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Abstract—The recent global pandemic has transformed the
way education is delivered, increasing the importance of video-
based online learning. However, this puts a significant pressure
on the underlying communication networks and the limited
available bandwidth needs to be intelligently allocated to sup-
port a much higher transmission load, including video-based
services. In this context, this paper proposes a Machine Learning
(ML)-based solution that dynamically prioritizes content viewers
with heterogeneous video services to increase their Quality of
Service (QoS) and perceived Quality of Experience (QoE). The
proposed approach makes use of the novel Prioritized Multi-
Agent Reinforcement Learning solution (PriMARL) to decide
the prioritization order of the video-based services based on
networking conditions. However, the performance in terms of
QoS and QoE provisioning to learners with different profiles and
networking conditions depends on the type of scheduler employed
in the frequency domain to conduct the scheduling and the radio
resource allocation. To decide the best approach to be followed,
we employ the proposed PriMARL solution with different types
of scheduling rules and compare them with other state-of-the-
art solutions in terms of throughput, delay, packet loss, Peak
Signal-to-Noise Ratio (PSNR), and Mean Opinion Score (MOS)
for different traffic loads and characteristics. We show that the
proposed solution achieves the best user QoE results.

Index Terms—Machine Learning, Multi-Agent Reinforcement
Learning, Video Traffic Prioritization, QoE, Online Education.

I. INTRODUCTION

Broadband connectivity plays a central role in mitigating
the economic aftermath of the pandemic and boosting the
digital access and inclusiveness of different sectors [1]. One
such sector of utmost importance is remote education and
eLearning, which all regions of the world must have access
to [2]. COVID-19 containment measures forced actors of the
educational sector to remotely deliver large amounts of media
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content across the existing broadband infrastructure. Prior
to the global pandemic, educational institutions were slowly
moving towards a blended learning approach which combines
the traditional physical classroom teaching with the adoption
of various Information and Communication Technology (ICT)-
based tools and solutions to improve the educational experi-
ence [3]. However, the global pandemic has accelerated the
digital transformation of educational institutions by forcing
the teaching-learning process to move to ’online only’. In
this context, instructors rely on any form of video content
(e.g., live video streaming, video on demand, etc.) as well as
text and graphics, to improve the teaching-learning process
within the online learning environment. Previous studies [4]
have shown that the integration of instructional videos within
the educational content can increase the effectiveness of online
learning. However, moving from the optional adoption of ICT-
based tools within the educational domain to a compulsory
one, including video-based learning, does not come without
challenges.

One of the existing challenges that was worsened by the
pandemic is the issue of digital inequalities. The factors that
contribute to these inequalities are [5]: (1) digital literacy; (2)
access to hardware and/or software; (3) usage autonomy; and
(4) social factors, such as peer interactions. Additionally, when
it comes to video-based learning, there are several factors that
impact learners’ Quality of Experience (QoE), including the
type of device (e.g., smartphone, laptop, desktop, etc.) and the
quality of the Internet connectivity. To be able to accommodate
an appropriate level of eLearning content for mobile learners,
stable broadband connections are strongly demanded. To this
end, network operators are pressured to ensure high levels of
Quality of Service (QoS) and QoE while exchanging larger
amounts of educational media content among an increasing
number of mobile/online learners over the existing radio access
networks.

Enabling good QoS provisioning over the wireless interface
is challenging. A limited frequency spectrum must be allocated
by a scheduling entity to increase the number of users request-
ing different traffic types and experiencing a variety of network
conditions [6]. In remote education, this aspect is even more
of a challenge since a proper prioritization of the delivered ser-
vices is needed to deal with different learner profiles, dynamic
wireless conditions, device types, and content characteristics
with heterogeneous QoS requirements [7]. Therefore, the focus
of this paper is on packet scheduler and intelligent prioriti-
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Fig. 1: Use Case Scenario

zation of eLearning content for mobile learners. To provide
high QoS, we employ a solution based on Prioritized Multi-
Agent Reinforcement Learning (PriMARL) [8] to allocate
the limited frequency spectrum over an increased number
of mobile learners accessing the radio interface. However,
enabling high QoS provisioning does not guarantee acceptable
QoE when scheduling video services with different degrees of
heterogeneity in terms of data rates and QoS requirements.
Therefore, the focus of PriMARL would be to maximise
both QoS and QoE provisioning for learners experiencing
heterogeneous video services in eLearning.

