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Abstract—The latest evolution of wireless communications enables users to access rich Virtual Reality (VR) services via the Internet,
including while on the move. However, providing a premium immersive experience for the massive number of concurrent users with
various device configurations is a significant challenge due to the ultra-high data rate and ultra-low delay requirements of VR livecast
services. This paper introduces an innovative multi-user cost-efficient crowd-assisted delivery and computing (MEC-DC) framework,
which leverages mobile edge computing and end-user resources to support high performance VR content delivery over 5G-and-beyond
heterogeneous networks (5G-HetNets). The proposed MEC-DC framework is based on three main solutions. First is a novel buffer-
nadir-based multicast (BNM) mechanism for VR transmissions over 5G-HetNets. BNM ensures smooth and synchronized user viewing
experiences by maximizing the average playback buffer-nadir of all participants with stochastic optimization. Second and third are
practical distributed algorithms: the cost-efficient multicast-aware transcoding offloading (MATO) and crowd-assisted delivery algorithm
(CAD) which optimize jointly multicast delivery and video transcoding. The algorithms’ optimality and complexity were investigated. The
proposed MATO-CAD solution was evaluated with real datasets, trace-driven numerical simulations, and prototype-based experiments.
The trace-driven experimental results showed how the proposed solution provides 18% throughput improvement, the lowest delay, and
the best playback freeze ratio in comparison with three other state-of-the-art solutions.

Index Terms—Virtual reality, 5G-and-beyond heterogeneous network, content delivery, multicast, video transcoding
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1 INTRODUCTION

THE latest innovations in mobile communication tech-
nologies, including the advancements related to the

fifth-generation (5G)-and-beyond networks provide support
for ultra-high data rate, ultra-low latency, ubiquitous access,
and highly mobile computing [1, 2]. These offer a solid
foundation for advanced live streaming services such as
panoramic video and virtual reality (VR) [3–6]. Recently,
Facebook, one of the world’s largest social network technol-
ogy companies, changed its name to Meta1 (i.e., metaverse)
to describe the vision of future human work and life with
VR services. This move gave a further boost to the world-
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wide VR market, which is expected to reach $454.73 billion
by 2030 according to recent market research2. However,
it is foreseeable that millions of concurrent accesses by
global users with different device configurations make it
significantly challenging to provide high-quality immersive
VR services, especially in a wireless environment, despite
the latest 5G support [7, 8]. On one hand, according to a
Huawei Cloud VR white paper3, providing an ideal strong-
interaction VR experience for a single user requires ultra-
high data rate (i.e., 1GMbps bandwidth) and ultra-low delay
(i.e., less than 8ms latency). On the other hand, in order to
target high quality of experience (QoE), service providers
need to adapt the VR content delivery to various devices
and network configurations. The latest solutions employ
online transcoding for live VR services by dividing the
video into tiles, encoding the tiles into multiple resolutions,
and selecting the ones appropriate for the user’s viewing
environment [9–13]. Since each user has a personalized
region of interest, the multi-resolution tiles are stitched, and
a specific panoramic video is formed (sometimes with a
high-resolution viewport and a low-resolution background)
for individualized services. As a consequence, VR livecast
services are associated with very demanding real-time com-
puting capabilities and have large bandwidth needs [12, 13].

Cloud computing has become a natural choice to meet
the computation-intensive requirements of online transcod-

2. https://www.alliedmarketresearch.com/augmented-and-virtual-
reality-market

3. https://www.huawei.com/minisite/pdf/ilab/cloud vr network
solution white paper en.pdf
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ing of live VR [14–18]. For example, Chen et al. in [14]
focused on computing resource management in wireless
networks and proposed a novel Cloud-enabled resource
allocation framework to enhance user immersive experi-
ence. However, due to the geographically remote distance
between Cloud and user, VR services are prone to high
transmission delays and congestion in the resource-limited
mobile network [7–10]. In this context, offloading the in-
tensive tasks to the edge has attracted extensive attention in
recent years as a promising technique to overcome the above
challenges [4, 5, 7–10, 19–28]. Fig. 1 shows a typical situation
involving an edge-assisted VR livecast system over a 5G
HetNet. Dai et al. in [19] proposed a viewport-based VR
caching system over Cloud Radio Access Network (C-RAN)
to facilitate the view synthesis and content allocation using
mobile edge computing (MEC) and hierarchical caching
technologies. Additionally, many other edge-assisted so-
lutions have been proposed to improve the efficiency of
computing resource allocation, including some which em-
ploy deep reinforcement learning [21], distributed content
rendering [22], and scalable multi-layer VR video tiling [24].

Once the VR video content is prepared, it needs to be
delivered efficiently to users, as wireless networks’ band-
width resources are limited. Due to the broadcast nature
of both live streaming concept and wireless network func-
tionality, multicast is a promising transmission technology
that can utilize the available bandwidth resources efficiently
by aggregating viewers’ requests for the same content and
servicing them in a single session. Reusing content for multi-
ple users with overlapping FoVs when employing multicast
delivery is another critical issue considered in the research
literature [11, 29–34]. For example, Perfecto et al. in [11]
proposed an online deep learning-based multicast solution
for rate-adaptive streaming by leveraging deep recurrent
neural networks. To improve resource efficiency, Dang et al.
in [30] and Sun et al. in [31] considered jointly communica-
tions, caching, and computing resource allocation to reduce
the system cost and improve service quality. These studies
also modeled this joint optimization problem and revealed
communications-caching-computing trade-offs.

In our previous works [33, 34], an augmented queue-
based structure [33] was built over a Cloud-Edge-Crowd
integrated infrastructure to jointly optimize data transmis-
sion and online transcoding for livecast services. Then, an
augmented graph model [34] was employed to transform
the joint allocation optimization of computing resources
and transmission resources into a generalized network rout-
ing problem. We have designed a distributed actor-critic
algorithm to solve the above problem by finding a low-
latency, high-efficient transcode delivery path for each user.
However, most of the research has focused on alleviating
the system overhead and reducing the transmission latency
and has ignored the immersive experience performance for
multiple users. High-quality user experience also requires
minimizing the time-shift between multiple users to ensure
an immersive viewing experience for every user in the
virtual world. Specifically, providing premium immersive
experiences for geo-distributed users with different devices
and network configurations over resource-limited heteroge-
neous networks is significant, although very challenging.

For clarity, the following are this work’s main challenges:

Macro BS

Cloud servers User clustersLive VR services

D2D communications

Small BS

Small BS

Fiber linksBackhaul

User
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Gaming, tourism, shopping... Cluster1, cluster2, ...

Cloud servers
Data delivery

Fig. 1. Illustration of an edge-assisted livecast VR system in a 5G HetNet
including 1) a remote server that provides varieties of VR content, such
as VR cloud games; 2) users divided into multiple multicast clusters
based on the accessed content 3) a 5G HetNet includes one macro
BS and a series of small BSs with edge servers. 4) device-to-device
communication support, which enables users to share content directly.

1) The delivery system needs to adjust frequently the deliv-
ery and processing task allocation between different base
stations (BSs) and user devices to provide cost-efficient
VR live streaming while adapting to configurations of
user devices and network conditions.

2) Ultra-dense 5G HetNets with device-to-device communi-
cation support provide multiple alternative access points
for users, creating opportunities for users to retrieve
content via multiple transmission paths. However, this
complicates the process of problem-solving and makes
optimal resources control more difficult.

3) Since the system needs to transcode and deliver the VR
video content to a large number of users, designing a
joint optimization solution that efficiently utilizes the
distributed computing resources while providing high-
quality VR services is non-trivial.

4) The time-shift issue makes providing an immersive VR
experience for multiple participants significantly even
more challenging as users have both different configu-
rations of networks and devices and various latencies.
Motivated by these challenges, an innovative Multi-user

Cost-efficient Crowd-assisted Delivery and Computing
(MEC-DC) framework is introduced by leveraging mobile
edge computing to support achieving VR video processing
flexibility and content delivery efficiency. The framework is
based on a novel solution that consists of three main inno-
vations. First, a novel Buffer-nadir-based Multicast (BNM)
mechanism for multicast scheduling in 5G HetNets is pro-
posed. BNM is based on a new concept denoted buffer-nadir
and employs the age of information (AoI) idea introduced by
Modiano et al. [35–37]. AoI quantifies the freshness of the
receiver’s knowledge about the sender. By jointly consid-
ering each user’s playback and buffer level, the multicast
scheduling is modeled as a stochastic process of the buffer
charging problem. Second, an approach for Cost-efficient
Multicast-aware Transcoding Offloading (MATO), which
adjusts the transcoding task allocation among edge servers
based on a multicast decision is introduced. MATO con-
siders the broadcast nature of live streaming services and
employs computing resources provided by edge servers in
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5G-HetNets to facilitate VR video transcoding. Third, a prac-
tical online Crowd-assisted Delivery algorithm (CAD) was
described to facilitate VR video delivery by using device-to-
device (D2D) communications.

The contributions of this paper are as follows:
1) We propose the MEC-DC framework and provide a novel

buffer evolution model that introduces a new concept of
buffer-nadir to address the time-shift issue and capture the
quality of multi-users immersive experience.

2) To support an immersive experience, we formalize the
multicast problem over 5G-HetNets as a stochastic buffer
charging problem which maximizes the average buffer
level for all viewers fairly.

3) We present an approximately optimal solution of multi-
cast and task offloading. We describe the two distributed
algorithms MATO and CAD, which support cost-efficient
and high-quality VR livecast services.

4) We prove that our MATO-CAD solution finds a nearly
optimum, up to an additive factor (half the number of
user clusters) away from the optimal buffer size. To the
best of our knowledge, this paper opens new avenues
for improved quality live VR services by performing
innovative joint computing and transmission resource
allocation in 5G-HetNets.

5) We evaluate the MATO-CAD solution in terms of the-
oretical performance and conduct several trace-driven
simulations. We compare MATO-CAD with three state-
of-the-art methods [7, 31, 38]. Results show that our
method outperforms the others in terms of throughput,
latency, resource cost, and quality of experience (QoE).
This paper is organized as follows. Section II discusses

related works. Section III introduces the system model.
Section IV formalizes the problem and section V designs two
practical algorithms. Section VI includes simulation results
and section VII draws conclusions and future work.

2 BACKGROUND

Many mobile computing solutions have already been pro-
posed for live VR. However, very few studies consider joint
multicast and transcoding optimization for content delivery
over 5G HetNets based on device-to-device communica-
tions. This research faces complex challenges when trying
to provide a high-quality immersive VR experience while
saving system resources. To the best of our knowledge, this
paper presents the first attempt to employ AoI technology
assisting joint computing and transmission resource alloca-
tion over 5G HetNets. Next, several works related to mobile
edge computing and multicast for live VR are discussed.

