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Abstract—Improving user experience during the delivery of
immersive content is crucial for its success for both the content
creators and audience. Creators can express themselves better
with multisensory stimulation, while the audience can experi-
ence a higher level of involvement. The rapid development of
mulsemedia devices provides better access for stimuli such as
olfaction and haptics. Nevertheless, due to the required manual
annotation process of adding mulsemedia effects, the amount
of content available with sensorial effects is still limited. This
work introduces an innovative mulsemedia-enhancement solution
capable of automatically generating olfactory and haptic content
based on 360° video content, with the use of neural networks. Two
parallel neural networks are responsible for automatically adding
scents to 360° videos: a scene detection network (responsible
for static, global content) and an action detection network
(responsible for dynamic, local content). A 360° video dataset with
scent labels is also created and used for evaluating the robustness
of the proposed solution. The solution achieves a 69.19% olfactory
accuracy and 72.26% haptics accuracy during evaluation using
two different datasets.

Index Terms—Multisensory media, neural networks, image
recognition, olfaction, haptics, machine learning.

I. INTRODUCTION

DDING multisensorial information to video content in

order to increase users’ Quality of Experience (QoE) is
attracting attention in both industrial and academic research
environments [1]], [2].

Regarding smell, the human nose is very sensitive and
is able to discriminate a wide range of odors and scents.
Recognizing an odor can invoke different unconscious and
involuntary mechanisms [3], such as defense, fight or flight,
awareness, etc. Combined with visual cues, smells can be
responsible for the brain to process an event in a negative
or positive manner. Since scents are connected to the brain
memory function, olfaction can be applied in various settings,
including in marketing and product design [4]] and for educa-
tional purposes [3]]. Similarly, the human haptic sense can also
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Fig. 1. The prototype of the solution. 1: olfactory machine, 2: Oculus Quest
2 VR headset, 3: haptic mouse

be used in various settings, as it impacts a person’s ability to
adapt or respond to diverse inputs.

Combining olfactory (sense of smell) and haptic (sense of
touch) cues with visual and audio cues, enables the creation
of a more realistic experience in immersive environments.
Using smell or tactile cues in immersive training spaces can
be crucial in certain scenarios [6]. They are often the first
stimuli the human body reacts to, when the senses are exposed
in high pressure situations. Scent is invisible and can travel
through obstacles and therefore could provide otherwise un-
known information. Moreover, adding certain scents or tactile
information could help neutralizing other unpleasant smells
[[7] and haptics, such as disturbing shaking when driving [§]],
thus they can be used for training of law enforcement, military
or firefighters, and some manufacturers are already producing
scents and odors for this purpose.

Regarding the use of human senses in audiovisual distri-
bution, the main focus of past research was to increase the
Quality of Experience (QoE) by enhancing the quality of
visual and audio content, and not focusing on other senses,
such as touch and smell. In recent years, the adoption of XR
technologies has seen both an increase in the quality of video
representation and added interactivity. However, as suggested
in [9], only managing the resolution of video content results
in a very limited approach, especially as the human eye fails
to perceive the difference in video content displayed above a
certain resolution and refresh rate.

This work addresses the problem of enhancing the viewer
QoE by proposing an innovative solution that automatically
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adds to video sequences multiple sensorial content target-
ing other senses, beyond sight and hearing. The proposed
solution provides a mechanism for generation of olfactory
and haptic stimuli to complement the audio-visual ones in
order to increase users’ level of enjoyment, immersion and
sense of reality. The goal is to contribute actively towards the
design of future solutions for distribution of immersive multi-
sensorial media, also known as mulsemedia. In this context,
the proposed solution is designed to work with Virtual Reality
(VR) content and employs machine learning technologies.

As the current approach to adding mulsemedia effects to
videos involves a manual annotation process which is time-
consuming, the amount of content with sensorial effects avail-
able is very limited. Furthermore, authors in [10] point out that
most of the automatic haptic annotations are generated based
on handcrafted audio features, but video-based solutions are
still immature, as they do not use the capabilities of modern
neural network architectures.

The work of Sexton et al. [11] proposed a first attempt to
automatically generate haptic and olfactory effects based on
360° content using both video and audio. Scents are generated
via scene recognition performed by neural networks while
haptic content relies on audio cues. The system, however,
can only detect a limited range of scents, which strongly
reduces the generality of the solution. Each scent is predicted
solely based on the current scene, failing to capture further
dimensions of information, such as actions involving different
objects and people. The authors tested a small number of neu-
ral network architectures and did not consider action detection.
Furthermore, the methodology used for measuring olfactory
performance did not consider important metrics for image
detection, such as inference time, giga floating point operations
per second (GFLOP), number of network parameters, false
positive rate (FPR) and false negative rate (FNR). Although
authors provide a small dataset for measuring the olfaction
accuracy, the dataset is limited to five scent categories.

This paper fills the aforementioned gaps by making the fol-
lowing contributions:

« We propose a mulsemedia effect generation solution
based on multimedia content analysis. The proposed
solution generates a wide range of scent categories based
on local (i.e., action-based) and global (i.e., scene-based)
content. Action-based categories are also used for haptics-
enhancement generation. The broad support of content
categories makes the solution more general and widely
applicable.

o A thorough performance evaluation of the proposed so-
lution when deployed with several neural network archi-
tectures is performed in this paper, including novel archi-
tectures and approaches. Based on the analysis of results
of 11 Convolutional Neural Networks (CNNs), it is pos-
sible to recommend the best deployment approach for
an end-to-end system with automatic scene and haptic
content generation involving 360° videos. Additional per-
formance enhancements are investigated: handling scenes
that do not require any scents, performance of scents pre-
dicted directly instead of from scenes; and increasing ol-
factory accuracy by merging diverse probabilities (i.e.,
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different associations can be detected related to the same
scent).

o As currently there are no benchmark standards for mea-
suring olfactory detection or recognition accuracy, a 360°
video olfactory dataset is proposed in this paper, contain-
ing approximately 170 clips, which were used for eval-
uation of results. These clips feature 14 scent categories
which are related to 45 scene and action classes. A la-
bel dataset was also created consisting of relevant labels
for olfactory and haptic effects. The dataset includes re-
duced versions of the Places and Kinetics scene and ac-
tion datasets, with 62 and 48 classes, respectively. A total
of 54 distinct scent categories and 44 haptic events can
be identified by the solution proposed in this paper.

o A real life prototype was built as shown in Fig. [l It
includes a USB-based olfaction dispenser which releases
scents to users. Both audio and video features are utilized
for haptic generation, incorporating handcrafted audio
and deep-learning action-based video features. Users re-
ceive haptic feedback (i.e., vibrations) via a haptic mouse
when an action with some sort of impact happens, and
the 360° content is displayed on an Oculus VR headset.

