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Abstract—Traditional communication technologies such as cel-
lular networks are facing problems to support high service
quality when used for time-critical applications in an Indus-
trial Internet-of-Things (IIoT) context, including real-time data
transmission, route dependability, and scalability. To address
these problems, device-to-device (D2D) communications based on
social relationships can be used, which allow for task-offloading:
resource-rich devices share unused computing resources with
resource constraint devices. However, unbalanced task offloading
in Social IIoT (SIIoT) might actually degrade the overall system
performance, which is not desirable. In this paper, we propose an
adaptive capacity task offloading solution for D2D-based social
industrial IoT (ToSIIoT) which considers devices utilization ratio
and strength of social relationships in order to improve resource
utilization, increase QoS and achieve better task completion
rate. The proposed approach consists of three aspects: social-
aware relay selection in a multi-hop D2D communication context,
choice of a resource-rich SIIoT device for task offloading, and
adaptive redistribution of tasks. The paper proposes heuristic
algorithms, as finding optimal solutions to the problems are NP-
hard. Extensive experimental results show that the proposed
ToSIIoT performs better than existing approaches in terms of
utilization ratio, QoS violation, average execution delay, and task
completion ratio.

Index Terms—Industrial IoT (IIoT), social relationship, re-
source sharing, Device-to-Device (D2D), task-Offloading.

I. INTRODUCTION

THe Internet of Things (IoT) is seen as a critical enabler
for the development of the modern industry. The success

of IoT technologiesis also due to the constant integration
of numerous controllers and/or sensors in current industrial
production processes, which has propelled the conventional in-
dustry to a new, smart level, known as Industrial IoT (IIoT) [1],
[2]. Among others, the IIoT increases industrial efficiency
while also reducing resource consumption and production
costs. However, in IIoT, industrial sensors integrated into
industrial robots and mobile devices create massive amounts
of data, putting a burden on the radio access networks [3],
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[4]. The time-critical applications (i.e., interlocking, closed-
loop control, and industrial automation control) can tolerate
delay within a range of 10 to 100ms and require transmission
reliability of about 99.99%. In an industrial network setup,
achieving such levels of delay and transmission reliability are
considered significant problems which need focusing on [5],
[6].

To address these challenges, and therefore, satisfy the needs
of time-critical applications, device-to-device (D2D) resource
sharing across smart mobile devices in IIoT architecture opens
up a novel research avenue [7]–[9]. D2D communications in
IIoT can provide low transmission delays and high power
efficiency. Moreover, D2D communications also reduce trans-
mission overhead caused by centralized, traditional manage-
ment and coordination [10]. Mobile devices are generally
heterogeneous, in terms of computational and communication
capabilities. Some IIoT devices, for example, have idle or
excess resources, while others have insufficient resources to of-
fer. The resource-constrained mobile devices can offload their
computationally-intensive tasks directly to nearby resource-
rich devices to achieve high resource utilization rates, low
latencies, and high quality of experience levels [11].

Furthermore, to enhance the quality-of-service (QoS) in
D2D resource sharing context and minimize the undesirable
exposure of unreliable devices, the social-awareness factor
among IIoT mobile devices can be considered [12], as shown
in Fig. 1. The available resources in social IIoT (SIIoT) are
shared using social relationships (e.g., conflict, friendship,
and incentives for profit-driven) [13]. Since the processing
power of devices is limited in an IIoT architecture with social
D2D communication, only a limited number of tasks may be
delegated to them for execution. Therefore, in this work, we
also took into account the device utilization ratio as well as
the strength of social ties in order to reduce the pressure put
on resource provider SIIoT devices.

A. Motivation

The IIoT devices have a short transmission range. Therefore,
D2D communications require multi-hop communication sup-
port to enhance the efficiency of the SIIoT architecture, partic-
ularly for time-critical task offloading (i.e., content sharing or
idle resource sharing). However, SIIoT devices also have social
attributes, which is crucial for resource sharing because some
devices share their idle resources with other devices that have
social tie with them. Consequently, in multi-hop social-aware
D2D transmissions, the IIoT devices offload the time-critical
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Fig. 1. System model of social-aware multi-hop D2D SIIoT architecture. In
this figure, the lower part shows IIoT device connectivity at physical layer; the
IIoT devices are connected via D2D communications. At the social layer, the
devices are connected through social ties. The upper layer shows the social-
aware multi-hop D2D enhanced network.

tasks instantly between devices without routing through the
Base Station (BS) [14]. Researchers already studied social-
aware single-hop D2D communications [15]–[18], but they
ignored multi-hop D2D communications in a SIIoT architec-
ture. Unlike existing work, this paper focuses on idle resource
sharing in social-aware multi-hop D2D communications in
SIIoT. Further, IIoT devices are heterogeneous in terms of
computational and communication capabilities, and social ties
enormously affect the unified communication between devices.
Social-aware relay selection is critical because a device may
or may not forward the packet based on a social tie. The main
objective of this paper is to jointly consider the social tie and
utilization ratio of resource providers, when offloading time-
critical tasks.