2.1 Live VR Streaming With Mobile Edge Computing

Live VR video transcoding solutions mainly fall into two
categories: centralized cloud approaches [14–18] and dis-
tributed computing solutions [4, 5, 7, 8, 10, 19–28]. In central-
ized solutions, VR video processing is mainly performed on
dedicated cloud servers, which can provide stable comput-
ing resources. For example, Simiscuka et al. [15] considered
a novel social VR-IoT scene and proposed a cloud-based
solution to provide computing resources for multiple geo-
distributed users. However, the proposed method finds

approximate solutions, leading to a degradation in user
experience quality. To provide a highly immersive experi-
ence for users, the authors of [16] proposed a cloud-based
iterative semi-Lagrangian method to simulate the interac-
tion in a VR scene. Besides, since the viewer location is
dispersed and dynamic, providing high-quality VR services
is also significantly challenging. Yang et al. [17] explored a
joint multicast and unicast solution in heterogeneous cloud
radio access networks (H-CRAN). The authors formulated
the rate-allocation problem as a mixed-integer nonlinear
optimization and proposed two approximate solutions to
solve it. By applying a greedy and approximate solution, the
proposed approach achieves a near-optimal performance
with low time complexity. Yang et al. [18] focused on the bot-
tleneck of VR performance and have tried to reduce the re-
source overhead of VR games on client devices. The authors
have also improved an open-source testbed, called Air Light
Virtual Reality (ALVR), for cloud-based VR gaming and
have measured the performance of real players under dif-
ferent network conditions. Since the cloud is geographically
remote from the viewers, live VR services are delay-sensitive
and vulnerable to high delivering latency. Edge computing,
located closer to the user, is an approach proposed by many
researchers for live VR video processing [4, 5, 7, 8, 10, 19–
28]. For instance, Guo et al. [4] proposed an adaptive VR
framework for efficient real-time VR video rendering by
offloading the processing tasks to mobile edge computing
servers. This solution utilized collaboratively MEC servers
and mobile devices to render the foreground and back-
ground of VR video for the viewers. The authors of [7]
presented a novel online Nash reinforcement learning-based
solution to achieve a good trade-off between bandwidth-
related performance and resource utilization in 5G HetNet
environments with D2D communications, resulting in a 50%
performance improvement under a moderate resource cost.
L. Liu et al. in [25] considered the convergence of communi-
cation and computing and proposed a new fog computing-
enabled mobile network framework that supports various
wireless multimedia services. The authors of [26] introduced
an edge-based solution to enhance multimedia services by
integrating data processing and distribution into the net-
work functionality. In addition, Argyriou et al. [10] provided
a novel MEC-assisted transcoding framework for improving
cost efficiency by smart allocation of viewpoint rendering to
mobile edge computing services. The authors formulated
the resource allocation problem as a multi-objective combi-
natorial optimization problem with delay constraints to pro-
vide ultra-high resolution and ultra-low latency VR services.
They also proposed a transmission optimization algorithm
to maximize user QoE and minimize system overhead.
Additionally, the authors of [27, 28] proposed using edge
caching and field-programmable gate array (FPGA) as edge
computing devices to facilitate efficient video processing
and achieve rapid response, while also enabling energy
consumption reduction.

Since VR video processing requires personalized VR
video preparation for each client, data delivery is a critical
issue for supporting high-quality VR live services. Multicast
is a popular transmission technique for live video streaming
in 5G-HetNets [9, 11, 39], but it is challenging to be used to
deliver personalized content. Next, some existing multicast



IEEE TRANSACTIONS ON MOBILE COMPUTING 4

(b) Delay vs time in different locations and devices (c) The number of concurrent users over time(a) The overlap of different videos under different frames

Diving (frame 1701) Drive (frame 1701) Panel (frame 1701)

Diving (frame 101)

Diving (frame 901) Drive (frame 901)

Drive (frame 101)

Panel (frame 901)

Panel (frame 101)

30

25

20

15

10

5

0
Diving (frame 1701) Drive (frame 1701) Panel (frame 1701)

Diving (frame 101)

Diving (frame 901) Drive (frame 901)

Drive (frame 101)

Panel (frame 901)

Panel (frame 101)

30

25

20

15

10

5

0

Fig. 2. Analysis of viewer behavior in VR service

VR delivery solutions are discussed.

2.2 VR Multicast over 5G-HetNets

As wireless networks employ broadcast communications at
their core, multicast technology for VR streaming in 5G-
HetNets is increasingly being studied [9, 11, 29–31, 39–41].
For example, Guo et al. [39] investigated tiled VR video mul-
ticast from one base station to multiple clients. To minimize
the transmission cost while maximizing QoE, the authors
formulated a joint optimization as a non-convex problem.
Moreover, they designed a greedy-based algorithm that
can obtain a near-optimal solution. Guo et al. [41] further
transform the joint optimization problem into an equivalent
convex problem and design two optimal closed-form solu-
tions to consider viewing behavior and dynamic network
conditions. These solutions offer a new avenue for problem
optimization by exploring the original problem structural
properties. Long et al. [9] considered multi-quality tiled VR
video streaming in 5G-HetNets and introduced two new
types of multicast solutions named smoothness-enabled
multicast and transcoding-enabled multicast. In their work,
the authors also presented a novel mathematical model
to determine the effect of multicast on transmission and
transcoding cost consumption. To alleviate the traffic load of
wireless networks, the authors of [11] proposed a dynamic
adaptive streaming solution over HTTP (DASH) based tiled
multicast solution with a weighted tile approach and a rate
adaptation algorithm. The results presented showed that the
solution effectively reduces bandwidth consumption and
improves QoE compared to traditional multicast solutions.
Bao et al. [42] presented a motion-prediction-based multicast
for concurrent viewers servicing to optimize the wireless
bandwidth utilization and achieve efficient transmission of
live 360-degree video content. The authors collected viewing
traces of more than 150 users, which revealed a similarity of
user viewing motion patterns, and proposed a trace-driven
multicast strategy to lower bandwidth consumption.

Multicast is a promising avenue for live VR video ser-
vices in 5G-HetNets. To prove this point, we have analyzed
user viewing overlap for three types of videos from the
dataset [43]. As omnidirectional videos have an obvious
hotspot for most viewers, multicast is indeed an effective
solution for live VR transmissions. However, most of the
current live VR solutions [4, 5, 7–11, 14–31, 39–42] ignore the
asynchronism of geo-distributed users in content delivery.
We collected the geo-distributed broadcaster-to-viewers delay

and viewer variation with a web crawler4. Further, we ana-
lyzed 48 different users’ viewpoint overlap/locations based
on the public dataset [43]. Fig. 2 (a) illustrates the viewpoint
overlap for different frames. Fig. 2 (b) gives the stream
latency variation for different devices. We note that the
delay of geo-distributed viewers across the globe (i.e. Los
Angeles, Waterloo, Hong Kong, Singapore, Tokyo) equipped
with different devices (tethered and wireless) varies a lot.
This phenomenon proved the time-shift phenomenon and
revealed that the immersive performance of current live
streaming platforms is not good. We also found that the
number of users is often very dynamic on live platforms.
Fig. 2 (c) shows the concurrent audience variation on a fa-
mous professional match from Tencent League of Legends.
Nam et al.’s research results show that rebuffering events
are much more noticed and annoy viewers more than the
start-up latency and bitrate changes in the context of live
streaming services [44]. Another study of Rainer et al.[45]
noted that buffer-based adaptation logic performed better
in terms of average bitrate than the rate-based adaptation
results. Hence, we propose a buffer-based multicast solution
to capture the time-shift of different users and provide a
high-quality immersive viewing experience by balancing
and maximizing the buffer level of each user.

Compared with existing solutions, our work has several
significant differences and advantages. First, we build a
novel buffer evolution model by quantifying the impacts of
data transmission and user playback behavior on the change
of user buffer size in discrete time. Secondly, we formulate
the multicast data schedule problem as a buffer-nadir max-
imization problem which considers the balance of buffer
sizes between different users to achieve the fairness of video
buffering and further solve the time shift problem. Further,
we consider the joint optimization of delivery and transcod-
ing and formulate it as a stochastic problem to alleviate
resource consumption. Finally, we propose two approximate
optimum algorithms called MATO and CAD, with only a
constant additional factor, which achieve throughput im-
provement, delay reduction, and resource-saving.

3 MEC-DC FRAMEWORK AND SYSTEM MODEL

This section shows the Multi-user cost-Efficient Crowd-
assisted Delivery and Computing (MEC-DC) framework
and system model in 5G HetNets. Note we use lowercase

4. Python-built Crawler for Twitch:
https://github.com/uglyghost/simple crawler for twitch
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TABLE 1
Mathematical Notations

Symbol Description
B A live VR content provider
V A set of viewer clusters

s0, Ss A macro-based station (BS) and a set of small BSs
b0,Bs Backhaul capacities of macro BS and small BSs

S A set of all base stations including MBS and SBSs
V, vi Live VR content library and specific content i
M,F The number of tiles and resolution set of each tile
fh, λh A specific resolution and its transcoding cost
c0, Cs Computing capacities of macro BS and small BSs
T A set of the time-slotted system
dn Downlink bandwidth of the n-th BS
γn Index of the multicast decision for n-th BS
Ω A joint set of the indexes for multicast decision
γn† A multicast policy of the n†-th BS
πn† A transcoding policy of the n†-th BS

Hn† [t] A set of wireless channel state of the n†-th BS at t
u = multicast cluster for the j-th resolution of the i-th

(vi, fj , sn) content in the n-th BS.
hu[t] A transmission identifier for multicast cluster u at t
χu[t] Playback buffer of the cluster u at t
χ̄u The average value of buffer-nadir for all clusters
τ Upper bound of the buffer level
Ψ Feasible region of the policy γ
ϕ Auxiliary value
P Services probability from different nodes (MBS, SBS)

J ′
n(π) Total transmission cost of all BSs

λ, α, β Weights of resource cost for different type of nodes
qu[t] Virtual queue-length of multicast cluster u at t
V The weight value of virtual queue update

italic symbols as scalars. Lowercase italics bold type and
uppercase italics typo to indicate vectors and sets, respec-
tively. Uppercase, italics bold fonts represent matrices. The
tarefnotations lists all mathematical notations used in this
paper.