The proposed solution for automatic generation of mulse-
media content can also be used as a tool for enhancing artistic
projects (e.g., 4D cinemas, video games and opera), both for
the creators and users.

This paper is organised as follows. Section II describes
related works and section III introduces the architecture, com-
ponents and implementation details of the solution. Section IV
presents the testing setup, performance analysis and results.
Section V concludes the paper.

II. RELATED WORK

The works related to this paper were divided in three
categories. First, mulsemedia systems are analyzed, with a
focus on haptics and olfaction. Next, Convolutional Neural
Network (CNN) architectures that perform scene and action
classification are presented, as well as zero-shot solutions.
Finally, existing datasets for action and scene recognition are
evaluated.

A. Mulsemedia

VR comprises interactive 3D computer environments that
monitor and react to users’ positions and actions, providing a
sense of immersion in the simulation [12f]. There are several
works investigating if additional stimuli could benefit the QoE
in immersive applications. Some experiments conclude that
simply adding more stimuli could overwhelm the senses of
the users and even negatively impact their experience and
performance if they are not consistent with the content [13]].

However, according to a systematic review of 105 studies
covering multisensory VR and the impact of haptics, olfactory,
and taste cues over audiovisual VR, 84% of the reports
demonstrate a positive impact of multisensorial additions, as
sensorial components usually cause a larger benefit towards a
realistic user experience [10]. The authors also highlight that
the vast majority of the studies focus on the use of haptics
and a smaller portion examines the impacts of olfaction.
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1) Haptics: In recent years, a number of works described
the perspectives and relevance of integrating haptics with
audiovisual material to enhance user immersion, creating what
is known as Haptic AudioVisual (HAV) content [14]], [15].

F. Danieau et al. [16] proposed models to enhance the
quality of the video-viewing experience by automatically rec-
ognizing and adding haptic content. The authors propose two
models: a cinematic model, which aims to make the user feel
the camera’s movement; and semantic model which renders a
haptic effect that is related to the cinematographic effect. The
user study shows that the cinematic model creates a significant
improvement in QoE compared to no haptic feedback, whereas
no haptic feedback was preferred over semantic models.

Several other studies focused on manual haptic content
generation (i.e., the haptic effects are synchronized to the main
application based on specific actions or timestamps), such as
the solution proposed by Darren et al. [[17]] for educational
purposes, and the work from Shafiq et al. [18]], which adds
haptic content for mobile phones to keep track of soccer
matches. In the study of Mazzoni et al. [19], the authors
explore the possibility of using haptic feedback to enrich
the emotional aspects of a film experience by amplifying the
viewer’s emotion, recreating specific body reactions through
haptic stimulation to convey the feeling of a certain emotion
to the viewer (e.g., shivers down the spine to induce fear).
A prototype is tested on a manually annotated dataset with
emotions, concluding that the intensity of haptic feedback
could enhance different sensations. Another solution based on
manual annotation is a touchable 3D video system by Cha et
al. [20]], called Touchable 3D. It allows users to explore the
various haptic properties of video scenes, such as stiffness,
static friction, dynamic friction and roughness.

Finally, the work of Israr et al. [21] employs manual
annotation for haptic content creation. The authors created a
plugin for playback and authoring of 360° video content with
haptic feedback events. The plugin connects the VR engine to
the haptic device and renders the haptic content.

2) Olfaction: Several experiments analyze the impact of
adding olfactory stimuli to audiovisual experiences. Adding
scents to viewers during playback have reportedly improved
user immersion [22]-[25], increased QoE [26] and helped
improve user memorization [5].

Comsa et al. [9]] proposed a framework based on the Play-

SEM platfornﬂ that consists of a 360° mulsemedia capture and
delivery solution on the server-side; and a 360° mulsemedia
player prototype on the user-side, enabling users to experience
mulsemedia content, including visual, audio, olfactory and
wind feedback. Another prototype based on the PlaySEM
platform was proposed in [27], extending the scent emitter
with a spiral conic shape, so that the scent can flow towards
the nose in a more controlled way. The solution is tested
on 3 different scenes with a subjective quality assessment
evaluating different encoding formats (HD, Full HD, 2.5K,
4K). The results show a statistically significant benefit for the
presence of odor and wind in the QoE.

Sexton et al. [[11] developed an algorithm to automatically
add multisensorial information to 360° videos, combining
hapics and olfaction. A playback system was designed to
improve on the works of Comsa et al. [9] and Bi et al.
[28]]. The olfaction effects are generated based on automatic
scene recognition on 360° videos using Equi-Angular Cube-
map (EAC) projection, and the haptic generation is based on
digital signal processing of audio cues. For scent generation a
ResNet18 network pre-trained on Places365 dataset is used to
predict the probability of 365 scene categories, associated with
five different scent types (i.e., ocean, oak, candy, chocolate and
diesel). The authors exclude the top and bottom video tiles
during the prediction, and achieve 61.35% top-1-accuracy and
72.67% olfactory accuracy with ResNetl8, using a dataset of
MPEG-4 Youtube EAC videos created by the authors. Also,
according to authors, users take 1.9 second to detect a change
in scents. The haptic content is predicted by a digital signal
processing algorithm, which uses a Root Mean Square (RMS)
to locate the loudest parts of videos, which trigger haptic
feedback.

B. Convolutional Neural Networks for Video Processing

Recent CNN architectures, such as AlexNet, ResNet,
DenseNet, VGGNet, RegNet and EfficientNet, have been
improving the process of image classification both in terms of
accuracy and efficiency. They have evolved to contain more
layers and make better use of computational resources.

The RegNet family of architectures aims to improve the
effectiveness of neural networks by understanding and creating
design spaces that contain a high density of good models
that are more likely to be robust and generalize well. The
techniques of manual network design and later Neural Ar-
chitecture Search (NAS) have been used for improving the
parametrization and generalization of CNN networks [29].

Traditional CNN models (e.g., AlexNet, ResNet, DenseNet)
tend to underperform in comparison to newer models (e.g.,
RegNet, EfficientNet), but they offer a wider range of publicly
available pre-trained architectures. In relation to the work pre-
sented in this paper, it is necessary to evaluate the performance
of different older and newer CNNs (both pre-trained and not)
in the process of image classification for multisensorial output.

Cohen et. al. [30] proposed the theoretical concept of Spher-
ical CNNs for 360° content. Authors focus on minimizing the
effects of video distortion, classifying 3D objects and consider

Uhttps://github.com/Iprm-ufes/PlaySEM



the rotations of the immersive space. However, the main
pipeline for working with 360° content consists of classifying
2D faces or tiles of the main image separately, as CNNs for 2D
content are widely available. As seen on Fig. 2] initially, either
a view-port or a projection based pre-processing is utilized to
obtain the 2D content. The 2D images are then processed to
extract the predictions, and they are finally combined to obtain
the 360° merged prediction [31]-[33].