B. Contributions

This paper proposes an adaptive capacity task offloading
solution for multi-hop D2D SIIoT that maximizes the utiliza-
tion ratio of idle resources of resource provider devices and
achieve load balancing. The proposed approach consists of
three aspects: an innovative mechanism for social-aware relay
selection in multi-hop D2D communications, a solution for
resource-rich SIIoT device choice for task offloading, and a
novel scheme for adaptive redistribution of tasks. In terms of
the social-aware relay selection, the intended model ensures
that the strength of the social tie between devices must be
greater than some predefined threshold value as relay SIIoT
devices should be willing to forward packets of trusted devices.
Regarding the second aspect, we select the resource-rich
device for task offloading while jointly considering the device
utilization ratio and strength of social tie. Finally, we propose
an adaptive task redistribution scheme to redistribute the tasks
among IIoT devices in order to minimize the overloading
problem of resource provider devices. In brief, the main
contributions of this paper are as follows.
• This paper considers social industrial IoT devices in

a multi-hop D2D resource sharing scheme, where de-
vices share their idle or excess resources with resource-

constrained devices by employing multi-hop D2D com-
munication. To enable resource sharing of the trustworthy
multi-hop D2D links, we modelled the communication
system as a weighted undirected graph based on social
ties between IIoT devices.

• A multi-hop D2D SIIoT architecture is considered, where
IIoT devices offload computationally-intensive tasks to
resource-rich devices, while also considering utilization
ratio and strength of the social ties of these devices.
To solve the trade-off problem between utilization ratio
and strength of the social tie among IIoT devices in a
polynomial time, we propose a heuristic task placement
algorithm as the problem is NP-hard.

• An adaptive tasks redistribution algorithm is proposed to
minimize the overloading issue of resource provider de-
vices in the SIIoT architecture by focusing on utilization
ratio and strength of the social tie among the devices.

The rest of the paper is organized as follows. Section
II discusses related works and identifies their benefits and
limitations. The proposed solution, including the related math-
ematical modeling, is introduced in Section III. Section IV
discusses the experimental results to show the effectiveness
of the proposed model in comparison with existing works.
Finally, Section V concludes the paper and describes some
potential future research directions.

II. RELATED WORKS

This section discusses some existing proposals related to
D2D resource sharing based on social relationships relevant
to the work presented in this paper.

In the recent past, social attributes-based communication
has attracted unprecedented attention from academia and in-
dustry [19], [20]. In SIIoT, when smart mobile objects come
in contact, they create social relationships/ties autonomously,
without human intervention [21], [22]. The researchers have
made several attempts and proposed various schemes for the
SIIoT system. Table I describes some of the applications that
can be developed based on the social features of smart mobile
devices. The centralized and traditional IIoT architecture faces
challenges in terms of delay and promoting computational-
intensive applications. The resource-rich IIoT mobile devices
can experience the unused computing resources with other
resource constraints devices employing D2D technology and
social awareness.

In order to integrate the social networking concepts for D2D
task offloading in IIoT, some works have used auction theory
for an optimal solution [8], [23]. In the social IIoT, mobile
devices can share their resources based on locality and social
trustworthiness. To handle these problems in indispensable
IIoT architecture, Sun et al. [8] proposed two approaches for
social IIoT D2D sharing, one hop-based social aware incentive
mechanism (OSIM) and relay-based SIM (RSIM). In OSIM,
the IIoT mobile device can offload the task to a nearby one-hop
resource-rich device that employs the Vickrey-Clarke-Groves
(VCG) auction. While in the RSIM, the IIoT mobile device
uses a multihop approach for task offloading. Although the
stated approach improves the performance of social IIoT D2D
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sharing, the authors do not examine the level of idle resources
of the mobile devices while offloading the tasks.

The load balancing problem occurs due to the limited com-
puted resources of the devices. Therefore, Zang et al. [24] use
reinforcement learning to select the device for task offloading
based on the social attribute perception. In the proposed model,
the global module obtains the resource information from the
devices and then uses social awareness and reinforcement
learning in the selection process. To ensure the devices’ truth-
fulness in D2D communication, Zhao et al. proposed a three-
phase approach using social-aware data dissemination [17]. A
large number of mobile devices also significantly affect D2D
transmission. Accordingly, Wang et al. [25] practiced the D2D
opportunistic sharing model to offload the tasks considering
devices’ social interaction. In the proposed model, the authors
use tag-assisted social aware D2D content dissemination and
offloading. Additionally, Yi et al. [26] focus on the D2D
downlink traffic offloading in cellular networks based on
social-aware. Based on user profile activity, it can share the
content and cache the information in the devices. Furthermore,
the proposed model also uses a pricing mechanism for the
resource contributor devices.