In the literature, multi-agent reinforcement learning is used
to deal with user association and resource allocation in het-
erogeneous cellular and millimeter wave networks [9], [10].
In our previous work [7], we considered the prioritization and
scheduling aspects of educational content over the broadband
networks and proposed a Hierarchical MARL (HiMARL)
model based on a source-sync approach, where the source
controller prioritizes video classes in the time domain and
the sync controller performs the scheduling and resource
allocation in the frequency domain. This method is highly
efficient to deliver the requested heterogeneous video services
in terms of QoS compared to other state-of-the-art approaches.
However, there is no evaluation of the proposed scheduling
technique in terms of QoE.

A. Addressed Use Case Scenario

According to a study conducted by Campbell [11], one
of the most important issues in enabling eLearning over
mobile technology (mobile learning) is the network speed and
reliability. In this context, the use case scenario illustrated in
Figure 1 is considered. Four types of mobile users access
educational video services from a cloud mobile learning
server via a 5G gNodeB base station. The mobile users are
located in different geographical locations, use diverse device
types (e.g., smartphones, laptops, tablets, VR gear, etc.), and
have various network connectivity characteristics (e.g., poor,
medium, or good connectivity). In this scenario, the network
scheduler located at the level of the 5G gNodeB base station is
responsible for allocation of the available radio resources to all
users and maximizing the QoS parameters for each delivered
video service, given the channel conditions, traffic types and

characteristics, device resolutions, and prioritization policies.
However, as noted in [7], the quality of user experience is
important for the learning performance. Therefore, in this
paper, we propose PriMARL, an ML-based decision-making
framework that aims to increase the time and number of
users (learners, instructors) experiencing high QoE levels when
delivering a range of four video services.

B. Paper Contributions

The proposed PriMARL framework for downlink schedul-
ing systems eliminates the need for a source-sync approach
as employed in the previous work (HiMARL) and improves
learner QoE when delivering heterogeneous educational video
in different traffic load conditions. In contrast to [7], the
contributions of this paper are as follows:
a) Prioritization-Driven Scheduler: The proposed approach
focuses on service prioritization. It provides a low complexity
solution to the proposed optimization problem that decides in
each Transmission Time Interval (TTI) the prioritization order
of video classes with different QoS profiles in the time domain
and considers particular scheduling rules in the frequency
domain, i.e. Barrier Function (BF), Exponential (EXP) and
Opportunistic Packet Loss Fair (OPLF) [6].
b) PriMARL-based Decision-Making: Three different Pri-
MARL solutions which employ various scheduling rules i.e.
PriMARL-BF, PriMARL-EXP and PriMARL-OPLF to max-
imise QoS and QoE are designed, trained, and tested. The
functional framework allows training and testing of PriMARL
policies under the same network and traffic conditions, ensur-
ing high accuracy of comparison and conclusions. Compared
to HiMARL [7], the proposed solutions provide improved user
perceived QoE when delivering video services with different
traffic loads (low, medium, and high).
c) Higher Number of Learners Experiencing Video Con-
tent at Excellent QoE Level: Unlike previous work, this
research focuses on improving user QoE, estimated in terms of
Peak Signal-to-Noise Ratio (PSNR) and Mean Opinion Score
(MOS). For instance, the proposed PriMARL-EXP solution
increases the number of learners experiencing excellent QoE
levels for the considered video classes at different traffic load
settings.

The remainder of this paper is organized as follows: In
Section II, we discuss the related work carried out in this area.
Section III introduces the system model, and in Section IV,
we describe the proposed PriMARL-based solution. In Section
V, we present an analysis of obtained results and Section VI
serves as the conclusion of our paper.

