
1

Computing Offloading with Fairness Guarantee:
A Deep Reinforcement Learning Method

Hao Hao, Changqiao Xu, Senior Member IEEE, Wei Zhang, Shujie Yang,
and Gabriel-Miro Muntean, Fellow IEEE

Abstract—Edge computing can reduce service latency and save
backhaul bandwidth by completing services at network edges,
providing support for diverse computation-intensive and delay-
sensitive services. However, it is not practical to support all
services at edge nodes due to the limited network resources. The
decision that which services can be provided locally and which
services should been offloaded to cloud significantly impacts the
user experience. Cloud-edge computing offloading becomes an
important issue in edge computing. In this paper, we take the
fairness into the optimization objective of computing offloading
problem, and consider both computing capacity and storage
space as problem constraints. The problem is formulated as
a long-term average optimization problem to maximize the α-
fair utility function of saved time, and further translated as
a Markov decision process. As the optimization problem with
fairness guarantee and huge action space, we cannot solve it with
traditional methods. Therefore, an innovative multi-update deep
reinforcement learning algorithm is proposed which can optimize
the objective with α-fair utility function and reduce dramatically
the size of action space. We also prove the convergence of
our algorithm theoretically. To our best knowledge, the long-
term average optimization of computing offloading with fairness
guarantee is rarely seen in literature. Extensive simulation
experiments show that our algorithm can converge quickly and
has better performance in terms of service delay and fairness.

Index Terms—Mobile Edge Computing, Computing Offload-
ing, Deep Reinforcement Learning, Fairness Guarantee.

I. INTRODUCTION

OUR life has been greatly enriched by the rapid devel-
opment of both high specification devices and mobile

networks. Many new computational-demanding services, in-
cluding involving natural language processing, live rich media
streaming, etc. have sprung up. These services enrich our life,
but also bring exponentially growing data to process, which
requires huge computing resources. It is becoming inadequate
to respond such a large computational pressure with cloud
computing solutions that only rely on the computing resources
of cloud services. Besides, users can only get services from
remote cloud in cloud computing, resulting in unacceptable

H. Hao, W. Zhang are with the Shandong Computer Science Center
(National Supercomputing Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan, China. (e-mail: haoh@sdas.org,
wzhang@sdas.org)

C. Xu, S. Yang are with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecommunications,
Beijing, China. (e-mail: cqxu@bupt.edu.cn, sjyang@bupt.edu.cn).

G.-M. Muntean is with the Performance Engineering Laboratory, School
of Electronic Engineering, Dublin City University, Dublin, Ireland. (e-mail:
gabriel.muntean@dcu.ie).

Corresponding author: Changqiao Xu

network latency and congested backbone networks. To allevi-
ate the computation pressure in the cloud, edge computing [1],
a new computing paradigm, was proposed to utilize edge node
resources to support some services. This approach reduces
network latency by avoiding the long transmission from users
to cloud services, and is gradually becoming an essential
avenue to improve the quality of network services.

However, the capability of edge node is limited and they
cannot satisfy all service requests currently. To take full
advantage of cloud computing and edge computing, it is
necessary to cooperate the resources of cloud and edge
node. One of important problems is how to determine the
computing status. There are many works that study this
problem and have achieved excellent results in some respects
[2]-[10]. However, they all ignore the fairness of services,
which results in consistently short latency for some popular
services but poor experience for other services. Besides, it
is common to cache relevant databases/libraries before pro-
cessing computational-demanding services. For example, in
Dynamic Adaptive Streaming over HTTP (DASH) [11], we
need to analyze packet loss, available bandwidth and other
factors of users to provide appropriate bitrate versions. Before
the computing, the relevant databases/libraries of applications
need to be cached in edge node. Another example involves
cloud games. Users offload computing tasks to edge nodes or
the cloud to reduce the computing pressure. Apart from data
processing, the edge node or the cloud also need to cache
relevant data of the games. These show the storage space is
also an important constraint for the cooperation between cloud
and edge node.

In our work, we focus on the long-term average performance
optimization of service offloading with fairness guarantee
under the constraints of limited computing capacity and
storage space at the edge node. There are many new chal-
lenges to solve this problem. First, we all know that network
aspects such as user requests are dynamic and stochastic
[12]. Compared with short-term performance, the long-term
average performance (e.g. service latency) is also more useful.
However, we usually need the complete future information
to achieve the long-term average optimization, but predicting
future information in a dynamic network is difficult, which
means that optimization of long-term average performance
is also very challenging. In addition, we need to take the
fairness into account, making the problem intractable. In fact,
some works have optimized the current computing offloading
decision by taking fairness into account, but few works achieve
the long-term average optimization with fairness guarantee.

2

Second, the problem complexity will increase with double
constraints. In the service offloading problem, both the com-
puting capacity and storage space of the edge node affect the
offloading policy, so we should address them jointly. There
is a need for adaptive and efficient coordination to reduce
service latency. Third, we need to get the computing status of
services rather than the computing offloading ratio. However,
the computing statuses of services are interrelated, resulting
in an exponentially growing solution space, which means it is
not feasible to search the entire solution space.

Recently, deep reinforcement learning (DRL) [13], good
at long-term optimization problem solving, was widely used
in control. Through training on historical data, DRL can
take appropriate actions to get the optimal long-term average
reward, which can help solving our problem. However, we can
not use DRL directly due to the optimization objective of our
problem with fairness guarantee. Additionally, there are some
other issues, especially as model training takes a long time or
converges slowly if the action space is very large.

This paper focuses on achieving long-term average opti-
mization of cloud-edge computing offloading with fairness
guarantee. The article formulates the problem as a Markov
Decision Process (MDP) and proposes a novel DRL algorithm
to solve it. The proposed solution is a significant extension of
our previous work [14] as it guarantees fairness. To the best
our knowledge, this is one of the very few works which focus
on the long-term average optimization of computing offloading
with fairness guarantee. The main contributions of our research
are summarized as follows:

• To minimize service delay, the computing offloading
problem with optimization of the long-term average
performance is formulated. We also introduce the α-
fair utility function into our optimization objective to
guarantee service fairness. Furthermore, the optimization
is formulated into a Markov Decision Process (MDP)
problem.

• To optimize the α-fair utility function of average service
delay, we adjust the MDP with a function of past
rewards. We also theoretically prove that the adjusted
model has the same stationary point as the original α-
fair utility function problem model.

• Due to the unavailability of state transition probability,
we propose a novel model-free deep reinforcement
learning algorithm, the multi-update reinforcement
learning (MURL) to solve this problem. MURL has an
adjusted reward and employs an innovative exploration
strategy, which can optimize the α-fair utility function of
average service delay and reduce the action space size.

• Extensive simulation experiments compare the pro-
posed solution with three other alternative solutions.
Better results are achieved in terms of both service latency
and fairness during performance evaluations.

The paper is organized as follows. The related works are
reviewed in Section II. The system model is introduced in
Section III. The service offloading problem is formulated as a
MDP in Section IV. The novel DRL algorithm is introduced
in Section V. Section VI discusses the simulation results and

Section VII presents the conclusions.

II. RELATED WORKS

Mobile edge computing is attracting widespread attention
and being applied to various scenarios, including transcoding
for livecast services [15], software defined networking (SDN)
[16], information centric networking (ICN) [17] and 5G en-
vironments [18]. Due to the limited resources of edge nodes,
the collaboration between cloud and edge is necessary, which
has attracted many researches and development efforts.