Scene recognition is relevant for the generation of olfac-
tory effects, as several scene classes correspond to olfactory-
related concepts. Zhou et al. [34] propose 4 state-of-the-art
scene recognition networks (i.e., Places-CNN) trained on the
Places205 and Places365-Standard datasets. The four networks
are based on AlexNet, GoogLeNet, VGG16 and ResNet152.

The earliest works on action recognition considered actions
as spatiotemporal objects, and tried to capture them via hand-
crafted spatiotemporal filters, such as histograms of gradients
and cuboids [35]. Another approach for action recognition
relies on optical flow [36]. It similarly uses handcrafted
features, such as histograms of flow and motion boundary.

Deep learning methods started to be used for action recog-
nition, with the use of 3D convolution and 3D pooling in CNN
layers to capture features in spatial and temporal dimensions.
2D optical flow maps have also been applied to extract motion
features as an input for predictions [37].

Feichtenhofer et al. [38]] proposed a video recognition model
called SlowFast, which consists of two different pathways, a
slow pathway that operates at a lower framerate and captures
high spatial and semantic details and a fast pathway that
operates at a high framerate and can capture rapid motion
at a finer temporal resolution. SlowFast provides several net-
work architectures with different input sampling and different
backbones (ResNet50, ResNet1l01 and Nonlocal). SlowFast
16x8 on ResNetl01 achieved a 78.9% top-1-accuracy and
93.5% top-5-accuracy on Kinetics400, using 213 GFLOPs for
30 views. On Kinetics600, the same architecture achieved
a 81.8% top-l-accuracy and 95.1% top-5-accuracy, which
outperformed the top-1l-accuracy of the previous winner of
2018 ActivityNet Challenge by 2.1%.

Zero-shot learning is the study of generalizing and rec-
ognizing object categories that were unseen during training
in image classification. One example of a zero-shot network
is Contrastive Language-Image Pre-Training (CLIP), which
jointly relies on vision and language, using natural language
for learning concepts in the vision domain. The model consists
of a robust image and text encoder that was trained on a large-
scale dataset created by the authors, called WebImageText
(WiT). The network predicts which encoded label has the
highest likelihood with the encoded image by comparing the
similarity of the encoded latent vectors. This way, the feature
extractor does not need to be retrained for every dataset, only
the output must be restricted to the possible classes. CLIP can
outperform the baseline Visual-N-Grams zero-shot predictor
by a large margin. Tests on the ImageNet dataset showed a
76.2% of accuracy of CLIP compared to 11.5% of Visual N-
Grams; and tests on the SUN397 dataset indicated a 58.5% of
accuracy compared to 23.0% of Visual N-Grams [39].

At the time of writing, CLIP is the highest performing
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zero-shot classifier both on scene (SUN397) and action (Ki-
netics700) recognition tasks. Therefore, by combining the
olfactory-relevant scene and action labels, CLIP is one of
the possible networks that can be used for the proposed
multisensory solution without extensive training.

C. Datasets

1) Scene datasets: Places [34] is a large scale dataset
with more than 10 million images, with 365 scene seman-
tic categories. SUN397 [40] is another scene-centric dataset
offering 397 scene classes, but for many of them it fails to
provide enough samples per class for large scale training of
deep neural network. In this work, the Places365 is used in
conjunction with its publicly available pre-trained networks
provided by the authors (e.g., AlexNet, GoogleNet, VGG16,
ResNet18 and ResNet50) and by the research community (e.g.,
SqueezeNet1.0, MobileNetV2 and DenseNetlélE[).

2) Action datasets: The UCF101 [41] dataset was one of
the first dataset providing a wide range of human activities.
However, it only contains a few samples per class. Charades
[42], a dataset that contains videos of indoor activities, has
more classes than the UCF101 and has enough samples per
class for successful training of convolutional neural networks.

Something-something v2 [43] provides classes of humans
performing basic actions with everyday objects, with sufficient
samples for training complex models. However, the dataset
contains very few classes that could be associated to scents.

Finally, the Kinetics [44]] dataset contains a large collection
of videos, with a broad range of categories. Kinetics400 was
the first version of the dataset, and is the most widely used
for training networks. Kinetics600, the second version of the
dataset, is commonly used for testing and recent research fo-
cuses on extending the training using this model. Kinetics700-
2020, which improved categories balancing, is the newest and
most complex benchmark, however, there are very fewer pre-
trained networks available.

The works presented in this section indicate that the addition
of multisensory output to immersive content enhances viewer
experience. CNNs can accurately perform action and scene
recognition for the automatic generation of multisensory ef-
fects from multimedia inputs, as manually adding these effects
is a lengthy process. The work described in [11] proposed an
initial CNN-based solution for multisensory systems, but left
several questions to be answered: how action detection can
improve the effects dispensed, what other metrics can be ana-
lyzed to indicate the feasibility of the solution (e.g., GFLOPs,
FPR, FNR), and how the solution can be generalized to work
with a large number of videos, categories, scents and datasets.
Several CNNs were also described in this section and a thor-
ough evaluation needs to be performed for the identification
of a suitable network to work with the proposed solution and
help achieve best results in terms of performance, complexity
and accuracy.

Zhttps://github.com/HuaizhengZhang/scene-recognition-
pytorchl.x/blob/master/model_zoo.md
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III. SOLUTION DESIGN

This section describes the proposed solution, which is
capable of generating a wide range of scent categories based
on local (action based) and global (scene based) content,
as well as introducing haptics components based on action
detection.

A. Prototyping environment

The prototype contains a laptop with an Intel i7-7500 CPU
with 8GB RAM and running Windows 10 and a desktop PC
with an AMD Ryzen 2070 GPU running Ubuntu.

The end-to-end solution consists of a VR headset, an
olfactory dispenser, and a haptic device. The Oculus Quest
2] VR headset is used for visualizing the 360° videos. The
headset needs to be connected to the same network of the
server that controls the haptic and olfaction devices.

The haptic feedback was provided by the Rival 700 haptic
USB mouse[z_f] by SteelSeries, controlled with the HTTP API
of the SteelSeries 3 Engine.

The olfactory effects are generated by the SBi4v2 USB scent
dispenser manufactured by Inhaliﬂ The device contains 4
slots for scent cartridges, each with a fan for diffusing scents
towards users. An API is used to control the fans with the
desired scents, the duration of the effects, their intensity and
the recurrence of the scents. The device API is controlled by a
Java server with the Olfactory API, created for the prototype.

