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Abstract—The exponential demand for multimedia services is
one reason behind the substantial growth of mobile data traffic.
Video traffic patterns have significantly changed in the past two
years due to the coronavirus disease (Covid-19). The worldwide
pandemic has caused many individuals to work from home
and use various online video platforms (e.g., Zoom, Google
Meet, Microsoft Teams). As a result, overloaded macrocells
are unable to ensure high Quality of Experience (QoE) to all
users. Heterogeneous Networks (HetNets) consisting of small
cells (femtocells) and macrocells is a promising solution to
mitigate this problem. A critical challenge with the deployment
of femtocells in HetNets is the interference management between
Macro Base Stations (MBS), Femto Base Stations (FBS),
and between FBS-FBS. Indeed, the dynamic deployment of
femtocells can lead to co-tier interference. With the rolling out
of the 5G mobile network, it becomes imperative for mobile
operators to maintain network capacity and manage different
types of interference. Machine Learning (ML) is considered as
a promising solution to many challenges in 5G HetNets. In this
paper, we propose a Machine Learning Interference Classification
and Offloading Scheme (MLICOS) to address the problem of
co-tier interference between femtocells for video delivery. Two
versions of MLICOS, namely, MLICOS1 and MLICOS2, are
proposed. The former uses conventional ML classifiers while
the latter employs advanced ML algorithms. Both versions of
MLICOS are compared with the classic Proportional Fair (PF)
scheduling algorithm, Variable Radius and Proportional Fair
scheduling (VR+PF) algorithm, and a Cognitive Approach (CA).
The ML models are assessed based on the prediction accuracy,
precision, recall and F-measure. Simulation results show that
MLICOS outperforms the other schemes by providing the
highest throughput and the lowest delay and packet loss ratio.
A statistical analysis was also carried out to depict the degree of
interference faced by users when different schemes are employed.

Index Terms- HetNets, Covid-19, Interference, Machine Learn-
ing, QoS, Statistical Visualization

I. INTRODUCTION

Recently, user demand for cellular data has surged due to
the rapid increase in the number of both smart devices and
mobile applications. Video streaming applications, including
video on demand and live streaming, account for the majority
of the mobile data traffic. According to Cisco [1], video traffic
has increased at a compound rate of 26% from 2016 to 2020,
and will account for 82% of all the Internet traffic by the
end of 2022. As video traffic and applications are increasing
exponentially, the need for good resource management is of
paramount importance, especially in indoor spaces. Radio
signals in indoor environments are relatively weak due to
aspects such as path loss and fast fading. This determines

that sometimes the bandwidth share users get from Macro
Base Stations (MBS) is insufficient to support delivery of
high quality multimedia content [2]. Other times, reliable and
fast delivery of multimedia content is of great significance for
the service provided [3]. In general, video streaming services
have high bandwidth and tight timing requirements, sometimes
exceeding the network support. This calls for an efficient way
to deliver videos, specific to the ultra-dense HetNets [4].

One promising solution to improve the overall network
capacity is to provide 5G support as part of HetNets. HetNets
consist of small cells that are deployed within the macro cell
coverage area. Among the small cell solutions (i.e., femtocells,
microcells, and picocells), femtocells have recently received
considerable attention in the new 5G service-based architec-
ture. Femtocells do not face any challenges related to site
availability, as users install FBS themselves and use existing
user broadband connections. They also introduce very little
overhead on the mobile operators [5]. A femtocell provides
three types of access modes to its users. The open access
allows access to all user equipment (UE) with no restriction,
while the closed access mode enables access only to authorized
users. The hybrid access enables access to authorized UEs
along with a limited number of pre-defined UEs in a prioritized
manner. A femtocell helps improve the indoor radio signal
quality, operates on a licensed spectrum, and provides good
wireless access service.

Due to limited radio resources, a femtocell shares the same
licensed range with a macrocell in the traditional cellular
network, leading to signal interference. The interference be-
tween the macrocell and the femtocell is called cross-tier
interference. The dynamic deployment of multiple femtocells
also determines a inter-cell interference known as co-tier
interference, which is one of the primary concerns with
femtocell deployment in HetNets. In an ideal HetNet, co-
tier interference can be minimized if femtocells are deployed
with appropriate planning. However, due to the plug and play
feature of femtocells, co-tier interference occurs even after
appropriate planning. In HetNets, there will always be more
femtocells than macrocells. A high number of femtocells helps
reduce the load of the macrocells. However, such a setup
introduces interference, in particular co-tier interference and it
is important to address it in order to ensure good QoS levels
and high user QoE.

All major video content providers (e.g., Youtube, Youku,
Netflix) have put great efforts to deliver the most exciting



content to users [6]. They require increased amount of band-
width and this calls for the use of femtocells in a HetNet envi-
ronment. Femtocell employment results in interference, which
ultimately affects the delivered content’s quality of service
(QoS). Therefore, there is an important need to mitigate the
co-tier interference and ensure good quality of the delivered
multimedia content in HetNets.

Following considerable research efforts, many schemes have
been proposed to minimize the effect of co-tier interference
in a HetNets, including clustering techniques, cognitive ap-
proaches, resource allocation solutions and power control tech-
niques [7][8][9][10]. Among them, Sultan et al. [11] discussed
power and radio resource management techniques to mitigate
the co-tier interference in femtocells. However, their proposed
scheme measured the level of interference for each femtocell
only. Tian et al. [12] introduced a cognitive interference man-
agement technique for the Internet of Things (IoT) in a two-tier
network. Pyun et al. [13] proposed a heuristic optimization
resource allocation scheme to mitigate co-tier interference
during uplink transmissions in femtocell networks. Dai et al.
[14] introduced an interference management technique based
on resource allocation and common clustering method in order
to mitigate co-tier interference in an Orthogonal Frequency
Division Multiplexing (OFDM)-based femtocell network. All
the different schemes from the literature proposed good unique
solutions to mitigate co-tier interference. However, as these
methods cannot be used in an online mode, novel techniques
are sought, including using ML [15].

This paper proposes the Machine-Learning Interference
Classification and Offloading Scheme, MLICOS, a ML-
based solution for the co-tier interference problem during
video delivery in HetNets. The proposed solution involves
a novel machine learning-based interference classification
algorithm and an offloading scheme applied on the most
affected traffic to mitigate the co-tier interference between the
femtocells and improve QoS levels.