One of the essential aspects to address is computing of-
floading which will significantly affect the performance of
services. Various works have focused on how to improve
service quality under the limited computing capacity of edge
nodes. To meet the demand of user services, authors [2]
proposed a resource allocation framework for mobile-edge
cloud, which combines the limited communication and com-
puting resources. The resource optimization of computing is
formulated as a mix integer nonlinear programming problem in
[3] to minimize the computing time of all services. In order to
adapt to the dynamic environments, the authors of [4] proposed
a service offloading method based on meta reinforcement
learning. This method improves the speed of training by
employing a clipped surrogate objective and also reduces the
delay. Authors of [5] considered the trust risks in computing
offloading. They formulated a long-term optimization problem
with co-provisioning of computation, transmission and trust
services. Based on a Lyapunov optimization, they proposed
an online learning-aided cooperative offloading mechanism
to solve the problem. Considering the spectrum access in
reconfigurable wireless networks, authors of [6] proposed
a primary-prioritized recurrent deep reinforcement learning
algorithm for dynamic spectrum access based on the cognitive
radio (CR) technology. They formulated user states as Markov
states. To improve the convergence speed, authors combined
dueling deep Q-network with recurrent neural network to solve
the problem. Authors of [7] took both energy consumption
and service delay into account. They formulated a service
offloading problem with the goal of minimizing the weighted
sum of energy consumption and computation latency. Authors
of [8] proposed a D2D-assisted MEC system whose goal is to
reduce energy consumption and delay. They separately solved
the computing offloading and transmission power allocation by
a Knapsack problem-based algorithm and convex optimization.
Finally, they proposed an alternate optimization algorithm to
achieve the joint optimization of these two aspects. In Internet
of Things (IoT), authors of [9] proposed an application-
deadline-aware computing offloading strategy which employs
deep reinforcement learning to reduce the energy consumption
of IoT devices. In internet of vehicles, authors [10] formulated
the service placement problem as a binary integer linear pro-
gramming problem whose goal is the optimization of service
delay. Then authors developed a low complexity heuristic
solution to this problem. However, all these works ignore
the fairness of services which is important network objective.
Besides, there is an implicit assumption that edge node can
process all computation tasks that are offloaded from users

3

regardless of whether it has already cached related data. This
is impractical as there is limited edge storage space available.

Edge caching localizes traffic and achieves low latency.
The authors of [19] proposed an edge caching framework for
5G networks. Based on user demands, this framework caches
most popular content to minimize the average access delay.
By learning users’ preferences for video topics, authors [20]
proposed a novel caching policy. Once receiving a service
request, an explore-and-exploit method is applied to decide
whether to cache the service based on users’ preference.
Authors of [21] studied the binary offloading avenues for
AR applications. They formulated the problem as a Markov
decision process and proposed a deep reinforcement learning
model to solve it, which greatly reduced the computational
complexity of the solution. Authors [22] designed a caching
system which supports both edge computing and hierarchical
caching. They formulated a hierarchical collaborative caching
problem with the goal of minimizing transmission latency, and
then proposed an online algorithm to solve it. Collaborative
content caching between cloud and single base station was
studied in [23][24] whose goal was to maximize the local hit
rate and data transmission rates while reducing service latency.

At the same time, it is an important avenue to solve
network resource allocation problems by predicting network
status. Content prefetching is widely used in mobile scenarios.
Yuan et al. [25] used neural network to predict the users’
requests information. Based on the predictive information,
they designed a placement scheme to generate the placement
strategy for edge node. Different from previous works, based
on the assumption of synchronous offloading, Chen et al.
[26] studied an energy-saving offloading strategy whose arrival
time and task processing time are asynchronous. The problem
was transformed into two subproblems. Authors combined the
double DQN and distributed LMST to predict time intervals
and reduce the overall solution’s computational complexity.
Cao et al. [27] conducted a study on the deployment of
heterogeneous edge servers, whose goal is to minimize the
expected response time of base station system. Based on
the game theory, they designed a mobility-aware approach to
analyze the movement of users. Although predicting network
information can improve the effectiveness of decisions, the
accuracy of prediction method is far from guaranteed. These
works always depend on high prediction accuracy, which
introduces certain limitations.

Focusing on computing services, an architecture which
jointly optimizes computing and caching in 5G networks was
proposed in [28]. In [29], the authors researched a joint
computation offloading and data caching problem in a hybrid
MEC system to minimize the request delay at the user side.
However, these works all ignore the fairness in optimization,
which is an important factor of user experience on the network.
Few works on computing offloading considered fairness, but
paper [30] is one of them. There are still several significant
differences. First, [30] only focuses on the optimization of
current time slot and ignores the future information, while we
achieve the long-term average optimization. Second, [30] only
considers the min-max fairness function, while we use the α-
fair utility function where min-max fairness is just one case.

Third, we propose an innovate DRL algorithm to solve the
problem and [30] is based on convex optimization theory.

III. SYSTEM MODELING

This section introduces the system model for computing
offloading, which includes system scenario, service delay
model, and problem formulation. Table I lists the mathematical
notations.

A. Scenario Description

The network scenario consists of cloud, base station (BS)
and users, which is a collaborative cloud-edge network and
illustrated in Fig.1. The V -antenna base station, whose storage
space is C and computing capability (e.g. the maximum fre-
quency of CPU) is F , works in full-duplex mode. It can cache
service data (e.g. databases/libraries and content) and provide
computation for services. However, BS can not support all
services due to the limited resources.

The set of services is denoted as K ≜ {1, 2, ...,K}. For
each service, there are three important attributes (ck, uk, ok),
where ck is the required storage space to cache service data,
uk is the required computation resource to finish computing,
and ok is the data size of output. Let’s take live streaming as an
example, ck is the data size of related codec databases/libraries
that application need to cache, uk is total computation to
encode and decode contents, and ok is the data size of output
codec streaming. Each independent service is assumed to be
the smallest processing unit which is indivisible [32].

The time is slotted [33], i.e., T = {1, 2, ..., T}. There are
two phases in a time slot, user request phase and service
providing phase. The beginning of a time slot is user request
phase. In this phase, users generate service requests and
send them to BS. We denote the number of users as N ,
and the number of requests for each service as a vector
Dt = [dt1, ..., d

t
k, ..., d

t
K], where dtk is the number of requests

for service k in time slot t. For user n, we use H l
n =

[hl
1,n, h

l
2,n, ..., h

l
V,n] to denote the downlink channel matrix

of BS, and wn is the additive white Gaussian noise, whose
covariance is σ2

l,n

In the service providing phase, BS provides services. As
mentioned above, BS cannot support all services locally be-
cause of the limited network resources of BS. We should
make decisions based on the request status and caching status
to determine which services can be processed locally for
minimizing service delay. Then, BS will provide services
based on the decision.

B. Service Delay Model

Local Computing: If BS provides service k locally, the
computation delay is defined as:

tclk = uk/f
l
k (1)

where f l
k is the computation resources that the BS assigns

to service k per second (cycles/s). If BS has cached related
libraries and content, it can process the service directly. The
received signal of user n, which consists of received radio

4

TABLE I: Mathematical Notations

Notation Explanation Notation Explanation
F Computing capacity of BS C Storage space of BS
K Set of services T Set of time slots
uk Required computing resource of service k ck Required storage space of service k
ok The data size of output wn The additive white Gaussian noise
N The number of users Mt Edge caching status at time slot t
Dt The number of requests at time slot t St The state at time slot t
Xt The action at time slot t Rt The reward at time slot t
Hl

n The downlink channel matrix of BS pln The power of transmission signal

BSBS

BS

Edge Computing: BS

provides services directly

Service Offloading:

BS forwards requests to

the cloud
Cloud

Backhaul: BS

downloads databases of

services from the cloud

Fig. 1: System Architecture

frequency signal from BS and the additive white Gaussian
noise at user n, can be expressed as:

yn =
√
pln(H

l
n)

T gln + wn (2)

where (·)T is transposition operation, gln is transmission signal
from BS to user n, and pln is power of transmission signal.
Then, we can calculate the signal to interference plus noise
ratio (SINR) as:

γl
n =

plntr{(H l
n)

T (H l
n)

TH}
σ2
l,n

(3)

where tr{·} represents the trance of matrix, (·)H is conjugate
transpose of matrix, and pln is transmission power of downlink
that BS transmits signal to user n. The transmission rate is
defined as:

rln = bllog2(1 + γl
n) (4)

where bl is the channel bandwidth of BS. For user n, the
transmission delay of service k is:

trlk = ok/r
l
n (5)

The service delay consists of computation delay and transmis-
sion delay as following:

T l
k = tclk + trlk (6)

If BS does not cache related databases/libraries and content,
it first needs to download related data from the cloud by
backhaul, and the download time is tdk = ck/B, where B

is the bandwidth of wired link between SBS and the cloud.
Therefore, the service delay in this case is:

T l
k = tclk + trlk + tdk (7)

Cloud Computing: If service k is processed in the cloud,
the computation delay is:

tcck = uk/f
c
k (8)

where f c
k is the computation resources that the cloud assigns

to service k per second. Due to the uncertainty of cloud
transmission[34], we simplify the transmission rate as:

rc = bclog2(1 +
pchc

σ2
c

) (9)

where bc, pc, hc, σ2
c respectively denote the channel band-

width, fixed transmission power, the channel gain, noise power
of cloud. The service delay is:

T c
k = tcck + trck (10)

where trck = ok/r
c is the transmission delay of cloud com-

puting.