During the experiments, a Python 3.7 environment was
developed, with PyTorch 1.8, Keras, and Tensorflow 2.1.
The end-to-end system uses Python for the web server side
and JavaScript and Java (32-bit v8.241) for the mulsemedia
player. The OlfactionAPI that operates the scent dispenser
uses Java, and the web server is based on JavaScript and
requires HTTPS security (implemented via OpenSSLE]}. The
player employs the WebVRE] JavaScript library. Youtube-dﬂ
is used for downloading the dataset, while the videos pre-
processing was done via FFmpegﬂ

The next subsections describe the methodology employed in
this work. The paper presented in [45] introduced a method-
ology for evaluating and designing mulsemedia applications,
and its guidelines were followed during the evaluation of the
capacity of the proposed solution. The development of the
approach started with selecting datasets with classes related
to scents and actions, as well as choosing a subset of existing
CNN architectures to train on the selected datasets ([IIZB).
Once datasets were prepared (II=C) and the network archi-
tectures were chosen, the hardware and software stack of the
solution was defined and the training process began.
Following that, it was specified how the solution should em-
ploy CNNS to generate scents and haptic feedback based on the
scenes and actions detected (IIIZE). Finally, evaluation metrics

3https://www.oculus.com/quest-2/
“https://steelseries.com/gaming-mice/rival-710
Shttps://inhalio.com/
Shttps://www.openssl.org/

https://webvr.info/

8https://youtube-dl.org/
9https://github.com/FFmpeg/FFmpeg

were defined in order to assess the performance and accuracy
of the approach (II=E).

B. Selection of CNNs and Datasets

As reviewed in the related works section, 360° videos
can initially be projected into two-dimensional images, where
traditional CNN methods can be used for prediction. In the
proposed solution, the EAC projection is employed, since it
minimizes video distortions, leading to faster fine-tuning on
pre-trained networks. The choice of EAC projection can have
a negative impact on the accuracy of action detection for
both haptics and scent, in case the relevant action happens
at the boundary between two tiles. The double cube-map
projection proposed in [46] avoids this problem by projecting
the image to two cubes, where one of the cube centers is
tilted 45° in the horizontal and vertical plane, but it would
actually double the amount of samples to process. In order
to prevent an increase in complexity, EAC projection is
adopted, as this offers the best compromise between accuracy,
simplicity and data processing requirements. Action and scene
detection are complementary to each other and applicable to
two-dimensional frames, with scene information providing a
general perspective of the environment in a passive manner,
and actions being localized and based on dynamic changes.

The Places dataset contains relevant categories for scent
detection. Therefore, the baseline networks provided by the
authors of Places (i.e., ResNet, AlexNet and DenseNet) are
tested for the proposed solution as well as other pre-trained
networks, such as SqueezeNet and MobileNet.

Additionally, three recent network architectures from the
RegNet family were trained “from scratch” on the high-
resolution version of the Places dataset for scene recognition,
in order to explore the networks’ speed and accuracy trade-
off, and compare the performance of these novel architectures
with their classical counterparts. The three selected RegNet
models consist of a small model, RegNetY-800, a medium
one, RegNetY-1.6GF, and a larger model, RegNetY-3.2GF,
and they achieved a top-1 accuracy of 35.22%, 38.82% and
35.56%, respectively. The RegNet models were adjusted with
a process of freezing the body and fine-tuning only the head of
the network. Due to these models achieving similar accuracies
in this test, RegNetY-800 will be selected for further tests with
the proposed solution, due to its lower complexity.

In Section Kinetics600 was identified as a suitable
action-centric dataset for the proposed solution. The pre-
trained baseline models from the SlowFast family provide
efficient high-accuracy models.

The construction of scent categories followed four steps:

1) Choosing the useful datasets that contain many scent-
related classes based on the research of the market of
scent providers.

2) Select the labels from the datasets that correspond to a
scent and discard the ones that have no correspondence
(e.g., army base, boardwalk) or are too general (e.g.,
cafeteria, dinette).

3) Select the scents that can be detected by computer vision
tools. Exclude scents that express a general feeling or



Fig. 3. Thumbnails from each class of the video dataset.

mood, which are hard to define, or represent classes that
are hard to differentiate from each other (e.g., Boston
cream pie scent, buttercream pecan scent, etc.). The
mixture of smells were also excluded (e.g., blackberry
and lavender smell, banana leaf and acai, etc.).

4) Assign scents (i.e., the ones available in cartridges for
the olfaction device) to labels that can be detected by
CNNs (one scent category can be assigned to multiple
class labels).

The subjective process of selecting scents led to Places365
being reduced to a dataselEl of 62 classes and Kinetics
being reduced to 48 classes, with a total of 54 distinct scent
categories. After that, the candidate networks’ performances
are evaluated on the reduced dataset (discussed in Section
[[V-A)), which only contains olfactory relevant classes selected
previously. The metrics used for evaluation are discussed
in Section [[II-F, and based on the results it is possible to
recommend which CNN is suitable for the multisensorial
solution.

In addition, the zero-shot prediction accuracy of CLIP was
tested with crafted prompts for the labels to increase the
accuracy on the reduced dataset.

In Section [M] different works related to haptics were pre-
sented, in which the effects are provided based on user emo-
tions, optical flow and sound. None of these works consider
action detection-based haptics generation, which is possible in
the proposed solution due to the adoption of action detection
with an approach such as SlowFast.

10https://github.com/Fjuzi/traction_base/blob/main/scents.pdf
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Fig. 4. Scene and action CNN-based architecture for mulsemedia.

Haptic events are be classified into two categories in an
additional dataseﬂ constant stimuli and single stimuli. In
constant stimuli, effects are triggered throughout the entire
action, while in single stimuli, the haptic feedback happens at
a key moment. In both scenarios the whole action is processed
by the network, but for single stimuli, audio cues are used for
the recognition of the key moment. A total of 44 haptic events
can be detected.

C. Configurations of the Dataset and Labels

The testing dataset containing 360° video segmentsEl and a
setup guideEl are publicly available. The dataset was created
to evaluate the performance of end-to-end solutions with 360°
content, as such a dataset was not previously available. It con-
tains 170 ten-second clips of 360° videos from YouTube, with
manually labeled scent categories for 14 olfactory classes, as
shown in Fig. Bl

The video dataset is used in conjunction with a configuration
ﬁlelﬂ which is a CSV containing the scent or haptic labels,
links to videos, and start and end times of the segments. The
setup guide also contains the path of the Python script which
uses the CSV file for locating and downloading the videos in
mp4 format and converting them into EAC projections. Once
segments are downloaded, the scriptsE' for the scene and action
recognition can be executed.

https://github.com/Fjuzi/traction_base/blob/main/haptics.pdf
Zhttps://anon.to/FkB86G
Bhttps://github.com/Fjuzi/traction_base/blob/main/data/DATA.md
https://github.com/Fjuzi/traction_base/blob/main/data/DATASET.csv
5https://github.com/Fjuzi/traction_base
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TABLE I
COMPLEXITY OF DIFFERENT ARCHITECTURES