Other studies [23], [27]–[29] also focus on multi-hop D2D
resource sharing, but they did not jointly consider the social
attributes and physical attributes. Note that multi-hop resource
sharing occurs mainly among social-trustworthy and physi-
cally closed mobile devices in the social IIoT architecture.
Multi-hop resource sharing maximizes the utilization ratio
of idle resources of mobile devices in IIoT. To achieve this
goal, in this paper, we proposed a multi-hop resource sharing
solution in IIoT, considering jointly the social relationship
level, i.e., CWOR, OOR, CLOR, and level of idle resources
of IIoT mobile devices.

III. ADAPTIVE CAPACITY TASK OFFLOADING SOLUTION
FOR MULTI-HOP D2D SOCIAL IIOT

A. Problem Explanation

Resources sharing in multi-hop D2D-based social indus-
trial IoT (SIIoT) is still in the infancy stage, and various
researchers have focused on possible policies, techniques, and
methods for establishing relationships among smart devices
autonomously [21], [23], [30]–[32] and without any human
intervention [33]. Although these studies have investigated the
social ties to improve the resource sharing efficiency, they
did not have considered the utilization ratio and strength of
the social tie in a multi-hop D2D-based SIIoT. Suppose we
have an IIoT architecture that has support for social-D2D
resource sharing as shown in Figure 2. Assuming that there are
some resource-rich IIoT devices (i.e., 𝐷1, 𝐷4, and 𝐷10) and
remaining resource-constrained devices. In the social layer,
device 𝐷6 has a social relationship with 𝐷1 and 𝐷10, but these
devices are distant in the communication network (physical
layer). Suppose, 𝐷6 offload the task to 𝐷2 based on strong a
social tie and physical proximity [8], [22], [30]. It will create
a burden on the 𝐷2 because the utilization ratio (𝑈) of 𝐷2 is

80%. Consequently, it is complicated to provide desired end-
to-end delay services. In contrast, if 𝐷6 offloads the task to
𝐷10, then it might receive a quick response from it because
the utilization ratio (𝑈) of 𝐷10 is only 20%. It would help to
utilize resources efficiently and minimize the end-to-end delay
at the social layer. Therefore, motivated by these facts, we
intend to propose an adaptive capacity task offloading in multi-
hop D2D SIIoT architecture by jointly holding the utilization
ratio and social tie value.
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Fig. 2. System model of multi-hop D2D-based SIIoT architecture: In the
physical layer, the IIoT devices are connected with D2D communication,
whereas in the social layer, the devices are connected through social ties.
In the social layer, the link value shows the strength of the social association
between two devices. D2, D4, and D10 are resource-rich devices (aka, resource
providers) which share their idle resource with the remaining IIoT devices
(aka, resource requester).

B. Adaptive Capacity Task Offloading in Multi-hop D2D So-
cial IIoT

The proposed method performs adaptive capacity task of-
floading in multi-hop D2D-based SIIoT. The system architec-
ture consists of IIoT devices and a Base-Station (BS). The
IIoT devices can act as both service requester (i.e., offloading
tasks to others) and service providers (i.e., executing offloaded
tasks). Furthermore, the mobile devices in SIIoT are hetero-
geneous and resource-constrained (i.e., limited computational
power and storage), and they connect through D2D links in
the physical layer. Moreover, the devices built a social network
(logical connection) in the social layer, which is based on
social relationships. After both physical and social connections
are successfully created, mobile devices can offload their
tasks based on the strength of the social ties using the D2D
links. Strong social ties between service requester and service
provider show trustworthiness; however, the proposed method
also maximizes the utilization ratio of the devices in SIIoT.

1) Communication Model using D2D link: The D2D con-
nection between mobile devices in IIoT is allowed to be
created only if the distance is less than a pre-defined threshold.
Suppose 𝑉 represents a set of mobile devices of physical layer
(𝑢, 𝑣 ∈ 𝑉), the connection is built only when 𝑑𝑣,𝑢 < 𝑑𝑚𝑎𝑥 is
satisfied. Moreover, in D2D-based IIoT architecture, the BS
can eliminate channel interference among mobile devices. The
BS allocates the channel to each physical communication link
is orthogonal to the channels of remaining D2D communica-
tion links [26]. Suppose a device 𝑢 uses the same channel as
the device 𝑣, mathematically, the channel interference I𝑢,𝑣 can
be shown as follows.
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TABLE I
TYPES OF SOCIAL RELATIONSHIPS

Name of Social
Relationships Explanation Applications

Parental Object
Relationship (POR)

relationships among similar smart objects smart card reaching, smart printing

Social Object
Relationship (SOR)

relationships create when objects come into contact electronic toll collection, intersection collision
warning, lane change assistance

Co-Work Object
Relationship (CWOR)

relationships create when objects work together tele-medicine, alarm system

Co-Location Object
Relationship (CLOR)

relationships create when objects reside at the same
place

smart parking, smart home, smart hospital, smart
city

Ownership Object
Relationship (OOR)

relationships create when objects belong to the
same owner smart transportation, smart energy management