C. Problem Formulation

Compared to cloud computing, edge computing can reduce
service latency by supporting faster transmission. The saved
time for service k by edge computing is calculated as:

T s
k = T c

k − T l
k (11)

The average saved time is:

T s
k = lim

T→∞

1

T

T∑
t=1

(dtkx
t
kT

s
k) (12)

where dtk is the number of requests, xt
k is the computing status

of service k, and xt
k = 1 if BS provides service k locally,

otherwise xt
k = 0. At each time slot, the computing status of

all services need to be determined, which can be denoted as
a vector Xt = [xt

1, ..., x
t
k, ..., x

t
K].

In order to guarantee fairness, the α-fair utility function is
introduced in our problem. For some constant α ≥ 0, the α-
fair utility is defined as:

U(x) =

{
x1−α/(1− α) for α ̸= 1
log(x) for α = 1

(13)

5

The fairness-aware computing offloading is formulated as
follows:

max
Xt

∑
k∈K

U(T s
k)

s.t.
∑
k∈K

ckx
t
k ≤ C (14a)∑

k∈K

f l
kx

t
k ≤ F (14b)

where the goal is the α-fair utility function of average reduced
time, (14a) is the constraint of storage space due to the fact that
BS needs to cache relevant databases if it provides services
locally, (14b) is the computing capacity constraint of BS.

It is intractable to derive the optimal solution of above prob-
lem. First, we need to find the long-term average optimization
solution of service computing problem. Traditional methods
such as dynamic programming always need the complete state
transition probability which is related to the user requests.
These methods also make decisions only after knowing the
user requests in all time slots, so they need to predict future
information. However, this prediction is both difficult and
impractical to make due to the dynamic characteristics of
the network systems. Besides, the optimization problem (14)
has huge solution space. In each time, we need to obtain the
decision Xt, which has 2K possibilities due to a combination
explosion of options. It is clearly not feasible to traverse
such huge solution space. Furthermore, there are many illegal
actions because of the limited resource of BS, which increases
the complexity of optimization. Third, reinforcement learning
is good at solving long-term average optimization problems,
but the goal of our problem is the α-fair utility function of
average reduced time not only the average reduced time, which
further increases the difficulty of solving the problem.

IV. MARKOV DECISION PROCESS FOR SERVICE
OFFLOADING

Reinforcement learning which replaces the state transition
probability by data sampling can achieve model-free learning
and is an efficient method to solve this kind of problem.
It only needs current information and does not require to
predict future data. Considering that deep reinforcement learn-
ing is an efficient method, we first formulate the computing
offloading problem without fairness guarantee as an MDP.
Three important elements are defined: state space, action space
and reward function. Then, we adjust the reward for α-fair
utility function and analyze the stationary point of the reward-
adjusted problem.

A. Markov Decision Process

We first formulate the original computing offloading prob-
lem without fairness guarantee, whose goal is long-term aver-
age reduced time, as following:

max
xt
k

∑
k∈K

T s
k

s.t.(14a), (14b) (15a)

Three important variables of MDP for the original problem
are defined.

The State Space: In this problem, the system state consists
of two variables, caching status and request status. We denote
edge caching status as a vector M t = [mt

1, ...,m
t
k, ...,m

t
K],

where mt
k = 1 if BS has cached the relevant databases of

service k locally at the beginning of time slot t, otherwise
mt

k = 0. In order to describe the request status, we define
a vector Dt = [dt1, ..., d

t
k, ..., d

t
K] to represent the number of

requests to each service, where dtk is the number of requests.
Therefore, we denote the state at time slot t as St = (M t, Dt),
and the state space is given as:

S = {(M t, Dt)|M t ∈ M, Dt ∈ N , t ∈ T } (16)

where M is the set of caching status under the problem
constraints, N is the set of all positive integers.

The Action Space: In the model, the action at each time slot
is defined as the computing decision Xt = [xt

1, ..., x
t
k, ..., x

t
K].

For action Xt, it consists of xt
k which is called underlying

action. The size of action space is 2K , where K is the number
of services. Besides, we call these actions which do not satisfy
problem constraints as illegal actions.

The Reward Function: In this problem, an action can grant
higher reward if it brings higher saved time. The reward func-
tion of original problem is divided into several components.

Illegal actions should be avoided, so we defined the reward
associated with illegal actions to be Pu, which is a negative
number, as a penalty. In legal actions, we discuss the reward
depending on the saved time. If BS provides service k locally
which means xt

k = 1, the saved time by edge computing is
dtk(T

c
k − T l

k). If the service k is completed in the cloud then
the saved time is 0. The reward of underlying action xt

k is
summarized as follows:

rtk =

 Pu, ifXt is illegal
dtk(T

c
k − T l

k), if Xt is legal and xt
k = 1

0, if Xt is legal and xt
k = 0

(17)

where dtk is the request number of service k. By the way, the
calculation of T l

k is different for the different current caching
status:

T l
k =

{
tclk + trlk, if mt

k = 1
tclk + trlk + tdk, if mt

k = 0
(18)

The reward of action Xt is the sum of all reward of
underlying action xt

k:

Rt =
∑
k∈K

rtk (19)

B. Model Adjustment and Analysis

Our goal is to optimize the fairness utility U(T s
k) not the

long-term average T s
k , so we need to adjust the MDP of

original problem (15). It is easy to know that the past reward
history of services affects the fairness of decision. We record
the average of past reward until time slot t as:

ht
k =

1

t

t∑
τ=1

rτk (20)

6

Then we use the average of past reward and original reward
to get the adjusted reward, which is defined as follows:

r̂tk = rtkU
′(ht

k) = rtkU
′(
1

t

t∑
τ=1

rτk) (21)

where U ′(x) is the first order derivative of the fairness utility
function U(x).

Theorem 1. The stationary point of the problem which has
adjusted reward is also a stationary point of the α-fair utility
optimization problem (14).

Proof. Based on paper [35], we give the proof of Theorem
1. We use θ∗ to denote a stationary point for the problem with
adjusted reward, which means ∇θp̂πθ

|θ=θ∗ = 0, where p̂πθ
is

the average adjusted reward under policy πθ and is defined as:

p̂πθ
= lim

T→∞

1

T
[

T∑
t=1

K∑
k=1

rtkU
′(

t∑
τ=1

rτk/t)] (22)

The average reward for service k of original problem
Eq.(15) is as following:

pπθ,k = lim
T→∞

1

T

T∑
t=1

rtk (23)

The Markov Chain is irreducible and aperiodic under policy
θ, so for any ϵ ≥ 0, we can get a T that satisfies the equation:

| 1
T

T∑
t=1

rtk − pπθ,k| < ϵ (24)

Combining Eq.(22), Eq.(23) and Eq.(24), we have:

|p̂πθ
−

K∑
k=1

pπθ,kU
′(pπθ,k)|

= | 1
T

T∑
t=1

K∑
k=1

rtkU
′(
1

t

t∑
τ=1

rτk)−
K∑

k=1

pπθ,kU
′(pπθ,k)|

≤
K∑

k=1

| 1
T

T∑
t=1

rtkU
′(
1

t

t∑
τ=1

rτk)− pπθ,kU
′(pπθ,k)|

≤
K∑

k=1

| 1
T

T∑
t=1

rtkU
′(pπθ,k)− pπθ,kU

′(pπθ,k)|+ ϵC2L

≤
K∑

k=1

| 1
T

T∑
t=1

rtk − pπθ,k| · |U ′(pπθ,k)|+ ϵC2L

≤ ϵC1 + ϵC2L (25)

where C1 is a bound for |U ′(pπθ,k)| and C2 is a bound for the
average reward 1

T

∑T
t=1 r

t
k. In the third step above, we used

the Lipschitz continuity as following:

|U ′(
1

t

t∑
τ=1

rτk)− U ′(pπθ,k)| ≤ L|1
t

t∑
τ=1

rτk − pπθ,k| ≤ Lϵ (26)

As ϵ → 0, that is T → ∞, we have p̂πθ
=∑K

k=1 pπθ,kU
′(pπθ,k). For α-fair utility functions, we know

that (1 − α)U(x) = xU ′(x) 1. Therefore, ∇θp̂πθ
|θ=θ∗ = 0

implies following equation:

∇θ[

K∑
k=1

pπθ,kU
′(pπθ,k)]|θ=θ∗ = 0 (27)

∇θ[

K∑
k=1

U(pπθ,k)]|θ=θ∗ = 0 (28)

Therefore, the stationary point θ∗ of adjusted-reward prob-
lem is also a stationary point for the α-fair utility optimization
problem (14). Theorem 1 is proved. □

From Theorem 1, we know that the α-fair utility optimiza-
tion problem and the adjusted reward problem have the same
stationary point and we can use gradient policy to get it. This
motivates us to design an algorithm to solve the problem.