Values from literature

Our measurement of inference

Architectures params [M]  GFLOPS [B] Inference [s] [29] ImageNet top-1 error CPU [s] GPU [s]
RegNetY-3.2GF 19.4 32 0.070 21.0 0.1500 0.0133
RegNetY-1.6GF 11.2 1.6 0.039 22.0 0.0928 0.0130
RegNetY-800MF 6.3 0.8 0.022 23.7 0.0576 0.0079
RegNetY-600MF 6.1 0.6 0.019 24.5 0.0488 0.0077
RegNetY-400MF 4.3 0.4 0.019 25.9 0.0438 0.0077
RegNetY-200MF 3.2 0.2 0.011 29.6 0.0277 0.0064
EfficientNet_b3 12.0 1.8 0.114 22.5 (18.9) 0.1513 0.0125
EfficientNet_b2 9.2 1.0 0.068 23.4 (20.2) 0.5205 0.0107
EfficientNet_bl 7.8 0.7 0.052 24.1 (21.2) 0.4030 0.0097
EfficientNet_b0 53 04 0.034 24.9 (23.7) 0.2683 0.0068
MobileNet v2 4.2 0.6 - 29.4 (27.1) 0.1826 0.0049
ResNet50 22.6 4.1 0.053 35.0 (22.2) 0.1938 0.0125
ResNetl18 [47] 11.0 2.0 - 28.2 0.0741 0.0032
DenseNet161 [47] 28.7 8.0 - 23.8 0.4063 0.0210
SqueezeNet 1.0 [47] 1.3 0.8 - - 0.0549 0.0033
ViT-B-32 [47] 88.0 13.0 - 26.6 0.1431 0.0067

The haptic and scent labels related to actions and scenes
are also configured via CSV ﬁleﬂ These files are uploaded
to the server with the desired effects to be executed when a
certain scene or action is detected. The file contains the names
of events (e.g., cutting apple, rainforest), event ID, effect name
(e.g., apple, wood), effect ID, and event type (i.e., action or
scene). By changing the effect names and IDs, it is possible
to customize the effects according to user preference. Future
work may consider adding personalization to automatically
generate such content based on user preferences.

D. Architecture of the Proposed System

The architecture of the proposed solution, presented in Fig.
[] consists of two parts: The web server and the mulsemedia
player. The web server is responsible for the haptic and
olfactory annotation, and the mulsemedia player distributes
generated content. The web server processes 360° videos in
advance, and once it generates the annotations, they are sent
to the mulsemedia player.

The web server contains 360° videos in the EAC format
and pre-processes them. The pre-processing step consists of
sampling the video frames and separating the different tiles
based on the cubemap projection. From each frame, the front,
back, right and left tiles are used, and the top and bottom are
discarded, as they usually do not contain relevant information
for the predictions. The bottom tile usually shows the ground
while the top tile usually contains the sky or a ceiling. The
CNNs, then, perform scene and action recognition, generating
annotations for the given frame, stored in JSON files.

The olfactory content generator of the web server consists
of two parallel networks, one recognizing the scene (i.e.,
general or background content) and the other the actions (i.e.,
local or foreground content), and based on that, predicts a
scene-related scent and an action-related scent, if detected.
When detected, action-related scents have a higher priority
than scene-related scents, as they tend to grasp users’ visual

1ohttps://github.com/Fjuzi/traction_base/blob/main/configs/labels.csv
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Fig. 5. The sampling of clips for action and scene prediction.

65

L]
D 161
° "ResNetSO ensenet16
60 - ResNet18 .
ViT-B-32 linear probe
L]
55 (i 2 o
Vit3-32 prompts iT-F.-32"zero-shot
.\? L]
S50 -
3
o Ll
‘5 ¢
+ o0
g 45 MobileNet_v2
L]
40 b Squeezenet1.0
L]
.RegNet'(S’)O ® top1 accuracy
35 @ ®  olfactory accuracy
° top1 acc. lin. relationshi
p1 acc elationship
olf. acc. lin. relationship
30 . \ \ . | | | )
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

complexity (CPU inference time) [sec]

Fig. 6. Relation of top-1 accuracy (blue) and olfactory accuracy (red) with
model complexity (measured in CPU inference time) on the reduced dataset.

attention due to their dynamic, fast-changing nature over the
static, scene-related background.

The haptics generator of the web server detects actions
associated to haptic stimuli. Based on the nature of the action,
it can either be a constant vibration, or just a short vibration
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TABLE II
THE TOP-1, TOP-5 AND OLFACTION ACCURACIES [%] OF SEVERAL ARCHITECTURES ON THE REDUCED PLACES DATASET

Architectures Top-1 Accuracy  Top-1 Error  Top-5 Accuracy  Top-5 Error  Olfactory acc.  FPR  FNR
RegNetY-800MF 29.13 70.87 58.16 41.84 37.92 112 55.57
ResNet18 48.63 51.37 80.90 19.10 60.61 7.43 3295
AlexNet 43.79 56.21 74.90 25.10 55.52 8.53 38.26
ResNet50 50.29 49.71 81.93 18.06 62.22 711  31.80
CLIP (ViT-B-32) zero shot 30.50 59.50 57.66 42.34 41.58 9.51 54.05
CLIP (ViT-B-32) prompts 36.92 63.08 67.89 32.11 45.31 8.81 48.89
CLIP (ViT-B-32) linear probe  42.19 57.81 - - 55.41 9.20 37.40
SqueezeNet1.0 46.66 53.34 77.14 22.85 55.43 9.06 37.80
MobileNet_v2 50.03 49.97 81.32 18.68 58.89 8.27 34.73
DenseNet161 54.60 4541 85.35 14.64 63.18 711  30.73

that is enhanced by audio signal. 100 1 — ResNet18 FNR

The mulsemedia player, built with JavaScript, plays the 360° DenseNet161 FNR

videos on the VR headset synchronously with the olfactory ResNet18 olf. error
. . i . A 80 DenseNet161 olf. error

and haptic content, activating the scents dispenser and haptic —— ResNet18 FPR

mouse via USB. The player forwards the JSON files received DenseNet161 FPR

from the web server with olfactory and haptic information = 60

through WebSockets to the Olfactory API, that operates the =

scent dispenser, and to the API of the haptic mouse. The player § w0l

is WebVR-based and users access it on the browser of the VR v

headset. Once playback starts, the server synchronously sends

the haptic and olfactory information to the USB devices. 20

—_— e —————————
E. Scene and Action Detection Process 01
Action recognition in videos requires temporal windows, 0.0 02 0 reshold 08 10

while scene recognition can be performed in each frame. The
length of the temporal segments is based on the findings of
Sexton et al. [11]], as well as the constraints imposed by the
SlowFast architecture. In [11] an experiment suggested that
users took, on average, 2 seconds to notice a change in scents
generated by the olfaction dispenser. Therefore, predictions
must be performed at least once every 2 seconds. The original
implementation of the SlowFast architecture requires segments
to be spaced by 34 frames (i.e., approx. 1.13s for 30 fps videos
such as the ones in the dataset). Therefore, 1.13s is the interval
employed in this solution, as it also fulfills the requirement of
detections being less than 2 seconds apart.