3.1 MEC-DC Framework
Fig. 3 illustrates the MEC-DC framework for live VR con-
tent delivery in a 5G HetNet environment. The framework
considers multiple types of nodes, including a live VR
content provider B, a set of viewer clusters V , a macro-
cell based station (MBS) s0 and N small-cell based stations
(SBS), denoted by Ss = {s1, ..., sN}. SBSs are uniformly
distributed over MBS’s range and connect to MBS with
optical fibers, whose bandwidth capacities are denoted by
Bs = {b1, ..., bN}. First, we give some general assumptions.
We assume that MBS is connected to the live VR platform
via a b0 bandwidth backhaul link and can communicate to
all viewers over HetNet, while SBSs can only be associated
to viewers in their coverage area [46]. For simplicity, we
assume that the coverage between SBSs, and the operating
frequencies of MBS and SBSs are non-overlapping [46]. In
other words, the users can access at most one SBS at a time,
but can be served concurrently by both MBS and SBSs.

The proposed MEC-DC system considers three stages,
namely cooperative processing, cooperative delivering and
buffer evolution. During cooperative processing, the VR
content providers continuously generate and upload orig-
inal live VR streams to the delivery system. Afterwards,
the system processes the multiple VR live streaming to tile-
based content, and delivers them to MBS and SBSs. Addi-
tionally, MBS further manages all base stations and assigns
processing tasks, such as video transcoding, to SBSs. BSs

S = s0∪Ss will process the assigned tasks cooperatively and
will deliver the transcoded tiles of appropriate resolutions
to the users according to their FoVs and configurations.
Once the tiles arrive at the users’ sides, the client stitches
the received tiles into sphere frames and then video seg-
ments. During cooperative delivery, BSs transmit the tile-
based VR content to the users via multicast. Additionally,
users can directly communicate with each other using D2D
communications. In the MEC-DC framework, MBS, as a
controller, is responsible for global data delivery scheduling
in units of tiles. MBS determines its transmission strategy
first, then for SBS, and third, it enhances the data delivery by
using D2D communications. Finally, in order to address the
synchronization of user playback, we consider and model
the buffer level evolution of each user with time. Buffering
occurs when the user retrieves all the tiles for a frame and
completes the stitching process. In the following subsection,
we provide more details about the model.

We consider a live VR content library consisting of
C different live VR pieces of content denoted by V =
{v1, v2, ..., vC}. We assume that the popularity of content
follows Zipf’s distribution [47, 48] with popularity exponent
ξ and that the MEC-DC system processes 360 degree videos
with equirectangular projection. Thus, each VR video can be
further divided into multiple rectangular tiles, as shown in
the cooperatively processing part of Fig. 3. We define that
each piece of content has M number of tiles and each tile
has K different resolutions, denoted as F = {f1, f2, ..., fK}.
We define the highest representation as f1 and the lowest
as fK , so we have f1 > f2 > ... > fK . According to
[9, 10], we assume that each tile of the streamed source
can be transcoded to multiple versions and define λh as the
transcoding cost of version fh, where h ∈ {1, 2, ...,K}. We
express the MBS and SBSs computing resources which can
be used for video transcoding as c0 and Cs = {c1, c2, ..., cN},
respectively. Due to the resource limitation of edge nodes,
BSs can only support a certain amount of transcoding work-
load. When the edge nodes are fully loaded, they need to
access the target version of tiles from the upper server (i.e.,
cloud servers of the live VR system) via the backhaul link.

3.2 Buffer Evolution Model
Before presenting the buffer evolution model, we make
some preliminary assumptions. We consider a discrete-
time system with slots T = {0, 1, ..., T}. At each time slot,
BSs will jointly decide the multicast policy and adjust the
offloading strategy. Without loss of generality, we assume
that the downlink bandwidth of the n-th BS is dn and that
BS can process the assigned tasks within their computing
capabilities cn. We assume that bn > dn, n ∈ {0, 1, 2, ..., N},
which means backhaul link is not the bottleneck for the live
VR delivery system.

In live VR services, the different viewers’ FoVs are also
diverse, often with overlapping areas and distinct view-
ports. The buffer evolution presented in Fig. 3 shows an
example of three viewers with different FoVs. As it can
be seen, the overlapping FoV areas of viewers include
the tiles {v4, v5, v10, v11, v12}, and multicast clusters can be
formed according to these tiles. For brevity, we define Ω =
{(vi, fj , sn)| vi ∈ V, fj ∈ F, sn ∈ S} as the joint set of in-
dexes for different multicast clusters and use u = (vi, fj , sn)
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Fig. 3. Illustration of the MEC-DC framework for edge-assisted live VR content delivery in 5G HetNets

to represent the cluster for the j-th resolution of the i-th
video tile in the n-th BS. We use a bool variable γnij to
indicate whether the n-th BS will multicast the video tiles
vi of resolution fj . Hence, we can express the n†-th BS
multicast policy γn† as an index vector:

γn† = (γu ∈ {0, 1} : u ∈ Ωn†)

where Ωn† represents the set of all the multicast clusters in
the BS n†. Besides, we define πn† as the transcoding policy
of the n†-th BS and use the binary variable πu, u ∈ Ωn† to
indicate whether the transcoding tasks for multicast cluster
u are deployed in the n†-th BS. Therefore, we can express the
transcoding policy of the n†-th BS as the following vector:

πn† = (πu ∈ {0, 1} : u ∈ Ωn†)

Considering tiled live VR services, we use Hn† [t] =
{hu1

[t], hu2
[t], ...} to denote the identifies vector of the mul-

ticast clusters within the n†-th BS coverage at time t, where
hu[t] identifies whether the tile being sent to the multicast
cluster u at time t is the last tile of the latest video segment
provided by BS during one time-slot transmission. Thus, we
assume that the identifier hu[t] has two states, YES and NO.
When hu[t] is in YES state at t, hu[t] = 1, otherwise hu[t]
= 0. Thus, one buffering process for the multicast cluster u
occurs at time t, if and only if γu[t]hu[t] = 1.

In addition, we define χu[t] as the remaining playback
buffer of the multicast cluster u at time t. The evolution
of χu[t] is shown in Fig. 4. Buffer χu[t] increases to τ
upon a successful transmission, and decreases by 1 in every
slot in which there is not any successful activation. Note
that the platforms need to wait for the next segment to be
generated by broadcasters. The average sending rate of the
video is always less than or equal to the average generation
rate of VR content in long-term perspective. However, the
generation rate of live streaming depends on elapsed time,
which means live streaming services have maximum buffer
charging. In other words, the receiver can only receive
the most recent video content produced by the content
provider. Thus, we assume that one successful transmission

can replenish the user buffer to τ without video segment
loss. The value of χu[t] is updated as follows:

χu[t+ 1] =

{
χu[t]− 1 γu[t]hu[t] = 0 (1a)
τ − 1 γu[t]hu[t] = 1 (1b)

where χu[t] represents the buffer for all user of the multicast
cluster u and γu[t]hu[t] = 1 means the cluster receives the
VR content successfully. Note that when the user suffers
the segment loss during one slot transmission, the user’s
buffer size increases to an amount less than τ . It indicates
that the network condition of the user cannot support the
current resolution of tiled VR video, and the user will
automatically switch to a lower bitrate multicast cluster. The
buffer evolution equation can be rewritten as follows:

χu[t+ 1] = χu[t]− 1 + (τ − χu[t])γu[t]hu[t] (2)

When the multicast is successful, the corresponding
playback buffer will be charged to τ . We name buffer-
nadir as the value of the extreme point before each charge.
The positions of the buffer-nadir points are shown with red
dots in Fig. 4. In this example, the χu[t] can be a negative
value to indicate that the playback buffer is empty. When
playback buffer is empty, the video player can freeze the
video playback, which is called the video playback freeze
[49]. Therefore, we can define the average value of buffer-
nadir for multicast cluster u as:

χ̄u = lim inf
T→∞

E
[∑T−1

t=0 χu[t]γu[t]hu[t]
]

E
[∑T−1

t=0 γu[t]hu[t]
] , u ∈ Ω (3)

where E(·) is the expectation. We can define the average
buffer-nadir of the total system as χ̄ =

∑
Ω χ̄u. The next sec-

tion will introduce the problem formulation. Note that we
set the objective to buffer-nadir maximization rather than
latency minimization, as performed by other researchers, for
instance in[33, 50]. This is as the overall goal is maximization
of viewer QoE and not optimization of delivery QoS levels
for VR live streaming services. Research [44] has shown
that video playback freezes caused by empty buffers are
noticed more by viewers and annoys them more than slight
latency increases. Authors of [44] collected over 400,000
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YouTube viewing records, and their data analysis shows
that rebuffering is viewer QoE most important impact factor.
Another investigation [45] also demonstrated that a buffer-
based adaptation solution for remote distribution of video
services performed better than a conventional approach and
is more flexible [33, 50].

4 PROBLEM FORMULATION

This section presents the formulation of the cooperative
multicast scheduling as a buffer-nadir maximization prob-
lem. We further discuss the resource consumption of task
allocation for heterogeneous edge networks and formulate
the multicast-aware transcoding offloading problem.

4.1 Buffer-Nadir Maximization Multicast

Before introducing the problem formulation, we first confine
our discussion to a reasonable scope. We consider that our
policy is consistent with the following assumption:

Ψ = {γ | ∃θ s.t. τ > χ̄u(γ) ≥ θ, ∀t > 0, u ∈ Ω} (4)

This equation implies that we only consider the policy γ
that makes the average buffer-nadir of each channel not less
than a positive value θ, where 0 < θ < τ . This restriction
limits our policy to the set which can provide effective live
VR services for viewers. Based on this, we give an essential
lemma that is always true for policy γ ∈ Ψ and present the
proof in Appendix A.

Lemma 1. For all the policies γ that belong to Ψ, the following
equation is satisfied:

χ̄u = τ − 1

lim supT→∞ E
[
1
T

∑T−1
t=0 γu[t]hu[t]

] (5)

where u ∈ Ω.

In addition, we assume that MBS has global information
about all viewers’ requests and divides users according to
their requested tiles. The users with requests for the same
tile will be grouped into one multicast cluster. Further, we
consider the multicast cluster as the basic unit to discuss
the problem formulation and we focus on the buffer-nadir
maximization problem for the policy space Ψ. During live
VR delivery, increasing the buffer-nadir avoids the playback
freeze and improves viewer QoE. Thus, we define the opti-
mal buffer-nadir as χ̄∗ = maxγ∈Ψ χ̄(γ) and our goal is to
maximize χ̄(γ) without violating the resource constraints.