V. PROBLEM SOLUTION

This section discusses the solution to the computing of-
floading problem with guarantee. We modify DQN in terms
of adjusted reward, exploration strategy and update method.
Then a novel DRL approach is proposed to solve the problem.

A. Proposed Solution Principle

Due to the lack of state transition probability matrix, tra-
ditional solutions such as policy iteration and value iteration
fail to solve this problem. DRL is a more efficient way to
solve long-term average optimization problem. It can learn
the optimal strategy by data sampling without knowing the
transition probability matrix.

As the MDP model described in previous section, we can
simply apply a DRL method such as the DQN algorithm,
whose input is state St and output is action Xt, to solve
the service offloading problem. Although we can use DQN
directly to solve our problem, there are two problems. First,
as mentioned earlier, our optimization goal is the α-fair utility
function of average saved time not average saved time. DQN
can not achieve this goal. Second, for each service, there are
two options xt

k ∈ {0, 1}. The size of action space reaches 2K ,
which is exponential to the number of services. In DQN, we
need an output neuron to represents the reward of an action,
so the number of output neurons is very large and we require
huge computing resources to train the model. Therefore, it is
not wise to use the DQN algorithm directly and we need to
reduce the action space.

For the first problem, we can use r̂tk to replace rtk as the
analysis in Section IV-B. To deal with the second problem,
we make more analysis. In the service offloading problem,
equation (19) shows that the reward of an action Xt consists
of its components xt

k. The Q-values of all actions Xt can be
calculated by the combinations of xt

k if we have get the Q-
value of underlying actions xt

k. Therefore, we only need to
train the expected reward of components xt

k, rather than Xt.
In this way, the action space can be reduced from 2K to the

1When α ̸= 1, we have xU ′(x) = x1−α = (1− α)U(x). When α = 1,
optimization of fair utility log(x) can be considered as the limit of (x1−α −
1)/(1− α) as α → 1

7

number of components 2K 2. When xt
k = 0, the saved time

is 0 and the reward is 0, so we don’t need to train. In other
words, for service k, we only need to calculate the reward of
providing it locally, which is also the reward of underlying
action xt

k = 1. Therefore, we further reduce the size of action
space from 2K to the number of services K.

Although we have the idea of reducing action space, two
important problems remain. First, the state transition depends
on action Xt in this problem. But in our idea, the model
should output the Q-value of underlying actions xt

k = 1, which
means we can not get action Xt and lead to the failure of state
transition. Second, the loss function that we can get at each
time slot is for action Xt. But we have to calculate the loss
function of underlying action xt

k = 1 to train the model, which
is contradictory in traditional DRL algorithms.

Algorithm 1 Optimal Set Selection Algorithm

Require:
Storage space C;
Computing capacity F ;
Attributes (ck, f

l
k) of all services;

Q-value of edge computing qk
Ensure:

Computing status vector Xt;
1: for k = 1, ...,K do
2: for j = 1, ..., C do
3: for i = 1, ..., F do
4: if ck>j or f l

k>i then
5: V k

j,i = V k−1
j,i

6: remove xt
k if xt

k in Xt

7: else if V k−1
j−ck,i−f l

k

+ qk ≥ V k−1
j,i then

8: V k
j,i = V k−1

j−ck,i−f l
k

+ qk

9: add xt
k if xt

k not in Xt

10: else
11: V k

j,i = V k−1
j,i

12: remove xt
k if xt

k in Xt

13: end if
14: end for
15: end for
16: end for

To solve above problems, we modify the classical DQN
algorithm from two aspects. The first aspect is exploration
strategy. The output of our model is the Q-value of underlying
actions xt

k = 1. In the classical DQN algorithm, agent can
only select an underlying action by ϵ-greedy policy each
time. However, the state transition of the model is based
on action Xt not underlying action xt

k = 1, which means
the exploration strategy should obtain a set of actions rather
than only an action. Therefore, a new selection mechanism
of optimal actions set whose Q-value is largest is proposed,
which will be described in detail in subsection V-C. The new
exploration strategy of our model is that we select a random
actions set with a probability of ϵ, otherwise we get the optimal

2There are two options for each service and the number of services is K.
So the number of components is product of the two 2K.

Environment

Main Network Target Network

Loss Function

Exploration

主网络Q(S,X)并生成回报r(S,X)，目标网络选择S’下最优动
作Q’(S’,X’),计算loss function， 将loss function 值

按Q(S,x)比例分配到每个基层动作进行参数修改

Action Selection

(, (,))tX Q S x
 error gradient

(,)tQ S x

+1tS



Reply Memory

(,)tQ S x

+1(, ')tQ S X

'X R̂

1ˆ(, , ,)t tS X R S 

1(, ,)t tS X S 

X

Fig. 2: Process of Solution
actions set by our new selection mechanism with a probability
of 1− ϵ.

The second innovative aspect is the update of Q-values. In
our model, we need to calculate the loss function of underlying
action xk and update model. But we only can get the reward
of action Xt from system. This is contradictory because action
Xt is a set of underlying actions and we cannot use its reward
to calculate the loss function of underlying action xk directly.
So, we first calculate the loss function of action Xt:

L(Xt) = (Q′
r −Q(St, Xt))2 (29)

where Q′
r = R + γQ′(St+1, argmaxX′Q(St+1, X ′)), X ′ is

the optimal underlying actions set that selected by our new
selection mechanism, and Q(St, Xt) is the Q-value of set Xt.
The calculation of Q(St, Xt) is as follows:

Q(St, Xt) =
∑

xt
k∈Xt

Q(St, xt
k) (30)

Then, the loss function of underlying action xt
k in action Xt

is:

L(xt
k) =

Q(St, xt
k)

Q(St, Xt)
· L(Xt) (31)

Finally, we can use the loss function L(xt
k) for ∀xt

k ∈ Xt to
update our main network model.

In MURL algorithm, we use the loss value of action X
to calculate the loss value of underlying actions x which
belong to action X . So, in each episode, we get the loss value
of multiple underlying actions x and update parameters of
the neural network model multiple times. This is unlike in
traditional DRL, where the parameters can only be updated
once in each episode. As the MURL algorithm updates the
values of an action set, rather than updating the value of one
action only in each episode, it was denoted multi-update.

B. Optimal Set Selection Mechanism

In this subsection, we will introduce the optimal set selec-
tion mechanism in detail, which can get the action set with

8

largest Q-value. We first formulate the problem as follows:

max
∑
xk∈X

Q(S, xk)

s.t.
∑
xk∈X

ck ≤ C∑
xk∈X

f l
k ≤ F

(32)

The goal of problem is to optimize the Q-value, and the con-
straints are the limited storage space and computing capacity.
This is a multi-constraint 0-1 Knapsack problem with profits
Q(S, xk) and weights C,F . If the storage space of BS is j and
the computing capability is i, we denote V k

j,i as the maximum
Q-value of optimal action set for first k services. The transition
equation (i.e. recursion) of V k

j,i is:

V k
j,i =

{
V k−1
j,i , if ck>j or f l

k>i

max {V k−1
j,i , V k−1

j−ck,i−f l
k

+ qk}, otherwise
(33)

where ck represents the storage space to cache the service
data, the f l

k represents the computation resource that the SBS
provides for service k, and the qk is the Q-value of action xk.