Service Object
Relationship (SerOR)

relationships create when objects fulfil the service
request by coordinating the same service
composition

smart navigator service, smart museum

Guest Object
Relationship (GOR)

relationships create when a object spends time
socially at friends place

smart shopping mall, smart bill payment, smart
restaurant

Stranger Object
Relationship (StraOR)

relationships create when a objects encounter the
existence of each other in the public surroundings smart marketing

Guardian Object
Relationship (GuarOR)

relationships create when objects turn into a child
in association the super objects detour the traffic, early warning system

Sibling Object
Relationship (SibOR)

relationships create when a objects belong to a
family

smart stadium, crowd management, game statistics
exchange

I𝑢,𝑣 =
∑︁
𝑢∈𝑉

𝑃𝑣 · 𝑑−𝑙𝑢,𝑣 · |𝑅𝑣,𝑢 |2 (1a)

s.t.

𝑃𝑣 = 𝑚𝑖𝑛
©«�̄�𝑣 ,

𝑘

max
𝐵𝑆
( |𝑅𝑣,𝑢 |2

𝑑−𝑙𝑢,𝑣
)

ª®®¬ (1b)

I𝑢,𝑣 = 𝑚𝑖𝑛

©«
�̄�𝑣 ,

𝑘

max
𝐵𝑆
( |𝑅𝑣,𝑢 |2

𝑑−𝑙𝑢,𝑣
)
· ( |𝑅𝑣,𝑢 |2

𝑑−𝑙𝑢,𝑣
)

∑
𝑢∈𝑉 𝑃𝑣

|𝑅𝑣,𝑢 |2
𝑑−𝑙𝑢,𝑣)

ª®®®®¬
(1c)

In Eq. 1a, 𝑃𝑣 shows the transmitting power of mobile device
𝑣, 𝑑 signifies the distance between 𝑢 and 𝑣, 𝑙 shows the path
loss, and 𝑅 represents the channel response from 𝑣 to 𝑢. Eq. 1b
and Eq. 1c mitigate the interference by adopting power control
strategy [34], and �̄�𝑣 shows the maximum transmit power, and
𝑘 represents the interference power level at BS.

Based on the interference model mentioned above, the
proposed model can mathematically compute the maximum
data rate as follows.

_𝑣,𝑢 = (1 − 𝑧𝑘)B𝑣,𝑢 · 𝑙𝑜𝑔2

(
1 +

𝑃𝑣 · 𝑑−𝑙𝑢,𝑣 · |𝑅𝑣,𝑢 |2

I𝑢,𝑣 + |𝜎𝑢 |2

)
+𝑧𝑘

(
(𝑚𝑖𝑛

{
_𝑖, 𝑗 | (𝑖, 𝑗) ∈ P(𝑣, 𝑢)

}) (2)

We define the binary variable 𝑧𝑘 to represent whether there
is a direct D2D link between the two IIoT mobile devices
(i.e., service requester 𝑣 and service provider 𝑢). The value of
𝑧𝑘 = 0, if there is direct D2D link between 𝑣 and 𝑢, otherwise
𝑧𝑘 = 1. If there is no direct D2D link between 𝑣 and 𝑢, then the
other mobile devices act as relay devices in the task offloading
process. In Eq. 2, P(𝑣, 𝑢) represents the relay path from service

requester 𝑣 and service provider 𝑢, where (𝑖, 𝑗) is the D2D
link in P(𝑣, 𝑢). Additionally, B𝑣,𝑢 is the bandwidth, 𝑃𝑣 shows
the transmitting power of a mobile device 𝑣, and the additive
white Gaussian noise at mobile device 𝑢 is 𝜎𝑣 .

2) Social Graph Model: Let us consider a SIIoT architec-
ture, where mobile devices create a undirected graph based on
social ties, 𝐺𝑠 = (𝑉 𝑠 , 𝐸 𝑠), where 𝑉 𝑠 signifies a set of SIIoT
devices and 𝐸 𝑠 is the set of social links. We believe that each
SIIoT device 𝑣 ∈ 𝑉 𝑠 has limited computing capability, and
SIIoT devices are heterogeneous in nature. Additionally, a link
𝑒 ∈ 𝐸 𝑠 exist between two SIIoT devices with positive value
(i.e., 𝑊𝑒 = (0, 1]) if there is a social tie, such as SOR, CLOR,
POR, and CWOR. Table-1 presents the remaining symbols
used in this paper.