Therefore, the average buffer-nadir maximization problem
can be formulated as follows:

Max
∑
u∈Ω

χ̄u (6a)

s. t. lim inf
T→∞

E

[
1

T

T−1∑
t=0

γu[t]hu[t]

]
≥ ϕu, u ∈ Ω (6b)

where ϕu is the auxiliary value of multicast cluster u. We
can derive (6b) and 1

τ−θ ≤ ϕu ≤ 1 based on (3), (4), (5). We
note that the condition implied by eq. (1) indicates that one
successful transmission can only replenish the user buffer
size to τ at most. Since our objective function is to maximize
the buffer-nadir of all users equally, the benefit of filling the
buffer for different users is related to their instant buffer
size. In other words, servicing a user whose buffer is about
to run out is better than a user whose buffer is almost
full. Therefore, our goal is to balance buffer size between
different users, avoid having viewers’ buffers empty, and
address the time-shift problem.

4.2 Multicast-Aware Transcoding Offloading Problem

Since MBS can obtain global information and serve all
viewers, it acts generally as the central controller in a cell
[51]. In the system, MBS makes its own decision first, and
then schedules the resources of SBSs to provide services
to viewers. We define the service probability P = {p0[t],
pn†(πn† [t]), pr(πn[t])} for the clusters of n-th BS with differ-
ent sources (MBS, n-th SBS and remote servers) that satisfy
p0[t] + pn(πn[t]) + pr(πn[t]) = 1. Because we assumed that
the backhaul bandwidth was always abundant (bn > d) in
the previous section, the multicast policy of the n-th BS γn[t]
is independent, with offloading strategy πn[t]. Thus, the
total transmission cost of all BSs can be written as follows:

J ′
n(π) =

T∑
t=0

∑
u∈Ωn

γu[t]
(
αup

′
n(πu[t]) + βupr(πu[t])

)
(7)

where αu and βu are the weight factors of bandwidth cost
from base station and remote server, respectively. Intuitively,
access content from remote servers has the highest resource
consumption βu which is indicated αu < βu.

The first term αup
′
n(πu[t]) on the right-hand side of Eq.

(7) represents the local multicast consumption of the n-th
BS under policy πn[t] and p′n(πu[t]) = pn(πu[t]) + p0[t].
In other words, the first term consists of two parts: cost
of the transmission from MBS and from SBS, respectively.
The second term βupr(πu[t]) includes the transmission cost
of multicast and acquisition cost of VR content from the
remote server. We consider the local multicast as a two-step
process. In each slot, MBS multicasts the video segments
with priority, then SBSs deliver the content to their local
clusters. Hence, the expressions of services’ probability for
SBS n are:

pn(πu[t]) =

{
0, πu[t] = 0 (8a)
1− p0[t], πu[t] = 1 (8b)

Similarly, we have the probability pr of the remote server:

pr(πu[t]) = 1− p0[t]− pn(πu[t]), (9)



IEEE TRANSACTIONS ON MOBILE COMPUTING 8

This equation means that when the n-th SBS has the VR
content demanded by multicast cluster u, i.e., πu[t] = 1, the
probability pn(πu[t]) of the cluster user u of being served
by the n-th SBS is equal to 1 − p0[t]. Otherwise, pn(πu[t])
is equal to 0 and the remote server will serve the cluster u
with probability 1− p0[t]− pn(πu[t]).

The Multicast-aware transcoding offloading problem de-
termines the offloading policy for all BSs that minimize
the expected resource cost in the whole period. Thus, the
problem can be formalized as follows:

Min J (π) =
N∑

n=0

 T∑
t=0

∑
u∈Ωn

λuπu[t] + J ′
n(πn[t])

 (10a)

s. t.
∑
u∈Ωn

λuπu[t] ≤ cn, ∀sn ∈ S (10b)∑
u∈Ωn

αuγu[t] ≤ bn, ∀sn ∈ S (10c)

where λnij is the weight factor and the first term of the
objective function

∑T
t=0

∑
u∈Ωn

λuπu[t] is the transcoding
cost of the n-th BS. The constraints from eq. (10b) ensure that
the transcoding workload of the n-th BS will not exceed the
capacity. Eq. (10c) indicates that the transmission bandwidth
cannot exceed the link capacity.

Lemma 2. We define transcoding priority as ψu[t] =
(βu−αu)γu[t]

λu
, u ∈ Ωn and the n-th BS only needs to transcode

the content that satisfies the following inequation:

ψu[t] ≥
1

1− p0
(11)

BSs prefer to transcode the content with higher ψu[t], which often
results in a lower cost-effectiveness ratio.

The proof of Lemma 2 is shown in Appendix B.

5 JOINT OPTIMIZATION ALGORITHMS

This section first discusses the joint optimization problem of
multicast and transcoding offloading. Afterwards, in order
to solve the problem, we design two algorithms, which iter-
atively optimize the multicast scheduling and transcoding
allocation in a decentralized fashion.

5.1 Optimization of Multicast and Task Offloading
This sub-section presents the optimal solution of multicast
and task offloading. Inspired by [52], we first provide the
optimal buffer-nadir solution, which is called the h-only
policy. In the 5G HetNets, the wireless channel state for
different multicast cluster is often stochastic and equivalent.
Since the arrival of viewer request is i.i.d. with respect to
time t, the transmission process γ[t]h[t] is also i.i.d. across
time t under the policy γ ∈ Ψ. We denote ε as the ex-
pectation of the stochastic process γ[t]h[t]. Thus, according
to Lemma 1, we rewrite the buffer-nadir maximization
problem from eq. (6a) as follows:

Min
∑
u∈Ω

1

εu
(12a)

s. t. lim sup
T→∞

E

[
1

T

T−1∑
t=0

γu[t]hu[t]

]
≥ εu, u ∈ Ω (12b)

where εu = E [γu[t]hu[t]]. Because the optimality of the h-
only policy is only influenced by εu and we can achieve the
δ-optimal solution (12) by following the steps of theorem 4.5
in [52], where δ is an arbitrarily small value, but greater than
zero. We denote the h-only policy γ∗ as the optimal solution
for the multicast problem Min

∑
u∈Ω ε

∗−1
u .

Next, we consider the optimal transcoding policy π∗.
If we fix the optimal multicast policy γ∗

n of the n-th BS,
the corresponding transcoding priority ψn(t) is also deter-
mined. We denote ψ∗

n as the transcoding priority of the n-
th BS under policy γ∗

n. Based on Lemma 2, we give the
optimal transcoding strategy π∗

n as follows. Each BS will
search the combination of transcoding tasks with maximum∑

u∈Ωn
λuψu[t] under the resource constraints from eq.

(10b). This combination ensures minimal resource cost of
each BS. Since the consumption of each BS is independent,
the above mechanism is the optimal offloading decision π∗

n.
However, the problem is a typical 0-1 knapsack problem,
which is NP-Hard. Obtaining the optimal solution to such
a problem is often impractical. Therefore, it is necessary to
design a lightweight algorithm to solve it.

5.2 Multicast-aware Transcoding Offloading Algorithm
We now design a policy that solves the joint optimiza-
tion problem of multicast from eq. (6a) and transcoding
offloading from eq. (10a). Based on our previous analysis,
the buffer-nadir optimization is only determined by the
multicast decision and the cost consumption is influenced
by both multicast and transcoding offloading. However,
excessive playback freezes (χ[t] < 0) are often less accept-
able compared to increased cost consumption for live VR
services. Thus, we give priority to the effect of buffer-nadir
optimization in the design of the algorithm, and further
reduce the total cost consumption through task offloading.
We introduce the proposed joint optimization algorithm of
multicast and task offloading (MATO) in Algorithm 1.

Algorithm 1 is deployed at the base station side. We
first select the condition parameters. For the iteration phase,
according to the differential coverage and problem domain,
we divide it into two steps in two parts which are the upper
step (MBS) and the lower step (SBSs). Each step includes
schedule decisions and offloading decisions. At the begin-
ning of every slot, MBS will make the decisions first. MBS
observes the current virtual queue-length of each cluster
and selects the multicast cluster u with the maximum queue
backlog based on eq. (13). Then, according to the cluster
u requirements, MBS multicasts the tiles of the VR video
to the users who have the most pressing needs for video
buffering. To quantify the degree of urgency for buffering,
we introduce a new mathematical concept denoted virtual
queue q[t] as in eq. (15). The virtual queue decreases by
γ[t]h[t] after the viewer downloads a new video segment,
and increases by

√
V
q[t] in each time-slot where V is a weight

constant. Note that we set the queue growth as
√

V
q[t] for

two reasons: 1) the queue growth needs to be less than the
expected dequeue rate E[γ[t]h[t]]. 2) we need to construct
a square term to simplify the inequality of Lyapulov’s
function during the proof of Theorem 1 in Appendix C.

In addition, SBS needs to decide the multicast strategy
γn according to eq. (14) in the lower step. Different from the
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Algorithm 1: MATO Algorithm

1 /*Algorithm processed in bases station side*/
Input:
Choose the condition numbers αu, βu and λu;

2 while t ∈ T do
3 Set crn = cn and brn = bn, ∀sn ∈ s0

⋃
Ss.

4 foreach Base station sn ∈ s0
⋃

Ss do
5 /*multicast decisions:*/
6 if s0 then
7

γ0[t] = argmax
γ∈Ψ

qu[t] (13)

8 else if sn† ∈ Ss then
9

γn† [t] = argmax
γ∈(Ψ/γ0)

qu[t] (14)

10 end
11 /*task offloading decisions:*/
12 Sort the multicast cluster set Ωn† in

descending order of ψu[t], get Ωd
n†

13 foreach multicast cluster u ∈ Ωd
n† do

14 if ψu[t] satisfies Lemma 2 and crn† > λu
then

15 Offload the transcoding task to sn† ;
16 Set crn† ← crn† − λu
17 end
18 end
19 Get transcoding policy πn† [t].
20 end
21 end

upper layer, the feasible space of SBSs is Ψ
γ0

, which means
that the multicast tile set of MBS and SBS are mutually-
exclusive. In the task offloading decision, n-th BS sorts the
multicast cluster of set Ωn in descending order of ψu[t]. The
central MBS will assign the tile transcoding tasks to SBSs
in a greedy manner. When a user requests a specific tile,
and BS does not transcode it, BS fetches it via backhaul and
delivers it to the users. Afterwards, BS removes the allocated
transcoding task that does not satisfy Lemma 2.

According to the algorithm description, MATO includes
two parts: (1) multicast decisions and (2) task offloading de-
cisions. In the first part, the base station selects the multicast
policy that maximizes the virtual queue qu[t] . According to
the definition from section 3.2, policy γn[t] needs to decide
the multicasting content and the corresponding resolution.
Assuming the total number of VR content items and the
number of resolutions are C and K respectively, the com-
plexity of the multicast decision is O(CK). The complexity
of the second part of the algorithm is similar to that of
multicast decision. Offloading policy is also close related
to the amount of transcoding content and its resolution, the
complexity is also O(CK).