II. RELATED WORKS

Recently, an increasing number of solutions that make use
of Machine Learning (ML) and other Artificial Intelligence
(AI) techniques have started gaining momentum in various
fields, mainly due to the global pandemic that accelerated
the digital transformation. Different ML-based approaches are
proposed in the literature to build intelligent systems that
identify patterns and behaviour in historical data and learn
from it without relying on rules-based systems.
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The concept of Multimedia Intelligence is introduced by
Zhu et al. [12], representing the convergence of multimedia
and AI. A bidirectional link is formed between multimedia and
AI, that enables them to enhance each other. Consequently, on
one side, multimedia enriches the varieties of applications for
AI through explainability. On the other side, AI boosts the
inferrability of multimedia through reasoning.

Deep Reinforcement Learning (DRL) has been used by
Cui et al. [13] to propose TCLiVi, a transmission control
in live video streaming solutions. TCLivi jointly adjusts the
streaming parameters (e.g., video bitrate, target buffer size)
in order to improve the QoE for live video streaming. The
performance evaluation results show that TCLiVi outperforms
other solutions from the literature in terms of QoE score
with an increase of 40.84%. DRL has also been used by
Mao et al. [14] to propose Pensieve, an intelligent system
that generates adaptive bitrate (ABR) algorithms for Video on
Demand (VoD) scenarios. Pensieve will automatically learn
the adaptive bitrate algorithms that adapt to a wide range of
dynamic network conditions and QoE metrics.

Tan et al. [15] investigate the use of game theory to enable
dynamic adaptive bitrate streaming in multi-client over Named
Data Networking (NDN). A client-side game theory-based
distributed ABR algorithm for NDN is proposed to optimize
the overall QoE of multiple clients and guarantee fairness. The
performance evaluation results demonstrate the effectiveness
of the proposed solution in terms of overall QoE, fairness,
and bandwidth resource utilization. Looking at maximizing
user capacity for an auto-scaling VoD system, Chang et al.
[16] propose AVARDO, an auto-scaling Video Allocation
and Request Distribution Optimization solution. The proposed
solution seeks to maximize the user capacity at each auto-
scaling level and formulate the optimization problem as a
multi-objective mixed-integer linear programming problem.
The performance evaluation results show that the proposed
AVARDO solution is close to the optimum.

Random Forest (RF) classifier is used by Chandrasekhar et
al. [17] for real time video scheduling over LTE networks.
The proposed solution detects the service type of different
flows as well as the video player status for users with
HTTP Adaptive Streaming (HAS) flows. The output of the
RF classifier is used for prioritizing scheduling of the HAS
users. The proposed solution enhances the video QoE with
an acceptable impact on other non-video best effort services.
Similarly, an adaptive resource scheduling solution named
AdaptSch, based on neural network (NN) and mobile traffic
prediction, is proposed by Semov et al. [18]. AdaptSch makes
use of an NN architecture with two building blocks, where
the first one predicts the future network state, while the second
one chooses the optimum scheduling policy to be applied. The
proposed solution improves the system performance in terms
of packet delay. However, this comes at the cost of overall
throughput degradation.

With a focus on radio resource scheduling in the 5G Radio
Access Network (RAN), Tseng et al. [19] designed a modular-
ized Deep Deterministic Policy Gradient (DDPG) architecture.
Here, DDPG is used to select a radio resource scheduling
policy from a pool of 60 combinations of scheduling algo-

rithms as actions. DDPG has been widely adopted to solve
optimal control problems in wireless network environments,
such as, in case of network slicing for allocating resources
among different slices [20], or among different traffic classes
[21]. However, Gu et al. [22] argue that due to the very slow
convergence of DDPG, it cannot be implemented in real-world
5G systems. Consequently, the authors propose a knowledge-
assisted DDPG that reduces its convergence time significantly
and achieves better QoS.

Motivated by the fact that reconfigurable wireless networks
open up new opportunities for advanced rich multimedia
applications, such as online AR/VR gaming, high-quality
video streaming, and autonomous vehicles, Mollahasani et al.
[23] take a different approach and propose an Actor-Critic
learning-based QoS-aware scheduler to overcome the problem
of stringent QoS requirements of such applications. The au-
thors adopt two advantage actor-critic models, where the first
technique schedules packets by prioritizing their scheduling
delay budget, while the second technique considers channel
quality, delay budget, and packet type. Performance evaluation
results validate the efficiency of the proposed approach.