Fig 1 illustrates the two-tier HetNet environment deploy-
ment for video delivery considered in this work. It involves
multiple femtocells and one macrocell. We assume femtocells
employ the closed access mode. The proposed MLICOS
scheme gives femtocells a cognitive sense that helps classify
users based on the interference level they experience. MLICOS
selects the most affected users and offloads their traffic to
nearby FBS, reducing the co-tier interference and improving
the overall QoS. The ML algorithms used by MLICOS are
assessed in terms of prediction accuracy, precision, recall and
F-measure. Two versions of MLICOS are proposed, namely,
MLICOS1 and MLICOS2. MLICOS1 uses the conventional
ML algorithms and MLICOS2 uses the neural network algo-
rithms. Both versions are tested in the simulated HetNet and
their performance is compared with that of other state-of-the-
art solutions based on QoS metrics such as throughput, delay
and Packet Loss Ratio (PLR).

The main contributions of this paper are as follows:
1) We propose a ML solution to address the problem of co-

tier interference. The proposed solution has two stages.
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Fig. 1: An example of a two-tier HetNet, including one MBS
and several FBS, located in residential buildings that constitute
hotspots for wireless traffic. In this scenario, most UEs are
streaming videos while the rest are generating regular web
traffic. UEs in a given region are either served by MBS or FBS,
which can lead to co-tier and cross-tier interference, affecting
QoS and user QoE.

The first classifies the users based on the interference
level while the second offloads users from the high
interference class to nearby FBS.

2) We perform an in-depth performance analysis of the pro-
posed versions of MLICOS against three other schemes,
demonstrating the proposed solution’s superiority.

The rest of the paper is organised as follows. Section
II surveys some related works. Section III formulates the
problem. The system model and proposed MLICOS algorithm
are presented in Section IV. Performance evaluation, including
ML analysis, QoS assessment and result visualization and
analysis, is discussed in Section V. Finally, Section VI con-
cludes the paper and indicates some future research directions.

II. RELATED WORKS

A HetNet may involve a large numbers of UEs and access
points, making it challenging to meet the delay-sensitive QoS
demands for video applications and services. In addition, the
dynamic deployment of femtocells in HetNets may lead to
co-tier interferences, which can reduce the overall network’s
capacity. There is an abundant number of interference man-
agement schemes and techniques that have been proposed in
the literature. In this section, we briefly review some of the
existing co-tier interference management techniques. They are
organised into four different categories: clustering techniques,
cognitive approaches, resource allocation schemes, and power
control techniques.

A. Clustering Techniques

Clustering techniques identifies similarities between users
based on vicinity, power, cell clustering policy, and groups



them according to those characteristics which are common.
These groups are known as ”clusters”. In [16], the authors
proposed a semi-clustering of victim-cell (SCVC) approach,
which clusters users based on UEs status (i.e., critical and
non-critical), and accordingly, assigns resource blocks among
the various clusters. This helps to manage the co-tier inter-
ference. In [17], the authors divided the problem into two
sub-problems. First, a femtocell clustering scheme based on
LINGO for mathematical modelling is used. Second, a novel
algorithm is proposed to allocate sub-channels to femtocell
users. The proposed algorithm predicts the change tendency
of path loss values of UEs. A clustering approach that groups
users and femtocells based on line of sight connectivity has
been introduced in [18], while Wang et al. [19] proposed
a Data-Driven Power Control (DDPC) technique based on
affinity propagation (AP) clustering algorithm. It clusters the
various femtocells based on the reference signal received
power (RSRP). In [20], the authors have proposed a dynamic
cell clustering-based resource algorithm to mitigate the co-
tier interference in the femtocells. The proposed algorithm in-
cludes two steps, one for assigning sub-channels for users and
the second helps mitigate the interference by controlling the
power. In [21], the authors proposed a small cell power control
algorithm (SPC) and interference-managed hybrid clustering
(IMHC) scheme, to resolve the issue of co-tier and cross-
tier interference in the small cell base station cluster tiers.
The proposed scheme improved the system throughput with
reduced interference but did not considered other QoS metrics
like jitter, PLR and delay. In [22], the authors proposed an
interference management technique to mitigate the problem
of co-tier interference in ultra-dense small cell networks. It
deploys a clustering based interference management scheme in
which the sub-channel resources are allocated in the process of
cluster generation. While clustering techniques find common
characteristics and group users into different clusters, classifi-
cation algorithms uses pre-defined classes to which users are
assigned.

B. Cognitive Approaches

Cognitive Approaches have been proposed for a long time
in literature to mitigate co-tier interference. Tian et al. [12]
proposed a cognitive technique for a network of femtocells
serving multiple IoT devices. The authors described two
cognitive Interference Alignment (IA) schemes. The first offers
a nulling based IA scheme that aligns the co-tier interferences
into the orthogonal subspace at each IoT receiver. The second
presents a partial cognitive IA scheme that further enhances the
network performance with low Signal to Noise Ratio values.
Zhang et al. [23] proposed a cognitive approach to mitigate co-
tier interference in femtocells. In the proposed scheme, a FBS
allocates component carriers to its UE for transmission. The
UE uses RSRP values to perform path loss measurements from
its FBS and neighbouring FBS. If the RSRP value is low on
one of the component carriers, the FBS selects that component
carrier as primary to help reducing the co-tier interference.
Similarly, a Cognitive Radio Femtocell Base Station (CFBS) is

proposed in [24]. The CFBS constructs the radio environment
map (REM) by sensing the radio environment. The REM is
used to assign resources to authorized users and therefore
helps mitigate interference. A dynamic algorithm based on
distance-based approach is proposed in [25]. It minimizes
the interference in a Device-to-Device (D2D) enabled cellular
network and guarantees QoS for both cellular and D2D com-
munication links. Finally, Wang et al. [26] used a cognitive
relay to increase the capacity of femtocell users and avoid
co-tier interference among femtocells.

C. Resource Allocation

Resource allocation techniques basically help allocate re-
sources in an efficient manner in HetNets, along with reduc-
ing the co-tier interference. In [27], the authors proposed a
statistical resource allocation scheme that helps mitigate the
cross-tier, co-tier and cross-link interferences in ultra-dense
heterogeneous networks. They consider Time Division Duplex
(TDD) mode for uplink and downlink transmission, which
can lead to cross-slot interference. This can be avoided by
using the Frequency Division Duplex (FDD) mode. In [28],
the authors proposed a Variable Radius algorithm for enhanced
distribution of resources and Interference management in a
LTE Femtocell network. The scenario considered the fem-
tocell’s open access mode, where all users are authorized
to connect to the femtocell network. In [29], the authors
described a bat algorithm based on the nearest-integer dis-
cretization method to minimize the interference in a closed
access femtocell network. In [30], the authors analyzed the
issue of resource allocation in 5G networks by classifying the
various proposed resource allocation schemes and assessing
their ability to enhance service quality. In [31], the authors
considered the hybrid access mode in a FBS deployment sce-
nario and proposed a resource allocation technique based on
a cuckoo search algorithm RACSA for cross-tier interference
mitigation in Orthogonal Frequency Division Multiple Access-
based Long Term Evolution (OFDMA-LTE) system.