5.3 Crowd-assisted Delivery Algorithm
The crowd-assisted delivery and bitrate adaptive process are
described in Algorithm 2. This is deployed at the user side.

For each multicast cluster u, we choose the parameters and
set the initial value of the buffer-nadir and the virtual queue-
length to 0. Based on the multicast process, the multicast
cluster will update the virtual queue-length qu[t] based on
eq. (15), where ⌈·⌉+1 = max{·, 1}. Since viewers’ devices
are often equipped with a FoV predictive model [12], the
required tiles have usually different resolutions and are few
seconds ahead of the tiles that the viewers are watching. We
assume that the users adopt a basic buffer-based adaptive
mechanism [45] for live VR video streaming. The user deter-
mines the tile resolution f based on the buffer level χ[t]. In
the buffer-based strategy, viewer switches to a lower video
resolution at time t when χ[t] is less than the cluster u buffer
level χu[t], and requires higher resolution tiles when χ[t] is
greater than χu[t]. The inequation χ[t] < χu[t] means the
viewer suffering the segment loss during the cluster-based
multicast process. Moreover, the inequation χ[t] ≥ χu[t]
indicates that the viewer has sufficient bandwidth resource.
The buffer-based tiled dynamic adaptive streaming solution
can be formulated as in eq. (16). In addition, the user can
also access the content from other nodes in the multicast
cluster. Therefore, when the network condition between the
user and BS is not good, the content can also be obtained
from the cluster via D2D communications.

The theoretical optimality of our algorithms is intro-
duced in Theorem 1. Next, its distributed implementation
is discussed.

Theorem 1. The lower bound of the buffer-nadir for our algo-
rithm is

χ̄(γ) ≥ χ̄∗ − (V + 1)|Ω|
2V χ̄∗2 + (V + 1)|Ω|

(17)

where |Ω| is the number of multicast clusters and χ̄∗ = 1
ε∗ is the

optimal buffer-nadir which is obtained by the ξ-only policy.

The proof of Theorem 1 is in Appendix C.
Implementation of the Algorithm: In our algorithm,

MBS needs to inform all SBSs of its multicast decision γ0[t]
in advance, which requires a one-hop information exchange.
The multicast decisions of each BS require the virtual queue-
length information q[t] of every cluster within its coverage.
According to Lemma 2, the offloading decisions only need
one time-slot of local multicast decision γ[t] to calculate ψ[t]
of each cluster. Thus, the implementation of our algorithm
is straightforward. The time complexity of our algorithm is
O(CK) in BS, where C and K represent the total number of
VR contents and resolutions, respectively.

Algorithm 2 is performed at the user device side and
there are two steps for each cluster: (1) virtual queue update
and (2) crowd-assisted unicast delivery. In the first step, the
virtual queue updates once per time slot based on eq. (15), so
the complexity isO(1) . During the unicast delivery process,
each viewer has to search for which node has the content it
demands. Assuming the total number of viewer nodes is U
, the maximum number of nodes that need to be searched in
the worst case is U − 1 and therefore, the complexity of the
unicast delivery is O(U − 1).

In our solution, the multicast decision in eq. (13) and eq.
(14) requires the queue-length information of every cluster
within its coverage. The queue update process in each user
device also requires the multicast decision according to eq.
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Algorithm 2: Crowd-assisted Delivery Algorithm

1 /*Algorithm proceed in user device side*/
Input:
Choose the condition numbers V and τ ;
For each multicast cluster u. we set the initial virtual
queue-length qu[0] = 1 and buffer χu[0] = 0, u ∈ Ω.

2 while t ∈ T do
3 foreach multicast cluster u ∈ Ωn† do
4 /*virtual queue update qu[t]*/
5

qu[t+ 1] =

⌈
qu[t] +

√
V

qu[t]
− γu[t]hu[t]

⌉+1

(15)

6 foreach viewer in multicast cluster u do
7 /*Buffer-based adaptive streaming:*/
8 Change the resolution f [t] of tiles based

on the viewer’s buffer size χ[t]:

f [t+ 1] =

{
f⌊i−1⌋1 , χ[t] < χu[t] (16a)
f⌈i+1⌉K , χ[t] ≥ χu[t] (16b)

The viewer switches its multicast cluster
by updating f [t+ 1] to MBS.

9 /*Crowd-assisted unicast delivery:*/
10 if Neighbor nodes have demand tiles or

higher-resolution version then
11 Request demand content from

neighbor nodes by D2D
communication;

12 else
13 Request the content from BSs;
14 end
15 end
16 end
17 end

TABLE 2
Bandwidth Requirement and Transcoding Cost

resolution 1080p
60fps 1080p 720p

60fps 720p 480p 360p

bandwidth
(Mbps) 5.86 4.45 2.75 1.93 1.10 0.52

vCPU usage 454% 333% 210% 142% 81.6% 50.5%

(15). Therefore, algorithm 1 and algorithm 2 are inter-related
and influence each other.

6 PERFORMANCE EVALUATION

This section first introduces the experimental scenario and
parameter settings. Then, numerical results when employ-
ing our algorithm are analysed. Numerical results prove
the validity of Theorem 1. Finally, we evaluate the service
performance and cost consumption of our algorithm by
comparing it with three state-of-the-art solutions [7], [31]
and [38].

6.1 Experimental Setup and Datasets
To evaluate the performance of our proposed method, first
we carried out a series of numerical simulations. In these
simulations, we consider a two-layer HetNet structure in a
1000*2000m2 scenario with 1000 viewers, which includes a
remote cloud server (CS), a MBS, and 10 SBSs with uniform
distribution. We assume that the movement behavior of
mobile nodes follows the Random Way Point (RWP) model,
which is a general mobility model used in mobile network
research [47, 48] The square is divided into 10 equal regions,
and in each square region, there is a SBS at its center.
For each region, we deploy one SBS, where the SBS in
that region is connected to MBS via a backhaul link with
1.0 Gbps. We assume MBS can access all viewers in the
scenario and SBSs can serve the users within its square
coverage. In addition, MBS is connected to the remote cloud
server via a backhaul link. The total number of VR library
entries is set to 40. The popularity of the content follows a
Zipf-distribution. We consider that the resolution of the VR
video source is 8K (7680*4320) and each tile is a full HD
video (1920*1080), thus in our simulation each VR video
is stitched from 4x4 full HD tiles. According to [53], for
tiled VR video, we consider each tile has six resolutions
and set up the transcoding expense λ and transmission
consumption α of different resolutions. The Table 2 results
are measured with an Amazon Web Services instance and
a Twitch’s official tool. The playback duration of a segment
is set to τ = 15 and simulation time is T = 104 time-slot.
The rest of parameters are set as follows: C = 40, d = 1.0
Gbps, βu = 3αu, c0 = 500 and ci = 200, i ∈ [1, N ]. Second,
in order to evaluate the service performance of our solution,
especially the synchronization, we conducted a system-level
evaluation in a prototype based on two real-world user
viewpoint datasets [43, 54]. Furthermore, we illustrate some
essential details of these two datasets and show how they
contribute to our experiments as follows.

• 360◦ Video Viewing Dataset [43]: The authors pro-
vide a dataset which contains both content data and
sensor data. The content data includes saliency maps
and motion maps of the VR video. The sensor data
includes head positions and orientations trace of 50
viewers which is collected by HMD sensors.

• Head Tracking Dataset for Spherical VR [54]: The
authors present the head trajectories of 48 users as
they watched 18 different videos from 5 categories.
The dataset records users’ head orientations, users’
head movement in each session, and impressive
targets of each user in the VR video. Based on the
dataset, the authors further present the users’ actual
viewport which reveals similar viewing behaviours
among different users watching the same VR content.

In our prototype-based experiment, we used the head
tracking data as user requests to drive our experiment.
The data reflects the user FoV and we let the prototype
system transmit a high-resolution FoV and a low-resolution
background for each individual.

We set the video to start playing when the buffer size
reaches τ . First, we evaluate two performance metrics under
different V values:. (1) average virtual queue-length q[t]
(AVQ). (2) the average buffer-nadir (ABN) evolution. Then,
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Fig. 9. Buffer size of different users.
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Fig. 10. FoV Resolution evolution.
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Fig. 11. Transmission cost of differ-
ent BSs.
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Fig. 12. Computing consumption of
different BSs.

we test the QoS performance in terms of the following three
metrics. (1) Average Throughput (AT): the average bitrate of
successful message delivery over a communication channel.
(2) Average Delay (AD): the average latency for data to
travel across the network from one communication end-
point to another. (3) Resources Consumption: the resource
cost (i.e., bandwidth and CPU usage) for transmission and
video transcoding. Additionally, QoE was assessed in terms
of the following three metrics: (1) Playback Freeze Ratio
(PFR): the ratio of playback freeze time to total video
playback time. (2) Start-up Latency (SL): the delay between
viewers’ access to the VR video and the video actual display.
(3) Bitrate Change Ratio (BCR): the ratio of bitrate switching
occurred to the total time slot. In addition, we also compute
the overall QoE performance, which is expressed according
to [55], as follows:

QoE = U(AT )− (w1PFR+ w2SL+ w3BCR) (18)

where U(·) is the rate-related utility function used in [47]
and [48] and we set w1tP = 6w2 = 3w3tB based on [44],
where tP and nB are elapsed duration and change size
respectively.

6.2 Methodology and Numerical Result

We conduct some numerical studies to verify the theoret-
ical results. To drive our simulation, we set the request
generation according to a Poisson distribution and let the
viewer requests obey a Zipf distribution. We evaluate AVQ
and ABN performance under different V . Fig. 5 presents
the Average Virtual Queue-length evolution for all multicast
clusters u ∈ Ω when V = 1, 2, 5, and 10. We can see that the
AVQ first experiences a period of sharp increase at different
rate and then reaches different stable values. As V increases,

the AVQ in the stable stage grows and the variation becomes
larger. The steady-state AVQ is about 3.5, 7, 15.5, and 30.1
when V is equal to 1, 2, 5, and 10, respectively. Fig. 6
shows that the ABN evolution first experiences a descent,
and then stabilizes. The stable value of ABN all converges
to 8 with different convergence rate when V = 1, 2, 5, and
10, respectively. According to Theorem 1, the corresponding
theoretical values of Average Buffer-nadir are all converge
to χ̄∗ − 1 since |Ω| is usually much larger than χ∗. The
experimental results are consistent with the Theorem 1.
Based on ξ-only theory, the optimal χ̄∗ is about 7.5 and
the numerical results demonstrate the correctness of the
theoretical results of our algorithms.