TABLE II
SUMMARY OF SYMBOLS

Symbols Explanation
𝐺𝑠 network graph
𝑉𝑠 set of SIIoT devices in network, 𝑣 ∈ 𝑉𝑠

𝐸𝑠 set of links, 𝑒𝑖 (𝑣, 𝑢) , 𝑒𝑖 ∈ 𝐸𝑠

𝜏 set of computing tasks, 𝑡 ∈ 𝜏

𝐶𝑚𝑎𝑥
𝑣 maximum capacity of SIoT device

𝐶𝑢𝑡𝑖𝑙
𝑣 utilize capacity of SIoT device

𝑊𝑒 weight of a link based on social tie

3) Graph Formation and Social-aware Relay Selection: In
SIIoT architecture, mobile devices communicate with multi-
hop manner due to limited transmission range and creates a
communication graph G(V, E) at physical layer. Additionally,
all IIoT devices independently utilize social relationships at
social layer. The strength of social tie (W𝑒) depends upon
the relationship (i.e., SOR, CLOR, POR, and CWOR). Algo-
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rithm 1 shows graph formation which constructs G(V, E) and
G𝑠 = (V𝑠 , E𝑠 (lines 1 to 7).

Algorithm 1: Graph Formation and Social-aware Re-
lay Selection Algorithm

Input: Set of SIIoT devices (V)
Result: 𝐺 (𝑉, 𝐸), 𝐺𝑠 = (𝑉 𝑠 , 𝐸 𝑠), Social-aware Relay

Selection
1 while 𝑢 ∈ 𝑉 do
2 if d(u, v) in Comm Range then
3 G.add edge(u, v)
4 if 𝑊𝑒 ≥ 𝑊 𝑡ℎ

𝑒 then
5 G𝑠 .add social edge(u, v)
6 end
7 end
8 end
9 while u ≠ v do

10 compute transmission power // Eq. 1b
11 for neighbors of IIoT device u ∈ V do
12 compute power and social tie // Eq. 3,

Eq. 4, Eq. 5
13 end
14 if No neighbors of IIoT device u ∈ V then
15 cellular communication between u and v via BS
16 end
17 end

After graph formation, the proposed ToSIIoT model selects
a candidate from path between a resource requester device
(u) and resource provider device (v). Suppose, P(𝑢, 𝑣) =

{𝑢, 𝑢1, 𝑢2, 𝑢3, ..., 𝑢𝑛, 𝑣}, where u signify the source device and
v is destination. The main goal of relay selection in the
intended model is to ensure that the strength of the social
tie between devices must be greater than some predefined
threshold value as a relay SIIoT device is willing to forward
the packet of trusted devices. Additionally, we also focus on
minimizing the power consumption of the SIIoT devices. The
designated path must satisfy the subsequent provisions:

min
𝑃𝑢

max
𝑊𝑒

∑︁
𝑢∈𝑉

∑︁
𝑒𝑠 ∈𝐸𝑠

𝑃𝑢𝑊𝑒 (3)

𝑠.𝑡. 𝑊𝑒 ≥ 𝑊 𝑡ℎ
𝑒 , 𝑒𝑠 ∈ 𝑉 𝑠 (4)

𝑃𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑡

𝑢 ≤ 𝑃𝑡
𝑚𝑎𝑥 (5)

where 𝑊 𝑡ℎ
𝑒 shows the minimum threshold value of the social

tie while selecting a relay device in a path. Algorithm 1
computes the candidate path from a source to destination
device (lines 9 to 16).

4) Selection of resource rich SIIoT device for task offload-
ing: One of the proposed work’s primary purposes is to
distribute the tasks in SIIoT mobile devices and reduce the
associated cost. We intend a cost function 𝜒𝑣 to offload the
task to SIIoT device 𝑣 while considering the SIIoT device’s
capacity and social tie value. Mathematically,

𝜒𝑣 = Θ𝑣 + 𝛽
𝐶𝑢𝑡𝑖𝑙
𝑣

𝐶𝑚𝑎𝑥
𝑣

+ 𝛼 𝑊𝑒

𝑊𝑚𝑎𝑥
𝑒

, (6)

where Θ𝑣 confers the boolean parameter to indicate whether
a new SIIoT device 𝑣 ∈ 𝑉 𝑠 is elected for the task offloading.
In Eq. 6, the predefined constants 𝛽 and 𝛼 represent the
relative importance of utilization of a SIIoT device and social
tie, respectively and values of the constants are user-defined.
Suppose if available capacity in a SIIoT device is very low, 𝛽
should be relatively high as compared to 𝛼. In the proposed
work, we assume 𝛽 = 𝛼. In the proposed work, we minimize
the maximum utilization ratio of SIIoT device subject to the
cost function. Mathematically,

min
𝑡 ∈𝜏

max
𝑣

∑︁
𝑡 ∈𝜏

∑︁
𝑣∈𝑉𝑠

𝜏𝑡𝑣𝜒𝑣𝑥
𝑡
𝑣 (7a)

𝑠.𝑡.
∑︁
𝑣∈𝑉𝑠

𝑥𝑡𝑣 = 1,∀𝑣 ∈ 𝑉 𝑠 (7b)∑︁
𝑡 ∈𝜏

𝑣𝑡 ≤ 𝐶𝑚𝑎𝑥
𝑣 ,∀𝑣 ∈ 𝑉 𝑠 (7c)

