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Media services must ensure an enhanced user’s perceived quality during content playback to attract and retain audiences, especially
while the streams are distributed remotely via networks. Thus, media streaming services rely heavily on good and predictable network
performance when delivered to a large number of people. Furthermore, as the quality of media content gets high, the network
performance demands are also increasing, and meeting them is challenging. Network functions devoted to improving media streaming
services become essential to cope with the high dynamics of network performance and user mobility. Furthermore, new networking
paradigms and architectures under the 5G networks umbrella are bringing new possibilities to deploy smart network functions, which
monitor the media streaming services through live and objective metrics and boost them in real-time. This survey overviews the
state-of-the-art technologies and solutions proposed to apply new network functions for enhancing media streaming.
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1 INTRODUCTION

In recent years, media streaming traffic has been experiencing a growing trend. Wireless and mobile devices are
becoming the primary producers and consumers of rich media content. 5G networks must cope with these new traffic
demands by supporting higher bandwidth and reduced latency. It is estimated that 5G connections will handle nearly
three times more traffic than current LTE connections by 2023 [61]. New applications involving video streams are
gaining relevance and are attracting an increased audience, including vertical industries where media has a residual
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presence. Examples of application areas that can benefit from advancedmedia streaming include the Industrial Internet of
Things (IIoT), medical equipment, and connected and autonomous vehicles. Moreover, 360-degree and 3D video formats
enable support for new services beyond entertainment, i.e., professional applications. They build novel interaction
experiences and data navigation on top of several technologies, such as eXtended Reality (XR), Virtual Reality (VR), and
Augmented Reality (AR) [82]. Finally, online gaming and video conferencing are also highly popular, especially in the
last period. These services have increasing demands in terms of network support. However, although the networks
have growing capabilities, there is a significant increase in rich media streaming traffic, fueled mainly by the global
COVID-19 pandemic. This pandemic is transforming users’ habits to access the Internet [86, 140] and media content
consumption [83, 126]. The Broadband Commission for Sustainable Development, a joint initiative of the International
Telecommunication Union (ITU) and the United Nations Educational, Scientific and Cultural Organization (UNESCO),
is also concerned about these user habit changes. Therefore, it is implementing an Agenda for Action to push an
emergency response to the pandemic, aiming at Internet access extension and boosting its capacity [5, 6].

All the factors mentioned above inevitably influence the evolution of all services, especially affecting the rich
media ones. It is therefore evident that there is a need for new network-related solutions to support high Quality of
Service (QoS) for these applications. The current traffic crosses networks working on a best-effort basis where no
details regarding packet delivery (e.g., time) are guaranteed. Therefore, best-effort networked-transmitted media traffic
may result in a lower user’s Quality of Experience (QoE). A practical example of this QoE degradation is stalls or
artifacts during media playback on player devices. Employing Content Delivery Networks (CDNs) is the most common
solution to prevent adverse quality effects and make video delivery more efficient. CDNs are geographically distributed
hierarchical systems that cache and store video streams to foster efficiency and increase service coverage. CDN price is
decreasing, but the overall cost for the content provider is increasing, as the traffic from/to CDN is growing. [172].

Beyond CDNs, more advanced solutions such as load balancers, transcoders, and transraters based on Network
Function Virtualization (NFV) technologies [105] are investigated to support media streaming services. NFV allows
the deployment of Virtual Network Functions (VNF) devoted to empowering network abilities when delivering media
streaming traffic in an optimized and cost-effective manner [68, 117].

In order to take advantage of using VNFs in a media streaming context, three significant aspects must be considered
during their design. First, VNFs should monitor objective operational parameters of the network, such as throughput or
latency, representative of QoS of the media streaming dataflows, which directly influence user’s satisfaction. However,
QoS metrics do not perfectly map to user experience, as users’ perceived quality is highly subjective. VNFs should also
consider QoE, which compiles subjective evaluation elements, including rewards for playback quality and smoothness
and penalties for image freezes and unstable or low quality [28, 125]. Secondly, VNFs should give the CP more control
over the network. CP should be able to shape the network traffic and allocate resources by establishing business rules
for VNF deployment and life cycle management. These rules allow balancing the trade-offs between network resources
and business costs [107], i.e., Capital Expenditure (CAPEX) and Operational expenditures (OPEX), so they are highly
relevant. Last, VNFs should also consider energy efficiency. The volume, complexity, and real-time nature of the media
streaming traffic have an evident impact on the energy consumption of the network and devices managing the media
content. An optimized streaming delivery should reduce energy consumption by turning on or off the VNFs, depending
on the demand for network resources, at any time. By putting together real-time QoS and QoE metrics, business policies,
and energy efficiency constraints, the user and the CP can benefit from optimized VNFs for media streaming. VNFs can
provide the user with a target QoE and reduce business costs and energy consumption to what is strictly necessary to
achieve it.
Manuscript submitted to ACM
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In this context, the main contributions of this survey are:

• The paper provides an extensive overview of different technologies and protocols in the context of VNFs for
media streaming;

• The review analyses state-of-the-art network media functions by classifying them into major categories, i.e.,
media casting, transcoding, and content caching, and providing a comparison among them;

• The paper presents technologies considered by the telecommunications industry as key enablers for the next
generation networks and discusses remaining challenges, including emerging aspects such as data security,
energy efficiency, and business models for new network assets;

• The survey provides an overview of international initiatives in the media streaming field, including research
activities and projects.

The rest of the paper is structured as follows. First, Section 2 presents the objective of this work in the context of
related surveys. Section 3 contains an overview of media streaming technologies and protocols. Section 4 identifies
and describes the VNFs employed to date to enhance the performance of media streaming services. The employment
of VNFs in media streaming has been growing in the last few years as the attention increases on media distribution
over the newly deployed 5G networks [123]. VNFs are intrinsically designed to follow the principles of modularity,
interoperability, scalability, and flexibility. Media streaming can leverage VNFs to enable higher network capacity and
stability, media traffic optimization, and other performance-related advantages. In this sense, several network solutions
to enable performance-driven management of the resources are already being employed and/or investigated with the
final aim of increasing media streaming performance. These solutions include efficient use of network resources and end
device capabilities [80] during their involvement in the streaming service. To better describe these performance-driven
VNFs for media streaming, we classify them into major categories and provide a comparison among them. Nevertheless,
even if in the current deployment of 5G networks, the VNFs have a significant role, as 5G aims to have a fully virtualized
network deployment, there are still several open issues and challenges that need to be addressed in the future. Thus,
Section 5 presents the current challenges in the virtualization process of network functions inside 5G and beyond to
assess the open issues and scientific research directions. It discusses the future of VNFs to enable an improved media
streaming process and enhanced user experience. Finally, we highlight some valuable international initiatives in Section
6 and assert our conclusions in Section 7.

2 PAPER OBJECTIVES IN THE CONTEXT OF RELATED SURVEYS

Table 1. Summary of Previous Surveys on Virtual Network Functions and Media Streaming.

Survey Scope and topics Network
virtualization

Domain Research focus Year

Skorin-Kapov et al. [190] QoE assessment and management for
HAS, MEC monitoring

SDN/NFV, MEC Media streaming QoE-driven
architecture

2018

Barakabitze et al. [33] QoE assessment and management in
SDN/NFV, QoE-driven HAS over MEC

SDN/NFV, MEC,
Cloud/Fog

Media streaming SDN routing
solutions

2019

Zhang et al. [223] VNF design considerations VNF, Cloud/Edge Agnostic Virtualization
solutions

2019

Fei et al. [85] NFV/VNF current limitations and future
directions

NFV, VNF Agnostic Virtualization
concepts

2020

This work NFV architecture, performance-driven
VNF

NFV, VNF, MEC Media streaming Network media
functions

2022

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208
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This survey aims to perform an extensive literature review on the proposed solutions in the realm of VNFs applied
to the field of media streaming. The paper also addresses future challenges in this research area.

Several surveys on network virtualization have been published in the last few years, in line with the increased
interest in virtualization. Zhang et al. [223] provide generic considerations when designing VNFs, while Fei et al. [85]
analyze the limitations and identify future research directions. Both surveys focus on the VNF design and utilization to
improve current networks, but they do not consider media streaming use cases as they remain domain-agnostic.

Limited to media streaming domain, Skorin-Kapov et al. [190] and Barakabitze et al. [33] discuss using virtualized
solutions to assess and improve the QoE. Nevertheless, the former is limited to theoretical concepts for achieving a
QoE-driven network architecture and does not provide evidence of implementations. The latter is focused only on
routing solutions based on Software-defined networking (SDN) and does not consider VNF approaches.

A comparison of our work with other surveys is shown in Table 1. Our survey describes the NFV architecture and
reviews VNFs solutions for the media streaming domain. The VNFs solutions are analyzed and categorized into major
categories. Therefore, our survey addresses a more specific scope, as it discusses the relation between the VNFs and
media streaming and provides an extensive review of state-of-art solutions concerning media-specific operations, such
as media casting, transcoding, and content caching.

A list of acronyms used throughout the paper is presented in Table 2.