Furthermore, the SlowFast network employed in action de-
tection requires as input a batch of 64 frames, with a sampling
rate of 2. Therefore, each prediction on SlowFast covers a time
range of 128 frames (i.e., 4.27s for the videos in the dataset).
Finally, the final second of each video clip is discarded to avoid
the impact of fading effects on the detection. With these con-
straints, and using video clips of 300 frames (i.e., 10 seconds),
such as the ones in the testing dataset, this leads to splitting the
input video into 5 separate and overlapping views, as shown
in Fig.

The scene prediction process does not require processing
a batch of frames over a temporal window, as it only requires
one frame. The middle frame of each of the 5 views is the one
selected to be processed for two reasons: first, this allows run-
ning the same number of predictions for both scene and action
recognition, and secondly, choosing the middle frame of each
view guarantees that selected frames are evenly distributed
across the clip, while also avoiding frames at the beginning

Fig. 7. FPR, FNR and olfactory accuracy for DenseNet161 and ResNet18

or end of the video sequence, which may contain scene tran-
sitions.

Afterwards, both the action and scene classification net-
works classify each of the 5 segments. Each segment contains
4 horizontal tiles to be processed, resulting in 20 predictions
for each clip, both from the action and scene classifiers. The
probabilities generated by the scene and action classifiers
are summarized for each tile, and the tile with the highest
probability above the selected threshold serves as the final
prediction for the scene and action. If an action is detected,
its prediction always overwrites the prediction of the scene.
The final scent and its timestamp are encoded into a JSON
file, which is forwarded to the mulsemedia player.

F. Evaluation Metrics

A number of metrics are used for the evaluation of the
proposed approach. Top-1 and top-5 accuracies indicate if the
prediction matches the true label, or if the 5 highest probability
predictions contain the true label, respectively. The olfactory
accuracy determines the number of correctly identified scent
categories, which can be higher than the top-1 accuracy, as
similar scene labels can be related to the same scent.

A confusion matrix was created in a one-vs-all manner
and the following metrics are used for result analysis: the
False Positive Ratio (FPR) is the percentage of scents diffused
wrongly, when there should be a different one or no scent. The
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False Negative Ratio (FNR) is the ratio of scents not being
diffused, when there should be a scent.

IV. TESTING AND RESULTS

In order to test the performance and feasibility of the
CNN-based generation of mulsemedia effects, a number of
experiments were performed. Multiple CNN architectures and
datasets were tested in terms of accuracy and complexity for
scene and action recognition, including a zero-shot approach.

A. Evaluation of Scene-Based Scent Recognition

A number of CNN architectures were tested for scene detec-
tion. Table [ contains performance measurements from several
CNNs on the ImageNet validation dataset. Some architec-
tures were trained from scratch (e.g., RegNetY), while others
had available pre-trained weights (e.g., ResNetl8, AlexNet,
ResNet50, SqueezeNet1.0, MobileNetv2, DenseNet161).

Regarding the values provided in Table [I, the inference
times are taken from the work presented in [29], using an
Nvidia V100 GPU. Additionally, we calculated ImageNet
top1-errors for RegNet, EfficientNet, MobileNet and ResNet50
architectures, while the remaining values, including the ones
in parenthesis, are from [47], where the state-of-the-art per-
formances on ImageNet are collected.

Additional accuracy tests were performed on a reduced
version of the Places365 dataset (which contains olfactory
relevant classes, as described in Section [[II-B). As indicated
in Table RegNet underperformed in comparison to other
models. This is likely due to the training being performed by
us from scratch on a more modest GPU than the ones used for
pre-trained models. However, this is helpful to demonstrate the
performance of a newly trained network on widely available
hardware.

Table [lI] also indicates that CLIP zero-shot (employing the
ViT-B-32 model proposed in [48]]) achieves a similar accuracy
to RegNetY-800MF, which shows the potential of this net-
work. When using zero-shot and prompts, CLIP’s performance
(i.e., 30.5% and 36.92% top-1 accuracy, respectively) exceeds
RegNetY-800MF. Prompts are better-designed class names to
describe scenes, which improved accuracy by approx. 6%.
Certain modifications were applied to these prompts, such as
replacing underscores with spaces; using articles at the begin-
ning of classes, use of full stop, and label rephrasing (e.g.,
the class label "florist_shop/indoor" is replaced by "an indoor
photo of a florist shop."). Furthermore, using a linear probe on
CLIP features notably increases the top-1 accuracy to 42.19%,
almost matching the performance of a model such as AlexNet,
trained using millions of images. The linear probe uses a
Logistic Regression function that requires a hyperparameter
sweep of the regularization strength. The highest accuracy was
achieved with a Regularization Parameter Value of 0.0492.

The best performing models, however, are still the tradi-
tional ones, which were trained with a large amount of data.
More complex models, such as Densenet161, perform better.
Fig. [0] illustrates in blue the relation of top-1 accuracy and
complexity. DenseNet161 is an outlier, achieving the highest
accuracy but at the cost of a significantly higher complexity.

The light blue and light red lines represent the regression of
the data points (excluding DenseNet161) and it shows a linear
relationship between complexity and accuracy.

Table [[I| indicates that olfactory accuracy is higher than the
top-1 accuracies. This can also be seen on Fig. [6] where the
relationships between the model inference times and olfactory
accuracies are marked in red, and indicate a similar correlation
to the top-1 accuracy.

ResNet18 demonstrates competitive performance compared
to DenseNet161, while having significantly better inference
time. Employing this model over DenseNet requires a sacrifice
of approx. 2.5% olfactory accuracy but it allows approx. 6
times faster inference time on a GPU. RegNet provides lower
performance with a similar inference time, and might not be
the best choice for the olfaction generation approach.

1) False Postive and False Negative Rates: The changes in
FPR and FNR were also investigated with the use of different
cut-off thresholds for classification. In the proposed solution,
FPR and FNR are important metrics since the FPR represents
the percentage of incorrectly generated scents, and FNR the
percentage of times that no scent was generated when there
should have been a scent.

Generally, it is desired that the FPR is as low as possible as
it can disturb the user and diminish the general experience,
whereas false-negative detections, while not enhancing the
user experience, do not lower it either.

Fig. [7] illustrates the FPR, FNR and olfactory accuracy of
DenseNet161 and ResNet18 architectures. The figure indicates
that the FPR is less than 10% in both cases with zero threshold
(e.g., 7.11% for DenseNetl61 and 7.43% for ResNetl8),
which demonstrates the robustness of these networks. The
confidence of false-positive classes is approx. 0.2, so this is
the threshold when the FPR starts to decrease and the FNR
starts to increase.