The SIIoT devices offload the tasks; however, each task
should be offloaded to only one SIIoT device. In other words,
the tasks are unsplittable, as shown in Eq. 7b. Additionally,
Eq.7c ensures that the total number of assigned tasks does
not exceed the maximum capacity of any SIIoT device.
Eq. 6 is optimization as well as an NP-hard problem because
processing and complexity are involved in the computation of
all possible combinations of the select SIIoT device. Therefore,
we propose a heuristic algorithm to select SIIoT devices for
task offloading based on utilization and social tie parameters.
Mathematically, we can formulate the social tie between SIIoT
devices 𝑢 and 𝑣 as follows:

𝑠𝑖𝑚(𝑢, 𝑣) =
∑ℎ

𝑖=1 𝑤1𝑖 ∗ 𝑤2𝑖√︃∑ℎ
𝑖=1 𝑤

2
1𝑖 ∗

√︃∑ℎ
𝑖=1 𝑤

2
2𝑖

, (8)

where ℎ shows the similarity indicator and 𝑤1𝑖 and 𝑤2𝑖 show
the strength of the 𝑖𝑡ℎ social tie.

There is a trade-off between utilization ratio and strength of
social tie. To minimize the trade-off and improve the network
performance, we introduce a network performance factor, ℜ.
Additionally, we also compute an eligibility score, Ø𝑣 , of a
SIIoT device for task offloading. Mathematically,

Ø𝑣 = ℜ (𝑠𝑖𝑚(𝑢, 𝑣)) − (1 −ℜ)
𝐶𝑢𝑡𝑖𝑙
𝑣

𝐶𝑚𝑎𝑥
𝑣

(9)

where 0 < ℜ < 1 is the desired weight based on strength
of the social tie and utilization ratio of a SIIoT device. Eq.
9 ensures a trafe-off between social tie and utilization ratio.
Algorithm 2 presents the proposed heuristic approach.

5) Adaptive redistribution of tasks in D2D SIIoT: To effi-
ciently utilize the computing resource of mobile devices and
accommodate more tasks in SIIoT architecture, this section
proposes an adaptive scheme to redistribute the tasks among
mobile devices, as shown in Algorithm 3. The proposed
algorithm redistributed the tasks among the existing mobile
devices, without exploring new devices (see lines 6-9). The
main reason behind this is to utilize mobile devices with strong
social ties and less utilization ratio. Therefore, the proposed
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Algorithm 2: Task placement algorithm
Input: Set of SIIoT devices, Max. capacity of the

SIIoT devices, Set of SIIoT devices with tasks,
Set of utilized capacity 𝐶𝑢𝑡𝑖𝑙 of SIIoT devices.

Result: min. the max. utilization of SIIoT devices
1 𝜏 ← 1 // Number of tasks
2 while 𝑣 ∈ 𝑉 𝑠 do
3 𝑣 ← 𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 // Eq. 9
4 𝑣 ← 𝜏 offload
5 update utilization ratio 𝐶𝑢𝑡𝑖𝑙

𝑣

6 𝜏 ← 𝜏 ← +1
7 end

algorithm utilizes the mobile device until the utilization ratio
reaches a predefined utilization threshold. If the utilization
ratio of a mobile device is greater than the threshold value,
then the proposed Algorithm 3 uses Eq. 9 (see Algorithm 2)
for task offloading.

Algorithm 3: Adaptive redistribution of tasks
Input: Set of SIIoT devices, Max. capacity of the

SIIoT devices, Set of SIIoT devices with tasks,
Set of utilized capacity 𝐶𝑢𝑡𝑖𝑙 of SIoT devices.

Result: redistribution of tasks
1 𝑣𝑜 ← overloaded SIIoT devices
2 𝜏 ← tasks
3 𝛾 // threshold value for utilization
4 𝑣𝑜- 𝑓 𝑙𝑎𝑔 ← 0 // overloaded threshold
5 for 𝑡 ∈ 𝜏 do
6 for 𝑣 ∈ 𝑉 𝑠\𝑢 do
7 if 𝐶𝑢𝑡𝑖𝑙

𝑣 ≤ 𝛾 and 𝑊𝑒 > 𝑢 then
8 offload 𝑡 to 𝑣

9 remove 𝑡 from 𝑢

10 end
11 end
12 end
13 if 𝑣𝑜- 𝑓 𝑙𝑎𝑔 ← 1 then
14 for 𝑡 ∈ 𝜏 do
15 using Algorithm 2 for tasks offloading (line

3-5)
16 end
17 end

IV. SIMULATIONS RESULTS

We use a simulation environment to validate the perfor-
mance of the above proposed ToSIIoT model. We randomly
distributed 100 SIoT mobile devices in 100 × 100 areas and
placed a Base Station (BS). Moreover, we divide the mobile
devices into two groups: 30% services providers and services
requester are 70%. The resource capacity of each services
provider is [5, 15] Mb, and offloading task size of each
services requester is [1, 5] Mb evenly distributed. The mobile
devices can make a D2D connection if the distance between
devices is less than 15 m. Additionally, the transmitting power

of each mobile device is 100 mW, bandwidth is 1 MHz, the
value of path loss exponent 𝑙 is set to 4, and noise variance
is -174 dBm/Hz. In the simulation, we also vary the values
of user-defined constants i.e., 𝛽 and 𝛼, which represent the
relative importance of utilization ratio and strength of the
social tie, respectively.