For equation (33), service k cannot be supported locally if
its required storage space or computation resource exceeds the
local resources of base station. In this case, the optimal action
set with largest Q-value for the first k services is equal to first
k− 1 services. If BS has enough resources to support service
k, there are two options. If BS processes service k locally, the
total Q-value is V k−1

j−ck,i−f l
k

+ qk. If service k is completed in
cloud, the total Q-value is the same as the first k− 1 services
V k−1
j,i . This process is introduced in Algorithm 1.

C. Proposed Service Offloading Algorithm

Fig.2 illustrates the architecture of our algorithm. To over-
come the problem of overestimation, we use two multi-layer
neural networks with the same structure: Main Network and
Target Network. In the training, we need to train the parameters
of main network by loss function, and use target network to
get the target Q-values. The target network copies the main
network parameters at regular intervals. As mentioned, we use
Q-value of underlying action Q(St, xt

k) instead of Q-value of
underlying actions set Q(St, Xt) to reduce the action space
from 2K to K. So, the output of our models are the Q-
value of underlying action Q(St, xt

k), whose size is K. In
the state transition of model, we need underlying action set
Q(St, Xt) to determine the next state. The Action Selection
module can achieve this transition by obtaining the optimal
underlying set according to Algorithm 1. In the update of
model parameters, we need the loss function of underlying
action xt. Loss Function module can calculate it based on the
reward of underlying action set X . The Exploration module
selects a proper action, as mentioned in subsection V-A.

The training of model needs computing resources and
is time consuming. As BS computing resources are often
limited, to reduce the pressure on BS, we consider cooperation
between BS and the cloud to train the model. The main
idea is as follows. BS transmits the experience information

Algorithm 2 MURL Algorithm in BS

Require:
Model Parameters θ;

Ensure:
Four-tuple of experience information;

1: for t = 1, ..., T do
2: Sent request to the cloud for model parameters;
3: Recieve the model parameters from the cloud;
4: Get current state St;
5: Select action Xt by new exploration strategy;
6: Execute action Xt,get next state St+1 and reward Rt;
7: Calculate adjusted reward r̂tk by Eq.(21);
8: Calculate R̂t;
9: Sent four-tuple (St, Xt, R̂t, St+1) to the cloud;

10: end for

(St, Xt, R̂t, St+1) to the cloud. The cloud uses this experi-
ence information to train the model and transmits the model
parameters back to the BS. The proposed MURL algorithm is
described in Algorithm 2 and Algorithm 3.

Algorithm 2 indicates the process of information collection
performed at BS.

The cloud trains the model. The training process is intro-
duced by Algorithm 3.

In MURL, there are several improvements in comparison
with DQN. In line 5 of Algorithm 2, we use our new explo-
ration strategy to get a set of underlying actions X instead
of a single underlying action xk. In line 8 of Algorithm
2, we use the adjusted reward to optimize the α-fair utility
function. Additionally, the reward R̂j is for set Xj , so we
cannot directly use the Q-value of the underlying action xj

k

to calculate the loss function. We have to get the Q-value of
set Xj by employing Algorithm 1, as shown in lines 11 and
12 of Algorithm 3. Lines 13-18 of Algorithm 3 correspond
to the update process. We calculate the loss function of set
Xj and get the loss function of each underlying action in
Xj by proportional distribution. Finally, for all underlying
actions in Xj , we update the main network according to the
loss function. As users’ preferences change slowly in time,
the model does not need a real-time update. For example, the
model can be updated and trained once every so often (e.g.
two weeks) and in between, we can use the already trained
model to make decisions.

It is worth noting that there are two major aspects which
strongly recommend using multi-update deep reinforcement
learning to solve the proposed problem. First, it is the prob-
lem’s huge and discrete action space. The action space size of
the computing offloading problem is 2K . We use MURL to
train the Q-value of underlying action and reduce the action
space from 2K to K. To solve any conflicts in training, MURL
employs a new exploration strategy and an improved Q-value
update method. Second, it is the optimization objective of the
problem. Our goal is optimizing the α-fair utility function
of the long-term average saved time and not the long-term
average saved time. In MURL, we record the average of
past rewards, then use this average of past rewards and the
original reward to get the adjusted reward. We also analyze

9

Algorithm 3 MURL Algorithm in the cloud

Require:
Learning rate δ; Decay factor γ;
The update frequency of target network e;

Ensure:
The main network parameters θ;

1: Initialize the main network parameter θ and Q-values
Q(S, xk) randomly;

2: Initialize target network parameter θ′ = θ and Q-value
Q′(S, xk) = Q(S, xk);

3: Initialize S1 as first state and get S1;
4: for i = 1, ..., P do
5: if receive the parameters request from BS then
6: send main network parameters θ to BS
7: end if
8: if receive four-tuple (St, Xt, R̂t, St+1) then
9: Store (St, Xt, R̂t, St+1) in replay memory;

10: Sample m samples (Sj , Xj , R̂j , Sj+1) from replay
memory randomly;

11: Select argmaxX′Q(Sj+1, X ′) by Algorithm 1 in
main network;

12: Calculate Q′(Sj+1, X ′) by (30) in target network
13: Compute the target value for action set Xj

yj =

{
R̂j , terminate
R̂j + γQ′(Sj+1, X ′), otherwise

14: Get the loss function L(Xj) by equation (29) ;
15: Get L(xk) by equation (31) for ∀xk ∈ Xj

16: for ∀xk ∈ Xj do
17: Perform gradient descent with respect to the net-

work parameters θ by L(xk);
18: end for
19: if i%e == 0 then
20: Update target network parameter θ′ = θ
21: end if
22: end if
23: end for

the stationary point of the reward-adjusted problem.

VI. SIMULATION RESULTS

We design extensive simulation base on TensorFlow [36]
to demonstrate the performance of our algorithm as efficient
solution to the service offloading problem. In this section, we
will show the simulation results and analyze the performance
in terms of convergence, fairness, computing capacity, storage
space, and user requests. Table II summarizes the experimental
settings.

A. Simulation Scenario and Setup

There are 10 independent services. For service k, the range
of required computing resource uk is [0.5GHz, 2.5GHz], the
range of required storage space ck is [1.2GB, 2GB] and the
data size of output range is [4MB, 6MB]. The bandwidth
B of backhaul from cloud to BS is set to 8Gbps and the
download delay can be calculated as µk = 8 · ck/B. Similar
to [37], we assume that the request frequency conforms the

TABLE II: Parameters setting for simulations

Parameters Value
The number of services 10

The number of users 300
Computing capacity of BS 10GHz

Storage space of BS 10GB
Required computing resource [0.5GHz, 2.5GHz]

Required storage space [1.2GB, 2GB]
Bandwidth of backhaul 8Gbps

Data size of output [4MB, 6MB]
Transmission rate from BS to users [80Mbps, 100Mbps]

Transmission rate from cloud to users [8Mbps, 15Mbps]
Batch size 32

Learning rate 0.01
Decay factor 0.9

Zipf distribution with parameters λ = 1 and V = 0.1. The
average number of requests to service k is as follows:

D̄(k) =
V

r(k)λ
·N (34)

where r(k) is the ranking of user request frequency, N is the
number of users. In each time, the user request number follows
the Poisson distribution whose parameter is D̄(k). The default
computing capacity of BS is 10GHz, and the default storage
space is 10GB. In terms of data transmission, the transmis-
sion rate from BS to user is between [80Mbps, 100Mbps]
and the transmission rate from cloud to user is between
[8Mbps, 15Mbps]. The transmission time is calculated as
tc = 8 · ok/r, where ok is the data size of output and r is
the transmission rate.

The neural network employed has three layers. The first
layer is the input layer, which is responsible for taking the
state as input and passing the data to the following layers.
The number of neurons in the input layer is 2K, where K is
the number of services. In the experimental setup considered,
the input layer has 20 neurons. The second layer is a fully-
connected (FC) layer and there are 20 neurons with rectified
linear units (ReLU). The last layer is the output layer. The
number of neurons in the output layer is K, (i.e. set to 10 in
experiment). In the model training phase, we set the batch size
to 32, the learning rate is 0.01 and the decay factor is 0.9.