D. Power Control Techniques

Chen et al. [32] proposed a threshold-based handover
algorithm to mitigate co-channel interference in a two-tier
femtocell network. The proposed scheme considers a Signal
to Interference and Noise Ratio (SINR) value as the threshold
to manage the transmission power of the FBS. Unfortunately,
only the uplink co-channel interference was considered. In
[33], the authors proposed two power control methods to
reduce the interference effect in a two-tier network using
SINR. Both methods were able to mitigate well the impact
of interference by controlling the transmission power. An
Active Power Control (APC) technique was proposed in [34]
which helps to reduce the inter-cell interference and also
reduces wastage of unnecessary power consumption in a
green femtocell network. In [35], the authors proposed a soft
frequency reuse (SFR) scheme to minimize the interference
and increase the network throughput. The proposed scheme
solves the interference problem of the densely deployed SCs



by dividing the cell region into center and edge zones. The
proposed scheme is based on n on/off switching which tackles
the elevated power consumption problem and enhances the
power efficiency of 5G networks. In [36], Stackelberg game
theory was used to formulate a power control scheme that
mitigates interference in a shared spectrum two-tier network.
The proposed scheme was compared with the baseline scheme,
where a two-way pricing mechanism was integrated into the
Stackelberg game to reduce the co-tier interference among
femtocells.

The schemes mentioned from the research literature help
mitigate co-tier interference among femtocells. To the best of
our knowledge, no ML-based solution has been proposed to
assess the level of interference faced by users when delivering
multimedia content and address co-tier interference problem
in a 5G HetNets. This paper proposes such a scheme which
considers video content to be delivered among the femtocell
users and mitigate the co-tier interference which impacts the
video delivery content by making efficient use of resources
while maintaining high QoS values in a 5G HetNets.

III. PROBLEM FORMULATION

We consider a heterogeneous network environment consist-
ing of a set of MBSs M = {M1,M2,M3, ...,Mm, ...,MNm

}
and a set of FBSs F = {F1, F2, F3, ..., Ff , ..., FNf

}, within
the coverage area of the MBSs. A simplified version of the
network scenario with a single MBS is illustrated in Fig 1. We
assume that users are randomly allocated to the nearest FBS.
Let U denote a set of UEs which are randomly and uniformly
distributed: U = {u1, u2, u3..........ui, ....., uNu

}.
The communication quality in the context of existing inter-

ference between user ui and Ff , in the coverage area of Mm,
is measured by αi,f , computed as follows:

αi,f =
P fi G

f
i

No
2 +

∑
ujεU

Pj
mGj

m +
∑
ujεU

Pj
fGj

f
(1)

where P fi and Pmj denote the transmission power of UEs
relative to Ff and Mm, respectively. Gif denotes the gain
of the channel between ui and the allocated Ff while Gjm

designates the gain of the channel between uj and the allocated
Mm. No is the channel’s average white noise power. Similarly,
the communication quality in the presence of interference
between user ui and Mm is expressed as follows:

αi,m =
Pmi G

m
i

No
2 +

∑
ujεU

Pj
mGj

m +
∑
ujεU

Pj
fGj

f
(2)

The maximum achievable throughput by the network can
be expressed by Shannon’s Law and is given by:

Thr =
∑
uiεU

(Bfi log2(1 + αi,f ) +Bmi log2(1 + αi,m)) (3)

where Thr is the sum of throughput in the network, Bfi and
Bmi are the bandwidths available for user ui when associated
with FBS Ff and MBS Mm, respectively.

The total round trip delay experienced by a packet ex-
changed between user ui and FBS Ff can be expressed as
follows:

Di,f = Dt
i,f +Dpr

i,f +Dp
i,f +Dq

i,f (4)

where, Dt
i,f is the transmission delay, defined as the time it

takes to transmit packets; Dpr
i,f is the radio propagation delay,

described as the time packets take to reach the receiver; Dp
i,f

is the signal processing delay, indicating the time to decode
the packet at the receiver while Dq

i,f is the queuing delay,
specifying the packet waiting time in the buffer. If we assume
that the radio propagation delay and signal processing delay
are very small [37] and are negligible, the total round trip
packet delay can be expressed as:

Di,f = Dt
i,f +Dq

i,f (5)

Similarly, the round trip delay experienced by a packet ex-
changed between ui and MBS Mm can be computed as:

Di,m = Dt
i,m +Dq

i,m (6)

Thus, the mean delay values for user ui are:

D̄i,f =
∑

Di,f/Ni,f (7)

D̄i,m =
∑

Di,m/Ni,m (8)

where Ni,f and Ni,m are numbers of delay samples.
Assuming that loss is a random process that follows a

Bernoulli distribution [38], [39], [40], the Packet Loss Rate
(PLR) between FBS Ff and ui is expressed as:

σi,f =
√
Xi,f ∗ Yi,f/Ni,f (9)

where Xi,f is the probability of dropping a packet, Yi,f is
the probability of receiving a packet (can also be expressed as
(1-Xi,f )) and Ni,f is the total number of samples. Likewise,
PLR between MBS Mm and ui is expressed as:

σi,m =
√
Xi,m ∗ Yi,m/Ni,m (10)

The problem described in this work has three goals:
G1, G2, G3, expressed in terms of the following equations:

1) Maximize the network throughput, calculated according
to Eq. (3):

G1 = max(Thr) (11)

2) Minimize average packet delay across all users (calcu-
lated according to Eqs. (7) and (8):

G2 = min

([∑
uiεU

D̄i,f +
∑
uiεU

D̄i,m

]
/Nu

)
(12)

3) Minimize average PLR across all users (calculated ac-
cording to Eqs. (9) and (10):

G3 = min

([∑
uiεU

σi,f +
∑
uiεU

σi,m

]
/Nu

)
(13)

These goals are achieved by reducing the co-tier interference
in the femtocell-enhanced network environment, therefore,
improving the quality of the multimedia content delivery.
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IV. SYSTEM MODEL

A. System Architecture

This paper considers an Open-Radio Access Network (O-
RAN) architecture, supported in a 5G network environment
[41]. Within the O-RAN architecture, the functions of the
traditional RAN are split into multiple entities with open inter-
faces between them: Remote Radio Unit (RRU), Distributed
Unit (DU) and Centralised Unit (CU). These entities can be
developed by different vendors, allowing for flexibility.