To validate the performance of the proposed adaptive model,
ToSIIoT, we compare the simulation results with existing
works - social-aware incentive model (SIM) for IIoT [8] and
3-D social identifier structure (3D-SIS) [22].

A. ToSIIoT: Performance Parameters

This section discusses the performance parameters used
to compare the proposed approach with state-of-the-art ap-
proaches called SIM and 3D-SIS. We consider the following
parameters for the comparison and simulation.

1) Resource Utilization Ratio (percentage): In the simula-
tion, we randomly divide the IIoT devices into two groups
(i.e., service providers 30% and 70% services requester) to
depict the service providers’ resource utilization percentage.
The resource utilization ratio (percentage) confers the balance
of the service requester’s utilized resources to the amount of
the original unused resources.

2) Quality-of-Service (QoS) Violation (percentage): In the
proposed model, we treated a task as QoS violated task when
the algorithm violates at least one parameter like delay or
task assigned to overload device or select social tie – is not
satisfied.

3) Average Execution Delay: We compute the average
execution delay of tasks in the proposed model with respect
to the various number of resource services providers.

4) Task Completion Ratio: In the proposed model, task
completion ratio can be define as the total number of generated
tasks from the resource constraints IIoT devices and number
of completed tasks in the resource rich IIoT devices.

B. ToSIIoT: Results and Discussion

This section shows the performance results obtained using
the schemes – ToSIIoT (Proposed), 3D-SIS, and SIM – using
different performance parameters.

1) Resource Utilization Ratio (percentage): The main ob-
jective of our proposed ToSIIoT scheme is to offload the task
while jointly considering the idle resource of service provider
and strength of social tie with services requester as mentioned
in the Section III-B4. Additionally, ToSIIoT utilizes the idle
resources of IIoT devices until the utilization ratio of a device
reached the threshold level. It is noteworthy that the proposed
adaptive redistribution algorithm (see Algorithm 3) uses the
statistic of social tie and utilization of the idle resources of
the IIoT devices, so that additional delay or burden on the
service provider is avoided. Figure 3 shows the percentage
of resource utilization ratio of 30% service providers with
different approaches – ToSIIoT (Proposed), 3D-SIS, and SIM,
in five various experiments. Box plots (i.e., box-and-whisker
plots) are used to illustrate comparatively the experimental
results. For each scenario, a box is drawn by connecting
the lower quartile, median, and upper quartile. Finally, the
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Fig. 3. The average utilization ratio of three models, i.e., ToSIIoT, 3D-SIS, and SIM, and number of experiments
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Fig. 4. The average QoS violation of three models, i.e., ToSIIoT, 3D-SIS, and SIM, and number of resource rich devices (%).

whiskers from the box show the lower and upper extremes of
the scenario. Additionally, the middle line in a box depicts the
mean value of the scenario. All the simulations are performed
10 times, and after each experiment ratio of resource utilization
is recorded, giving credibility to the analysis of the proposed
algorithms. In the simulation, we vary the values of the user-
defined constants 𝛽 and 𝛼. Box plots in Figure 3 represent
that the proposed scheme, ToSIIoT, is capable of efficiently
utilizing the idle resources of services providers compared to
the existing works. It is mainly because the proposed ToSIIoT
scheme attentively distributes the tasks among the service
providers by jointly considering the utilization level of idle
resources and strength of social tie. In the contrast, the 3D-
SIS and SIM schemes do not consider the utilization level of
idle resources of the IIoT devices; therefore, the percentage
of utilization ratio is less compared to the proposed ToSIIoT
model. Interestingly, if we give importance to the predefined
constants (i.e., 𝛽 and 𝛼), then it dramatically decreases the
utilization ratio of the idle reassures. Consequently, from
Figure 3, it is evident that the proposed ToSIIoT scheme yields
an improved utilization level of the idle resources compared
to the existing works – 3D-SIS and SIM. The percentage of
resource utilization ratio is about 80% in the proposed ToSIIoT
scheme, in 3D-SIS, the percentage of resource utilization ratio
is almost 75%, and in SIM, the ratio is 72% (approximately).