3 MEDIA STREAMING OVERVIEW

Before analyzing systems and functions to enhance the media streaming services, it is important to understand the
technologies involved in media streaming services to design and implement better VNFs. Media streaming refers to
delivering media content (e.g., live television, video clip, etc.) from a streaming server to a streaming client over a
particular network infrastructure. The media source can be either live or pre-recorded. In some cases, the CP is also the
infrastructure owner employed to stream the content. However, diverse providers and operators have recently entered
the market with different roles in the media streaming process, e.g., Akamai, Netflix, etc. Some of them have their own
proprietary media streaming solutions. However, the first solutions were based on the Real-time Transport Protocol
(RTP) [184] on top of the User Datagram Protocol (UDP) [170], where the Real-time Transport Control Protocol (RTCP)
[184] was employed to monitor network metrics and update the rate control. The choice of UDP was based on its lower
latency than the Transmission Control Protocol (TCP) [171], even if it does not guarantee reliability when delivering
packets, i.e., lost packets are not re-transmitted when employing UDP. The later explosion of Over-the-top (OTT)
services, e.g., Netflix and Hulu, pushed the search for new solutions to deliver Video-on-Demand (VOD) contents, where
latency was not a concern, but scalability to cover the increasing demand for content. In OTT services, the CP streams
its content over a public network, and an Internet service provider (ISP) controls the actual content delivery. HTTP
adaptive streaming (HAS) [186] technologies were introduced to deliver OTT contents, where the use of TCP and HTTP
made them attractive since these protocols are ubiquitous. Additionally, almost every device or User Equipment (UE)
can establish HTTP-based communications. The HAS-based design has the following advantages over RTP/UDP-based
solutions:

• Traverse networks: HAS communications are performed on the HTTP/TCP stack and use pull-based streaming
protocols. Thus, they cross current network infrastructure components, such as Network Address Translation
(NAT) and firewall devices [169];

Manuscript submitted to ACM
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Table 2. List of Acronyms used in the paper.

3GPP 3𝑟𝑑 Generation Partnership Project
5G Fifth Generation
6G Sixth Generation
AES Advanced Encryption Standard
AES-CBC AES block cipher mode
AES-CTR AES counter mode
ANN Artificial Neural Network
API Application Programming Interface
AR Augmented Reality
C-RAN Cloud-RAN
CAPEX Capital Expenditure
CDN Content Delivery Network
CMAF Common Media Application Format
CN Core Network
COTS Commercial off-the-shelf
CP Content Provider
DASH Dynamic Adaptive Streaming over HTTP
DNS Domain Name System
ETSI European Telecommunications Standards Institute
FeMBMS Further enhanced MBMS
FTRL Follow The Regularized Leader
HAS HTTP Adaptive Streaming
HLS HTTP Live Streaming
HTTP HyperText Transfer Protocol
IaaS Infrastructure as a Service
IBN Intent-Based Network
IIoT Industrial Internet of Things
ISP Internet Service Provider
ITU International Telecommunication Union
KPI Key Performance Indicator
L1 Physical layer
L2 Data link layer
L3 Network layer
L4 Transport layer
L7 Application layer
LL CMAF Low Latency CMAF
LL-DASH Low Latency DASH
LL-HLS Low Latency HLS
LTE Long-Term Evolution
M3U8 M3U UTF-8 Playlist File
MANO Management and Orchestration
MBMS Multimedia Broadcast/Multicast Service
MEC Multi-access Edge Computing
ML Machine Learning
MPD Media Presentation Description
MPTCP Multipath TCP
Multi-RAT Multiple Radio Access Technology
NAT Network Address Translation
NFV Network Function Virtualization

NFVI NFV Infrastructure
NFVO NFV Orchestrator
NS Network Service
O-RAN Open RAN
ONAP Open Network Automation Platform
OPEX Operational Expenditure
OSM Open Source MANO
OTT Over-the-top
PoP Point of presence
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RNI Radio Network Information
RNIS RNI Service
RTCP Real-time Transport Control Protocol
RTMP Real-time Messaging Protocol
RTP Real-time Transport Protocol
RTSP Real Time Streaming Protocol
SCTP Stream Control Transmission Protocol
SDN Software-defined networking
SDR Software-defined radio
SLA Service Level Agreement
SON Self-Organizing Network
SRT Secure Reliable Transport
STUN Session Traversal Utilities for NAT
SVA Streaming Video Alliance
TCP Transmission Control Protocol
TURN Traversal Using Relays around NAT
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UE User Equipment
UHD Ultra-High-Definition
UNESCO United Nations Educational, Scientific and Cultural

Organization
VIM Virtual Infrastructure Manager
VNF Virtual Network Function
VNF-CC VNF Chain Composition
VNF-FG VNF Forwarding Graph
VNF-FGE VNF Forwarding Graph Embedding
VNF-PC VNF Placement and Chaining
VNF-SCH VNF Scheduling
VNFI VNF Instance
VNFM VNF Manager
VOD Video-on-Demand
VR Virtual Reality
vRAN Virtual RAN
WebRTC Web Real-Time Communication
XR eXtended Reality

• Reuse and scalability: HAS-based media services can reuse existing CDN systems and caching infrastructures
without modifications to reach broad audiences;

• Usermobility and device heterogeneity: The dynamic content adaptation-enabled playermechanism is accommodated
by all the latest heterogeneous UEs, i.e., smartphones and tablets, which support user mobility.

Figure 1 illustrates the HAS-based adaptive streaming principle. HAS works in pull mode, meaning the client pulls the
data from a standard HTTP server, which hosts the media content. To reduce the effect of network fluctuations on the
playback, HAS employs a dynamic content adaptation to provide a seamless streaming experience. The original media
content is encoded at multiple representations, which differ in bitrate and/or resolution and are split into segments of
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Table 3. Features of streaming technologies.

Tech. Transport Manifest
file

Common
issues

Latency Available
bitrate

Bitrate
adaptation

CDN
compatible

Encryption

RTP UDP no packets lost &
artifacts

very low
(≤1sec)

RTCP encoder no no

RTSP UDP SDP packets lost &
artifacts

very low
(≤1sec)

RTCP encoder no no

RTMP TCP no packets lost &
artifacts

low
(1-3secs)

RTMP
control
messages

encoder no AES-128
CBC

SRT UDP no packets lost &
artifacts

very low
(≤1sec)

SRT control
messages

encoder no AES-128 /
265 CTR

WebRTC UDP,
QUIC-ready

SDP packets lost &
artifacts

very low
(≤1sec)

RTCP encoder no AES-128
CTR

HLS HTTP 1.X /
2.0 over TCP

M3U8 segment
buffering &
quality switch

high
(5-30secs)

representation player yes AES-128
CBC

DASH HTTP 1.X /
2.0 over TCP,
QUIC-ready

MPD segment
buffering &
quality switch

high
(5-30secs)

representation player yes AES-128
CBC / CTR

LL-HLS HTTP 2.0 over
TCP

M3U8 chunks
buffering &
quality switch

low
(1-3secs)

representation player yes AES-128
CBC

LL-
DASH

HTTP 1.1
Chunked over
TCP

MPD chunks
buffering &
quality switch

low
(1-3secs)

representation player yes AES-128
CBC / CTR

fixed time duration (i.e., a segment is usually between 2 and 10 seconds). A manifest file is also generated and stored at
the server, which contains information on the available representations, including HTTP URLs indicating where to
download the segments of each representation. During a typical HAS session, the client constantly measures specific
parameters, such as available network bandwidth and playback buffer level. When it requests content, the client receives
the manifest file, which is examined. Then, following an internal adaptation algorithm that processes the monitored
performance parameters’ values and takes decisions according to the desired adaptation policy, the client requests to
download the segment of an appropriate representation from the server.

Fig. 1. HAS-based media streaming principle

Besides transport-layer protocols such as RTP, application-layer protocols are also employed in media streaming.
Table 3 summarizes different aspects of interest when identifying the best protocol candidates for video streaming.
Manuscript submitted to ACM
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RTP and Real Time Streaming Protocol (RTSP) [185] perform low latency communications compatible with multicast
media streaming. TCP-based Real-time Messaging Protocol (RTMP) [198] enables higher reliability than RTSP, but with
higher latency. Secure Reliable Transport (SRT) [188] simplifies the delivery by enabling both push and pull modes
of operation. Web Real-Time Communication (WebRTC) [109] enables media streaming through a web browser by
exploiting Session Traversal Utilities for NAT (STUN) [215], and Traversal Using Relays around NAT (TURN) [142]
protocols provided by third-party servers. SRT and WebRTC increase security by including mandatory encryption
support, which is not always required for RTMP. HTTP Live Streaming (HLS) [166] and Dynamic Adaptive Streaming
over HTTP (DASH) [191] increase latency due to an internal buffering to overcome network dynamics. In any case,
violations of delivery timing could cause stalls and image freezes during the playback if the internal buffer gets empty.
To minimize such issues, HAS allows dynamic adaptation mechanisms to track the variability of the network and
select the appropriate bitrate. Thus, sudden networking problems are prevented by an alternative bitrate selection from
the manifest. Common Media Application Format (CMAF) [114] was a proposal to merge major streaming formats
around HLS and DASH. Moreover, its Low Latency mode (LL CMAF) aims to reduce the latency by enabling HTTP
chunked/push mode. Thus, the latency can be reduced and get closer to UDP-based streaming technologies. In practice,
CMAF did not achieve the integration of HLS and DASH streaming formats since the implementations of Low Latency
HLS (LL-HLS) [71] and Low Latency DASH (LL-DASH) [49] still present some differences. Thus, LL-HLS and LL-DASH
employ different approaches for HTTP transport and encryption schemes. For instance, a common feature of most
HTTP-based solutions is the security by design where different encryption standards protect communications, such
as Advanced Encryption Standard (AES) [60] with Cipher Block Chaining (AES-128 CBC) or Counter mode (AES-128
CTR).

Finally, even if most existing media streaming solutions employ UDP and/or TCP, some of them, such as DASH [40]
and WebRTC [208], are already evolving and/or being tested with QUIC, a new transport protocol that is expected to
substitute TCP when HTTP/3 will replace the current HTTP/2. QUIC lays on top of UDP to provide reduced latency,
but with a connection control mechanism to guarantee the same reliability as TCP [133]. There are also proposals
to use HAS-based media streaming with protocols such as Stream Control Transmission Protocol (SCTP) [162] and
Multipath TCP (MPTCP) [87], which support multihoming and are very important in recent heterogeneous network
environments. Noteworthy is that MPTCP is backward compatible with the vanilla TCP, which is very useful for service
deployment. Finally, efforts are already being made to develop a multipath QUIC [67] protocol to combine the benefits
of these approaches. However, no HAS-based media delivery solution has used it so far.