Fig 2a illustrates RAN components in a traditional network
context. The traditional RAN network is considered a black
box in which the internal interfaces are closed and operated
only by a single vendor. Fig 2b shows the O-RAN-enhanced
system architecture. According to the 3GPP standards, CU
consists of a logical unit that integrates the Radio Resource
Control (RRC), Service Data Adaptation Protocol (SDAP) and
Packet Data Convergence Protocol (PDCP). These are a part
of both the User Plane (UP) and the Control Plane (CP).
CP carries the signalling traffic and UP transports the user
traffic. CU also controls the operations of one or multiple
DUs, which are logical units that host Radio Link Control

(RLC), Medium Access Control (MAC), and are partially
controlled by CU. RRU is integrated with the 5G MIMO
antenna [42]. An essential part of this system architecture
is the RAN Intelligence Controller (RIC), containing various
artificial intelligence (AI)/ML models that help improve net-
work operations. AI/ML models situated in the RIC controller
support many microservices, including handover optimization,
QoS optimization, network slicing and interference manage-
ment [43]. The proposed MLICOS scheme is part of this
intelligence (see Fig. 3).

As illustrated in Fig. 4, MLICOS includes an Interference
Management Server (IMS) that acquires information on both
co-tier and cross-tier interference in the 5G HetNets. MLI-
COS focuses on the co-tier interference and, as discussed,
involves Classification and Traffic Offloading. Classification
identifies low co-tier interference users (C-1) and high co-
tier interference users (C-2). MLICOS reduces the co-tier
interference for C-2 users by offloading user traffic to the
nearby FBS, depending upon the availability of resources
at that particular FBS. Resource monitor keeps a track of
resources at a particular FBS which helps in the offloading
process. Traffic offloading is performed using a solution such
as the one proposed in [44].

B. Machine Learning Interference Classification and Offload-
ing Scheme (MLICOS)

The proposed approach is a ML solution which classifies
users into two different classes based on the level of experi-
enced co-tier interference within the FBS coverage area: low
co-tier interference class (C-1) and high co-tier interference
class (C-2). MLICOS scheme focuses on C-2 users and
offloads their traffic to a nearby FBS in order to improve QoS
and QoE metrics for the video streaming services.

The proposed algorithm has three phases, as shown in
Algorithm 1: Initialization, Classification, and Offloading. In
the Initialization phase, U is the set of UEs, randomly and
uniformly distributed. Let Bs be the set of all base stations as
Bs = {B1, B2, . . . , BNm , BNm+1 , . . . , Bt, . . . , BT }, where T
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Algorithm 1: MLICOS Algorithm
Goals: Increase Throughput (Thr), Decrease Delay (Dt) and

PLR (σ)
Phase 1: Initialization :

1. Nu, ∀ui ∈ U ;
2. C1= {}, C2= {};
3. Bs = {B1, . . . , Bt, . . . , BT };
4. Threshold α;
5. User Interference Matrix (UIM);
6. User Association Matrix (UAM);

Phase 2: Classification
foreach ui ∈ U do

foreach rtj ∈ N t
r do

if UIM [i, j] < α then
C1 ←C1 ∪{ui}
user in low co-tier interference class

else if UIM [i, j] ≥ α then
C2 ←C2 ∪{ui}
user in high co-tier interference class

i++;
end

end
Phase 3: Offloading

foreach ui ∈ C2 AND Bt ∈Bs do
if UAM [i, t] = 1 then

Compute Si as in eq. (16);
Determine sig as in eq. (17);
foreach rtj ∈ N t

r do
Offload ui to a new FBS Bg having the

available resource blocks and which guarantees
maximum throughput, lowest delay and PLR
according to eq. (11), (12), and (13);

Update UIM and UAM
end
;

i++;
end

= Nm + Nf . Let Rt be the available set of resource blocks
at BSt, defined as Rt= {rt1, rt2, ..., rtj , ..., rtNt

r
}, where N t

r is
the number of resource blocks at BSt. We assume that the

resource blocks available at each BS t ∈ Bs are the same. This
assumption does not affect the generality of the solution. These
resource blocks are further divided into sub-channels and are
assigned to the UEs associated with BSt. In the Initialization
phase, two matrices are filled. They are defined as follows:

UIM =


UIM1,1 . . . UIM1,Nt

r

UIM2,1 . . . UIM2,Nt
r

...
. . .

...
UIMNu,1 . . . UIMNu,Nt

r

 (14)

The User Interference Matrix (UIM) is introduced in Eq.
(14), where UIM [i, j] indicates the effect of the interference
experienced by ui on resource block rtj . The interference effect
is assessed using SINR values, which are calculated according
to Eq. (1) with UIM [i, j] = αi,j .

UAM =


UAM1,1 . . . UAM1,BT

UAM2,1 . . . UAM2,BT

...
. . .

...
UAMNu,1 . . . UAMNu,BT

 (15)

The User Association Matrix (UAM) is presented in Eq.
(15), where UAM [i, t] indicates the association of each ui
with one BS BSt, which can be either MBS or FBS. In this
paper, we consider UAM [i, t] as a binary variable. If ui is not
associated with BSt, UAM [i, t] = 0; otherwise, UAM [i, t] =
1. Since this paper focuses on co-tier interference, we consider
UEs which are associated with FBSs only (t > Nm). Both
matrices are updated after each iteration. Note that we assume
that only one user is associated with one resource block per
time slot in each FBS. This assumption enables the disregard
of the interference between users within the same cell.

In the Classification phase, we categorise users based on
their experienced level of interference. In this paper, two
levels are considered: high (C-2) and low (C-1). We consider
α as a threshold value for assessment of the interference



between a user and a selected FBS. Using ML algorithms,
users who experience interference above the threshold value
α are assigned to C-2; The rest of the users are assigned to C-1.
We tune the hyper-parameters for the ML algorithms and then
perform user classification. The novelty of the ML algorithms
is shown in the second stage of Algorithm 1.