2) Quality-of-Service (QoS) Violation (percentage): In this
subsection, we confirm the efficacy of the intended ToSI-
IoT scheme in terms of Quality-of-Service (QoS) violation
(percentage) with the existing works – 3D-SIS and SIM.
Another objective of the proposed scheme is to minimize
the overloaded problem in social-D2D IIoT. In social-D2D
IIoT, the service requester offloads the tasks based on strength

of social tie or physical distance with the service provider,
which leads to the burden on the service provider and increase
the delay. Consequently, we have some QoS-violated tasks
that are offloaded to the service requiters in the social-D2D
IIoT network. Figure 4 represents the percentage of QoS-
violation with the various number of resource provider devices
(%). In the simulation, we vary the percentage of resource
provider devices and after each experiment ratio of QoS-
violation is recorded. The results show that as the number
of resource provider devices is increasing, the percentage of
QoS violation is decreases in all schemes: ToSIIoT, 3D-SIS,
and SIM. However, in the proposed scheme, the percentage of
QoS violations is less than that recorded in the 3D-SIS and
SIM. The reason is as follows. The proposed scheme utilizes
the IIoT devices with strong social ties and less utilization
ratio using an adaptive approach. From the results, we can
notice that the proposed scheme is capable of fulfilling the
QoS requirements of the service requester. In particular, the
percentage of QoS-violation ratio in the proposed scheme is
almost 9% and 12% less than compared to 3D-SIS and SIM,
respectively.

3) Average Execution Delay (seconds(s)): In the proposed
work, we examine the average execution delay (s) in the SIIoT
architecture, as shown in Fig. 5. In the simulation, we varies
the values of 𝛽 and 𝛼 and the percentage the resource provider
SIIoT devices to compute the average execution delay. The
results show that if we give more preference to utilization
ratio 𝛽 or social tie 𝛼, then it will increase the average delay.
However, if we set the values of utilization ratio 𝛽 and social
tie 𝛼 equal, then the model perform well, as shown in Fig. 5.
From the results, we observe that there are more average
execution delay in 3D-SIS and SIM than in our approach
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because 3D-SIS and SIM do not jointly consider the utilization
ratio 𝛽 and social tie 𝛼 among the SIIoT devices during the
task offloading process.

4) Task Completion Ratio: We investigate the performance
of the propose ToSIIoT model with respect to a number of
resource service providers (%) and compare them with the 3D-
SIS and SIM. In the propose work, the task completion ratio is
the number of completed tasks in resource service providers to
the number of arrived tasks. In the simulation, we set the total
of tasks is 500. In Fig. 6, as the number of resource service
providers (%) is increasing, the task completion ratio is also
increases in all approaches. However, in the proposed ToSIIoT,
the task completion ratio is more than that of the 3D-SIS and
SIM approaches. The main purpose of the proposed ToSIIoT
model is to minimize the utilization ratio of resource rich
SIIoT devices by jointly consider the utilization ratio 𝛽 and
social tie 𝛼 during the task offloading process. Additionally,
we also take into account the adaptive redistribution tasks in
SIIoT architecture. Therefore, the results show that ToSIIoT
performs better than 3D-SIS and SIM. In Fig. 7, as the number

of tasks is increasing, the task completion ratio decreases in
all approaches: ToSIIoT, 3D-SIS, and SIM. However, in the
proposed approach, the task completion ratio is higher than
that recorded in the 3D-SIS and SIM approaches.

In summary, it is manifest that the intended ToSIIoT scheme
is capable of intensifying the social-D2D IIoT performance in
terms of resource utilization ratio (percentage) and Quality-of-
Service (QoS) Violation (percentage). Additionally, it is also
observed that values of user-defined constants degraded the
performance of the intended scheme. Nevertheless, it is always
more trustworthy than the existing schemes.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed an adaptive capacity task offload-
ing scheme for multi-hop D2D communications in Social In-
dustrial Internet of Things (SIIoT) to maximize the utilization
ratio of idle or excess resources of the system and solve the
trade-off problem between utilization ratio and strength of the
social tie. The proposed approach consists of three aspects:
social-aware relay device selection for D2D communications,
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selection of resource rich SIIoT devices for task offloading,
and adaptive redistribution of tasks. First, increases resource
sharing for trustworthy multi-hop D2D links, based on the
strength of the social tie among the IIoT devices. Secondly, a
heuristic algorithm finds the optimal device for task placement
using device utilization level and social relationship value.
Finally, the tasks are redistributed over social-D2D IIoT to
accommodate more incoming tasks and minimize the response
time. To show the efficacy of the proposed model, exper-
imental results were presented. The results show that the
proposed model can increase the utilization ratio of devices
and efficiently minimize the QoS service violation compared
to the existing works in multi-hop D2D SIIoT architecture.

Several schemes have been proposed for task offloading
in IIoT while considering D2D communication and social
networks concept. However, this paper proposed an adaptive
scheme that can optimally compute the desired device for
task offloading in a fast and scalable manner. In the future,
we will further optimize our proposed scheme by following
some potential directions 1) make the schemes more secure
and reliable by focusing on the social link selection issue;
2) handle the mobility in the D2D communications-enhanced
SIIoT architecture and target a high mobility scenario.
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