Fig. 7 illustrates the download delay variation of eight
concurrent users (UserID=1, 10, 25, 50, 400, 456, 892, 923)
requesting the same live VR content. We can see that our
solution has good synchronization performance since the
user delay has mainly remained under control between the
8.5 and 9 time-slot. Synchronization is especially important
for immersive and interactive experiences in multi-user
scenarios. Further, we provide the average throughput (AT)
variation of different users in Fig. 8. As we can see, the
curves first experience a rapid increase and then reach a
plateau. In addition, the average throughput of all users
(except UserID = 1) converges to about 32Mbps. Combining
Fig. 7 and 8, the download delays of the users with different
average throughput are almost equal, indicating that our
solution provided proximal latency performance for users
with different throughput.

Fig. 9-12 reveals more details of our solution numerical
results including buffer size variation, FoV resolution evolu-
tion, and resources cost (transmission cost (TC) and comput-
ing consumption (CC)) of different base stations. From Fig.
9 and 10, we can observe the buffer size variation and FoV
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Fig. 13. The topology diagram of the prototype system.
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viewers.
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four solutions.

resolution evolution of four users (UserID=10, 25, 456, and
892). The buffer evolution of different users is regular, and
the buffer-nadir values keep above 5. And even if the users
have different representation of FoV range, our solution still
maintains stable buffer evolution. In addition, we study the
transmission cost (in terms of bandwidth) for the different
BSs (i.e. MBS, SBS1, SBS3, SBS5). Fig. 11 illustrates that the
bandwidth associated with MBS was fully used, while SBSs
have some bandwidth use variations, which are related to
the number of accessed multicast clusters. Fig. 12 shows the
variation of computing costs for MBS and three SBSs (CPU
usage is shown in Table 2). The results reveal that most of
the tasks for VR processing are assigned to MBS, since MBS
has a longer period in a full load state compared with SBSs.

6.3 Evaluation using a System Prototype

We have built a spherical video streaming system based on
the open-source framework srs5. We compare the proposed
solution’s service performance and resource efficiency with
those of three state-of-art solutions called, D2D-assisted
online reinforcement learning (RL) (WoLF-PHC) [7], RL-
based adaptive bitrate solution (Pensieve) [38], and MEC-
assisted joint caching and computing (MEC-JCC)[31].

5. https://github.com/ossrs/srs

• WoLF-PHC : the authors consider a time-slot system
and define the system state as the relationship be-
tween users and an access point (AP) (i.e. MBS, SBSs
and others). The action state is user AP selection. The
system reward is associated with the throughput of
overall users. According to a multi-agent reinforce-
ment learning technique, the solution takes the users
as multi-agents and lets each agent make a decision
based on a joint reward function.

• Pensieve : the authors proposed a RL-based adaptive
bitrate solution to optimize the QoE. They trained
a deep neural network to make video resolution
selections for live video services according to the
empirical observations of the precious experiences.
Pensieve supports FoV-based VR video service since
its ABR algorithm can be used in conjunction with
FoV prediction mechanism. We use ground-truth
FoV records of dataset [43] as the predicted results.

• MEC-JCC : the authors formulate the joint caching
and computing optimization as a multiple-choice
multiple dimensional knapsack problem. The au-
thors further design an efficient greedy algorithm by
prioritizing caching and processing the VR content
with the highest reward to mobile VR devices.

The prototype topology is illustrated in Fig. 13. It in-
cludes a central server (CS), a panoramic video collector,
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edge server (ES), and mobile terminals (MTs). We use two
servers (Lenovo SR550) as CS. Further, we set up multiple
Docker6 containers as ES and allocate viewers two lab
computers (Intel i7-7700k, Quad-Core 4.2Ghz/16GB and
AMD Ryzen 5 Quad-Core 3.2GHz/16GB). All nodes in
our prototype system are running on Centos 7. We use
HTTP Live Streaming (HLS) to push the VR streaming from
the collector to CS through the 5G network. When MTs
request live VR content, they need to obtain server status
from CS and decide which network to access. ES and CS
use FFmpeg7 to transcode the VR tile into the demanded
resolution. We set the bandwidth capacity of CS to 100Mbps
as MBS and the ES to 100Mbps as SBS by configuring the
uplink bandwidth. In addition, we set the maximum D2D
bandwidth to 30Mbps. For convenience, we use the ground-
truth FoV records as the FoV prediction results to drive
prototype-based experiments.

We present prototype-based experiment results for start-
up latency (SL) with different numbers of concurrent view-
ers in Fig. 14. The increasing trend of SL indicates that the
live VR system capacity is increasingly being occupied by
the live VR service with a growing number of concurrent
users. However, when compared with MEC-JCC, Pensieve,
and WoLF-PHC, our solution has the lowest SL, which

6. https://www.docker.com
7. https://ffmpeg.org

means it supports a premium viewer playback experience.
To evaluate the playback performance, we show the PFR
performance of four solutions with different numbers of
concurrent users in Fig. 15. Both Pensieve and WoLF-PHC
provide good PFR performance when there are five con-
current users. However, the PFR performance of these two
solutions sharply degraded as the number of users grew
to 15 and 10, respectively. Since these two solutions are
unicast, the average bandwidth usage of each user will
decrease sharply with the growth of concurrent users. When
the available bandwidth is not enough to support all users,
severe playback freezes will occur. Therefore, our method
can provide the best PFR performance in general.

Fig. 16 shows the bitrate change ratio (BCR) variation
of the four tested solutions with 25 concurrent viewers.
BCR curves of MATO-CAD, MEC-JCC, and WoLF-PHC go
through a quick process of growth followed by a rapid
decline and finally get stabilized over time. Pensieve’s curve
has a sharp change in the middle and then stabilizes. As
time progresses, the four solutions adjust the bitrate and
eventually reach a stable stage. Fig. 17 reveals the average
throughput (AT) achieved by the four methods over time
and can be noted how the proposed solution has significant
advantages over the others. The AT performance of MATO-
CAD is significantly higher than those of Pensieve and
WoLF-PHC by about 50% and 18% , respectively. Although
the performance of MEC-JCC is comparable to our solution
in the first 80s, there is a rapid degradation for MEC-JCC in
the last 20s.

In addition, we also provide details of bitrate change
and a comprehensive QoE performance assessment. Fig. 18
shows the number of users that retrieve certain quality lev-
els of each tile for the four tested solutions. Six resolutions
are considered, as presented in Table 2. The brighter the
color in the figure is, the higher is the number of users
accessing the video with this representation. Clearly, in both
MATO-CAD and MEC-JCC cases, more users can retrieve
the video tiles with a higher bitrate given the brighter color
in the space for resolutions 5 and 6. Besides, the large bright
area in WoLF-PHC also implies there are not smooth play-
backs for clients using WoLF-PHC, which confirms the BCR
results illustrated in Fig. 16. In addition, although Pensieve
can provide users with a stable resolution, its strategy is
conservative, so the video quality accessed by users is the
worst. We also provide a comparison of the four solutions in
terms of QoE performance based on eq. (19) in Fig. 19. The
integrated QoE scores of all the benchmark methods varies
a lot before it stabilizes. However,the proposed approach
has the highest stable value when compared with the other
three methods and provides users with the best viewing
experience in the given context.

7 CONCLUSION AND FUTURE WORK

This paper introduces the MEC-DC framework which em-
ploys a novel buffer-based evolution model for live VR
services in a 5G-HetNet and a novel buffer-based multicast
scheme to support high-quality services. By considering the
dynamic nature of the mobile network and time-sensitive
demand, we formulate the multicast-aware task offloading
(MATO) problem as a constrained optimization and devise
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a joint optimization of data scheduling and task offloading
algorithm to achieve high-quality and cost-efficient services.
The paper presents both theoretical and trace-driven ex-
perimental results to demonstrate the correctness of the
proposed solution and show its advantages in terms of
throughput, latency, and cost consumption in comparison
with other state-of-art solutions. In future work, the issue
of user clustering and FoV prediction will be studied to
make the solution more comprehensive. Furthermore, we
will consider more generalized scenarios, including multi-
ple macro-cells.

REFERENCES

[1] C. Yao, X. Wang, Z. Zheng, G. Sun and L. Song, “Edge-
Flow: Open-Source Multi-layer Data Flow Processing in
Edge Computing for 5G and Beyond,” IEEE Network,
vol. 33, no. 2, pp. 166-173, March/April 2019.

[2] Tejasvi T R, Manjaiah D H. “Energy and spectral efficient
resource allocation in 5G HetNet using optimized deep
bi-BRLSTM model,” Transactions on Emerging Telecom-
munications Technologies, pp. e4471, 2022.

[3] F. Hu, Y. Deng, W. Saad, M. Bennis and A. H. Aghvami,
“Cellular-Connected Wireless Virtual Reality: Require-
ments, Challenges, and Solutions,” IEEE Communica-
tions Magazine, vol. 58, no. 5, pp. 105-111, May 2020.

[4] F. Guo, F. R. Yu, H. Zhang, H. Ji, V. C. M. Leung and X.
Li, “An Adaptive Wireless Virtual Reality Framework
in Future Wireless Networks: A Distributed Learning
Approach,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 8, pp. 8514-8528, Aug. 2020.

[5] E. Bastug, M. Bennis, M. Medard and M. Debbah,
“Toward Interconnected Virtual Reality: Opportunities,
Challenges, and Enablers,” IEEE Communications Mag-
azine, vol. 55, no. 6, pp. 110-117, June 2017.

[6] Yang S, Hu J, Jiang K, et al. “Hybrid-360: An adaptive
bitrate algorithm for tile-based 360 video streaming,”
Transactions on Emerging Telecommunications Tech-
nologies, pp. e4430, 2021.

[7] L. Feng, Z. Yang, Y. Yang, X. Que and K. Zhang, “Smart
Mode Selection Using Online Reinforcement Learning
for VR Broadband Broadcasting in D2D Assisted 5G
HetNets,” IEEE Transactions on Broadcasting, vol. 66,
no. 2, pp. 600-611, June 2020.

[8] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci and A. El
Saddik, “Edge Caching and Computing in 5G for Mobile
AR/VR and Tactile Internet,” IEEE MultiMedia, vol. 26,
no. 1, pp. 21-30, 1 Jan.-March 2019.

[9] K. Long, Y. Cui, C. Ye and Z. Liu, “Optimal Wireless
Streaming of Multi-Quality 360 VR Video by Exploiting
Natural, Relative Smoothness-enabled and Transcoding-
enabled Multicast Opportunities,” IEEE Transactions on
Multimedia, vol. 99, no. 99, pp. 1-1, Oct. 2020.

[10] Y. Liu, J. Liu, A. Argyriou and S. Ci, “MEC-Assisted
Panoramic VR Video Streaming Over Millimeter Wave
Mobile Networks,” IEEE Transactions on Multimedia,
vol. 21, no. 5, pp. 1302-1316, May 2019.