In the Offloading phase, C-2 users are offloaded to a nearby
FBS that has enough resource blocks to meet the user’s
requirements while also contributing to the achievement of
goals G1, G2, and G3. To this end, we use the received signal
strength to identify the most suited FBS. We define the vector
Si as follows:

Si = {si1, si2, ..., sif , ..., siNf
} (16)

where sif is the signal strength experienced by user ui with
respect to FBS Ff . We compute the signal strength for each
C-2 user and offload the user’s traffic to FBS g, which has
the lowest signal strength and available resource blocks, as
indicated in Eq. (17).

sig = min{sif |∀f, 1 ≤ f ≤ Nf} (17)

Note that by offloading users from macrocells to nearby
femtocells, more resource blocks at the level of macrocells are
made available, which can be used to improve the QoS of users
in C-1, and hence contributing to the realisation of G1, G2, and
G3. Also note that offloading all C2 users’ traffic to new FBSs
does not guarantee that there will be no interference; hence,
the proposed scheme runs iteratively until all UIM values drop
below α or in case no improvement has been achieved in the
previous iterations.

C. Machine Learning-based Algorithm

We formulate the given challenge as a ML-based problem
and used the binary classification method as a solution since
it requires less training time and is usually faster to converge
[45]. Fig 5 illustrates the main components of the proposed
solution. First, simulations are carried out using the Network
Simulator NS-3. After each iteration, relevant data is saved
in a Comma Separated Value (CSV) file and constitutes
our simulated dataset. The reason we opted for a simulated
dataset is threefold: 1) we avert from any confidentiality
and privacy liability that may arise from using a real-world
dataset; 2) we know the environment used for generating the
dataset. Therefore, we can easily make changes to simulation
parameters along with hyperparameters of the ML models
[46]; and 3) the generated dataset is specific to the scenario
we are examining since it solely focuses on one type of
traffic (i.e., video traffic). The collected data contains values
of the following parameters: SINR, RSRP, Reference Signal
Received Quality (RSRQ) and cell id. The CSV file is given
as input to the Python environment for classification purposes.
The first step is data pre-processing, required for replacing and
eliminating non-numeric or symbolic features from a dataset.
Next, the feature selection stage helps eliminate noise in the
data and focuses only on the relevant data in a dataset. For the

ML models used by MLICOS, SINR is the target feature of
interest. The data set is split into 80% training data and 20%
test data, used during training and testing of our proposed
solution, respectively [47].

Two versions of MLICOS were designed: MLICOS1 and
MLICOS2. MLICOS1 employs supervised ML techniques,
mainly Support Vector Machine (SVM) and Random For-
est (RF). While SVM is one of the best classifiers and is
considered a benchmark in the field of statistical learning
and ML [48], RF is an ensemble learning algorithm that
can ensure high accuracy while handling multiple outliers
in training and test datasets. MLICOS2 deploys two neural
network approaches, Artificial Neural Network (ANN) and
Convolutional Neural Network (CNN) [49]. ANN and CNN
used a three-layer neural network structure composed of input,
hidden and output layers. We employed the Rectified Linear
Activation Function (ReLU) for training the hidden layers of
the neural networks. ReLU prevents an exponential growth
in the computation required to operate the neural networks.
As we formulated the given problem as a binary classifi-
cation problem, we used the Sigmoid (Logistic) activation
function for the output layer. Both neural network models
are trained from scratch. We used the Stochastic Gradient
Descent (SGD) optimization algorithm for training the neural
network models and applied a binary cross-entropy loss. Our
solution was implemented using the Keras library in Python.
We used the GridSearchCV class from the scikit-learn Python
library. GridSearchCV enabled selection of the best parameters
from a hyperparameter set during training [50]. The learning
parameters used for the proposed scheme MLICOS2 are batch
size, learning rate, number of epochs and momentum. We
have trained our neural network models for 250 epochs with
a learning rate of 0.1. We used a mini batch of 256 and 0.9
as momentum.

We set α as the threshold value for both MLICOS1 and
MLICOS2. After the testing phase, the algorithm outputs the
classes of users (C-1 and C-2) and the associated SINR values
for each user. The simulations in NS-3 are performed until
there are no users affected by the interference (i.e., in the C-2
class) or no significant improvements have been achieved in
the past iterations (i.e., the number of users in the C-2 class
remained the same).

V. PERFORMANCE EVALUATION

We consider a heterogeneous scenario with one MBS (Nm
= 1) and two FBS (Nf = 2) along with a number of users
Nu which increases linearly from 50 to 130. The Gercom’s
Evalvid model in NS-3 is used for video transmissions. The
Evalvid model transmits the video in the form of a trace file.
The sender and receiver trace files are compared, allowing for
the recreation of the video at the receiver end [?]. A H.264
encoded video consisting of 300 frames with a data rate of
1200Kbps and frame rate of 30 fps was selected for streaming.
Table II presents additional video stream details.

All the users are randomly allocated to the nearest FBS
within the MBS coverage area. Any user between the two FBS



Data 
ProcessingUE

UE UE

UE

Cross-tier 
interference

Co-tier 
interference

SINR 
stats

Training

Offloading 
of C-2 users

Testing 

C-2

ML  Algorithm

C-1

Sampling 
Dataset

Feature Selection 
(i.e., SINR) 

Fig. 5: Various elements of data simulation, ML algorithms, and network process

TABLE I: Simulation Parameters

Parameter Value
Number of MBS 1
Number of FBS 2

Femtocell Coverage 10m
Max. MBS Transmit Power 46 dbm
Max. FBS Transmit Power 20 dbm

Downlink Frequency 2150 MHz
Uplink Frequency 1940 MHz

Width of Band 90 MHz
Duplex Spacing 190 MHz

Number of Resource Blocks 100
Number of Subchannels 1200
Subcarrier Bandwidth 15 KHz

Mobility Model Constant Position
Femtocell Access Closed Access

TABLE II: Properties for the Video Used for Transmission

Parameter Value
Width 1280
Height 720

Total Bitrate 1209Kbps
Frame Rate 30 fps

Total Duration 10 seconds
Total Frames 300 frames

and MBS is subjected to strong interference. The macrocell
also transmits signals in the same channel within the same
area, resulting in interference. In this work, we consider
only the co-tier interference between the femtocells and their
associated users according to Eq. (1). Table I depicts the
simulation parameters used.

The performance of the proposed scheme employing SVM
and RF classifiers in turn is assessed in terms of accuracy,
precision, recall and F-measure. The proposed scheme is

also assessed in terms of the following QoS parameters:
throughput, PLR and delay.