Due to the issues related to interpretability of neural net-
works and randomness of training data, it is intractable to
prove the gap between our proposed algorithm and the cor-
responding theoretical optimal solution [38]. Additionally, the
long-term average performance optimization problem is NP-
hard. Therefore very few approaches get the optimal solutions
of such a problem by employing variations of traditional
optimization algorithms (e.g. convex optimization) and many
of them use suboptimal solutions [27]. Therefore, for the
evaluation, we compare the performance of our algorithm
with that of three other baseline solutions via simulation-based
experiments. Table III summarizes the differences between our
algorithm and three baselines.

• Single Time slot Optimization(STO) This solution [3]
designs an asymmetric search tree and improves the
branch and bound method to solve the computing offload-
ing problem. STO focuses on optimizing current system

10

0 2000 4000 6000 8000 10000
Iteration

-50

0

50

100

150

200

250

300

Sa
ve

d
Ti

m
e (

s)

DQN
MURL

(a)

FACO STO DQN MURL
Algorithms

0

10

20

30

40

50

Sa
ve

d
Ti

m
e(

s)

Min
Max
Ave

(b)

Fig. 3: Performance of algorithms (a) convergence behavior; (b) fairness

TABLE III: Comparison of algorithms

Algorithm Fairness Optimization Method
STO No Single time slot Asymmetric search

DQN-based No Long-term average DQN
FACO Yes Single time slot Convex optimization
MURL Yes Long-term average A novel DRL algorithm

performance and not the long-term average performance
and does not take the fairness into account.

• DQN-based solution: This solution [39] is to optimizes
the long-term average performance of edge computing
system based on DQN algorithm. But it doesn’t consider
the fairness of services and the constraint of storage
space. To compare with our algorithm, we add the con-
straint of storage space in the experiment.

• Fairness-awared Computing Offloading solution
(FACO): This solution [30] considers the network opti-
mization of current time slot and use convex optimization
theory to solve this problem. It also takes the fairness into
account.

B. Comparative Performance Evaluation

This section discusses the performance of our algorithm in
terms of convergence and service delay.

Fig.3(a) shows the convergence behaviors in the training
phase. We only show the performance of MURL and DQN-
based solution, because FACO and STO solutions are not
based on reinforcement learning and doesn’t need the training
phase. In MURL, after 4600 training episodes, BS establishes
the knowledge model of the whole network system. The
average of saved time is stable and the algorithm converges.
The DQN-based solution converges after 8200 episodes. It can
also be seen that MURL outperforms the DQN-based solution,
as MURL updates Q-values for an actions set in each episode,
while DQN-based solution performs update only once per
action. Fig.3(b) shows the performance of four algorithms in
fairness. We can find that MURL has the largest average saved
time, but the gap between maximum saved time and minimum
saved time is small. This indicates that our algorithm MURL
has good performance in service delay and fairness. Although
the average saved time of DQN-based solution is larger than
FACO, the gap between maximum saved time and minimum
saved time of FACO is smaller than DQN-based solution.

The reason is that FACO only considers the optimization for
current time slot not for the long-term average, which reduces
the average saved time. Although DQN-based solution has
larger average saved time, it ignores the fairness. As a result,
DQN-based solution has the largest gap between maximum
saved time and minimum saved time. Similarly, STO considers
the performance optimization for the current time slot only,
and ignores fairness, so it saves more time, but it is very unfair.

Fig.4 shows the saved time by employing edge computing
during testing phase. The saved time is defined as the service
delay of cloud computing minus the delay of edge computing,
which consists of reduced transmission and download delay.
By the way, the reduced transmission time is defined as the
difference of transmission time between edge computing and
cloud computing which is calculated as tcck + trck − tclk − trlk.
Download delay tdk is the increased download delay for BS
downloading related databases from cloud. We set the initial
state of BS to null, that is, BS does not cache any services
databases. In Fig.4(a), the reduced transmission time of MURL
is similar to DQN-based solution, because it will sacrifice
part of the service delay to ensure the fairness of users.
As Fig.4(a) shows, MURL and DQN-based solution, which
have been trained with historical data during the training
phase, have faster convergence speed than FACO and STO.
FACO and STO only consider the optimization for the current
time slot, so their time reduction is less than those of DQN
and MURL which consider long-term average optimizations.
Fig.4(b) shows the download delay of the four solutions. At
the beginning, FACO and STO solution frequently download
services as there is a lack of historical data. This is also
illustrated in Fig.4(a). Due to the off-line training of the
model in advance, MURL and DQN-based can adapt to the
environment quickly and have low download delay. Besides,
we can find that the frequency of services download is much
smaller than the frequency of service requests, which also
shows that caching is performed on a much larger time-scale
[40]. Fig.4 shows that MURL has the larget saved time and
the best system performance in the four solutions.

C. Impact of Computing Capacity

We analyzes the performance of four solutions under the
constraint of computing capacity in this subsection. Fig.5
shows the effect of computing capacity on saved time and

11

0 50 100 150 200 250 300
Time Slot

0

50

100

150

200

250

300

R
ed

uc
ed

 T
ra

ns
m

is
si

on
 T

im
e

(s
)

FACO
DQN
MURL
STO

(a)

0 50 100 150 200 250 300
Time Slot

0

30

60

90

120

150

D
ow

nl
oa

d
D

el
ay

 (s
)

FACO
DQN
MURL
STO

(b)

Fig. 4: Saved time (a) reduced transmission time; (b) delay for downloading databases

10 11 12 13 14
Computing Capacity (GHz)

0

50

100

150

200

250

300

350

Sa
ve

d
Ti

m
e

(s
)

FACO STO DQN MURL

(a)

10 1411 12 13
Computing Capacity (GHz)

0

0.15

0.3

0.45

0.6

B
ac

kh
au

l T
ra

ff
ic

FACO STO DQN MURL

(b)

Fig. 5: Effect of computing capacity (a) saved time; (b) backhaul traffic

backhaul traffic. We adjusted the BS computing capacity to
test, and other parameters are consistent with Table II.

Fig.5(a) shows the impact of computing capacity on saved
time when the storage space is fixed at 10GB. The saved time
of four solutions all increases with the computing capacity of
BS. It is obvious that BS can process more services locally
if its computing capacity increases. Due to the limited of
storage space, we cannot always increase the saved time
by increasing computing capacity of BS, and the effect of
computing capacity gradually weakens until disappears. In
addition, different algorithms have different utilization of
computing capacity, resulting in different stationary points.
According to the average results of multiple experiments, our
algorithm saves up to 24.6% more time compared to FACO,
11.2% more than when STO is used, and 4.3% more that
the DQN-based solution. The reason is that FACO and STO
only optimize the single time slot performance and often get a
local optimal solution. Our algorithm and DQN-based solution
optimize long-term average performance, which leads to better
performance, in favor of MURL.

Fig.5(b) illustrates the impact of computing capacity on
backhaul traffic. The backhaul traffic is defined as the load rate
of backhaul link. It decreases with the increase of computing
capacity, contrary to saved time. Because more services can
be provided by BS when computing capacity increases, and
BS forwards less requests to cloud. Therefore, the services
provided by cloud decrease, which results in the decrease
of backhaul traffic. Besides, the backhaul traffic of MURL
algorithms is the minimum, DQN is the second best, STO is
the third, and FACO has the maximum value, which means

MURL has the best performance in terms of edge offloading,
followed by the other algorithms in the indicated order.

D. Impact of Storage Space

This subsection analyzes the impact of storage space on the
performance, shown in Fig.6. We adjusted the storage space
to test, and the other parameters are consistent with Table II.

Fig.6(a) shows the impact of storage space on saved time
when the computing capacity is fixed at 10GHz. Similar to the
situation of computing capacity, lager storage space can also
increase the saved time and has bottleneck. One different is
that the saved time of FACO solution doesn’t change with the
storage space and always stays the same in picture, because
the limited computing capacity of BS cannot support more
services under the strategy of FACO.