In terms of FNR and olfaction error, ResNetl18 performs
slightly worse than DenseNetl61. However, considering the
significantly lower inference time, ResNetl8 is the most
suitable network for the solution, among the ones tested.

B. Additional Experiments For Scene Detection

In order to thoroughly test and achieve a feasible solution,
further experiments were performed. These experiments are
related to scenes that do not require any scents in CLIP,
scents being predicted directly instead of scenes and increasing
olfactory accuracy by merging classes probabilities.

1) Scenes with no relevant scent: CLIP zero-shot was tested
with different ‘no scent’ definitions on the reduced Places
dataset, as seen in the plots from Fig.[8] In Fig.[§](a), all classes
from the model are predicted, with the ones not corresponding
to any scent being classified as "no scent". In (b), only scene-
related classes are predicted and a threshold is defined. If no
class is detected with a probability above the given threshold,
the scene is classified with "no scent". In (c), only scent-
related classes are predicted and an extra class is labeled as
"no scent". Based on the FPR and FNR values, scenario (a) is
the best performing one, with an 8.8% FPR, 48.9% FNR and
45% olfactory error at threshold 0, while the other scenarios
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Fig. 8. Scene prediction with different ‘no scent’ definitions for CLIP.
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Fig. 9. Direct prediction of scent with two different no scent class definitions:
low probabilities are classified as ‘no scent’ and additional ‘no scent’ class.

yield a high FPR, which can be improved by increasing the
threshold, affecting negatively the FNR and olfactory error.
Furthermore, keeping all the classes is beneficial, as it requires
fewer modifications on the original networks.

2) Predicting scents directly: An additional test with CLIP
zero-shot was also preformed, with scents being detected
directly instead of scenes. As indicated by Fig.[9]an additional
‘no scent’ category has a negligible impact on the perfor-
mance, similarly using low probabilities to indicate that there
is ‘no scent’ in a certain scene. The FPR rate and olfactory
error are high in both approaches regardless of the definition of
the ‘no scent’ category. Increasing the threshold successfully
reduces the FPR, but fails to decrease the olfactory error to
an acceptable level. The low performance of predicting scents
directly is likely due to the abstract nature of the labels. The
authors of CLIP also acknowledge that zero-shot CLIP has a
limitation of being biased by the distribution of the training
data, affecting the prediction of new unknown categories,
such as predicting scent labels which were not present in the
original training data.

3) Increase Olfactory Accuracy by Merging Class Proba-
bilities: In order to reduce the classification of scenes as ‘no
smell’, it is possible to observe all probabilities of the different
detected labels, as multiple predicted labels might correspond
to the same smell. In that case, the probability of the scene
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(b) Low probability classes are classified as ‘no
scent” (only olfactory relevant classes predicted)
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(c) Additional ‘no scent’ class (only olfactory rel-
evant classes predicted + ‘no scent’)
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Fig. 10. The impact of merging prediction probabilities of classes that
correspond to the same scent category.

labels that correspond to the same scent must be summed, and
if the summed confidence is higher than the given threshold,
the scene is considered to contain that scent. Fig. [I0] shows
the impact of merging prediction probabilities that correspond
to the same scent categories on ResNetl8. The straight lines
stand for the original scenario’s error rates, and the dashed
lines show the error rate of the merged classes probabilities.
The figure indicates that the merging successfully decreases
the olfactory error rate by approx. 10%, especially in the
probability threshold between 0.3 and 0.9. This proves that
individual class predictions were incorrectly classified as ‘no
scent’ due to their low probability.

C. Evaluation of Action-Based Scent Recognition

Table [ presents the performance of action detection
for SlowFast64x2 and CLIP zero-shot the reduced Kinetics
dataset. The reduced dataset based on Kinetics600 contains
48 classes related to olfaction, as described in Section |[1I-B
The table indicates that SlowFast performs very well on the
reduced dataset, with high olfactory accuracy and low FPR.
The top-1 and top-5 accuracies are 75.56% and 93.12%,
respectively. In this experiment the ‘no scent’ class was defined
accordingly to our findings in Section [V-BI} CLIP zero-shot
with prompts maintains a promising performance for a zero-
shot predictor, with a 75.26% top-5 accuracy.
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TABLE III
PERFORMANCE OF ACTION RECOGNITION NETWORKS WITH THE
REDUCED KINETICS DATASET FOR SCENTS

Topl Topl TopS Top5 OIf. FPR FNR
acc. eI acc. eI acc.
SlowFast64x2 7556 2444 93.12 688 7645 155 18.86
CLIP (prompts)  49.31 50.69 7526 24.74 5338 397 3881

D. Evaluation of Scent Prediction Based on Scene and Action

A number of tests evaluated the performance of the end-
to-end system on the proposed dataset. Fig. [T1] illustrates the
performance of a smaller and faster network (i.e., ResNet18)
and a slower but more accurate network (i.e., DenseNet161)
for scene detection with SlowFast64x2 as their parallel coun-
terpart for action detection. As DenseNet161 was the highest-
performing network in the earlier experiments, it indicates
how accurate the solution can be when not constrained by
computational power, while ResNet18 offers the best balance
of accuracy and complexity trade-off among the tested net-
works. When the prediction probability threshold is set at
0, DenseNet161 achieved a 74.27% olfactory accuracy, with
6 false positive detections out of 172 samples. ResNetl8
achieved a 69.19% olfactory accuracy with 10 false positive
detections. These mismatches are inherently coming from the
underlying dataset and the different distribution of the training
and test dataset. In addition, not all false positive detections are
equally poor. ResNetl8 confused forest with rainforest three
times, pizza with smoke twice, coffee with burger and beer
with burger. These categories were also present in the same
videos and thus they could be a fitting scent.

The impact of different combinations of action and scene
thresholds was also evaluated. The results can be seen in Fig.
[I2] As the probability threshold increases, the FPR slightly
decreases, but the FNR and thus the olfactory error strongly
increases. With a low threshold, the FPR is sufficiently low,
therefore both the action and scene probability thresholds are
recommended to be set to 0.

The class-wise olfactory accuracy of ResNetl8 was also
evaluated. Fig. [I3] presents the performance of the network on
some of the classes, and indicates a strong performance on
most of the classes. In some specific classes (e.g., smoke and
coffee), the accuracy is significantly lower.

1) Using a Zero-shot solution instead of a parallel ap-
proach: Figs. [T4] and [T5] show the performance of CLIP zero-
shot with prompts classifier on the evaluation dataset. Fig. [T4]
illustrates the olfactory error and the FNR (left axis) and the
FPR (right axis) as a function of the probability threshold.