A. MLICOS Classifier Assessment

The classifier assessment is evaluated based on the follow-
ing metrics:

1) Accuracy: defined as the percentage of correctly classi-
fied predictions (CP ), divided by total number of predictions
(T ) made by a model in a dataset.

Accuracy =
CP

T
(18)

where CP and T are defined as:

CP = TP + TN (19)

T = TP + TN + FP + FN (20)

where TP stands for True Positive, FP means False Positive,
TN represents True Negative and FN is False Negative. TP
and TN correctly indicates the presence or absence of some
characteristics, whereas FP and FN wrongly identify the
presence or absence of the same characteristics, respectively.
In this paper, the characteristics are the interference levels
and TP , FP , TN and FN are computed based on correct
and incorrect classification of a user based on interference
level when comparing the model prediction with the actual
classification values.

Fig 6a depicts the accuracy for MLICOS employing SVM,
RF, ANN, and CNN, respectively. We observe that CNN
achieves the highest accuracy (99.02%), followed by RF
(98.91%), ANN (96.38%), and SVM (95.47%).



TABLE III: Machine Learning Model vs Performance Metrics

Model Accuracy Recall Precision F-measure
SVM 95.47% 91.63% 93.24% 92.42%
RF 98.91% 98.04% 97.56% 97.79%
ANN 96.38% 95.82% 96.27% 96.04%
CNN 99.02% 99.11% 98.63% 98.86%

A
cc

ur
ac

y 
(%

)

90

92

94

96

98

100

SVM RF ANN CNN

(a) Accuracy vs Model

R
ec

al
l (

%
)

90

92

94

96

98

100

SVM RF ANN CNN

(b) Recall vs Model

Fig. 6: Accuracy and Recall

2) Recall: defined as the percentage of TP predictions by
the total number of actual positive predictions TP+FN .

Recall =
TP

TP + FN
(21)

Fig 6b illustrates the recall in terms of percentage for
MLICOS employing SVM, RF, ANN, and CNN, in turn. We
observe that CNN provides the highest recall (99.11%),
followed by RF (98.04%), ANN (95.82%), and SVM
(91.63%).

3) Precision: defined as the percentage of TP predictions
by the total number of positive predictions TP+FP .

Precision =
TP

TP + FP
(22)

The precision for MLICOS employing SVM, RF, ANN, and
CNN is shown in Fig 7a. We observe that CNN achieves the
highest precision (98.63%), followed by RF (97.56%), ANN
(96.27%), and SVM (93.24%).

4) F-Measure (FM): defined as the harmonic mean of
precision and recall and is given by:

FM = 2 ∗ Precision ∗Recall
Precision+Recall

(23)

Fig 7b shows the F-measure for the four classifier models
used in the proposed MLICOS algorithm. We observe that
when CNN is employed, the results include the highest
F score (98.86%), followed by the scenario when in turn
RF (97.79%), ANN (96.04%), and SVM (92.42%) are used
respectively. Table III summarizes the assessment results. We
propose two versions of MLICOS, namely, MLICOS1 and
MLICOS2. The former uses SVM and RF as classification
models while the latter uses ANN and CNN. Based on the
superior performance results achieved and presented in Table
III, the RF-based MLICOS1 and the CNN-based MLICOS2
were selected to be compared in the testing phase.
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B. QoS Assessment

When testing the performance of MLICOS1 and MLICOS2
was compared with that of the Proportional Fair (PF), Variable
Radius + Proportional Fair (VR+PF) [28], and a Cognitive
Approach (CA) [23]. The performance was assessed in terms
of QoS parameters throughput, delay and PLR.

Fig 8 illustrates the average throughput with respect to
the number of users for the three schemes. For instance,
MLICOS1 using RF achieved an average throughput of 6500
Kbps per user which is 83.88%, 66.79% and 41.52% higher
than the values outputed by PF, VR + PF, and CA schemes,
respectively. On the other hand, using CNN-based MLICOS2,
the achieved average throughput is 6900 Kbps per user which
is 84.61%, 68.28%, 44.15% and 4.51% higher than the
throughput recorded when PF, VR + PF, CA and MLICOS1
schemes are employed, respectively.

Fig 9 depicts PLR as a function of the number of users. We
observe that PLR per user remains under 6% when using both
MLICOS1 and MLICOS2. The value obtained by MLICOS1
is 96.912%, 87.69%, and 63.22% lower than the results of
PF, VR + PF, and CA, respectively. The value obtained using
MLICOS2 scheme is 97.01%, 88.21%, 64.13% and 9.97%
lower than the results recorded when employing PF, VR+PF,
CA, and MLICOS1, respectively.

Fig 10 shows the delay with respect to the number of users.
Using MLICOS1, the average delay per user is less than 110
ms, compared to larger values achieved by the PF, VR + PF,
and CA schemes. The value obtained is 88.73%, 78.68%, and
46.17% lower than the delay incurred by PF, VR + PF, and
CA, respectively. With MLICOS2, the average delay per user
is less than 100 ms, much shorter than the large delay values
achieved by PF, VR + PF, CA, and MLICOS1. The value
obtained is 90.25%, 80.04%, 47.68% and 10.68% lower than
the results of PF, VR+PF, CA, and MLICOS1, respectively.

Based on the above QoS results, MLICOS2 performs better
than the MLICOS1. Hence, MLICOS2 can be used in a
real-world scenario with high dimension datasets and can
perform better than other classification models in terms of
accuracy, precision, recall and F-measure. Our simulation
results show that the goals described in Eqs. (11), (12), and
(13) are achieved by the proposed solution. Table IV presents
a summary of the QoS results when using MLICOS1 and
MLICOS2 along with three other solutions.