[11] C. Perfecto, M. S. Elbamby, J. D. Ser and M. Bennis,
“Taming the Latency in Multi-User VR 360°: A QoE-
Aware Deep Learning-Aided Multicast Framework,”

IEEE Transactions on Communications, vol. 68, no. 4, pp.
2491-2508, April 2020.

[12] X. Feng, Y. Liu and S. Wei, “LiveDeep: Online Viewport
Prediction for Live Virtual Reality Streaming Using Life-
long Deep Learning,” 2020 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), Atlanta, GA, USA,
2020, pp. 800-808.

[13] X. Feng, Z. Bao and S. Wei, “LiveObj: Object Semantics-
based Viewport Prediction for Live Mobile Virtual Real-
ity Streaming,” IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 5, pp. 2736-2745, May
2021.

[14] M. Chen, W. Saad, C. Yin and M. Debbah, “Data
Correlation-Aware Resource Management in Wireless
Virtual Reality (VR): An Echo State Transfer Learning
Approach,” IEEE Transactions on Communications, vol.
67, no. 6, pp. 4267-4280, June 2019.

[15] A. A. Simiscuka, T. M. Markande and G. Muntean,
“Real-Virtual World Device Synchronization in a Cloud-
Enabled Social Virtual Reality IoT Network,” IEEE Ac-
cess, vol. 7, pp. 106588-106599, Aug.2019.

[16] Z. He, L. You, R. W. Liu, F. Yang, J. Ma and N. Xiong, “A
Cloud-Based Real Time Polluted Gas Spread Simulation
Approach on Virtual Reality Networking,” IEEE Access,
vol. 7, pp. 22532-22540, Jan.2019.

[17] J. Yang, J. Luo, J. Wang and S. Guo, “CMU-VP: Coop-
erative Multicast and Unicast With Viewport Prediction
for VR Video Streaming in 5G H-CRAN,” IEEE Access,
vol. 7, pp. 134187-134197, Sept.2019.

[18] Y. Li, C. Hsu, Y. Lin, and C. Hsu, “Performance Mea-
surements on a Cloud VR Gaming Platform,” Proceed-
ings of the 1st Workshop on Quality of Experience (QoE)
in Visual Multimedia Applications, Seattle, WA, USA,
pp. 37-45, 2020.

[19] J. Dai, Z. Zhang, S. Mao and D. Liu, “A View Synthesis-
Based 360° VR Caching System Over MEC-Enabled C-
RAN,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 10, pp. 3843-3855, Oct.
2020.

[20] J. Chakareski, “Viewport-Adaptive Scalable Multi-User
Virtual Reality Mobile-Edge Streaming,” IEEE Transac-
tions on Image Processing, vol. 29, pp. 6330-6342, May
2020.

[21] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang and X. Chu,
“MEC-Assisted Immersive VR Video Streaming Over
Terahertz Wireless Networks: A Deep Reinforcement
Learning Approach,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9517-9529, Oct. 2020.

[22] Y. Zhang, L. Jiao, J. Yan and X. Lin, “Dynamic Ser-
vice Placement for Virtual Reality Group Gaming on
Mobile Edge Cloudlets,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 8, pp. 1881-1897, Aug.
2019.

[23] L. Hu, Y. Tian, J. Yang, T. Taleb, L. Xiang and Y.
Hao, “Ready Player One: UAV-Clustering-Based Multi-
Task Offloading for Vehicular VR/AR Gaming,” IEEE
Network, vol. 33, no. 3, pp. 42-48, May/June 2019.

[24] J. Chakareski and S. Gupta, “Multi-Connectivity and
Edge Computing for Ultra-Low-Latency Lifelike Virtual
Reality,” 2020 IEEE International Conference on Mul-
timedia and Expo (ICME), London, United Kingdom,



IEEE TRANSACTIONS ON MOBILE COMPUTING 15

2020, pp. 1-6.
[25] Y. Zhou, L. Tian, L. Liu and Y. Qi, “Fog Computing

Enabled Future Mobile Communication Networks: A
Convergence of Communication and Computing,” IEEE
Communications Magazine, vol. 57, no. 5, pp. 20-27,
May 2019.

[26] E. Markakis, D. Negru, J. Bruneau-Queyreix, et al. “A
p2p home-box overlay for efficient content distribution,”
Emerging Innovations in Wireless Networks and Broad-
band Technologies, IGI Global, pp. 199-220, 2016.

[27] C. Xu et al., “The Case for FPGA-based Edge Comput-
ing,” IEEE Transactions on Mobile Computing, vol. 99,
no. 99, pp. 1-1, Dec 2020.

[28] K. Karras, E. Pallis , G. Mastorakis, Y. Nikoloudakis,
J.Batalla, C. Mavromoustakis, E. Markakis. “A hard-
ware acceleration platform for AI-based inference at the
edge,” Circuits, Systems, and Signal Processing, vol. 39,
no. 2, pp. 1059-1070, 2020.

[29] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan,
B. Vucetic and Y. Li, “Communication-and-Computing
Latency Minimization for UAV-Enabled Virtual Reality
Delivery Systems,” IEEE Transactions on Communica-
tions, vol. 69, no. 3, pp. 1723-1735, March 2021.

[30] T. Dang and M. Peng, “Joint Radio Communication,
Caching, and Computing Design for Mobile Virtual
Reality Delivery in Fog Radio Access Networks,” IEEE
Journal on Selected Areas in Communications, vol. 37,
no. 7, pp. 1594-1607, July 2019.

[31] Y. Sun, Z. Chen, M. Tao and H. Liu, “Communications,
Caching, and Computing for Mobile Virtual Reality:
Modeling and Tradeoff,” IEEE Transactions on Commu-
nications, vol. 67, no. 11, pp. 7573-7586, Nov. 2019.

[32] Cui, E, Yang, D, Wang, H, Zhang, W. “Learning-
based deep neural network inference task offloading in
multi-device and multi-server collaborative edge com-
puting,” Transactions on Emerging Telecommunications
Technologies, pp. e4485, 2022.

[33] X. Chen, C. Xu, M. Wang, Z. Wu, L. Zhong and L.
A. Grieco, “Augmented Queue-based Transmission and
Transcoding Optimization for Livecast Services Based
on Cloud-Edge-Crowd Integration,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31,
no. 11, pp. 4470-4484, Nov. 2021.

[34] X. Chen, C. Xu, M. Wang, Z. Wu, S. Yang, L. Zhong and
G.-M. Muntean, “A Universal Transcoding and Trans-
mission Method for Livecast with Networked Multi-
Agent Reinforcement Learning,” Proceedings of the 40th
IEEE Conference on Computer Communications (IEEE
INFOCOM 2021), Vancouver BC Canada, pp. 1-10, 2021.

[35] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh
and E. Modiano, “Scheduling Policies for Minimizing
Age of Information in Broadcast Wireless Networks,”
IEEE/ACM Transactions on Networking, vol. 26, no. 6,
pp. 2637-2650, Dec. 2018.

[36] Y. Hsu, E. Modiano and L. Duan, “Scheduling Al-
gorithms for Minimizing Age of Information in Wire-
less Broadcast Networks with Random Arrivals,” IEEE
Transactions on Mobile Computing, vol. 19, no. 12, pp.
2903-2915, Dec. 2020.

[37] I. Kadota and E. Modiano, “Minimizing the Age of
Information in Wireless Networks with Stochastic Ar-

rivals,” Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Com-
puting (Mobihoc ’19), pp. 221-230, New York, NY, USA,
2019.

[38] H. Mao, R. Netravali, and M. Alizadeh. “Neural Adap-
tive Video Streaming with Pensieve,” Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for
Computing Machinery, New York, NY, USA, 197–210,
2017.

[39] C. Guo, Y. Cui and Z. Liu, “Optimal Multicast of Tiled
360 VR Video in OFDMA Systems,” IEEE Communica-
tions Letters, vol. 22, no. 12, pp. 2563-2566, Dec. 2018.

[40] H. Ahmadi, O. Eltobgy, and M. Hefeeda, “Adaptive
Multicast Streaming of Virtual Reality Content to Mobile
Users,” Proceedings of the on Thematic Workshops of
ACM Multimedia, pp. 170-178, 2017.

[41] C. Guo, Y. Cui and Z. Liu, “Optimal Multicast of Tiled
360 VR Video,” IEEE Wireless Communications Letters,
vol. 8, no. 1, pp. 145-148, Feb. 2019.

[42] Y. Bao, T. Zhang, A. Pande, H. Wu and X. Liu, “Motion-
Prediction-Based Multicast for 360-Degree Video Trans-
missions,” 2017 14th Annual IEEE International Con-
ference on Sensing, Communication, and Networking
(SECON), San Diego, CA, 2017, pp. 1-9.

[43] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu,
“360° Video Viewing Dataset in Head-Mounted Virtual
Reality,” Proceedings of the 8th ACM on Multimedia
Systems Conference, Taipei, Taiwan, pp. 211-216, 2017.

[44] H. Nam, K. Kim and H. Schulzrinne, “QoE matters
more than QoS: Why people stop watching cat videos,”
IEEE INFOCOM 2016 - The 35th Annual IEEE Interna-
tional Conference on Computer Communications, 2016,
pp. 1-9.

[45] B. Rainer, D. Posch and H. Hellwagner, “Investigat-
ing the Performance of Pull-Based Dynamic Adaptive
Streaming in NDN,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 8, pp. 2130-2140, Aug.
2016.

[46] B. Zhou, Y. Cui and M. Tao, “Stochastic Content-
Centric Multicast Scheduling for Cache-Enabled Het-
erogeneous Cellular Networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 9, pp. 6284-6297,
Sept. 2016.

[47] C. Xu, M. Wang, X. Chen, L. Zhong and L. A. Grieco,
“Optimal Information Centric Caching in 5G Device-to-
Device Communications,” IEEE Transactions on Mobile
Computing, vol. 17, no. 9, pp. 2114-2126, Sept. 2018.

[48] X. Chen, C. Xu, M. Wang, T. Cao, L. Zhong and G.
Muntean, “Optimal Coded Caching in 5G Information-
Centric Device-to-Device Communications,” 2018 IEEE
Global Communications Conference (GLOBECOM),
2018, pp. 1-7.

[49] Menkovski V. “Computational inference and control of
quality in multimedia services,” Springer, 2015.

[50] B. Rainer, S. Lederer, C. Müller and C. Timmerer, “A
seamless Web integration of adaptive HTTP streaming,”
2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO), pp. 1519-1523, 2012.