4 PERFORMANCE-DRIVEN NETWORK FUNCTIONS

Fig. 2. Performance-driven Network Functions. Manuscript submitted to ACM
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VNF brings the architecture, program model, and Application Programming Interfaces (APIs) to deploy specialized
media functions as micro-services, exploiting cloud technologies for a smart and agile enhancement of media streaming
sessions. This section presents an overview of VNF-based solutions designed to improve media streaming performance.
These solutions employ knowledge from network studies and data acquired from live monitoring network traffic. Figure 2
illustrates the significant avenues that performance-driven VNF solutions take. First, we introduce NFVManagement and
Orchestration (NFV MANO) and Multi-access Edge Computing (MEC), as VNFs rely on these architectures introduced
by European Telecommunications Standards Institute (ETSI) and embraced by 5G networks. Then, we discuss the
state-of-the-art relevant media-related functions such as media casting, media transcoding, and content caching.

4.1 NFV Management and Orchestration and Multi-access Edge Computing

Fig. 3. ETSI NFV MANO architecture.
Apart from the performance leaps on Key Performance Indicators (KPI) in terms of speed, capacity, mobility, and

reliability, brought by 5G radio technologies, the network core is also fully engaged in a revolution involving its digital
transformation. The concept that one network fits all is over. It is time to adapt the network according to applicable
resource efficiency and delivery performance trade-offs. The goal is to allow the network management system to
coordinate the network in an agile, programmable and efficient way. This vision is being fueled by the transformation
of network functions into dynamically controllable and configurable software components. Network functions are
virtualized by exploiting cloud technologies and their scalable mechanisms, and their orchestration is done on top
of standardized software solutions. Catalyzed by the network slices concept, the network would also connect groups
of virtualized functions devoted to specific data flows or groups of users of specific services. The network would
independently handle Service Level Agreements (SLAs) of multiple points of presence (PoPs) over a common bare-metal
infrastructure.

To achieve it, 5G network embraces NFV and VNF [137] concepts and comes with an NFV MANO architecture [76],
standardized by ETSI. NFV brings the primary virtualization step, providing computing, memory, storage, and network
resources from a bare-metal infrastructure (NFV Infrastructure or NFVI). The utilization of NFV contributes to deploying
a network by providing hardware and software decoupling. Thus, general purpose hardware, referred to as commercial
off-the-shelf (COTS) hardware, can be used to run every network function having a software implementation (VNF).
Cloud vendors mainly employ this architecture to provide Infrastructure as a Service (IaaS) solutions. Thus, hosting for
systems on top of hardware and connectivity setup is performed on demand. VNFs go a step further in virtualization,
deploying specific network functions on top of NFVI. VNFs can be deployed, configured, started, or stopped in a
programmable manner. Thus, VNFs are intended to enable modularity, interoperability, scalability, and flexibility when
a media streaming service is managed, and the generated traffic is delivered.
Manuscript submitted to ACM
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NFVI and VNFs are managed and orchestrated by NFV MANO, whose reference architecture is shown in Figure 3. Its
functional blocks are:

• Virtual Infrastructure Manager (VIM): It manages and controls physical and virtual resources (compute, storage,
and networking resources). Once a VNF is instantiated (VNF Instance or VNFI), it provides the VNFI with the
resources it requires;

• VNF Manager (VNFM): It is responsible for managing the life cycle of VNFI through the resources provided by
the VIM;

• NFV Orchestrator (NFVO): It combines more than one VNF to create end-to-end services. Several VNFs could
share VIM resources and be meant to be used for the deployment of a unique Network Service (NS), e.g., one
VNF deploys the back-end and another one the front-end; the combination of the two VNFs constitutes the NS.

Since 5G architecture allows for public and private network deployment, existing NFV MANO-compliant solutions
encompass commercial and open-source alternatives for each of the three components. Some examples are Open Source
MANO (OSM) [75], whose development is promoted by ETSI, and Open Network Automation Platform (ONAP) [89],
supported by Linux Foundation.

All the described technologies that turn network functions into virtualized software systems facilitate a high level of
automation and orchestration by network management systems. This trend is being deeply explored and investigated
in the current generation of mobile networks (5G), and it will be a key pillar for the next ones (beyond 5G), and
MEC infrastructures [179]. MEC architectures enable context-aware applications. It opens computing infrastructures
co-located with the base stations to host services close to the mobile users. It aims to exploit the capillary distribution
of cloud computing infrastructures at the edge of the cellular Radio Access Network (RAN).

The application of NFV and VNF technologies at the edge and the evolution of the RAN towards software components
boosted by open-source software, such as OpenAirInterface [159] or srsLTE [99], ease the integration of MEC services
with RAN systems. These open-source solutions implement the Mobile Packet Core (Evolved Packet Core for LTE, 5G
Core for 5G) and the RAN on top of open-source hardware. They enable the deployment, management, and orchestration
through NFV MANO of both the mobile packet core [156, 161] and RAN [91]. A RAN deployment through NFV and
VNF is usually referred to as virtual RAN (vRAN). Furthermore, vRAN is also evolving towards the concept of Open
RAN (O-RAN) [219], having open interfaces and network intelligence as key enablers to manage and tailor the network
based on vendors’ and operators’ requirements. O-RAN enables multi-vendor vRAN deployments, resulting in a more
competitive ecosystem [93]. In this context, MEC is an NFV MANO-compliant platform that also comes with a specific
API to access Radio Network Information (RNI) [77].

Figure 4 shows how network core and edge leveraging virtualization technologies are monitored and orchestrated
according to business and technical policies. Different NFVIs can be managed by a unique NFV MANO system and
interact with each other through Software Defined Networking (SDN)-enabled communications [46]. The NFV MANO
is in charge of deploying VNFs at different NFVIs and managing their life cycle, while the SDN controller configures
the forwarding rules of the network to forward the packets between VNFs. Then, a monitoring system collects the
performance metrics coming from the different network sections (network core and edge) and processes them to check
that the established policies are effective. When considering media streaming, any policy changes to regulate the
trade-off between OPEX and QoE involve adjusting the network configuration. It means acting on the NFV MANO
system to manage the life cycle of the VNFs and on the SDN controller to update the forwarding rules.
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Fig. 4. ETSI NFV architecture applied to media streaming services.
While focusing on the edge architecture, Figure 5 illustrates the MEC components and their interactions with the rest

of the RAN and Core Network (CN) building blocks. The MEC host manages the User-plane, while the Control-plane
communication is managed by the CN (LTE Evolved Packet Core or 5G Core). Depending on whether the deployment
is within an LTE or 5G network, the MEC host is equipped with User-plane Serving and Packet Gateways (SGW-U
and PGW-U) or User Plane Function (UPF), respectively. These components are connected directly to the base station
(eNB for LTE or gNB for 5G) and provide access to the Internet. Inside the MEC Host, the RNI Service (RNIS) oversees
collecting RAN information which is later consumed by the application VNFs. Specifically, VNFs can be designed to
exploit such information to increase the overall system performance.

Fig. 5. MEC architecture and connection with RAN and CN.
VNF is also applicable for media-specific network functions beyond the 5G core and RAN, involving:

• media casting, in order to perform massive delivery of live data flows;
• media transcoding, such that streaming rate matches network available bandwidth, resulting in higher quality

at destination;
Manuscript submitted to ACM
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• content caching, including storing popular data to help improve high traffic conditions and managing alternative
endpoints to balance the data requests.

These network functions perform specialized operations within the media applications to improve network efficiency,
reduce bandwidth overheads, favor idle resource allocation to other network flows, and enhance QoE with enforced
KPIs according to SLAs.

ETSI includes several media streaming use cases to be considered for MEC deployment [78] to empower traditional
media streaming applications. Typical applications are based on the interaction between the remote server (origin
server or CDN) and the client, as shown in Figure 6. In this scenario, the MEC platform can host diverse VNFs, which
exploit RNI to get a more comprehensive view of the local conditions to enhance media streaming service. In this line,
some solutions, such as [95, 136, 144], exploit standard RAN interfaces and data reports to conclude better decisions for
media applications.

Fig. 6. MEC-powered media streaming.

The following sections analyze how the described core technologies of 5G are applied to expand the network
functions with core components for improved media stream delivery, resulting in benefits in terms of enhanced quality
and efficient resource utilization. Accordingly, Table 4 compiles and classifies all the research activities exploiting 5G to
support performance-aware networking. The classification highlights the main features implemented and secondary
aspects, as sometimes the same approach is applicable to more than one solution. Some proposals are limited to
architecture design and do not achieve real implementation and experimentation. The implemented ones differ in
activation and processing approach, as they could operate in a reactive or proactive manner and, in some cases, embed
a processing algorithm using classic data analysis or Artificial Neural Network (ANN)-based approaches.

In any case, all the proposed solutions directly impact the performance of the media streaming systems. Performance
increase can be provided in terms of QoS and QoE enhancement, more effective business costs (CAPEX and OPEX), and
energy saving. However, most of the proposed solutions do not provide specific validation tests for all the performance
aspects (QoS/QoE, CAPEX/OPEX, and energy). They mainly limit their analysis to HAS-centric QoE metrics and do
not provide insights on applicable cost models, including business aspects or energy footprint evidence. Furthermore,
when considering business aspects only, providing cost models is also difficult due to the lack of business models to use
new network assets, i.e., NFVI and MEC. Clear business models are required from network operators to improve the
evaluation of business costs [22].
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Table 4. Performance driven networking for media streams using 5G technologies.