TABLE IV: Comparison between QoS results when using PF,
VR+PF, CA and MLICOS (both versions) schemes

Users Scheme Throughput (Kbps) Delay (ms) PLR (%)

50

PF
VR+PF
CA
MLICOS1
MLICOS2

3974.54
5951.78
6757.14
7859.65
8017.68

440.38
327.51
106.47
10.742
9.82

39.61
22.37
16.44
0.15
0.12

70

PF
VR+PF
CA
MLICOS1
MLICOS2

3765.20
5514.54
6385.51
7504.77
7781.24

558.72
401.57
125.86
33.43
29.57

65.55
48.91
39.72
0.72
0.57

90

PF
VR+PF
CA
MLICOS1
MLICOS2

2282.66
4879.23
5417.71
7115.92
7369.66

681.71
498.67
161.55
58.15
52.14

78.66
62.63
58.2
1.21
0.82

110

PF
VR+PF
CA
MLICOS1
MLICOS2

2041.24
3597.72
4971.89
6904.88
7018.52

954.1
513.56
214.62
75.41
70.93

87.66
78.711
71.56
4.97
3.75

130

PF
VR+PF
CA
MLICOS1
MLICOS2

1050.78
2165.68
3813.64
6521.54
6828.92

1029.58
647.01
302.42
105.94
96.58

98.57
89.27
82.92
5.53
4.38
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C. QoE Estimation

As illustrated in Fig. 1, we consider video streaming as a
high priority service for users. Thus, objective quality assess-
ment of video sequences (as perceived by a user) becomes
crucial. We consider Peak signal-to-noise-ratio (PSNR) as an
estimation metric for QoE. It is a signal quality metric that
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Fig. 11: PSNR Estimation

is computed over all the pixels in the video with respect to
a reference video [?]. PSNR value is calculated and mapped
directly on the Mean Opinion Score (MOS), as specified in
ITU-T J.144 standard. The PSNR estimation outcomes are
shown in Fig. 11 over 300 frames for 130 users. As can
be seen, PSNR profiles are different for all the five schemes,
and the perceived quality experienced by C-2 users is much
better under both versions of MLICOS. Fig. 12 shows the error
bar which uses standard deviation as one of the uncertainties
over the mean of PSNR achieved when different schemes
are used. We observe that while incurring low variations, the
mean value of PSNR under MLICOS2 is 52.7%, 42.96%,
26.2% and 3.3% higher and incur much lower variations than
what was achieved when the PF, VR+PF, CA, and MLICOS1
were employed, while incurring much lower variations. The
numerical results show how MLICOS2 improves the user’s
QoE in terms of PSNR, outperforming the other schemes.

D. Statistical Visualization

To visualize the degree of interference faced by a user under
all schemes, we used the Box plot (data analysis) method in
R. Using this method, we can easily compare the different
schemes in terms of the degree of interference experienced
by C-2 users. The UIM values (according to Eq. (14) are
normalized using the min-max normalization method.

Figs. 13a, 13b, 13c, 13d and 13e show the box plots for
PF, VR + PF, CA, MLICOS1 and MLICOS2. The degree of
interference is indicated by values ranging between 0 and 1.
When values are closer to 1, they imply that users experience
high co-tier interference, whereas when values are near to 0,



Fig. 12: Mean and Standard Deviation of PSNR

they indicate that users are the least affected by the co-tier
interference.
Fig. 13a shows that when the PF scheme is applied for 50
users, most of the users face very little interference, but
when the number of users increased to 130, the normalized
interference value for each user is very close to 1, and almost
all users are affected by co-tier interference. Fig. 13b depicts
the box plot visualization for the VR + PF scheme. The box
plot results of the VR + PF scheme are better than those of
the PF scheme. Indeed, when the number of users is below
90, most of the users experience low co-tier interference. Still,
when the number of users increases to 130, most of the users
experience high co-tier interference. Fig. 13c shows the box
plot for the CA scheme. When the CA scheme is deployed, we
observe that when the number of users reaches 130, only 50%
of users are affected by high co-tier interference. Figs. 13d and
13e illustrate the box plot for MLICOS1 and MLICOS2. We
observe that users hardly experience any interference. Indeed,
even when the number of users reaches 130, a tiny percentage
of users experienced co-tier interference. This indicates that
both versions of MLICOS maintain good QoS levels and
mitigate the co-tier interference by making efficient use of
resource blocks.

E. Statistical Analysis

Fig. 14 shows a direct comparison between the variability
of the different schemes in terms of mean, median, maximum
value and standard deviation. In relation to measuring the
degree of interference, we have shown in the above section
that the normalized values decide whether the user experiences
high or low co-tier interference. Fig. 14 illustrates the maxi-
mum value for all schemes. In the case of PF, when there are
130 users, the ultimate value a user gets is around 0.98, which
is very close to 1, and most of the users experience high co-tier
interference. The VR+PF scheme performs better than the PF
scheme. When 130 users are considered, the maximum value
any user faces is around 0.78 and the users experience high
co-tier interference. For 130 users, the CA scheme gives the
maximum value of 0.49, which shows that 50% of the users
are still affected by high co-tier interference. MLICOS1 incurs
a maximum value of around 0.07 whereas MLICOS2 has a
value of 0.05, which is very close to 0. The medians for PF,

(a) Box plot for PF (b) Boxplot for VR+PF

(c) Box plot for CA (d) Boxplot for MLICOS1

(e) Boxplot for MLICOS2

Fig. 13: Degree of interference faced by users under various
compared schemes. The Y axis shows the degree of interfer-
ence normalized values (0 to 1 range).

Fig. 14: Variability of different schemes

VR+PF, CA, MLICOS1, and MLICOS2 are: 0.53, 0.32, 0.16,
0.04, and 0.03, respectively. The error bar indicate how precise



TABLE V: Comparative statistical analysis of the degree of
interference when different schemes are employed

Scheme Mean Median Max. Value Std. Dev
PF 0.46 0.53 0.98 0.3
VR+PF 0.31 0.32 0.78 0.26
CA 0.21 0.16 0.49 0.17
MLICOS1 0.047 0.049 0.07 0.01
MLICOS2 0.035 0.037 0.05 0.002

the measurement is or how much is the variation from the
reported value. We have used standard deviation as one of the
uncertainty to plot the error bars. We can conclude from Fig.
14 that both versions of MLICOS incur much lower variations
and errors than those associated with the PF, VR + PF, and
CA schemes. Table V summarizes the statistical analysis for
all the schemes in terms of the degree of interference.

VI. CONCLUSIONS AND FUTURE WORK

In a 5G HetNet, the deployment of femtocells increases
the overall network capacity. The dynamic deployment of
femtocells in a HetNet leads to co-tier interference. Co-tier
interference is considered as one of the significant challenges
especially in urban settings. To address this problem, we
proposed MLICOS, a scheme that classifies user traffic based
on the interference level (i.e., high and low) and offloads
highly affected traffic from macrocells to nearby femtocells
based on signal strength. Four ML algorithms SVM, RF, ANN
and CNN are used in turn by the proposed solution for classifi-
cation purposes. The performance of the ML-based algorithm
is assessed in terms of prediction accuracy, precision, recall
and F-measure. Based on the assessment, we propose two
versions of MLICOS, MLICOS1 and MLICOS2. The former
employs RF while the latter uses CNN. Both versions were
compared to PF, VR + PF and CA schemes, and results show
substantial improvements in terms of QoS and QoE metrics.
Simulation results also show that MLICOS2 performs better
than MLICOS1. Future work will define multiple user classes
while also trying to consider the need for fast convergence.
Both cross-tier and co-tier interference in a HetNet will be
considered in a coordinated manner in the future.
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[24] G. Gür, S. Bayhan, and F. Alagöz, “Cognitive femtocell networks: an
overlay architecture for localized dynamic spectrum access [dynamic
spectrum management],” IEEE Wireless Communications, vol. 17, no. 4,
pp. 62–70, 2010.