[51] Y. Xu, G. Gui, H. Gacanin and F. Adachi, “A Survey on
Resource Allocation for 5G Heterogeneous Networks:



IEEE TRANSACTIONS ON MOBILE COMPUTING 16

Current Research, Future Trends, and Challenges,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp.
668-695, Second quarter 2021.

[52] M. J. Neely, “Stochastic Network Optimization with
Application to Communication and Queueing Systems,”
Morgan & Claypool, vol. 3, no. 1, pp. 1-211, 2010.

[53] H. Pang, C. Zhang, F. Wang, H. Hu, Z. Wang, J. Liu,
and L. Sun, “Optimizing Personalized Interaction Ex-
perience in Crowd-Interactive Livecast: A Cloud-Edge
Approach,” ACM Conference on Multimedia (MM ’18),
Seoul, Republic of Korea, pp. 1217-1225, 2018.

[54] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A Dataset
for Exploring User Behaviors in VR Spherical Video
Streaming,” Proceedings of the 8th ACM on Multimedia
Systems Conference, Taipei, Taiwan, pp. 193-198, 2017.

[55] L. Yu, T. Tillo and J. Xiao, “QoE-Driven Dynamic Adap-
tive Video Streaming Strategy With Future Information,”
IEEE Transactions on Broadcasting, vol. 63, no. 3, pp.
523-534, Sept. 2017.

Lujie Zhong received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2013.
She is currently an Associate Professor with the
Information Engineering College, Capital Nor-
mal University, Beijing, China. She has pub-
lished papers in prestigious international jour-
nals and conferences in the related area, includ-
ing IEEE COMMUNICATION MAGAZINE, IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE
TRANSACTIONS ON MULTIMEDIA, IEEE INTER-

NET THINGS JOURNAL, IEEE INFOCOM and ACM MULTIMEDIA, etc.
Her research interests include communication networks, computer sys-
tem and architecture, and mobile Internet technology.

Xingyan Chen received the Ph. D degree in
computer technology from Beijing University of
Posts and Telecommunications (BUPT), in 2021.
He is currently a lecturer with the School of Eco-
nomic Information Engineering, Southwestern
University of Finance and Economics, Chengdu.
He has published papers in well-archived inter-
national journals and proceedings, such as the
IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS FOR VIDEO TECHNOLOGY, IEEE TRANS-

ACTIONS ON INDUSTRIAL INFORMATICS, and IEEE INFOCOM etc.
His research interests include Multimedia Communications, Multi-agent
Reinforcement Learning and Stochastic Optimization.

Changqiao Xu [SM’15] received the Ph.D. de-
gree from the Institute of Software, Chinese
Academy of Sciences (ISCAS) in Jan. 2009.
He was an Assistant Research Fellow and R&D
Project Manager in ISCAS from 2002 to 2007.
He was a researcher at Athlone Institute of Tech-
nology and Joint Training PhD at Dublin City Uni-
versity, Ireland during 2007-2009. He joined Bei-
jing University of Posts and Telecommunications
(BUPT), Beijing, China, in Dec. 2009. Currently,
he is a Professor with the State Key Laboratory

of Networking and Switching Technology, and Director of the Network
Architecture Research Center at BUPT. His research interests include
Future Internet Technology, Mobile Networking, Multimedia Communi-
cations, and Network Security. He has edited two books and published
over 200 technical papers in prestigious international journals and con-
ferences, including IEEE/ACM ToN, IEEE TMC, IEEE INFOCOM, ACM
Multimedia etc. He has served a number of international conferences
and workshops as a Co-Chair and TPC member. He is currently serving
as the Editor-in-Chief of TRANSACTIONS ON EMERGING TELECOMMUNI-
CATIONS TECHNOLOGIES (WILEY). He is Senior member of IEEE.

Yunxiao Ma received the B.E. degree in
telecommunications engineering from the
School of Electronic Information Engineering,
Inner Mongolia University, in 2019. She is
currently pursuing the Ph.D. degree with the
Network Architecture Research Center, School
of Computing, Beijing University of Posts and
Telecommunications, under the supervision of
Prof. Changqiao Xu. Her research interests
include multimedia communications and
stochastic optimization.

Mu Wang received his M.S. and a Ph.D. degree
in computer technology from Beijing University
of Posts and Telecommunications (BUPT) in
2015 and 2020. He was a Joint Ph.D. student at
the School of Electrical, Computer, and Energy
Engineering (ECEE), Arizona State University.
He is currently a postdoctoral research asso-
ciate with the Department of Computer Science
and Technology & BNRist, Tsinghua Univer-
sity. His research interests include information-
centric networking, wireless communications,

and multimedia sharing over wireless networks.

Yu Zhao received the B.S. degree from South-
west Jiaotong University in 2006, and the M.S.
and Ph.D. degrees from the Beijing University
of Posts and Telecommunications in 2011 and
2017, respectively. He is currently an Associate
Professor at Southwestern University of Finance
and Economics. His current research interests
include natural language processing, knowledge
graph, machine learning, and recommendation
system.

Gabriel-Miro Muntean [SM 17] is a Professor
with the School of Electronic Engineering, Dublin
City University (DCU), Ireland, and coDirector of
DCU Performance Engineering Laboratory. He
has published 4 books and over 450 papers in
top international journals and conferences. His
research interests include rich media delivery
quality, performance, and energy-related issues,
technology enhanced learning, and other data
communications in heterogeneous networks. He
is an Associate Editor of the IEEE TRANSAC-

TIONS ON BROADCASTING, the Multimedia Communications Area Editor
of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and reviewer
for important international journals, conferences, and funding agencies.
He coordinated the EU project NEWTON and leads the DCU team in
the EU project TRACTION.



IEEE TRANSACTIONS ON MOBILE COMPUTING 17

APPENDIX A
According to the buffer evolution model, we have the sum
of equations (2) for all t as follows:

χu[T ]− χu[0] =
T−1∑
t=0

(τ − χu[t])γu[t]hu[t]− T (19)

As the initial buffer χu[0] = 0, we have:

1

T
χu[T ] =

1

T

T−1∑
t=0

(τ − χu[t])γu[t]hu[t]− 1 (20)

Because γu ∈ Ψ, we have lim infT→∞
1
T E[χu[T ]] = 0. Take

the expectation of both sides of eq. (20) and we get the
following equation for T →∞.

lim inf
T→∞

E

[
1

T

T−1∑
t=0

χu[t]γu[t]hu[t]

]
=

τ lim sup
T→∞

E

[
1

T

T−1∑
t=0

γu[t]hu[t]

]
− 1

(21)

Divide lim supT→∞ E
[
1
T

∑T−1
t=0 γu[t]hu[t]

]
for both sides of

eq. (21), we have Lemma 1.

χ̄u[t] = τ − 1

lim supT→∞ E
[
1
T

∑T−1
t=0 γu[t]hu[t]

] (22)

APPENDIX B
Combining eq. (7) and eq. (10a), for ∀sn ∈ S at time t, we
have:

J (π[t]) =
∑
u∈Ω

(
λuπu[t]+

γu[t]
(
αupn(πu[t]) + βupr(πu[t])

))
(23a)

s. t.
∑

u∈Ω
n†

γuαu[t] ≤ bn,
∑

u∈Ω
n†

λuπu[t] ≤ cn (23b)

Based on eq. (8) and eq. (23a), when the transcoding task is
deployed in the n-th BS, we get the expected cost of the n-th
BS: (λu +αu(1− p0)) at t. Otherwise, the cost is βu(1− p0).
According to the definition ψu, we have Lemma 2.

APPENDIX C
We define L[t] = 1

2

∑
u∈Ω q

2
u[t] and ∆[t] = L[t + 1] − L[t].

According to virtual queue update in eq. (15), we have:

q2u[t+ 1] =
[
max

{
qu[t] +

√
V/qu[t]− γu[t]hu[t], 1

}]2
≤ 1 +

(
qu[t] +

√
V/qu[t]− γu[t]hu[t]

)2
= 1 + q2u[t] +

(√
V/qu[t]− γu[t]hu[t]

)2
+ 2qu[t]

(√
V/qu[t]− γu[t]hu[t]

)
Because γu[t]hu[t] ∈ {0, 1} and qu[t] ≥ 1, we have:

∆[t] ≤ V + 1

2
|Ω|+

∑
u∈Ω

qu[t]
(√

V/qu[t]− γu[t]hu[t]
)

(24)

We denote the objective function from eq. (12) as f(εu) =∑
u∈Ω

V
εu

and we have:

V f(εu) + ∆[t] ≤
∑
u∈Ω

V

εu
+ (1 +

V

2
)|Ω|

+
∑
u∈Ω

qu[t]
(√

V/qu[t]− γu[t]hu[t]
) (25)

Summing both sides of eq. (25) over the entire time, dividing
both sides by T and then taking the expected value, we
have:

E
[
V

T

T−1∑
t=0

f(ε[t])

]
+ E[L[T ]− L[0]] ≤ E

[
1

T

T−1∑
t=0

∑
u∈Ω

V

εu[t]

]

+
V + 2

2
|Ω|+

∑
u∈Ω

E
[
1

T

T−1∑
t=0

qu[t]
(√

V/qu[t]− γu[t]hu[t]
)]

(26)

According to eq. (4) and eq. (15), we have
limT→∞ E

[
1
T

∑T−1
t=0

√
V

qu[t]

]
≤ limT→∞ E

[∑T−1
t=0 γu[t]hu[t]

T

]
.

Additionally L[t] ≥ 0, we use
√
V/qu[t] to substitute εu[t]

and get:

E
[
V

T

T−1∑
t=0

f(ε[t])

]
≤ E

[
2

T

T−1∑
t=0

∑
u∈Ω

√
V qu[t]

]
+
V + 1

2
|Ω|

−
∑
u∈Ω

E
[
1

T

T−1∑
t=0

qu[t]γu[t]hu[t]

]
+ E[L[0]]

(27)

Replacing γu[t] with γ∗u[t]. As εu[t] = E[γu[t]hu[t]], we have:

E
[
V

T

T−1∑
t=0

f(ε[t])

]
≤ E

[
V

T

T−1∑
t=0

f(ε∗u[t])

]
+
V + 1

2
|Ω|

−
∑
u∈Ω

E
[
1

T

T−1∑
t=0

ε∗u[t]
[√

qu[t]−
√
V

ε∗u[t]

]2]
+ E[L[0]]

(28)

where the ε∗u[t] is the optimal solution to the problem from
eq. (12). Since the last term of eq. (28) is always greater than
0, we get:

E
[
1

T

T−1∑
t=0

f(ε[t])

]
≤ E

[
1

T

T−1∑
t=0

f(ε∗u[t])

]
+
V + 1

2V
|Ω| (29)

Combining Lemma 1 and eq. (29), we proof Theorem 1.