Main
feature

Second
feature

Activation Processing
approach

Reference Network
feature

Description Limitations

Casting - Not
applicable

Not
applicable

[96] FeMBMS Design of 3GPP architecture for
media multicast

To be validated in
field test

Casting - Reactive Not
applicable

[91] FeMBMS,
VNF, SDR

Virtualization of FeMBMS with SDR
setup

No optimization or
overhead evaluation

Transcoding - Not
applicable

Not
applicable

[70] NFV, VNF,
5G Core

Design of centralized virtual
transcoder solution at 5G Core

Lack of
mathematical
analysis

Transcoding - Reactive ANN [72] VNF, MEC On-the-fly transcoder at the
network edge

Cost performance
trade-off not
conducted

Transcoding Caching Proactive Classic [174] L1 MC-
NOMA,
MEC

Solution empowered bymulitcarrier
non-orthogonal multiple access

Slicing of
computation
without practical
evaluation

Transcoding Caching Reactive Classic [138] MEC, VNF Transcoding and cache location in
virtualized edge infrastructures

Latency factor not
considered

Transcoding Caching Reactive /
Proactive

Classic [202] MEC, VNF Transcoding and cache location
when content popularity is known
(proactive) or not (reactive)

User experience
factor not
considered

Transcoding Caching Proactive Classic [118,
212]

MEC, VNF Transcoding and cache location
based on known content popularity

Lack of mobility

CDN
Brokering

- Reactive Not
applicable

[18–20] L7 Proprietary solution for selection of
CDN vendor at startup

Dynamic costs and
experience excluded

CDN
Brokering

- Reactive Classic [98, 164,
200]

L3 DNS Performance-driven solution based
on DNS resolution

Prevention schemes
not discussed

CDN
Brokering

- Not
applicable

Not
applicable

[48, 90,
195, 214]

L3 DNS Design of CDN-ISP collaborative
solutions

No practical
evaluation

CDN
Brokering

- Proactive ANN [206] L7, L3 Solution for proactive CDN
selection employing ANN algorithm
to forecast network metrics

Small real world
field test

CDN
Brokering

- Reactive Not
applicable

[62, 73,
104]

L7 Cloud solution for cost-effective
CDN switching

Fairness among
users not discussed

Caching CDN
Brokering

Reactive /
Proactive

Classic [207] L7, L3, MEC Statistical solution for CDN
selection (reactive) and content
caching (proactive)

Popularity of
content not
considered

Caching - Not
applicable

Not
applicable

[53] VNF,
Orchestration

Design of virtual CDNs for media
distribution

No evaluation or
comparison

Caching - Proactive Classic [196] MEC, SDR Solution at edge exploiting radio
network information

Lack of mobility

Caching Fair QoE Reactive Classic [144] MEC, SDR Solution at edge exploiting radio
network information

Delay factor not
evaluated

Caching Fair QoE Reactive Classic [94] MEC, SDR Solution at edge exploiting radio
network information and content
popularity

User experience
factor not
considered

Caching - Proactive ANN [59] MEC Solution for proactive caching
employing ANN technologies to
predict popularity

Computational
workload and time
not considered

4.2 Media Casting

For massive delivery of common data synchronously at once, the broadcast is still much more efficient than unicast
communications widely employed by cellular networks. That is why 3𝑟𝑑 Generation Partnership Project (3GPP)
introduced the Multimedia Broadcast/Multicast Service (MBMS) specification in Long-Term Evolution (LTE) Release
9. Later, it evolved towards further enhanced MBMS (FeMBMS) in Release 14 to enable higher per cell bandwidth
Manuscript submitted to ACM
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for MBMS services and simultaneous reception of both unicast and multicast services [96]. Furthermore, Release 16
includes feedback for increased reliability [15].

As this technology is tied to the RAN system, it has sense in some use cases as firmware/software updates, clock
synchronization, alarms, and massive media contents to be turned in the network edge from unicast communications
to broadcast signals. It would need support from MEC systems which will turn popular streams into broadcast flows
to expand the capacity of a cell. This is feasible as manifests of HAS technologies, such as HLS or DASH, keep the
manifests unencrypted even for encrypted contents, allowing simple processing to parse them by intermediaries, such
as CDNs or MEC systems, for efficient and intelligent media delivery.

This architecture brings three significant benefits by attracting all the ongoing live sessions to consume the broadcast
dataflow instead of establishing concurrent unicast sessions:

(1) Efficiency at the radio link, as the broadcast stream reduces radio link usage. Data traffic is independent of the
volume of users since everyone is consuming the same broadcast signal;

(2) Optimal fidelity, as the network can deliver the maximum resolution (bitrate representation) to all the audience;
(3) Enhanced QoE, as the media players sharing the radio link do not have to struggle with independent adaptive

mechanisms executed in each player competing for the available bandwidth. It means no bitrate or resolution
changes to track time-varying network conditions and no freezes to refill the buffer.

This approach is possible thanks to virtualization and softwarization paradigms to RAN technologies, making vRAN
and the containerization of some RAN network functions such as FeMBMS feasible [91].

Specifically, broadcast communications are gaining relevance in the vehicular communications field as they allow
synchronous provisioning of common awareness to vehicles, pedestrians, and Road-Side Units (RSU) in a surrounding
area. Common awareness can be essential for Cooperative, Connected and Automated Mobility (CCAM) applications
related to the safety of autonomous driving [141]. In these applications, media flows are important as the vehicles get
fitted with more camera-like sensors capturing the environment and exchanging the raw/compressed data or processed
insights/summaries from onboard computer vision systems [205].

4.3 Media Transcoding and Transrating

As summarized in Table 3, HAS technologies, such as DASH or HLS, are widely employed and need the provision
of several representations meaning different resolutions and bitrates [138]. Thus, VNF-based transcoders are being
developed under international funding initiatives to empower different use cases, e.g., live 3D media streaming [70] or
automotive [16]. Here, the generation of representations at edge servers is gaining relevance to get higher efficiency by
distributing the higher fidelity through the core and generating lower bitrate variants (transrating) at the edge. It would
reduce overheads in the core to send all the possible media variants. To this end, the media transcoding at the edge is
essential [202], stressing the fronthaul capacity and requiring Cloud-RANs (C-RANs) or MEC systems to minimize the
network delivery cost. Furthermore, the capillarity of the MEC systems brings a better adaptation to the local needs
when transcoding to produce variants.

However, transcoding is a heavy process to be performed at a resource-constrained MEC server. Then, it means
a challenge for delay-sensitive services. Here, different works deal with the optimal position of transcoding systems
in different edge hosts to respond to a distributed demand more efficiently and quickly, where players use a specific
base station as a gateway linked to the edge hosts. To overcome this challenge, a mechanism for optimal request
forwarding which respects the resource limitations and minimizes serving latency is required [174]. In [212], different
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short/long-term decisions are concluded to deal with the time-varying conditions in terms of demand and network
dynamics.

Beyond the planning of such a transcoding process, other approaches consider different algorithms for reactive or
proactive planning [202]. In this case, the dynamics significantly impact the reaction time and forecast range. These
aspects are minimized using a segment duration in the HAS stream, which favors steady short-term conditions as
changes come on a segment duration basis.

These works focus on enhancing QoS metrics while managing the capacity of each processing asset. However, they
do not consider heterogeneous SLAs and cost penalties to apply trade-off policies. It is a primary feature to evaluate, as
the required GPU assets for HW-accelerated processing ensure parallelization of transcoding threads and significantly
impact infrastructure costs.

Finally, it is essential to underline that these solutions are often linked to caching strategies, as both transcoding and
caching can be executed at the edge to better match the local conditions, patterns, and demand features. Therefore, joint
transcoding processing and caching strategies are designed [118, 138, 174, 202, 212]. In [72], the authors only transcode
the content on-the-fly if the content is not cached.

4.4 Content Caching

4.4.1 CDN brokering. Caching is the most employed network function to improve performance when accessing online
content, particularly media streaming. A CDN is the most popular network solution to provide caching capabilities
in this context. It consists of a geographically distributed network of proxy servers and data centers to provide high
availability of the contents. Caching mechanisms are key inside a CDN, as CDN proxy servers work by selectively
storing the content so that users can quickly access it from nearby locations. The employment of CDN services by
the CPs increased in the last few years as the number of CDN vendors increased. Furthermore, major CPs also moved
to multi-CDN strategies to provide more reliable service while streaming their content. Thus, an improved service
also generates more satisfaction among the customers. Nevertheless, the different CDNs employed can differ from one
CP to another. Static selection of the CDN when a streaming session starts is the easiest and most widely employed
solution among CPs. In 2012, this strategy was used by Netflix [20] and Hulu [18], with big similarities [19]. In both
cases, they were using three different CDN vendors. They used to map the player device to a CDN depending on its
location or the subscriber when the streaming session starts. Moreover, the CDN never changes during the streaming
session, even when the performances decrease. Other solutions include client-side CDN selection [164] or Domain
Name System (DNS)-based solutions [200]. The client has a privileged position to measure end-to-end QoS metrics
(network bandwidth and latency) when choosing the CDN. However, this approach has the disadvantage of producing
an uncoordinated decision as each client selects the CDN independently from the others. A DNS-based solution means
resolving a fixed hostname owned by the CP into different IP addresses referring to several CDNs. Depending on the
DNS resolution, the client receives the content from the appropriate CDN. In any case, a sub-optimal CDN server
selection could decrease performance [98], affecting the user’s satisfaction.

In recent years, other network caching solutions are also raising to empower delivery. The same Netflix changed its
streaming strategies. It developed and deployed an in-house CDN, called Open Connect [48], to reduce the dependency
on CDN vendors and streaming costs. Moreover, Open Connect is meant to be also run inside the ISP infrastructure, i.e.,
closer to the user, to guarantee better performances in terms of network bandwidth and latency [69]. Open Connect
also helps Netflix and other CPs have in-house solutions to control better the resources enabled for the streaming
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session and reduce the costs. Anyway, it requires a significant investment to have such a solution that could not be
affordable by small CPs.

The Streaming Video Alliance (SVA) is a joint initiative that works on different aspects of media streaming and aims
to standardize the employed protocols and technologies. Its membership includes some major world-wide content
production and delivery agents. Among its activities, the SVA Open Caching Working Group [195] oversees identifying
the critical components of a non-proprietary caching system and establishing the basic guidelines for its implementation
inside the ISP infrastructure. Thus, it wants to promote an architecture similar to Netflix’s Open Connect but with the
advantage of being standardized.

Other collaborations between CDN and ISP are proposed in the literature. In [90], ISP provides the CDN provider
with information concerning geographical user distribution and allows the CDN provider to allocate server resources
inside the ISP network. The authors of [214] use a redirection center instance inside the ISP network, which intercepts
the client requests and selects the appropriate CDN server. The process is transparent to the client as the redirection
center employs a CDN surrogate to store the content and instructs an OpenFlow controller to migrate the traffic to the
CDN surrogate. Beyond the employment of multi-CDN solutions, there are still possibilities for improvements. CDN
Brokering [42] is proposed to make CDN utilization in a multi-CDN environment more effective. It redirects clients
dynamically between two or more CDNs.

CDN brokers work as switching services that dynamically and seamlessly select the optimal CDN to use at any time.
To achieve this, CDN brokers collect and analyze in real-time the performance of the available CDNs to select the best
one. Thus, network analytics have a prominent role in CDN selection, in contrast with traditional multi-CDN strategies
where the same CDN is kept during the streaming session. The approach from [206] applies ANN technologies to
forecast dynamic demand and changeable performance to make decisions, including cost-performance trade-offs. In
this context, a representative example is Eurovision Flow [73], proposed by the European Broadcasting Union (EBU).
Similar solutions are also provided by Citrix [62] and Haivision [104].

4.4.2 Edge caching. In [207], a MEC proxy retrieves media streaming metrics of video players at the access point
and CDNs performance metrics to enhance DASH media streaming. The MEC proxy evaluates the performance of
different CDNs and switches players’ sessions when a CDN is underperforming and cannot support the demanded
traffic. Moreover, it features local edge caching to reduce network traffic. Recurrent content is downloaded and cached
once for every player. In [53], a similar MEC cache is proposed for empowering the delivery.

With a deeper integration with RAN interfaces, in [196] and [144], the MEC cache is improved by exploiting RNI.
The media segments and representations are selectively cached depending on the network state. In [94], both RNI and
knowledge of segment popularity are employed to decide the segments to cache. Moving from a reactive to a proactive
approach, the authors of [59] empower the edge cache with neural collaborative filtering to predict content popularity.
The predictions are exploited to proactively cache the content at the MEC, as more content popularity means a higher
probability of being requested by the users.

Table 5. Comparison of performance driven network function categories.

Network media function Scalability Video adaptation Processing resources
Media Casting High No Low
Transcoding Low Yes High
CDN Brokering Medium Limited to HAS Low
Edge Caching High Limited to HAS Low
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To sum up, the proposed performance-driven network functions for media streaming belong to four main categories,
corresponding to specific actions on the content: Media Casting, Transcoding, CDN Brokering, and Edge Caching. Table
5 compares the four categories regarding scalability, video adaptation (resolution and bitrate), and required processing
resources. Media Casting and Edge Caching are the best-performing solutions in terms of scalability. They are designed
to receive the content from a remote server or CDN and then serve it to the UE(s). As the content is served from RAN
or Edge Network, the traffic inside the Network Core is reduced (i.e., there is no redundant traffic). Another advantage
is their low processing resource consumption, as they only have to forward packets and do not process the content.
CDN Brokering also has low resource processing, like Casting and Edge caching, but its scalability is limited, as it does
not reduce network traffic. CDN Brokering selects the remote CDN that the UE has to connect to at any time only.
Therefore, the redundancy in Network Core traffic remains, and all the workload has to be absorbed by the remote
CDN. Finally, when considering video adaptation (resolution and bitrate), Transcoding solutions are the best ones,
as they allow to generate a personalized video representation in real-time. Each client can receive a representation
according to its display capabilities and the network state. Nevertheless, this flexibility in video adaptation comes at the
cost of using increased processing resources for the transcoding operation. Video adaptation is also available with CDN
Brokering and Edge Caching. However, it is possible only when using HAS-based technologies and is limited to the
pre-encoded video representations of the content at the CDN.

5 CHALLENGES OF VIRTUAL NETWORK FUNCTIONS FOR MEDIA STREAMING

VNF solutions play a significant role in successfully deploying 5G networks. It is backed by evidence, especially for
supporting rich media applications such as multimedia streaming, as described in Section 4. However, VNF applications
still require some challenges and open issues to be addressed, as shown in Figure 7. This section discusses and classifies
these challenges around some key features studied concerning 5G networks and presents the open issues in the context
of the 6G networks roadmap.

5.1 Self-Organizing Networks

Table 6. SON categories and use cases.

Self-configuration Self-optimization Self-healing

• IP address & connectivity
• neighbour & context discovery
• radio access parameters
• policy management

• load balancing
• resource selection
• caching infrastructure
• coverage & capacity
• radio interference management
• mobility & handover

• fault detection
• fault classification
• countermeasures operations

Agile deployment and life cycle management of VNFs exploiting an NFV MANO architecture are essential features
to satisfy the expectations of smart 5G networks, but further research is still ongoing to increase network automation.
In this context, the Self-Organizing Network (SON) paradigm [79] represents a next step to achieve a fully virtualized
and automated network. SON empowers the network with specialized decision-making algorithms which monitor
network resources and traffic patterns, and autonomously take actions to enforce or optimize network operations [26].
SON capabilities were initially meant to be included as add-on features of LTE, as 3GPP Release 8 started defining LTE
Manuscript submitted to ACM
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Fig. 7. Virtual Network Functions Challenges for Media Streaming.

and already set the basis for SON concepts and requirements [110]. However, SON is expected to enhance 5G network
management by providing automation to cope with increasing network complexity [151].

Specifically, in the media streaming context, SON should provide the necessary network resources and guarantee
target QoS or QoE scores when delivering media streams. More generally, SON turns static networks into dynamic ones
by configuring network parameters, optimizing the allocated resources, and fixing or preventing issues in real-time.

A SON-enabled system can accomplish tasks belonging to three categories: self-configuration, self-optimization and
self-healing [26]. Self-configuration techniques adjust network operational parameters to change network behavior and
rules according to specific business policies and node neighborhood context. Self-optimization strategies are dynamically
applied to ensure network performance is near optimal. They include real-time network monitoring and performance
metrics processing to apply enhanced operational parameters proactively. Self-optimization techniques can be applied
in many areas: load balancing, resource selection, caching infrastructure, coverage and capacity, radio interference
management, mobility, and handover. Last, self-healing is necessary to generate a prompt reaction when network faults,
failures, or any operational range violations occur. The objective is to continuously monitor the system and ensure a
fast and seamless recovery, whatever reason causes the failure. In case of a failure event, self-healing functions detect
(fault detection) and diagnose (fault classification) it. Then, according to applicable policies and the current setup, the
appropriate countermeasure is applied to reestablish the desired network performance.

All these SON flavors need actionable data to process decision-making algorithms. Therefore, it is crucial to collect
and exploit network data. Current networks are ready to probe and provide a considerable amount of data. However,
specialized intelligence must be deployed within the network to infer valuable and helpful information from the
collected data [116]. Such information helps take automatic actions to reach, recover or even improve the network
performance. In the context of media streaming, it means that the SON paradigm has the potential to increase the
QoS/QoE while decreasing the business costs and energy consumption to maintain the network. In this context, ML
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techniques will become prominent, even if selecting the suitable algorithm is not trivial and depends on the considered
use case [127, 151]. Table 6 shows the most common use cases belonging to the three SON categories, as seen from the
network operator’s perspective. Some SON applications are already provided by network vendors and included in their
commercial hardware equipment. Some examples are HCL’s SON [106], Nokia’s EdenNet [160] and Ericsson’s SON
Optimization Manager [74].

In any case, SON systems need to have a more comprehensive view of the delivered traffic beyond the metrics
from the network functions and including the service domain. Operated SON policies are usually steered by network
statistics rather than application characteristics. In [143], the authors analyze network metrics of selected network
topologies, such as bandwidth and latency, when the network nodes are generating media streaming traffic. It proposes
an ML-powered algorithm to select the appropriate network topology that copes with the demanded network resources
for the media traffic. Nevertheless, the communication dynamics of applications delivered on top of the network have an
impact on network performance. Thus, the authors of [165] propose to design an application-driven SON to widen the
view with both network performance and the user’s QoE metrics. When considering media streaming applications, data
are available from network functions in the path and playback devices. Thus, data exploitation inside a SON-enabled
system needs further investigation, as the multi-domain data exploitation is still underexplored. In [131], the authors
classify the network traffic into four classes, including one for interactive games and video telephony, and propose to take
into account the QoS requirements of each class to enable a flexible mobility management (handover) scheme. In [189],
the authors introduce a self-organizing Unmanned Aerial Vehicle (UAV)-based communication framework for media
streaming. It aims at dynamically selecting the network configuration to achieve better network capabilities in terms of
throughput, end-to-end transmission delay, packet re-transmission, and packet loss during video transmission. UAV-
based communication is also considered in [65] to design an ML-based scheduling solution to react to the changeable
networking conditions and make the best decisions to stream Live Ultra-High-Definition (UHD) Video Streaming from
UAV to ground users. Finally, the authors of [124] propose a SON-enabled video transcoder to be deployed within the
network to let the video propagate over the network by exploiting knowledge about the state of the network.

5.2 VNF Orchestration

The orchestration on top of SDN programs and coordinates different network functions to support specific applications
and services further. The specialized network functions in the media context include servers, load balancers, caches,
transcoders, transraters, and encryptors. These functions are containerized to make media functions ready to be
deployed on top of cloud infrastructures and instantiated depending on resource policies. Thus a media system gains
virtualization and flexible scaling of cloud resources available as NS at the network core and edge. This evolution is
essential to reduce superfluous OPEX and lead to shorter time-to-market and lower CAPEX. In this context, DevOps
and micro-services platforms gain relevance to accomplishing the Function-as-a-Service (FaaS) paradigm. Here, the
ambition is to meet media-intensive use cases, where an on-demand VNF instantiation and deployment enables an
elastic infrastructure that enforces the performance and restrains costs [203].

ETSI NFV MANO architecture brings several functionalities at different layers operating different systems. For
example, MANO manages the allocation of virtualized resources of the NFVI layer using the VIM system, the VNFs
live-cycle at the VNF layer driving the VNFM, and orchestration scaling or deleting NS instances steering the NFVO
[100]. MANO is expected to support optimal media delivery in flexible networks toward handling target QoE and cost
trade-offs. However, this has not been fully achieved yet. The main problems of orchestration, still open and under the
focus of different research lines, are related to resource allocation and the instances placement.
Manuscript submitted to ACM
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First, deploying a VNF over a distributed platform requires allocating network and computing assets to be provisioned
to host the VNF. Network and computing resource allocation is a challenging feature whose interest is raising and
focusing on VNFs deployment, and life cycle management [108]. In this context, the NVFO is in charge of selecting the
appropriate resources, among the available ones at the NVFI, when deploying a VNF, which mainly includes: VNF Chain
Composition (VNF-CC) and VNF Placement and Chaining (VNF-PC), VNF Forwarding Graph embedding (VNF-FGE)
and VNF Scheduling (VNF-SCH). VNF-CC deals with the composition of several VNFs to be deployed jointly by the
NFVO. VNF-PC aims for the optimal placement and the required instances of VNFs needed to deploy Service Function
Chains (SFCs) while optimizing the cost of resource provisioning. How the traffic flows between VNFs is also described
through the definition of VNF Forwarding Graphs (VNF-FG). Thus, any network service can be considered composed of
a set of VNFs and VNF-FGs. Each VNF executes a small function of the entire application or service [217]. It aims to find
appropriate resources and locations to allocate the VNFs in NFVI. At this stage, resource selection and optimization
must be accomplished concerning the specific constraints defined by SLA [183]. Finally, VNF-SCH determines how to
schedule the processing operations of the deployed VNFs [175].

Specifically, when media VNFs come into play, the dynamic allocation and provisioning of VNF resources are essential
to mitigate or even prevent QoS/QoE violations when bottlenecks at some network path arise. When the VNFs are
already deployed and running, the required resources may vary during their life cycle, as they depend on the user
demand of the running function provided by the VNFs. Allocated resources could be optimized to fit the user’s variable
demand. Increasing or decreasing the allocated resources means the VNFs also need to scale up/down dynamically.
Then, an efficient orchestration and automation of the VNFs require supporting this dynamic allocation of resources.
Changes in resource allocation should be applied according to real-time network traffic and service demands. Dynamic
resource allocation can be performed in reactive or proactive manners. Here, transcoder [129], and transrating [101]
systems are instantiated with VNF technologies triggered by a changeable demand applying Machine Learning (ML)
techniques to automate the monitoring and actuation.

Second, the placement of caches, transcoders, and transraters has been profoundly studied to solve this NP-hard
problem. Here, [51] analyzes the QoE feedback to on-the-fly conclude an optimal placement of transcoding VNFs. Others
such as [201, 212] go beyond and optimize at the same time caching, transcoding, and transrating in two timescales,
short-term and long-term, to favor steadiness.

However, most of the proposed solutions include two main limitations, the lack of a cost function to add effectiveness
to the equation and the inability to prevent issues firing actions to avoid SLA violations dynamically.

Thus, the related literature often employs an over-provisioning strategy, where the allocated resources for each
VNF are larger than required. This approach is inefficient in terms of OPEX and energy consumption generated by the
allocated resources which are not employed. It means that this approach is not cost-effective, as it is clear that adjusting
the resources allocated for the VNF to the actual demand would avoid over-provisioning and reduce costs. Some
approaches optimize the cache and transcoding, including simple cost models concurrently [39, 121]. They formulate a
constrained optimization problem to minimize each user request’s total caching, computing, and bandwidth utilization.
In [222], the authors also include the hardware acceleration costs. Moreover, [117] meets the placement and chaining of
VNFs for media cache, including VNF instantiation, migration, hosting, and routing costs.

Furthermore, the solutions widely involve a reactive provisioning and allocation approach, which means changing
the allocated resources to react when traffic and/or demand change. In [68], the authors design a proactive algorithm
for VNF placement and allocation of caching and protection VNFs. They also aim to minimize the OPEX by considering
the bandwidth and host resource consumption trade-offs under diverse workload variations. Most of the literature
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on generic VNF orchestration driven by traffic demand prediction employs ANN algorithms [182, 197]. However, the
application of such algorithms in practical solutions is limited, being mostly theoretical. Among the most innovative
solutions proposed, [84] describes a novel Follow The Regularized Leader (FTRL) online algorithm for VNF provisioning,
which handles workload fluctuations. The solution in [148] employs an ANN algorithm to predict future resource
requirements for each VNF contributing to a network service. The authors of [225] propose the POLAR algorithm,
combining online learning and optimization to proactively provision resources with VNFs provisioning. In contrast, the
VNFs chaining in a network service is ignored. In [112], proactive failure recovery is proposed when considering VNF
deployed at distributed edge computing nodes. Finally, the authors of [150] propose a multi-layer resource allocation
solution, which aims to proactively provide resources to the VNFs deployed in several VIMs and network resources
between VIMs.

5.3 Multi-access Edge Computing (MEC)

MEC represents a novel technological solution integrated into 5G networks to bring computation closer to the user.
MEC infrastructures create new potential revenue flows to network operators opening their edge infrastructures to
host specialized services at the network edge. There are many aspects that require investigation to achieve a complete
integration of MEC into the current network architecture and services. However, some avenues are already seen as
highly beneficial for MEC deployment and use. For instance, media streaming is a crucial application of MEC solutions,
as ETSI considers it one of MEC core use cases [78]. MEC platforms can host edge services to empower media streaming
applications traditionally based on server-client communications. As explained in the previous section, MEC and VNFs
enable the deployment of innovative media-related services such as media casting, transcoding, and content caching.

More specifically, MEC resources are exploited by both the server and clients to offload computation tasks [37, 155].
Offloading server tasks reduces network traffic and latency, as the processing is performed close to UEs. Computation
offloading at the MEC is necessary to enable use cases where the remote server has a very high delay and/or the
client has not enough computing capabilities. 6G potential use cases include resource-expensive and delay-sensitive
applications such as augmented and virtual reality [154]. In any case, it is important to note that MEC resources are
shared between different service providers, but how the resources are distributed among different service providers
is still undefined. The authors of [155] propose to allocate MEC resources proportionally to each service provider’s
demanded resources and payment. On the other side, if it is the UE that offloads its tasks to the MEC host, it reduces not
only the device computation load but also the power consumption on the device, as computing-intensive tasks heavily
impact the battery duration. In [37], a video telephony application employs MEC to encode the content. It reduces
processing operations at the UE but increases network traffic since uncompressed raw content is sent to the base station.
The authors focus on power consumption but do not consider operational costs generated by using the MEC platform.
In general, how to balance network traffic, power consumption, and operational costs trade-off needs to be studied. In
[194], optimization of the allocation of both computing and network resources is discussed while considering energy
efficiency. Even in this case, operational costs are not considered in the optimization problem. In general, business
aspects raise complex discussions due to the lack of a clear business model [22]. MEC needs a business model equivalent
to the one applicable in cloud computing infrastructures. However, unlike cloud computing, the decentralized location
and utilization of shared resources between services make the cost model more complex. Resource accounting and
monitoring must also be determined to create a complete business model. The debate on the business model is even
more intricate if we consider hardware-acceleration assets, such as GPUs, required to accomplish critical tasks where
general-purpose hardware (CPU) has limitations [139]. Some works suggest employing Field-Programmable Gate Array
Manuscript submitted to ACM
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(FPGA) approaches instead of GPU solutions due to their reduced price and power consumption [43, 63], but this
possibility is again underexplored.

Regarding accessible information at MEC, the API to communicate with RNIS [77] has been recently standardized,
and its development is ongoing [30, 199]. It means that services running at the MEC host cannot be further optimized.
When RNIS implementations are available, edge services will embed more complex and precise algorithms (classic or ML
models) to exploit RNI to improve their operations and overall system performance. However, improved capabilities due
to RNI exploitation raise some security concerns regarding managing information at MEC hosts, an aspect that needs
further investigation [102, 119]. In order to exploit a MEC decentralized approach, the deployment of location-aware
services is necessary. Thus, mechanisms for user privacy protection and anonymity are needed. Moreover, modification
of the networks to introduce MEC capabilities opens the door for potential attacks, including DDoS attacks, malware
injection, authentication, and authorization attacks [176, 216]. Use cases like surveillance and CCAM may also include
videos containing sensitive data. Thus, video and data stream anonymization [44] is an important matter to consider
for further improving MEC-based solutions.

Mobility remains another primary concern and is becoming critical, as the explosion in availability and type of
mobile devices (e.g., smartphones and tablets) involves an increasing number of UEs to be served. In the same way
that connectivity is guaranteed when moving from a cell to another in a cellular network, migration support for MEC
services is also required. Consequently, the investigation on multi-MEC cooperation should be addressed to guarantee
seamless session migration across MEC servers [119, 187]. Moreover, this seamless migration becomes critical as delays
may raise security concerns in some use cases. An example is represented by CCAM use cases, where the video is
streamed between two self-driving cars that make real-time decisions [34].

From the perspective of media services, user QoE plays an important role and a wide MEC deployment definitely
should target it, especially as transcoding and caching capabilities would be provided closer to UEs. Balancing the cost
of MEC-based caching and transcoding and provision of high user QoE is an essential direction for future research
[119]. Moreover, finding suitable locations where MEC instances should be deployed becomes relevant, as it may affect
the fulfillment of the demanded requirements. It is especially true for low latency multimedia services, where the
distance between the MEC host and UE affects the overall delay [145]. Finally, content caching mechanisms in the
network have been studied both at the core and at the edge, but a convergent solution has not been identified yet.
Caching solutions that integrate both core and edge caching could improve network performance in terms of energy
consumption, network throughput, latency, and user QoE [220].

5.4 Network Slicing

Network slicing [21, 88] is introduced in 5G networks as a solution involving several virtual/logical networks (slices) on
top of a shared physical network, where each virtual/logical network delivers the traffic generated by a specific service
[153, 177]. To achieve it, it provides network and computing resources across different networks. It can be considered
that a network slice is associated with a set of network resources and VNFs, which that slice can provide. In this context,
NFV, together with SDN, plays an important role, especially in deploying and managing network slices [163, 224]. NFV
enables life cycle management and orchestration of the VNFs, while SDN allows for the configuration and control
of the routing and forwarding planes of the underlying network infrastructure, providing communication between
the deployed VNFs. This results in a logical network of resources and VNFs built over a common underlying physical
infrastructure, separated into diverse network slices. The introduction of network slicing is necessary since a best-effort
network cannot guarantee that appropriate network resources are offered in each use case. With network slicing,
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different sets of proprieties can be established, each one associated with specific network resources and supporting
relevant use cases. For instance, use cases requiring high throughput, i.e., on-demand video streaming, are logically
separated from use cases requiring low latency, i.e., real-time video streaming or mission-critical services, and are
supported by different slices. Each network slice provides support for service in terms of end-to-end connectivity,
meaning that network slicing provisioning refers to three different aspects: at the air interface, in the RAN and in the
CN [128, 134].

Network slicing at the air interface refers to partitioning physical radio resources (physical layer or L1) into subsets
of several physical resources. Each subset associated with a different network slice is mapped into logical resources to
be provided to the Medium Access Control (MAC) sublayer at the datalink layer (or L2) and higher layers.

In the RAN, network slicing changes RAN operations, including MEC-operated ones, such as device association and
access control, from a cell-specific perspective to a slice-specific one. Thus, the RAN operations are service-oriented
instead of physical cell-oriented. Configuration of control and user planes is tailored and/or tuned considering the
requirements of each slice individually. Then, factors such as QoS requirements, traffic load, or type of service/traffic
are prominent when operating the RAN.

Finally, network slicing in the CN enables the definition of vertical networks, where each one aims to support a
service belonging to a specific vertical industry. NFV and SDN have a higher impact in this aspect of the network,
where each vertical industry should be able to run its VNF-specific solutions. CN needs flexible management to enable
resource scalability and migration when required by the network traffic associated with a service.

A videoconferencing system is deployed in [25] through the deployment of two different slices to split audio and
video transmissions, as they have different requirements in terms of network throughput. In [210], the authors focus
on the eHealth vertical, where services are typically media-rich and mission-critical and are high QoS demanding.
Then, a MEC-based application, empowered with end-to-end network slicing, is designed and developed to enable
in-ambulance applications. The application is accessed by paramedics in the ambulance and sends audiovisual data
to the hospital/doctor. The same vertical is addressed by [54] to enable real-time communication between hospital
staff and patients. In [52] and [147], applications of network slicing for Vehicle-to-Everything (V2X) services are
investigated. Different use cases are considered in a vehicle, including those related to safety and traffic efficiency,
autonomous or teleoperated driving, media & entertainment, and remote diagnostics. Each use case requires different
latency, throughput, and communication reliability requirements. Consequently, different network slices with different
configurations are required on the same physical network of resources. The authors of [130] present several use cases
belonging to different verticals, such as protection and smart metering in the smart grid sector, car and passenger data
exchange in an intelligent transportation system and best-effort data delivery in a multimedia system. Each use case
and vertical sector requires different capabilities in terms of latency and throughput. The different types of traffic are
prioritized by splitting them into specialized network slices.

Network slicing-related research has increased importance in the current 5G network context. Ongoing challenges
include solutions to allow wide employment and operation of slices for different industry verticals. Most slicing
operations relate to the exploitation of resources the network operator provides. However, the effects of changes in
network operators’ business models for operating network slicing are unknown [32]. The increase in the number of
devices belonging to different verticals and their mobility management in the presence of different technologies (LTE,
5G, Wi-Fi) also needs further investigation [225]. An end-to-end network slice implies that slice segments potentially
stretch across different administrative domains. There are two requirements to achieve a unified control of the network
slice. First, an exchange point that performs the resource negotiation between different administrative domains is
Manuscript submitted to ACM
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necessary to enable multi-domain slices. Then, standardized APIs should make transparent the underlying domains
and simplify the negotiations to provide control on the slice [21]. Finally, network slicing leverages algorithms to
accommodate applications with diverse requirements over the same physical network. Thus, complex algorithms are
necessary for deciding how to allocate efficiently, manage, and control the physical resources shared across diverse
slices [204]. Concerning these algorithms, the application of ML in network systems is capturing increased research
attention lately, and this trend is expected to continue in the future [81].

5.5 Open Issues and Future Research Directions

The benefits of virtualization for media streaming communications will become increasingly evident in the next few
years, as the 5G coverage will be extended. Complementary technologies such as MEC, SON, and network slicing are
still not fully integrated. Further efforts in integrating all these new paradigms and/or architectures are envisioned to
provide a more efficient and intelligent network [115].

ML-powered network intelligence to manage NFV and VNFs is only partially achieved in 5G networks, but it will also
be a key factor for the future 6G networks [227]. The concept of Intent-Based Network (IBN) [213] means employing ML
solutions to transform business intents into a network configuration, operation, and maintenance strategies. In order
to meet the massive service demands and overcome limitations due to time-varying network traffic, the network can
continuously learn and adapt to the time-varying network environment based on the massive collected network data in
real time. An intelligent-native network exploits ML algorithms to improve its capabilities and reduce the business
costs for service deployment and management [58, 149]. The advantages of an intelligent-native network are two-fold.
First, the network can analyze the user’s behavior in real-time and autonomously learn his needs to predict his future
behavior. Then, the user’s information can be employed for network customization to achieve a user-centric network
[211]. Second, the network can meet changing requirements of a network service during its life cycle by autonomously
matching the requirements to the corresponding network communication, computing, and caching assets. This is
also valid for new emerging services. Holographic (AR and VR) and haptic communications are meant to be wider
available thanks to the future 6G network [41]. Moreover, the global COVID-19 pandemic is accelerating the digital
transformation of multiple and heterogeneous verticals, such as the development of new services for smart cities and
innovation in the eHealth, including telemedicine, medical and thermal imaging, and robotics for medicine practice
[23, 27].

Openness is also essential to achieve flexible networks and services [227]. An open network platform and interfaces
(O-RAN, NFV MANO, SDN, etc.) allow interconnection and interoperability of different vendors, which is essential
for sharing physical infrastructure. Thus, agents of diverse vertical industries may deploy their private physical
infrastructure and manage it through NFV MANO solutions and SDN controllers independent from public networks
operated by mobile network operators [178]. The standardization process will continue in the following years to fulfill
the remaining gaps and guarantee interoperability of heterogeneous implementations of open network solutions [45].

The cooperation of different physical networks will also attract attention. Multiple Radio Access Technology (multi-
RAT) aims to employ different access networks to improve the overall connectivity [92]. Its application to improve
media streaming is already being investigated [35, 47]. However, new transmission solutions based on space, UAV-based
and underwater communications will be integrated with terrestrial ones [23, 41]. Flexibility to operate the network at
any level (spectrum/band, physical and MAC, etc.), despite the different involved technologies, will be imperative [221].

In a media streaming context, performance assessment focuses on evaluating the system employed to stream the
content. The performance assessment is done by employing metrics and collecting measurements and/or estimations of
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such metrics. These involve quantifiable values to track and monitor a streaming session, i.e., video resolution and
bitrate, or a related factor that can influence it, i.e., network bandwidth and latency, at any network device. Moreover,
there exists lots of different metrics to describe the media system under different points of view, e.g., ISP, CP or user’s
view, including both objective (QoS) [56, 120] and subjective ones (QoE) [122, 193, 226]. In the context of the current
5G networks and devices, metrics collection is not so easy, as the heterogeneity in devices and virtualization solutions
increases the complexity. In a virtualized and heterogeneous network environment, media and network-related metrics
to describe the media system’s performance should be further expanded to characterize this new context where the
media streaming solution is deployed. Monitoring systems represent an essential part of a virtualized architecture.
Monitoring the resources means defining metrics that apply to the virtualization environment and describing the state of
the NFVI and the running VNFI. It allows to manage the physical and virtual resources more efficiently, including those
allocated for encoding operations [36, 167] or content caching [97]. Furthermore, the network flexibility, guaranteed by
NFV and SDN, raises the discussion on business costs monitoring [107]. The CP may be able to enforce its business
policy to balance the QoS/QoE and business costs trade-off. Thus, the definition of business metrics is necessary to
allow CP’s business decisions when running each component of its media streaming solution.

Energy efficiency and green communications [113] are envisioned to enable more sustainable networking [173].
Energy efficiency concerns are also relevant for media streaming services [17, 146]. 6G network will be developed by
taking into account self-sustainability devices and solutions [111]. Here, low-power wireless devices could harvest energy
from the available high-power radio waves [221]. Thus, battery-free implementations will be an interesting topic to be
further explored in different use cases. Clearly, IoT applications will benefit the most from battery-free implementations
[218]. However, the high presence of video content traffic also suggests their use for media communications to support
a self-sustainable 6G network [152, 180].

Finally, the growth of network and media traffic will have consequences on security. Critical media use cases, e.g.,
eHealth applications [24], and autonomous driving systems [66], need to be secured with security mechanisms that
will complement the conventional cryptography-based ones. Increasing security will be assured with the design of
cross-layer algorithms to protect the transferred information [209, 221].

6 INTERNATIONAL INITIATIVES

Employing VNFs for media streaming is a research topic that has attracted the attention of international organizations
and international funding programs for many years. Recently, the European Commission has funded numerous research
projects to develop and implement VNFs for different research scenarios and vertical industries. Table 7 summarizes
the most relevant actions. The project list includes initiatives targeting generic architectural design (i.e., CogNet [7],
SELFNET [11] and SliceNet [11]), activities building testbed environments and pilot environments for use case definition
and testing (FLAME [14], SoftFIRE [13] and 5GTango) [4], projects targeting specific application verticals and developing
required functionalities (5G-Media [1], 5Growth [3], 5GCity [2]) and finally international software communities to
provide open-source platforms (OpenAirInterface Software Alliance [10], Mosaic5G [8] and O-RAN Alliance [9]).

Regarding architectural definition, SELFNET H2020 project designed and tested an autonomous network management
framework capable of the automatic detection and mitigation of common failures in the network [55]. Among others, it
proposed the smart integration of state-of-the-art technologies in NFV. One of the outcomes is presented in [157], where
the SELFNET framework preserves the network’s health maximizing the QoE and minimizing the end-to-end energy
consumption. SliceNet project addressed both management and control planes of network slicing to leverage QoS for
sliced services [57]. The project proposed an integrated network management, control and orchestration framework
Manuscript submitted to ACM
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Table 7. Major SDN/NFV related research activities.

Project Period Area References
CogNet (Building an Intelligent System of Insights and Action for 5G Network
Management)

2015-2018 Architecture [7, 31, 38]

SELFNET (Framework for Self-Organized NetworkManagement in Virtualized
and Software Defined Networks)

2015-2018 Architecture [11, 55]

SliceNet (End-to-End Cognitive Network Slicing and Slice Management
Framework in Virtualised Multi-Domain, Multi-Tenant 5G Networks)

2017-2020 Architecture [12, 181,
210]

SoftFIRE (Software Defined Networks and Network Function Virtualization
Testbed within FIRE+)

2016-2018 TestBeds [13, 132]

FLAME (Facility for Large-scale Adaptive Media Experimentation) 2017-2020 TestBeds [14, 103]
5GTango (5GDevelopment and validation platform for global industry-specific
network services and Apps)

2017-2020 TestBeds [4, 168, 192]

5G-Media (Programmable edge-to-cloud virtualization fabric for the 5G Media
industry)

2017-2020 Application
Verticals

[1, 29, 50]

5Growth (5G-enabled Growth in Vertical Industries) 2019-2021 Application
Verticals

[3, 135]

5GCity (A Distributed Cloud and Radio Platform for 5G Neutral Hosts) 2017-2020 Application
Verticals

[2, 64]

OpenAirInterface Software Alliance 2014- Development
Platforms

[10, 159]

Mosaic5G 2016 - Development
Platforms

[8, 158]

O-RAN Alliance 2018- Development
Platforms

[10, 219]

and applied the concept to various use cases. One of those cases related to multimedia health services is described in
[210], where demanding QoS requirements (i.e., latency) must be fulfilled. The network intelligence topic is tackled by
CogNet, a project focused on realizing the well-known control loop MAPE (Monitor, Analyze, Plan and Execute) with
ML techniques and policy-based mechanisms for a vision of softwarized 5G networks. CogNet validated its vision in
different use cases that include SLA Enforcement and Mobile Quality Predictors [31], [38].

A second group of projects aimed at creating platforms and testbed environments where specific use cases,
applications, algorithms, and interoperability solutions could be designed and validated. FLAME stands out in this area
as a facility for large-scale experiments in the Adaptive Media field. Since 2017, FLAME has hosted different proposals
[103] to offload video content proactively to the edge of the network on an SDN/NFV environment. FLAME tests include
AR applications and smart video surveillance for aiding impaired citizens. SoftFIRE is another testbed environment to
experiment with VNF services and applications in SDN/NFV. SoftFIRE aims to assess the maturity level of solutions in
programmability, interoperability, and security and show how they can support the full potential of these properties
in a real-world case [132]. Finally, 5GTango puts the focus on network flexible programmability [168] by providing
software development kits (SDKs) [192]. This project included qualification and verification mechanisms as well as a
modular service platform to bridge the gap between business needs and network operational management systems.
5GTango was demonstrated in two verticals through specific pilots: advanced manufacturing and immersive media
[168].

The third category encompasses some examples of projects designing the required building blocks that enable
the applications for specific vertical sectors. 5GCity was an H2020 project aiming at designing, implementing, and
demonstrating a distributed cloud and radio platform for municipalities and infrastructures with neutral hosting
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capabilities. One of the project’s primary outcomes was the 5GCity Orchestration Platform, which supported the NFV
MANO model. In [64], the authors demonstrate that the virtualized platform could address different use cases related
to media streaming, such as real-time video acquisition and production at the edge, UHD Video Distribution, and
immersive services or mobile real-time transmission. 5G-Media [1] exploits the principles of NFV and SDN to facilitate
the development, deployment, and operation of VNF-based media services on 5G networks. Key in this project is the
development of a platform for service virtualization that provides an advanced cognitive management environment for
the provisioning of network services and media applications [29]. The use cases include teleimmersive gaming, mobile
journalism, and UHD content distribution [50]. 5Growth [3] supports diverse industry verticals by developing the tools
for interfacing those verticals with the 5G end-to-end platforms. The system provides the creation of network slices
with closed-loop automation and SLA life cycle service control. ML-driven solutions are also part of the project targets
to optimize access, transport, core and cloud, edge and fog resources across multiple technologies and domains [135].

Finally, OpenAirInterface Software Alliance [10], Mosaic5G [8], and O-RAN Alliance [9] are mixed academic and
industrial communities to create ecosystems of open-source projects for studying, building, and sustaining open flexible
and integrated 5G network. OpenAirInterface Software Alliance [10] provides 5G network tools extensively used by
researchers from both industry and academia. This initiative gathers developers from around the world, who work
together to build wireless cellular RAN and CN technologies [159]. Mosaic5G [8] develops a set of 5G software solutions
and has already hosted experiments targeting low latency MEC services, orchestration solutions, and programmable
RANs [158]. O-RAN Alliance [9] is pushing the standardization and the development of the O-RAN. RAN industry is
moving towards open, intelligent, virtualized, and fully interoperable RAN [219].

7 CONCLUSIONS

The popularity of media streaming services is constantly growing due to an increasing number of users, the diversity of
rich media experiences, e.g., online gaming, VR/AR applications, and the utilization beyond entertainment services,
i.e., in professional application domains. The latest smart mobile devices also have an essential role in the success of
media streaming, as their processing and rendering capabilities support streaming content at very high resolutions, e.g.,
UHD or 4K. Consequently, media streaming traffic represents a substantial share of the total Internet traffic and, more
importantly, an increasing one.

To cope with this increasing media traffic and high dynamics of network performance and user mobility, improved
network capabilities are required to maintain high QoS and QoE performance while achieving the best trade-off with
business costs and energy efficiency. 5G networking is bringing new possibilities to deploy intelligent network functions,
which monitor the media streaming service through live and objective metrics and boost it in real-time. Under the 5G
umbrella, NFV will have a prominent role in virtualizing network functions and their management and orchestration.

In this context, this work provided a state-of-the-art on VNFs applied to media streaming. To this end, we considered
the factors that concur with the design and implementation of a stable VNF. VNF-based media streaming functions
monitors and collects performance metrics to tune their configuration to enhance the processed media streaming
sessions. Beyond that base features limited to session quality, advanced solutions adapt the VNF life cycle deployment
and management, dealing with cost-performance trade-offs and the balanced setup when infrastructures with several
VNFs come into play. Moreover, network traffic monitoring and analysis allow the creation of models to approximate the
behavior of the network and predict future network events to take actions proactively. Thus, any network malfunction
or issue that affects the media steaming session can be prevented.
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Several VNF solutions to improve media streaming are presented. Solutions, including media casting, transcoding, and
content caching, can be employed at any network segment. Thanks to the NFV MANO architecture, the deployment of
VNFs is interoperable and can be automatically operated and orchestrated across a virtualized infrastructure. However,
the exploitation of media streaming VNFs is not limited to the Network Core, but they can also be run at MEC hosts.
Capillarity of the MEC allows computing operations close to the base stations and reduces the latency when dealing
with live streaming services.

Finally, research challenges and open issues have been presented in the realm of VNFs applied to media streaming
services. The main venues where the research will focus in the next few years are the achievement of dynamic VNF
deployment and orchestration, complete MEC integration, and network slicing. Long-term research will also address
the strong employment of ML to foster network capabilities and the utilization of open network solutions and/or
new access technologies, also combining them to increase capacity. Green communications and security will also be
significant concerns, as future networks should reduce their environmental impact and guarantee the security of the
processed information. In conclusion, VNFs represent an essential enabler in improving media streaming services.
However, despite the research done under international initiatives pushing 5G and network virtualization, several
research challenges still exist and provide opportunities for further research activities.
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