[25] M. Kamruzzaman, N. I. Sarkar, and J. Gutierrez, “A dynamic algorithm
for interference management in d2d-enabled heterogeneous cellular



networks: Modeling and analysis,” Sensors, vol. 22, no. 3, 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/3/1063

[26] W. Wang, G. Yu, and A. Huang, “Cognitive radio enhanced interference
coordination for femtocell networks,” IEEE Communications Magazine,
vol. 51, no. 6, pp. 37–43, 2013.

[27] F. Liu and S. Zhao, “Statistical resource allocation based on cognitive
interference estimation in ultra-dense hetnets,” IEEE Access, vol. 8, pp.
72 548–72 557, 2020.

[28] V. Sathya, H. V. Gudivada, H. Narayanam, B. M. Krishna, and B. R.
Tamma, “Enhanced distributed resource allocation and interference
management in lte femtocell networks,” in 2013 IEEE 9th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2013, pp. 553–558.

[29] N. Fath, I. W. Mustika, Selo, K. Yamamoto, and H. Murata, “Opti-
mal resource allocation scheme in femtocell networks based on bat
algorithm,” in 2016 22nd Asia-Pacific Conference on Communications
(APCC), 2016, pp. 281–285.

[30] M. A. Kamal, H. W. Raza, M. M. Alam, and M. Mazliham, “Resource
allocation schemes for 5g network: A systematic review,” 2021.

[31] M. S. Alomari, A. Ramli, A. Sali, and r. s. a. raja abdullah, “A
femtocell cross-tier interference mitigation technique in ofdma-lte sys-
tem: A cuckoo search based approach,” Indian Journal of Science and
Technology, vol. 9, 01 2016.

[32] G. Chen, J. Zheng, and L. Shen, “A preset threshold based cross-
tier handover algorithm for uplink co-channel interference mitigation
in two-tier femtocell networks,” in 2013 IEEE Global Communications
Conference (GLOBECOM), 2013, pp. 4717–4722.

[33] M. Susanto, D. Fauzia, Melvi, and S. Alam, “Downlink power control
for interference management in femtocell-macrocell cellular communi-
cation network,” in 2017 15th International Conference on Quality in
Research (QiR) : International Symposium on Electrical and Computer
Engineering, 2017, pp. 479–484.

[34] T. Hassan and F. Gao, “An active power control technique for downlink
interference management in a two-tier macro–femto network,” Sensors,
vol. 19, p. 2015, 04 2019.

[35] M. Osama, S. El Ramly, and B. Abdelhamid, “Interference mitigation
and power minimization in 5g heterogeneous networks,” Electronics,
vol. 10, no. 14, p. 1723, 2021.

[36] O. I. Ladipo and A. O. Gbenga-Ilori, “Hierarchical power control model
for interference mitigation in a two – tier heterogeneous network,”
Cogent Engineering, vol. 6, no. 1, p. 1691358, 2019.

[37] Y. Chen, “Mathematical modelling of end-to-end packet delay in
multi-hop wireless networks and their applications to qos provisioning,”
Nov 2013. [Online]. Available: https://discovery.ucl.ac.uk/1415093/

[38] B. M. Parker, S. Gilmour, J. Schormans, and H. Maruri-Aguilar, “Opti-
mal design of measurements on queueing systems,” Queueing Syst 79,
pp. 365–390, 2015.

[39] M. Roshan, J. A. Schormans, and R. Ogilvie, “Video-on-demand qoe
evaluation across different age- groups and its significance for network
capacity,” EAI Endorsed Transactions on Mobile Communications and
Applications, vol. 4, no. 12, 1 2018.

[40] A. Wahab, N. Ahmad, and J. Schormans, “Statistical error propagation
affecting the quality of experience evaluation in video on demand
applications,” Applied Sciences, vol. 10, no. 10, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/10/3662

[41] “O-ran alliance.” [Online]. Available: https://www.o-ran.org/
[42] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A survey of

the functional splits proposed for 5g mobile crosshaul networks,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[43] B. Balasubramanian, E. S. Daniels, M. Hiltunen, R. Jana, K. Joshi,
R. Sivaraj, T. X. Tran, and C. Wang, “Ric: A ran intelligent controller
platform for ai-enabled cellular networks,” IEEE Internet Computing,
vol. 25, no. 2, pp. 7–17, 2021.

[44] D. Anand, M. A. Togou, and G.-M. Muntean, “A machine learning
solution for automatic network selection to enhance quality of service for
video delivery,” in 2021 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), 2021, pp. 1–5.

[45] T. J. D. Berstad, M. Riegler, H. Espeland, T. de Lange, P. H. Smedsrud,
K. Pogorelov, H. Kvale Stensland, and P. Halvorsen, “Tradeoffs using
binary and multiclass neural network classification for medical multidis-
ease detection,” in 2018 IEEE International Symposium on Multimedia
(ISM), 2018, pp. 1–8.

[46] O. Owoyele, P. Pal, A. V. Torreira, D. Probst, M. Shaxted, M. Wilde, and
P. K. Senecal, “Application of an automated machine learning-genetic

algorithm (automl-ga) coupled with computational fluid dynamics
simulations for rapid engine design optimization,” 2021. [Online].
Available: https://arxiv.org/abs/2101.02653

[47] R. Medar, V. S. Rajpurohit, and B. Rashmi, “Impact of training and
testing data splits on accuracy of time series forecasting in machine
learning,” in 2017 International Conference on Computing, Communi-
cation, Control and Automation (ICCUBEA), 2017, pp. 1–6.

[48] M. A. Cano Lengua and E. A. Papa Quiroz, “A systematic literature
review on support vector machines applied to classification,” in 2020
IEEE Engineering International Research Conference (EIRCON), 2020,
pp. 1–4.

[49] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,”
IEEE Comms. Surveys & Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[50] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, nov 2020. [Online]. Available:


