressed
as state transitions, which reflect the long-term benefit in the
chain of execution. Finally, a deep reinforcement learning
based on an Actor-Critic architecture is proposed to solve the
minimization problem described in eq. (15).

A. MDP

MDP models the network environment as a time-discrete
system and the requester is considered as an offloading
agent. A MDP is commonly characterized as a 4-tuple M =
{S,A,P,R}, where S is the state space, P is the transition
probability between different states describing the dynamic
nature of the environment, A is the action space and R is
the reward. As the state of the agent is high-dimensional
and continuous and P cannot be accurately obtained, MDP
is simplified as a model-free process M = {S,A,R}.

1) State Space S: The state is represented in a vector form.
It describes the status of the node, including task information
and available computing resources. The task information in-
cludes all the subtasks and their dependencies (i.e. DAG G)
to facilitate decision-making. However, there are two obstacles
of using these information directly. On one hand, larger vector
dimension leads to an exponential expansion of the state space,
which makes its traversal difficult. On the other hand, the
decision-making of dependent subtasks of the application is a
step by step process, and the offloading decision of the current

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 9

step is directly related to its precursor, while the correlation
with other subtasks is weak. Therefore, we simplify the task
information in terms of the current scheduled subtask. The
state space can be denoted as S = {T,N}, where T and N are
the space of the schedulable subtasks and available nodes (i.e.
candidate executor), respectively. Specifically, the state in slot
t is denoted as St.

2) Action Space A: An action is the decision made by a
requester with offloading strategy π : A ← S. It has a direct
effect on the external environment. The action space is denoted
as a |N | dimension vector and the action in slot t is denoted
as At = {d1, ..., d|N |}, di ∈ [0, 1], i ∈ N , which is a one-
hot vector. Each element can have either a value of 0 or 1.
The latter (i.e. di = 1) corresponds to the selection. There
exists the following coupling relationship between elements:∑|N |

i=1 di = 1.
3) Reward R: Intuitively, the reward R ← S × A is the

feedback obtained by the requester during offloading, which
directly determines the strategy. The optimization goal in eq.
(15) is to minimize the overall overhead of the application-
level task, but in fact, the decisions at each step can only serve
one subtask. Therefore, we represent the overhead of a single
subtask m in slot t as omt = tmi +εemi , with the terms from eq.
(8) and eq. (13), respectively. As all subtasks are progressively
completed, the total reward becomes the optimization objective
in eq. (15).

The immediate reward of one step in slot t is denoted as
Rt(s, a) = −omt − I{t,τ}Ω|St=s,At=a,s∈S,a∈A, where I{t,τ}
is the latency indicator if tmi > τ and Ω is the penalty
term for timeout. However, due to the dynamic nature of
the environment and dependency between subtasks, it is not
sufficient to consider only the benefits of the current subtask
to optimize the application-level overhead. The agent should
evaluate the current action taken and judge it whether can
provide more possible benefit behind the action to the future
or not. Thus, the goal of the agent is changed to maximize the
expected long-term cumulative return Rt(π), which is defined
as follows.

Rt(π) =
1

T−t
lim

T→∞

T∑
t′=t

Rt′ (s, a), (17)

where π is the adopted offloading strategy. For the sake
of clarity, the actual state, action and reward of agent are
expressed as s, a, r, respectively, in the following text to
distinguish it from state space, action space and reward and
st, at, rt are specified as the corresponding attributes of agent
in slot t.

Based on the above definition, the action-value Qπ ← S×A
is introduced in eq. (18).

Qπ(s, a) = E[rt +
T∑

t′=t

(γt′−t · rt′ |st′ , at′)]|st=s,at=a (18)

where s ∈ S and a ∈ A .γ ∈ [0, 1] is a discount factor,
indicating the impact of the current action into the future. The
best action a∗t = argmax

a∈A
Qπ(s, a) can be selected with a

greedy strategy.

B. Actor-Critic-based Subtask Offloading Algorithm
Actor-Critic [55] is a paradigm of deep reinforcement learn-

ing(DRL) [56]. On one hand, the strong fitting ability of neural
network (NN) can adapt to the continuous state space, while
the architecture has strong decision-making ability to give the
optimal action. On other hand, it sets two roles of Actor and
Critic, so that the balance between fast update and unbiased
estimation can be achieved. Next, we introduce a two-phase
subtask offloading algorithm based on Actor-Critic. These
phases are offline training and online deployment, respectively.

Algorithm 2 Dependency Task Offloading
1: /* Offline Training Phase (with period p) */
2: t = 0;
3: while t ≤ N do
4: Actor:

φµ generates action at with exploration-exploitation
strategy.

Agent executes action at and obtains the reward rt.
The state of agent is transformed from st to st+1.
The transition tuple {st, at, rt, st+1} is restored.
φ′
µ generates the next action at+1.

5: Critic:
θµ evaluates Qπ (st, at) of the action at with current

state st.
θ′µ computes the target Q.
θµ computes the loss L(θ).

6: The current networks in Actor and Critic (i.e., θµ and
φµ) are updated.

7: if t%Tu == 0 then
The target networks in Actor and Critic are updated

as follows.
θ′µ = νθµ + (1− ν)θ′µ
φ′
µ = νφµ + (1− ν)φ′

µ

8: end if
9: end while

Fig. 4 illustrates the relationship between the training phase
and the deployment phase. In the training phase, the agent
interacts with the environment to obtain the state and generate
the action. It can realize self-estimation through Critic, achiev-
ing rapid update. Meanwhile, one trained neural network(i.e.
current network of Actor) participates in the deployment phase,
which greatly reduces the size of the model to be issued.

1) Offline Training: Training module can run in edge
servers or other computation-rich nodes. It maintains two
components: Actor φ and Critic ϑ. Due to the deployment
of duel network architecture, they include a total of four NNs
(i.e. the current network φµ, ϑθ and the target network φµ′ and
ϑθ′). µ,µ′,θ and θ′ are the parameters of each NN, respectively.
Actor is the policy network with input the state vector and
is responsible for generating the action of offloading and
interaction with the environment. Critic is the value network
with input the concatenation from state and action and is
responsible for evaluating the Actor decision. The choice for
dual networks is in order to improve the stability of network
convergence. The transitions that have been experienced are
stored in the replay buffer for training and updating. Finally,

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 10

the networks are optimized through the back propagation of
loss L(θ).

L(t)(θ) = E [(y(t)−Qπ,t(s, a; θ))]
2 |St=s,At=a, (19)

where Qπ,t(s, a; θ) is the Q value obtained from the current
network of Critic and y(t) is the target Q. Specifically, it is
expressed as follows:

y(t) = E[(1− β)Qπ,t(s, a; θ) + βRt

+γQπ,t+1(St+1,At+1; θ
′)|St = s,At = a]

, (20)

where Qπ,t+1(St+1,At+1; θ
′) is the evaluated Q value gener-

ated from the target network of Critic. β is the learning rate.
It is worth noting that the parameters of the target network
are smoothed periodically with the mode of soft update, i.e.
θ′µ = νθµ + (1 − ν)θ′µ, φ′

µ = νφµ + (1 − ν)φ′
µ, where ν

is the smoothing coefficient. The smoothing coefficient makes
agent’s learning process smoother and more stable, avoiding
any temporary fluctuations due to sharp peaks in network
environment or user requests.

The Actor is the policy network. Different from action
evaluation, which can be quantified by the reward level,
policy evaluation is more complex, because policy generates
actions according to various states and obtains differentiated
rewards, which is more abstract than action evaluation. The
representation of performance objective J is given in the forms
as follows.

Jδ (φµ)=

∫
S
ρδ (s)Q (s, φµ (s))ds = Es∼ρδ [Qµ (s, φ (s))]

(21)
where ρ is used to represent the external environment, while
δ represents the parameters of external environment attributes,
which are only related to the environment and have nothing to
do with the agent. Thus, ρδ is the instantiated external envi-
ronment. ρδ(s) is denoted as the probability density function
(PDF) of state and Q (s, φµ (s)) is the Q value of the action
generated from policy network µ. Commonly understood, J
is the expected Q value brought by the policy.

The trained policy network φµ needs to meet the following
objectives: µ = argmaxµJδ(φµ) and the most effective
training method is along the gradient descent direction of
the policy function. In this respect, the Q value evaluated by

the Critic is helpful and the policy gradient with respect to
parameter µ can be expressed as:

∇µJδ (φ)
(a)
≈ Es∼ρδ

[
∇aQ (s, a|θ) |a=φµ(s) · ∇µφ (s|φµ)

]
(b)
≈ 1

χ

χ∑
i=1

(
∇aQ (s, a|θ) |s=si,a=φ(si) · ∇µφ (s|φµ) |s=si

)
(22)

However, as mentioned earlier, ρδ in the environment is
hard to be obtained. It is converted here to the expected value
by the symbol of approximately equal (a). Further, it can be
estimated by using the Monte Carlo method [58]. Specifically,
the training model extracts a minibatch sample data from the
replay buffer in each slot and obtains its average value as
shown in the symbol of (b). The number of samples in the
batch is denoted as χ. And soft update is performed every Tu

step with the parameter of ν.
2) Online Deployment: Following the completion of the

offline training process, the model can be delivered from the
training platform Ψ to the edge nodes (e.g. laptop, phone,
tablets, etc.) regularly during the off-peak periods of the
request as shown in Fig. 4. The deployed agent only needs
to include the current network module of the Actor, while
having removed the exploration mechanism and maintained
the greedy strategy to find the best offloading decision, i.e.
π = φµ. At the same time, the agent collects the application
requirements of the requester. The dependency information is
returned to the training platform when the devices acquire the
updated model parameters, in order to improve the universality
of the model. The details of the two-phased offloading process
are shown in Algorithm 2. The running rounds of the algorithm
are related to the number of subtasks within the application.
Thus, its time complexity is O(N).

V. EXPERIMENTAL TESTING AND RESULT ANALYSIS

The experimental environment and relevant parameters are
introduced first, followed by presentation of the comparison
algorithm employed during testing. Experimental testing and
their results are presented next in order to verify the feasibility
and performance of the proposed solution.

A. Experimental Setup

1) Environment: We consider a test environment of
100*100 m2, in which multiple edge nodes (i.e. laptops)

Fig. 4. Offloading Framework

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 11

TABLE II
EXPERIMENTAL PARAMETERS
Parameter Value
Batch size 64

Layers of NN 3
Hidden layer dimension 64

Learning rate(Actor) 0.0001
Learning rate(Critic) 0.0001

Steps per update 60
Replay buffer length 1e6

Discount factor 0.99
The smoothing coefficient ν 0.005

Episode 800

are distributed according to the homogeneous Poisson point
process (PPP) with spatial density ξ (ξ = 8 in this paper) as
shown in Fig.5. The device nodes are marked with the serial
number. Meanwhile, there is also a base station (BS) with edge
server deployed in the scene, whose coordinates are randomly
generated.

2) Parameter Configuration: The offloading program runs
on a lab computer (Intel i7-7700k, Quad-Core 4.2Ghz/16GB).
We assume that the computing resources are quantified by
the number of CPU cycles under the same CPU architecture,
which means a CPU cycle is equivalent to each device. The
computing resources of devices are set to the [1,4] GHz
interval, while those of BS is set to 10 GHz. In addition, the
computing resource requirement of subtask obey a uniform
distribution of [100,300] MHz. The input data size of each
subtask is randomly selected in the [500,1500] KB interval
and the output data size is subject to an uniform distribution
between 50KB and 200KB. The deadlines of the different
applications are randomly generated from [2,8] s. The number
of subtasks is decided by the application and is randomly
selected. On another hand, the transmit power of the nodes
is set to 200 mW and the channel bandwidth is set to 20
MHz with 1200 subcarriers. The noise is 10−10 mW. Finally,
the NN parameters involved during the training process are as
indicated in Table II.

Fig. 5. Experimental environment

B. Comparison Algorithm

In order to compare the performance of our proposed
scheme to those of other solutions, the following benchmark
algorithms are selected:

1) Random Strategy: The requester randomly selects a
schedulable subtask and offloads it on a feasible node.

2) Greedy Strategy: The requester preferentially schedules
the tasks that require more resources and offloads them to the
available nodes with the largest computing resources [50].

3) Local Computing: The dependent application compu-
tation tasks are computed locally without transmission and
delivery [59].

4) Heuristic Algorithm: In literature [60], a genetic algo-
rithm (GA) is utilized to solve the problem. The offloading
decision is represented as a gene, and the action space is
explored through operations, e.g. crossover, mutation, etc.
When the average fitness of the population did not change
after N rounds (i.e. we set N = 15 in our tests) or when the
total number of iterations exceeds M rounds (i.e. we set M =
50 in our tests), the evolution stops and the best gene found
(i.e. with the highest fitness) is regarded as the final decision.

C. Performance Evaluation

For performance evaluation of the proposed scheme, we
carry out specific tests, mainly to assess the convergence of
the algorithm, latency and energy consumption.

We first verify the convergence of the scheme in the training
process and the performance of the deployment process. As
shown in Fig. 6, the training process converges at t = 100, and
a relatively stable jitter is maintained from that moment on.
This indicates that the agent has developed a mature strategy
and has implemented it into its offloading decision. During
painting, 10 adjacent data points on the time dimension are
grouped and the average value within the group is calculated
as the new data point. The upper limit of the shaded part
represents the maximum value in the group, and the lower
limit represents the minimum value. This more clearly shows
the fluctuation of data. In the training phase, the fluctuation is
caused by the exploration strategy and dynamic environment.
In the deployment phase, the exploration strategy and Critic

Fig. 6. Convergence

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 12

Fig. 7. Reward versus Node Number Fig. 8. Reward versus Node Density

Fig. 9. Latency Performance Fig. 10. Energy Performance

Fig. 11. Detailed Latency Fig. 12. Detailed Energy

are removed. Thus, the solution can always adopt strategic
optimal actions and achieve a little higher reward with more
fluctuations.

Then, we adjust the number and the density of nodes,

respectively, and observe the effects on the algorithm. During
this process, a total of 800 episodes were run, and a graph
structure application is completed in each episode. In Fig.
7, the reward always converges in the end and the return is

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 13

Fig. 13. Balance Factor α

different. In general, the benefits in situations with fewer nodes
are less than those with more nodes. For example, the reward
with 3 nodes is 50% less than the return with 15 nodes. At the
same time, the effect of the number of nodes on the results
tends to disappear eventually. The reward with 12 nodes and
15 nodes are basically identical. This is because the number of
nodes has been able to support the maximum parallelism of the
algorithm, and even if the number continues to increase, there
will be an upper limit for the reward. Meanwhile, as shown
in Fig. 8, the density has a similar effect on the payoff of the
algorithm. With the increase of node density, the performance
tends to improve. It can also be noted that the starting point
of training varies with density. The reason can be attributed
to the fact that the density directly affects the delivery and
transmission process. The higher density avoids long-distance
transmission and thus improves the final revenue.

On the other hand, in order to observe the performance
of our proposed solution, we compare it with three advanced
scheduling schemes and record the performance differences.
In this test, we adjust the test parameters and observe how
much revenue the requester can get. As shown in Figure 9,
on one hand, when the number of nodes is small, the delay
of our scheme is slightly higher than those of the greedy
strategy and GA, but better than those of other schemes. At the
same time, the latency decreases as the number of schedulable
nodes increases, due to the benefits of utilizing the parallelism
of subtasks. The results show that the delay of this method
is 25% less than that of local computing. For GA, it can
achieve superior performance when the number of nodes is
small, but its performance decreases with the increase in the
number of nodes. This is because GA cannot search enough
in the action space to find the optimal solution in limited time.
Therefore, when the number of nodes increases, the algorithm
often converges to a local optimal solution. When the number
of nodes reaches 15, the performance of GA is significantly
lower than that experienced by both the proposed scheme and
greedy strategy.

Fig. 10 illustrates the energy consumption across the so-
lution tested. When the number of nodes is small, the trans-
mission and delivery occurred in frequent offloading makes
CODIA energy consumption slightly higher than those of
other schemes. As the number of nodes increases, the average

energy consumption decreases due to CODIA’s mechanism
of saving the energy during the delivery process. The greedy
strategy always offloads tasks to the node with the largest com-
puting resources. Although the delivery energy consumption
is reduced, the increase in computation energy consumption
makes the algorithm always consume the most energy. For
local computing, as there is no content transmission and
delivery process, and computing power is limited, less energy
is consumed. Finally, the GA performance of controlling
energy consumption is poor. When the number of node is
small, frequent deliveries increased the energy consumption.
When the number of nodes is large, GA finds difficult to
obtain the optimal solution in time. According to our test,
it is expected to achieve best performance with 7 nodes under
the finite time limit. Random strategies increase the energy
consumption associated with the delivery process because the
scheduling of subtasks is scattered in irregular locations.

In order to identify the source of the overhead in terms of
latency and energy, we analyze each step of the offloading
process in details. As shown in Fig. 11 and Fig. 12, latency
and energy consumption are divided into three stages: compu-
tation, transmission and delivery. For local computing, as there
are neither transmission nor delivery, the energy consumption
only refers to computation energy, which is relatively small.
In contrast, the time delay is relatively high. The random
strategy can reduce the time delay to a certain extent, but
it has no outstanding characteristics in terms of both energy
consumption and time delay. The time delay when the greedy
strategy is employed is very close to that of the proposed
solution. Unfortunately the greedy strategy also has the highest
energy consumption. Regarding GA, there is a certain gap
between CODIA and GA in the considered aspects, which can
be understood as the latter fails to converge to the optimal
solution in finite time. Therefore, the performance of delay
and energy consumption are both poorer in comparison with
those of the proposed scheme. Finally, the tests performed
have shown that the proposed solution has better results in
terms of both the delivery delay and energy consumption in
comparison with the alternative solutions considered.

Next, we adjust some application-oriented parameters and
observe their effect on the algorithm. In Fig. 13, the balance
factor α is set in the interval of [0.1, 1] and the latency is
increasing with the decrease of energy consumed. This indi-
cates that the proposed scheme can flexibly adjust its strategy
according to the demands of time-sensitive applications and
energy-saving applications.

In addition, when we held the other parameters constant
and adjusted the number of tasks within the application,
we observed the average gain of individual subtasks during
offloading. As shown in Fig. 14, when the number of subtasks
is 3, the reward is significantly lower than that for other
applications, because the number of subtasks is small and the
execution process is linear. At the same time, with the same
offloading strategy, the reward of the task will increase with the
number of the subtasks, which indicates that it can potentially
affect the parallelism of the tasks.

Meanwhile, we adjusted the branches number inside the
application. As Fig. 15 shows, the average reward increases

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 14

significantly as the number of branches increases. In sharp
contrast to Fig. 14, the exponential growth of the number
of branches brings a higher growth rate than the logarithmic
growth of the number of tasks. This indicates that compared
with the former, the latter is the direct factor, affecting the
parallelism of computation.

VI. CONCLUSIONS

In this paper, we propose an innovative solution with edge
intelligence for computational tasks offloading for dependent
IoT applications (i.e. CODIA). First, we propose a priority-
based dependent subtask scheduling strategy, and analyze its
algorithm complexity. On this basis, the computing offloading
algorithm based on deep reinforcement learning is designed,
which realizes the efficient offloading of computing tasks
through offline training and online deployment. Finally, after a
series of experimental tests, the results show that the proposed
scheme has superior convergence and can reduce the time
delay by 25% compared with the local computing while
controlling the energy consumption. In the future, we will
consider the next step from two aspects. On one hand, the more
complex multi-agent environment will be included, which
will bring exponential growth to the state space, making the
training and deployment of agents extremely challenging. On
the other hand, federated learning can protect the privacy of
users during the process of training, which is also a field worth
studying in the future.

REFERENCES

[1] L. Yang, H. Zhang, M. Li, J. Guo and H. Ji, “Mobile Edge Computing
Empowered Energy Efficient Task Offloading in 5G,” IEEE Trans. on
Veh. Technol., vol. 67, no. 7, pp. 6398-6409, July 2018.

[2] APP Annie, Mobile Market Data Report
2021, App Annie, San Francisco, USA, 2021.
Available:https://www.appannie.com/cn/insights/market-data/mobile-
2021-new-records-beckon/

[3] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji and Y. Zhang, “Reinforcement
Learning-Based Mobile Offloading for Edge Computing Against Jam-
ming and Interference,” IEEE Trans. Commun., vol. 68, no. 10, pp.
6114-6126, Oct. 2020.

[4] X. Li, Y. Qin, H. Zhou, Z. Zhang, An intelligent collaborative inference
approach of service partitioning and task offloading for deep learning
based service in mobile edge computing networks, Trans. Emerging Tel.
Tech., 2021; 32:e4263.

[5] A. Lakhan, MA. Mohammed, S. Kozlov, JJPC. Rodrigues. Mobile-
fog-cloud assisted deep reinforcement learning and blockchain-enable
IoMT system for healthcare workflows, Trans. Emerging Tel.
Tech., 2021;e4363.

[6] F. Xu, Z. Zhang, J. Feng, Z. Qin, Y. Xie, Efficient deployment of
multi-UAV assisted mobile edge computing: A cost and energy per-
spective, Trans. Emerging Tel. Tech., 2022; e4453.

[7] S. Yang, J. Hu, K. Jiang, H. Xiao, M. Wang, ”Hybrid-360: An adaptive
bitrate algorithm for tile-based 360 video streaming”, Trans. Emerging
Tel. Tech., 2021;e4430.

[8] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar and P. Hui, ”Dandelion:
A Unified Code Offloading System for Wearable Computing,” IEEE.
Trans. Mob. Comput., vol. 18, no. 3, pp. 546-559, 1 March 2019.

[9] M. Mukherjee et al., ”Latency-Driven Parallel Task Data Offloading in
Fog Computing Networks for Industrial Applications,” IEEE Trans. Ind.
Inform., vol. 16, no. 9, pp. 6050-6058, Sept. 2020.

[10] Y. Wang et al., ”A Game-Based Computation Offloading Method in Ve-
hicular Multiaccess Edge Computing Networks,” IEEE Internet Things
J., vol. 7, no. 6, pp. 4987-4996, June 2020.

[11] K. Yang, S. Ou, H. Chen, “On effective offloading services for resource-
constrained mobile devices running heavier mobile Internet applica-
tions,” IEEE Commun. Mag., vol. 46, no.1, pp. 56-63, January 2008.

[12] K. Wang, K. Yang and C. S. Magurawalage, ”Joint Energy Minimization
and Resource Allocation in C-RAN with Mobile Cloud,” IEEE Trans.
Cloud Comput., vol. 6, no. 3, pp. 760-770, 1 July-Sept. 2018.

[13] M. Qin; N. Cheng; Z. Jing; T. Yang; W. Xu; Q. Yang; R. R. Rao,
“Service-Oriented Energy-Latency Tradeoff for IoT Task Partial Offload-
ing in MEC-Enhanced Multi-RAT Networks,” IEEE Internet Things J.,
vol. 8, no. 3,pp. 1896-1907, Feb. 2018.

[14] A. A. Ashraf Ateya, A. Muthanna, R. Kirichek, M. Hammoudeh
and A. Koucheryavy, ”Energy- and Latency-Aware Hybrid Offloading
Algorithm for UAVs,” IEEE Access, vol. 7, pp. 37587-37600, 2019.

[15] R. Yadav, W. Zhang, O. Kaiwartya, H. Song and S. Yu, ”Energy-
Latency Tradeoff for Dynamic Computation Offloading in Vehicular Fog
Computing,” IEEE Trans. on Veh. Technol., vol. 69, no. 12, pp. 14198-
14211, Dec. 2020.

[16] K. Wang, K. Yang, H. Chen and L. Zhang, ”Computation Diversity in
Emerging Networking Paradigms,” IEEE Wirel. Commun., vol. 24, no.
1, pp. 88-94, February 2017.

[17] J. Yan, S. Bi, L. Huang and Y. A. Zhang, ”Deep Reinforcement
Learning Based Offloading for Mobile Edge Computing with General
Task Graph,” in Proc. IEEE Int. Conf. Commun. (ICC), Dublin, Ireland,
2020, pp. 1-7.

[18] J. Yan, S. Bi and Y. J. A. Zhang, ”Offloading and Resource Allocation
With General Task Graph in Mobile Edge Computing: A Deep Rein-
forcement Learning Approach,” IEEE Trans. Wirel. Commun., vol. 19,
no. 8, pp. 5404-5419, Aug. 2020, doi: 10.1109/TWC.2020.2993071.

[19] Y. Han, Z. Zhao, J. Mo, C. Shu and G. Min, ”Efficient Task Offloading
with Dependency Guarantees in Ultra-Dense Edge Networks,” in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), Waikoloa, HI, USA,
2019, pp. 1-6.

[20] S. Pan, Z. Zhang, Z. Zhang and D. Zeng, ”Dependency-Aware Computa-

Fig. 14. Reward versus Task Number Fig. 15. Reward versus Branches Number

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 15

tion Offloading in Mobile Edge Computing: A Reinforcement Learning
Approach,” IEEE Access, vol. 7, pp. 134742-134753, 2019.

[21] J. Yan, S. Bi and Y. A. Zhang, ”Optimal Offloading and Resource Al-
location in Mobile-Edge Computing with Inter-User Task Dependency,”
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Abu Dhabi,
United Arab Emirates, 2018, pp. 1-8.

[22] Y. Liu et al., ”Dependency-Aware Task Scheduling in Vehicular Edge
Computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961-4971, June
2020.

[23] G. Zhao, H. Xu, Y. Zhao, C. Qiao and L. Huang, ”Offloading Tasks
With Dependency and Service Caching in Mobile Edge Computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777-2792, 1
Nov. 2021.

[24] M. Mehrabi, S. Shen, V. Latzko, Y. Wang and F. H. P. Fitzek,
”Energy-Aware Cooperative Offloading Framework for Inter-dependent
and Delay-sensitive Tasks,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Taipei, Taiwan, 2020, pp. 1-6.

[25] Y. Kao, B. Krishnamachari, M. Ra and F. Bai, ”Hermes: Latency
Optimal Task Assignment for Resource-constrained Mobile Computing,”
IEEE. Trans. Mob. Comput., vol. 16, no. 11, pp. 3056-3069, 1 Nov. 2017,
doi: 10.1109/TMC.2017.2679712.

[26] N. Eshraghi and B. Liang, “Joint offloading decision and resource allo-
cation with uncertain task computing requirement,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Paris, France, 2019, pp. 1414–1422.

[27] Z. Meng, H. Xu, L. Huang, P. Xi, and S. Yang, “Achieving energy
efficiency through dynamic computing offloading in mobile edgeclouds,”
in Proc. IEEE 15th Int. Conf. Mobile Ad Hoc Sensor Syst., Chengdu,
China, 2018, pp. 175-183.

[28] A. Feriani and E. Hossain, “Single and Multi-Agent Deep Reinforce-
ment Learning for AI-Enabled Wireless Networks: A Tutorial,” IEEE
Commun. Surveys Tuts., March, 2021.

[29] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman and D. O. Wu, “Edge
Computing in Industrial Internet of Things: Architecture, Advances and
Challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2462-
2488, Fourthquarter 2020.

[30] Y. Shi, K. Yang, T. Jiang, J. Zhang and K. B. Letaief, “Communication-
Efficient Edge AI: Algorithms and Systems,” IEEE Commun. Surveys
Tuts., vol. 22, no. 4, pp. 2167-2191, Fourthquarter 2020.

[31] H. Flores et al., “Evidence-Aware Mobile Computational Offloading,”
IEEE. Trans. Mob. Comput., vol. 17, no. 8, , 1 Aug. 2018.

[32] M. H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with delay
constraints,” IEEE. Trans. Mob. Comput., vol. 17, no. 12, Dec. 2018.

[33] F. Song, H. Xing, S. Luo, D. Zhan, P. Dai and R. Qu, “A Multiobjective
Computation Offloading Algorithm for Mobile-Edge Computing,” IEEE
Internet Things J., vol. 7, no. 9, Sept. 2020, pp. 8780-8799,

[34] H. Xiao, C. Xu, T. Cao, L. Zhong and G. Muntean, “GTTC: A
Low-Expenditure IoT Multi-Task Coordinated Distributed Computing
Framework with Fog Computing,” in Proc. IEEE Global Telecommun.
Conf. (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6.

[35] T. Cao, C. Xu, J. Du, Y. Li, H. Xiao,C. Gong, L. Zhong, D. Niyato,
“Reliable and Efficient Multimedia Service Optimization for Edge
Computing-Based 5G Networks: Game Theoretic Approaches,” IEEE
Trans. Netw. Serv. Manag., vol. 17, no. 3, pp. 1610-1625, Sept. 2020.

[36] X. Chen, Changqiao Xu, M. Wang, Z. Wu, L. Zhong and L. A. Grieco,
“Augmented Queue-based Transmission and Transcoding Optimization
for Livecast Services Based on Cloud-Edge-Crowd Integration,” IEEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 11, pp. 4470-4484,
Nov. 2021.

[37] M. Liu and Y. Liu, ”Price-Based Distributed Offloading for Mobile-
Edge Computing With Computation Capacity Constraints,” IEEE Wirel.
Commun. Lett., vol. 7, no. 3, pp. 420-423, June 2018.

[38] C. You, K. Huang, H. Chae and B. Kim, ”Energy-Efficient Resource
Allocation for Mobile-Edge Computation Offloading,” IEEE Trans.
Wirel. Commun., vol. 16, no. 3, pp. 1397-1411, March 2017.

[39] X. Qiu, L. Liu, W. Chen, Z. Hong and Z. Zheng, ”Online Deep
Reinforcement Learning for Computation Offloading in Blockchain-
Empowered Mobile Edge Computing,” IEEE Trans. on Veh. Technol.,
vol. 68, no. 8, pp. 8050-8062, Aug. 2019.

[40] Q. Qi et al., ”Knowledge-Driven Service Offloading Decision for Ve-
hicular Edge Computing: A Deep Reinforcement Learning Approach,”
IEEE Trans. on Veh. Technol., vol. 68, no. 5, pp. 4192-4203, May 2019.

[41] M. Tang and V. W. S. Wong, ”Deep Reinforcement Learning for Task
Offloading in Mobile Edge Computing Systems,” IEEE. Trans. Mob.
Comput., Early Access, Nov. 2020.

[42] H. Zhou, X. Chen, S. He, J. Chen and J. Wu, ”DRAIM: A Novel Delay-
Constraint and Reverse Auction-Based Incentive Mechanism for WiFi

Offloading,” IEEE J. Sel. Areas Commun., vol. 38, no. 4, pp. 711-722,
April 2020.

[43] Technical Specification Group Core Network and Terminals; Proximity-
services (ProSe) User Equipment (UE) to Proximity-services (ProSe)
Function Protocol Aspects; Stage 3 (Release 12), 3GPP TS 24.334
V1.1.0, Jul. 2014.

[44] A. Orhean, F. Pop, I. Raicu, “New scheduling approach using reinforce-
ment learning for heterogeneous distributed systems,” J. Parallel Distrib.
Comput., vol. 117, pp. 292-302, 2018

[45] Z. Tang, J. Lou, F. Zhang and W. Jia, “Dependent Task Offloading for
Multiple Jobs in Edge Computing,” in Proc. of 29th Int. Conf. Comput.
Commun. and Networks (ICCCN), Honolulu, HI, USA, 2020, pp. 1-9.

[46] Asghari, A., Sohrabi, M.K. and Yaghmaee, F. Online scheduling of
dependent tasks of cloud’s workflows to enhance resource utilization
and reduce the makespan using multiple reinforcement learning-based
agents. Soft Comput., 24, 16177–16199 (2020).

[47] H. Hao, Changqiao Xu, L. Zhong and G.-M. Muntean, “A Multi-update
Deep Reinforcement Learning Algorithm for Edge Computing Service
Offloading,” in Proc. of the 28th ACM Int. Conf. on Multimedia (ACM
Multimedia), Seattle, United States, October 2020.

[48] Garey M R, Johnson D., Computer and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman, 1979.

[49] Y. Yao, J. Wang, B. Sheng, J. Lin and N. Mi, “HaSTE: Hadoop YARN
Scheduling Based on Task-Dependency and Resource-Demand,” in Proc.
IEEE 7th Int. Conf. Cloud Comput., Anchorage, AK, USA, 2014, pp.
184-191.

[50] S. Sundar and B. Liang, “Offloading Dependent Tasks with Communi-
cation Delay and Deadline Constraint,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Honolulu, 2018, pp. 37-45.

[51] Q. Li, M. Wen, S. Dang, E. Basar, H. V. Poor and F. Chen, “Oppor-
tunistic Spectrum Sharing Based on OFDM With Index Modulation,”
IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 192-204, Jan. 2020.

[52] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in urban
informatics,” IEEE Internet Things J., vol. 6, no. 5, pp. 7635–7647, Oct.
2019.

[53] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, Fourthquarter
2017.

[54] R. Bleuse, S. Hunold, S. Kedad-Sidhoum, F. Monna, G. Mounié and
D. Trystram, ”Scheduling Independent Moldable Tasks on Multi-Cores
with GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp.
2689-2702, 1 Sept. 2017.

[55] J. Luo, F. R. Yu, Q. Chen and L. Tang, “Adaptive Video Streaming With
Edge Caching and Video Transcoding Over Software-Defined Mobile
Networks: A Deep Reinforcement Learning Approach,” IEEE Trans.
Wirel. Commun., vol. 19, no. 3, pp. 1577-1592, March 2020.

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves ,I. Antonoglou, D.
Wierstra and M. Riedmiller,“Playing Atari with Deep Reinforcement
Learning”, in Proc. Neural Info. Proc. Syst. (NeurlPS), 2013.

[57] T. Degris, M. White and R. S. Sutton, “Off-Policy Actor-Critic”,
arXiv:1205.4839, arXiv preprint, 2013.

[58] Timothy P. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, D. Wierstra, “Continuous control with deep rein-
forcement learning”, in Proc. Int. Conf. on Learning Repres. (ICLR),
2016.

[59] D. Dhiyagu and R. Shanmughasundaram, “Dependency and utilization
aware Task Allocation for Multi-core Embedded Processors,” in Proc.
Inno. in Power and Advanced Comput. Technolo. (i-PACT), Vellore,
India, 2019, pp. 1-5.

[60] A. A. Al-Habob, O. A. Dobre, A. G. Armada and S. Muhaidat, ”Task
Scheduling for Mobile Edge Computing Using Genetic Algorithm and
Conflict Graphs,” IEEE Trans. on Veh. Technol., vol. 69, no. 8, pp. 8805-
8819, Aug. 2020.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , VOL. XX, NO. XX, AUGUST 2021 16

Han Xiao received the B.E. degree in computer
science from the Jinan University, in 2017. He is
currently pursuing the Ph. D degree in the Network
Architecture Research Center, Beijing University of
Posts and Telecommunications (BUPT), advised by
Prof. Changqiao Xu. His research interests include
reinforcement learning, multimedia communications
and panoramic video transmission.

Changqiao Xu (Senior Member, IEEE) received the
Ph.D. degree from the Institute of Software, Chinese
Academy of Sciences (ISCAS) in Jan. 2009. He
was an Assistant Research Fellow and R&D Project
Manager in ISCAS from 2002 to 2007. He was a
researcher at Athlone Institute of Technology and
Joint Training PhD at Dublin City University, Ire-
land during 2007-2009. He joined Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in Dec. 2009. Currently, he is a Professor
with the State Key Laboratory of Networking and

Switching Technology, and Director of the Network Architecture Research
Center at BUPT. His research interests include Future Internet Technology,
Mobile Networking, Multimedia Communications, and Network Security. He
has edited two books and published over 200 technical papers in prestigious
international journals and conferences, including IEEE/ACM TON, IEEE
TMC, IEEE INFOCOM, ACM Multimedia etc. He has served a number of
international conferences and workshops as a Co-Chair and TPC member.
He is currently serving as the Editor-in-Chief of Transactions on Emerging
Telecommunications Technologies (Wiley). He is Senior member of IEEE.

Yunxiao Ma received the B.E. degree in telecommu-
nications engineering from the School of Electronic
Information Engineering, Inner Mongolia University,
in 2019. She is currently pursuing the Ph.D. degree
with the Network Architecture Research Center,
School of Computing, Beijing University of Posts
and Telecommunications, under the supervision of
Prof. Changqiao Xu. Her research interests in-
clude multimedia communications, 360 degree video
transmission and stochastic optimization.

Shujie Yang received the Ph.D. degree from the
Institute of Network Technology, Beijing University
of Posts and Telecommunications, Beijing, China, in
2017. He is currently a lecturer with the State Key
Laboratory of Networking and Switching Technol-
ogy. His major research interests include wireless
communications and multimedia communications.

Lujie Zhong received the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2013. She is currently
an Associate Professor with the Information Engi-
neering College, Capital Normal University, Beijing,
China. She has published papers in prestigious inter-
national journals and conferences in the related area,
including IEEE Communication Magazine, IEEE
Transactions on Mobile Computing, IEEE Transac-
tions on Multimedia, IEEE Internet Things Journal,
IEEE INFOCOM and ACM Multimedia, etc. Her

research interests include communication networks, computer system and
architecture, and mobile Internet technology

Gabriel-Miro Muntean (Senior Member, IEEE) is a
Professor with the School of Electronic Engineering,
Dublin City University (DCU), Ireland, and co-
Director of DCU Performance Engineering Labora-
tory. He has published 4 books and over 450 papers
in top international journals and conferences. His
research interests include rich media delivery quality,
performance, and energy-related issues, technology
enhanced learning, and other data communications
in heterogeneous networks. He is an Associate Edi-
tor of the IEEE Transactions on Broadcasting, the

Multimedia Communications Area Editor of the IEEE Communications
Surveys and Tutorials, and reviewer for important international journals,
conferences, and funding agencies. He coordinated the EU project NEWTON
and leads the DCU team in the EU project TRACTION.