The threshold was set to 0.6 (matching FPR and olfactory
error) for comparisons with the parallel system (i.e., SlowFast
and ResNet18). With this threshold the olfactory accuracy of
CLIP is 63.17% with 33% FNR. Even though the average
olfactory accuracy is approx. 6 percentage points lower than
the parallel system, as seen in the yellow and purple horizontal
dashed lines in Fig. [T3] this performance is remarkable for a
completely zero-shot predictor.

Fig. [T3] presents class-wise performances of CLIP and the
parallel system. CLIP performs well in certain classes where
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Fig. 11. The FNR and olfactory error (left axis) and FPR (right axis) as

a function of probability threshold of ResNetl8 and DenseNetl61 on the
evaluation dataset.
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Fig. 13. Class-wise olfactory accuracy of the parallel scent prediction system
with ResNet18 and SlowFast64x2 on our 360° video scent dataset. The red
dashed line shows the average olfactory accuracy.

the parallel system has low performance (i.e., coffee) and
poorly in others (i.e., village and wood). There is also a class
(i.e., pizza) in which both networks do not perform well.
Examples of unsuccessful classification are shown in Fig.
where from left to right three frames are presented from the
classes coffee, smoke and pizza, which are classified as burger,
grass and smoke, respectively. The most likely explanation for



100 - r0.175
r0.150

r0.125

to.100
--- FNR— FPR a

—— olfactory error
r 0.075

error rate [%]

r 0.050

r 0.025

r 0.000

0.0 0.2 0.4 0.6 0.8 1.0

fhreshold

Fig. 14. FNR and olfactory error (left axis) and FPR over all samples (right
axis) as the function of probability-threshold of CLIP on the proposed dataset

e o
® ©
T

e
]
T

1
|
1
T
:
i
|
1
1
|
1
1
1
1

olfactory accuracy [%)]
o o
= 142}

o
w

| ] CLIP accuracies

[ parallel system accuracies
parallel system avg. accs.

= = CLIP avg. accs.

o
N

e

0 T T R T o T
S P LSS S L0 PP
WP OSSP @FEF IO
CEfSE S & T T

Fig. 15. Class-wise performance of CLIP zero-shot classifier, with probability
threshold 0.6, when its FPR matches the FPR of the parallel system.

the unsuccessful classification related to the class smoke, is
that the objects associated with this specific class occupy a
very small part of the image (e.g., the second image in Fig.
is an extreme example, as the cigarette and the smoke only
cover a few pixels of the frame). Regarding the other two
classes, the errors are probably caused by the similarities with
other classes: many frames of the class pizza are showing pizza
restaurants, which also contain smoke, while frames labeled as
coffee are very similar to those containing bars or restaurants.

If we allow a higher FPR for CLIP, by setting the proba-
bility threshold to 0.4, it achieves 77.78% olfactory accuracy,
however, with double the number of false positives compared
to the scenario with a probability threshold of 0.6.

E. Evaluation of Action Detection for Haptics

SlowFast64x2 was also evaluated on Kinetics classes that
are associated with haptics, described at the end of Section
[IT-B] The network achieved a 72.26% top-1 accuracy, 89.52%
top-5 accuracy, an FPR of 2.6% and an FNR of 2.1%, which
is a similar performance to the scent-related classes. The im-
pact of different thresholds on the haptic-related labels of the
reduced Kinetics dataset can be seen on Fig. [l It can be seen
that SlowFast64x2 has slightly higher performance when com-
paring haptic-related labels to scent-related labels (as shown

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, FEBRUARY 2022

Fig. 16. Three frames incorrectly classified by the scent prediction system.
From left to right, the frames are instances of the classes “coffee”, “smoke”
(i.e., a person smoking) and “pizza”.
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Fig. 17. FNR and haptic error (left axis) and FPR over all samples (right
axis) as a function of probability-threshold of SlowFast64x2 on the reduced
Kinetics dataset only with haptic related labels.

on Fig. [[1). As a result, the recommended threshold is also
0. Differences in the results can be explained by the nature of
the classes related to haptics, as some actions (e.g., slapping
a face) are easier to be detected than scent-related actions.

This section presented extensive testing of the proposed so-
lution. The complexity of CNN architectures was evaluated
comparatively on the ImageNet validation dataset, indicating
that ResNet18 provides a low inference time, while RegNetY-
3.2GF and EfficientNets b2 and b3 achieved the lowest top-1
errors. The accuracy associated with a number of networks was
also investigated, with ResNets 18 and 50 achieving low FPR
and DenseNetl61 achieving the best results in terms of top-1
and top-5 accuracy and error, but also a much higher infer-
ence time in comparison to ResNets. Experiments with CLIP,
a zero-shot CNN, demonstrated it is also a feasible network
to be used by the proposed solution, with up to 42.19% top-1
accuracy. Additional experiments demonstrated that multiple
predicted labels might correspond to the same smell, and these
predictions can be merged, decreasing olfactory error rate by
approximately 10%.

Using the proposed video dataset for testing the solution, the
best results regarding the generation of scents based on action
recognition was recorded by the SlowFast64x2 network, which
achieved a top-1 accuracy of 75.56%. Scene-based olfaction
effect generation was tested with DenseNet161 and ResNet18
which achieved 74.27% and 69.19% olfactory accuracy, re-
spectively. ResNet18 however offers a better complexity trade-
off, as DenseNet161 requires more computational time. Slow-
Fast64x2 was also tested for the generation of haptic effects
based on action detection. It achieved a 72.26% top-1 haptic
accuracy.
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V. CONCLUSION AND FUTURE WORK

This work describes an innovative solution for enhancing
360° videos with automatically generated mulsemedia content
in order to increase viewer experience. The paper starts with
a thorough analysis of state-of-the-art deep learning solutions
and discusses how they could be applied in this solution. We
selected 11 different neural network architectures and created
a test dataset consisting of 170 360° video clips with various
scent categories to evaluate the networks’ performance. Scene
and action recognition datasets (Places and Kinetics, respec-
tively) were adapted to support olfaction and haptics-related
labels. The proposed solution supports 54 scent categories,
a significant improvement to the existing baseline solution
that only recognizes 5 scent categories, triggered by 62 scene
classes and 48 action classes. Scents are generated based on
both scene and action detection, while haptics are triggered by
actions and are synchronized via audio cues.

Testing shows how the proposed solution achieves a 69.19%
olfactory accuracy on the Places dataset and a 72.26% top-
1 haptic accuracy on the Kinetics dataset. The olfactory and
haptic accuracies were achieved while having a low number
of false positive detections (10 out of 171 samples). The
accuracy values indicate that the solution is applicable to
realistic use cases and can replace the lengthy process of
manually annotating content with multisensorial effects.

Future work considers a real-time implementation of the
solution with powerful GPU servers and involving saliency-
based pre-processing techniques to identify and process only
relevant tiles, enhancing processing times. Haptic content
generation can also be enhanced with additional sensors and
include user emotions.
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