Fig.6(b) illustrates the backhaul traffic decreases with the
increase of storage space, and the trend levels off. The reason
is that more storage space means more service database can
be stored in BS which decreases the backhaul traffic. But the
backhaul traffic tends to be stable because of the constraint
of computing capacity. According to Fig.6(b), our algorithm
MURL reduces the backhaul traffic with up to 16.1%, 8.7%
and 5.6% compared to FACO, STO and DQN-based solution,
respectively.

From Fig.5 and Fig.6, we can find that both storage space
and computing capacity can affect service quality, but the con-
straints are coupled. If we only change one aspect, it often has
bottleneck for the overall system performance improvement.

12

10 12 14 16 18
Storage Space (GB)

0

50

100

150

200

250

300

Sa
ve

d
T

im
e

(s
)

FACO STO DQN MURL

(a)

10 12 14 16 18
Storage Space (GB)

0

0.2

0.4

0.6

0.8

B
ac

kh
au

l T
ra

ff
ic

FACO STO DQN MURL

(b)

Fig. 6: Effect of storage space (a) saved time; (b) backhaul traffic

100 200 300 400 500 600
Number of Users

0

100

200

300

400

500

Sa
ve

d
T

im
e

MURL
DQN
FACO
STO

(a)

0.7 0.8 0.9 1 1.1
Zipf distribution parameters

240

250

260

270

280

290

300

S
av

ed
 T

im
e

(s
)

4.5

5

5.5

6

6.5

A
ve

ra
ge

 S
av

ed
 T

im
e

(s
)

Saved Time
Average Time

(b)

Fig. 7: Effect of number of contents (a) number of users; (b) parameters of Zipf distribution

E. Impact of User Request

Both the number of users and Zipf distribution parameter
can affect the number of user requests. These two factors are
studied in the following experiment.

The effect of number of users is shown in Fig.7(a). We
set the Zipf distribution parameter as λ = 1. From equations
(17) and (34), we know that the saved time is proportional
to the number of requests and the number of requests is
proportional to the number of users. So, the saved time of
the four algorithms is proportional to number of users, which
corresponds to the data illustrated in the picture.

Fig.7(b) shows how the Zipf distribution parameter affects
the performance of our solution MURL. There are N = 300
users in experiment. We find that the saved time is inversely
proportional to Zipf distribution parameter. Because larger
parameter mean less requests according to equation (34), so
the total saved time decreases. To intuitively reflect the change
of each user, we divide the total saved time by the number
of users and get the average saved time. The right y-axis
of Fig.7(b) shows that the average saved time increases with
Zipf distribution parameter, and they are positively correlated.
Zipf distribution parameter becomes large means the user
requests are more concentrated to services with high popularity
rankings. Providing these popular services at edge nodes can
improve more system performance. Take an extreme example,
if Zipf distribution parameter goes to 0 and all services have
the same frequency of requests, all algorithms will get closer to
the random-based solution without considering the constraints.

VII. CONCLUSIONS

This paper focused on the long-term average performance
optimization of the cloud-edge computing offloading problem
with fairness guarantee. First, we formulated the problem with
the goal of minimizing the save time. This problem cannot
be solved with traditional methods due to the lack of state
transition probability. To provide a solution, we introduced
a novel DRL algorithm and designed the Markov decision
process of the problem. We adjusted the reward function and
proved the stationary point theoretically to guarantee the fair-
ness of services. Due to the huge solution space, we improved
the traditional DQN algorithm from exploration strategy and
model update, and then proposed MURL, a new algorithm
which can effectively reduce the size of the action space from
2K to K. Extensive simulations show that proposed solution
outperforms three alternative approaches in terms of different
indicators including convergence, fairness and service delay.
Future work will focus on the computation resources allocation
problem in a dynamic network with a cloud and multiple BSs.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) via grant 62225105; the Na-
tional Natural Science Foundation of Shandong Province under
Grant. ZR2022QF040; the QLU Pilot Project of Integration of
Science, Education and Production under Grant. 2022PX083
and 2022GH007. G.-M. Muntean acknowledges the support of
the Science Foundation Ireland (SFI) grants 21/FFP-P/10244
(Fradis) and 12/RC/2289 P2 (Insight).

13

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 2017.

[2] X. Chen, W. Li, S. Lu, Z. Zhou and X. Fu, “Efficient Resource Allocation
for On-Demand Mobile-Edge Cloud Computing,” IEEE Trans. Veh.
Techn., vol. 67, no. 9, pp. 8769-8780, Sept. 2018.

[3] J. Zhang et al., “Joint Resource Allocation for Latency-Sensitive Services
over Mobile Edge Computing Networks with Caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283-4294, June 2019.

[4] J. Wang, J. Hu, G. Min, A. Y. Zomaya and N. Georgalas, “Fast Adaptive
Task Offloading in Edge Computing Based on Meta Reinforcement
Learning,” IEEE Trans. Parallel and Distributed Syst., vol. 32, no. 1,
pp. 242-253, Jan. 2021.

[5] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu and X. Wang, “Learning-
Aided Computation Offloading for Trusted Collaborative Mobile Edge
Computing,” IEEE Trans. Mobile Comput., vol. 19, no. 12, pp. 2833-
2849, 2020.

[6] M. Chen, A. Liu, W. Liu, K. Ota, M. Dong and N. N. Xiong, “RDRL: A
Recurrent Deep Reinforcement Learning Scheme for Dynamic Spectrum
Access in Reconfigurable Wireless Networks,” IEEE Trans. Netw. Sci.
Eng. , vol. 9, no. 2, pp. 364-376, 1 March-April 2022.

[7] S. Guo, J. Liu, Y. Yang, B. Xiao and Z. Li, “Energy-Efficient Dynamic
Computation Offloading and Cooperative Task Scheduling in Mobile
Cloud Computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp.
319-333, Feb 2019.

[8] H. Wang, Z. Lin and T. Lv, “Energy and Delay Minimization of Partial
Computing Offloading for D2D-Assisted MEC Systems,” in Proc. IEEE
Wireless Communications and Networking Conference (WCNC), 2021.

[9] S. K. Panda, M. Lin and T. Zhou, “Energy Efficient Computation
Offloading with DVFS using Deep Reinforcement Learning for Time-
Critical IoT Applications in Edge Computing,”IEEE Internet Things J.,
early access.

[10] A. Moubayed, A. Shami, P. Heidari, A. Larabi and R. Brunner, “Edge-
enabled V2X Service Placement for Intelligent Transportation Systems,”
IEEE Trans. Mobile Comput., vol.20, no.4, pp.1380-1392, April 2021.

[11] Z. Jiang, C. Xu, J. Guan, Y. Liu and G. Muntean, “Stochastic Analysis
of DASH-Based Video Service in High-Speed Railway Networks,” IEEE
Trans. Multimedia., vol. 21, no. 6, pp. 1577-1592, June 2019.

[12] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[13] S. David et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature., vol. 529, no. 7587, pp. 484-489, 2016.

[14] H. Hao, C. Xu, L. Zhong and G. Muntean, “A Multi-update Deep Rein-
forcement Learning Algorithm for Edge Computing Service Offloading,”
in Proc. ACM Multimedia (ACM MM)., 2020.

[15] X. Chen et al., “Augmented Queue-Based Transmission and Transcoding
Optimization for Livecast Services Based on Cloud-Edge-Crowd Integra-
tion,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 11, pp.
4470-4484, Nov. 2021.

[16] X. Nie, L. T. Yang, J. Feng and S. Zhang, “Differentially Private Tensor
Train Decomposition in Edge-Cloud Computing for SDN-based Internet
of Things,” IEEE Internet Things J., vol. 7, no. 7, pp. 5695-5705, 2020.

[17] Y. Zhou, F. R. Yu, J. Chen and Y. Kuo, “Communications, Caching, and
Computing for Next Generation HetNets,” IEEE Wireless Commun., vol.
25, no. 4, pp. 104-111, Aug. 2018.

[18] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar and J. Chen, “Edge-
Assisted Distributed DNN Collaborative Computing Approach for Mobile
Web Augmented Reality in 5G Networks,” IEEE Netw., vol. 34, no. 2,
pp. 254-261, March 2020.

[19] D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang and Z.
Han, “A Dynamic Edge Caching Framework for Mobile 5G Networks,”
IEEE Wireless Commun., vol. 25, no. 5, pp. 95-103, Oct. 2018.

[20] Y. Guan, X. Zhang and Z. Guo, “PrefCache: Edge Cache Admission
With User Preference Learning for Video Content Distribution,” IEEE
Trans. Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1618-1631, April.
2021.

[21] M. Chen, W. Liu, A. Liu, Z. Zeng, “Edge intelligence computing for
mobile augmented reality with deep reinforcement learning approach,”
Comput. Networks, vol. 195, 2021.

[22] J. Dai, Z. Zhang, S. Mao and D. Liu, “A View Synthesis-Based 360°
VR Caching System Over MEC-Enabled C-RAN,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 10, pp. 3843-3855, Oct. 2020.

[23] X. Zhao, P. Yuan, H. li and S. Tang, “Collaborative Edge Caching in
Context-Aware Device-to-Device Networks,” IEEE Trans. Veh. Techn.,
vol. 67, no. 10, pp. 9583-9596, Oct. 2018.

[24] J. Kwak, Y. Kim, L. B. Le and S. Chong, “Hybrid Content Caching
in 5G Wireless Networks: Cloud Versus Edge Caching,” IEEE Trans.
Wireless Commun., vol. 17, no. 5, pp. 3030-3045, May 2018.

[25] X. Yuan, M. Sun and W. Lou, “A Dynamic Deep-learning-based Virtual
Edge Node Placement Scheme for Edge Cloud Systems in Mobile
Environment,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1317-
1328, 2022,

[26] M. Chen, W. Liu, T. Wang, S. Zhang and A. Liu, “A game-based deep
reinforcement learning approach for energy-efficient computation in MEC
systems,” Knowl. Based Syst., vol. 235, 2022.

[27] K. Cao, L. Li, Y. Cui, T. Wei and S. Hu, “Exploring Placement of
Heterogeneous Edge Servers for Response Time Minimization in Mobile
Edge-Cloud Computing,” IEEE Trans. Indus. Infor., vol. 17, no. 1, pp.
494-503, 2021.

[28] K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, “Cooperative
Content Caching in 5G Networks with Mobile Edge Computing,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 80-87, June 2018.

[29] X. Yang, Z. Fei, J. Zheng, N. Zhang and A. Anpalagan, “Joint Multi-
User Computation Offloading and Data Caching for Hybrid Mobile
Cloud/Edge Computing,” IEEE Trans. Veh. Techn., vol. 68, no. 11, pp.
11018-11030, Nov. 2019.

[30] J. Du, L. Zhao, J. Feng and X. Chu, “Computation Offloading and
Resource Allocation in Mixed Fog/Cloud Computing Systems With Min-
Max Fairness Guarantee,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1594-
1608, April 2018.

[31] X. Wang, R. Li, C. Wang, X. Li, T. Taleb and V. C. M. Leung,
“Attention-Weighted Federated Deep Reinforcement Learning for Device-
to-Device Assisted Heterogeneous Collaborative Edge Caching,” IEEE J.
Sel. Areas Commun., vol. 39, no. 1, pp. 154-169, Jan. 2021.

[32] L. Wei, C. H. Foh, B. He and J. Cai, “Towards Efficient Resource
Allocation for Heterogeneous Workloads in IaaS Clouds,” IEEE Trans.
Cloud Comput., vol. 6, no. 1, pp. 264-275, Jan. 2018.

[33] S. Li et al, “Joint Admission Control and Resource Allocation in Edge
Computing for Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 72-79,
Feb. 2018.

[34] X. Hu, L. Wang, K. -K. Wong, M. Tao, Y. Zhang and Z. Zheng,
“Edge and Central Cloud Computing: A Perfect Pairing for High Energy
Efficiency and Low-Latency,” IEEE Wireless Commun., vol. 19, no. 2,
pp. 1070-1083, Feb. 2020.

[35] J. Chen, Y. Wang and T. Lan, “Bringing Fairness to Actor-Critic
Reinforcement Learning for Network Utility Optimization,” Proc. IEEE
Conference on Computer Communications(IEEE INFOCOM), pp. 1-10,
2021.

[36] A. Martin, A. Ashish, B. paul and B. Eugene, “Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems” 2015. https://cse.buffalo.edu/ chan-
dola/teaching/mlseminardocs/TensorFlow.pdf.

[37] M. Zhang, H. Luo and H. Zhang, “A Survey of Caching Mechanisms in
Information-Centric Networking,” IEEE Commun. Surveys Tuts, vol. 17,
no. 3, pp. 1473-1499, 2015.

[38] E. Weinan, et al., “Towards a Mathematical Understanding of Neural
Network-Based Machine Learning: what we know and what we don’t,”
CSIAM Trans. Applied Mathematics, 2020.

[39] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and M. Bennis “Optimized
Computation Offloading Performance in Virtual Edge Computing Systems
Via Deep Reinforcement Learning,” IEEE Internet Things J., vol. 6, no.3,
pp. 4005-4018, 2019.

[40] A. F. Molisch et al., “Caching eliminates the wireless bottleneck in video
aware wireless networks,” Adv. Elect. Eng., pp 1-13, 2014.

14

Hao Hao received the Ph. D degree in computer
science and technology from Beijing University of
Posts and Telecommunications, Beijing, China,in
2021. He is currently a lecturer with the Shandong
Computer Science Center (National Supercomputing
Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences). His research in-
terests include MEC and content caching over the
wireless network, Multimedia Communications.

Changqiao Xu (SM’15) received the Ph.D. degree
from the Institute of Software, Chinese Academy of
Sciences (ISCAS) in Jan. 2009. He was an Assis-
tant Research Fellow and R&D Project Manager in
ISCAS from 2002 to 2007. He was a researcher
at Athlone Institute of Technology and joint PhD
at Dublin City University, Ireland during 2007-
2009. He joined Beijing University of Posts and
Telecommunications (BUPT), China, in Dec. 2009.
Currently, he is a Full Professor with the State Key
Laboratory of Networking and Switching Technol-

ogy, and Director of the Next Generation Internet Technology Research Center
at BUPT. His research interests include Future Internet Technology, Mobile
Networking, Multimedia Communications, and Network Security. He has
published over 200 technical papers in prestigious international journals and
conferences, including IEEE Comm. Surveys & Tutorials, IEEE Wireless
Comm., IEEE Comm. Magazine, IEEE/ACM ToN, etc. He has served many
international conferences and workshops as Co-Chair or Technical Program
Committee member. He is currently serving as the Editor-in-Chief of Trans-
actions on Emerging Telecommunications Technologies (Wiley).

Wei Zhang received the B.E. degree from Zhe-
jiang University in 2004, the M.S. degree from
Liaoning University in 2008, and the Ph.D. degree
from Shandong University of Science and Tech-
nology in 2018. He is currently a Professor with
the Shandong Computer Science Center (National
Supercomputing Center in Jinan), Qilu University of
Technology (Shandong Academy of Sciences). His
research interests include future generation network
architectures, edge computing and edge intelligence.

Shujie Yang received the Ph.D. degree from the
Institute of Network Technology, Beijing University
of Posts and Telecommunications, Beijing, China,
in 2017, where he is currently a Lecturer with the
State Key Laboratory of Networking and Switching
Technology. His major research interests are in the
areas of wireless communications and wireless net-
working.

Gabriel-Miro Muntean (F’22) is Professor with
the School of Electronic Engineering, Dublin City
University (DCU), Ireland, and co-Director of the
DCU Performance Engineering Laboratory. He has
published over 500 papers in top-level international
journals and conferences, authored 4 books and 26
book chapters, and edited 6 additional books. He has
supervised to completion 25 PhD students and has
mentored 20 post-doctoral researchers and fellows.
His research interests include quality, performance,
and energy saving issues related to rich media con-

tent delivery, technology enhanced learning, and other data communications
over heterogeneous networks. He is an Associate Editor of the IEEE TRANS-
ACTIONS ON BROADCASTING, Multimedia Communications Area Editor
of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and chair
and reviewer for important international journals, conferences, and funding
agencies. He was Project Coordinator and DCU team leader for the EU
projects NEWTON and TRACTION.