In addition to the approaches described above, there are also
time-efficient schedulers that target multiple QoS objectives
at the same time. An example of such a scheduler is the
Frame Level Scheduler (FLS) [24] that divides the scheduling
problem in two stages: a) time-domain, where the users are
prioritized based on the approximated quota of data necessary
to meet the delay constraints; b) frequency-domain, where
the prioritized users get radio resources for data transmission
in a fair manner according to scheduling rules, such as
proportional-fair scheduling. Another efficient example is the
Required Activity Detection Scheduler (RADS) [25], where in
the time domain, users are prioritized based on a multi-target
criterion encompassing fairness, delay, and rate requirement,
while in the frequency domain, the pre-selected users are
served based on their channel quality. More recently, in [26]
the authors proposed the Minimal Delay Violation (MDV)
downlink scheduler that considers arrival rates in data queues
and the state of each flow in the network in terms of packet loss
and delay. When compared to FLS, MDV achieves a maximum
gain of about 25% in terms of average system throughput when
scheduling users requesting heterogeneous traffic in terms of
video, voice, and best effort. In a railway environment, the
authors in [27] proposed a New version of RADS (NRADS)
that allocates the radio resources to mobile users based on the
number of correctly received bits at the level of physical layer,
channel conditions, and a static and standardized prioritization
sequence to be followed when scheduling multiple classes of
services. Compared to RADS, NRADS provides a gain of
nearly 10% when measuring the overall system throughput.

In summary, a variety of scheduling approaches exists in the
literature to deal with prioritization and scheduling of multime-
dia services. However, most of these approaches are mainly
focusing on QoS optimization. Improving user QoE of the
provided services, assessed in terms of objective (e.g., PSNR)
or subjective (e.g., MOS) metrics, remains uncovered. Despite
the amount of research done in these areas, advancements
therein would benefit from the performance of our proposed
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Fig. 2: Proposed System Model

PriMARL-based decision making solution, which focuses on
the maximization of PSNR performance for heterogeneous
video scheduling given the dynamic user traffic and network
conditions. The primary objective of the PriMARL-based
prioritization framework is to maximize the QoS revenue for
all video content viewers in terms of packet delay, throughput,
and packet loss rate (PLR). Then, the second objective would
be to carefully select the best rule for the frequency domain-
based scheduling that provides the highest amount of viewers
with excellent MOS scores.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The proposed system model is presented in Fig. 2, where
mobile/online learners access different types of educational
video content from the mobile learner server through the
OFDMA interface and scheduling system. Let us define by
P = {1, 2, ..., P} the set of video services that needs to be
prioritized at each TTI, where class 1 requests the highest
priority and class P is associated with the lowest priority.
Furthermore, we consider by U = {U1,U2, ...,UP } the set
of active mobile learners distributed over P video classes.
Each learner u ∈ Up receives on a mobile device (e.g. tablet,
smartphone) educational videos with different QoS constraints
or requirements for each class p ∈ P . By Qp = {qp,n : n =
1, 2, ..., N} we define the set of QoS requirements associated
to class p ∈ P , where n is a type of QoS indicator that can
be throughput, delay, or packet loss.

We define Key Performance Indicators (KPI) for the QoS
data (i.e. throughput, delay, packet loss) which are measured
in each TTI based on observations collected from each user.
In multi-class prioritization and scheduling, in a given class
p ∈ P , users’ KPIs are constrained by the same set of QoS
requirements Qp indicated by standards [28]. Therefore, for
each QoS type n, class p ∈ P , and learner u ∈ Up, we define

the KPI kp,u,n measured at each TTI and monitored to verify if
its QoS requirement qp,n is met. By enlarging the dimension
of data to the user level for all N QoS indicators, we can
further define the learner KPI vector as

kp,u = [kp,u,n]n=1,2,..,N

and the vector of QoS requirements as

qp = [qp,n]n=1,2,..,N .

Then, the aim is to maximize in each TTI the number of KPI
vectors kp,u respecting the corresponding QoS requirement
vector qp for as many learners u ∈ Up as possible.

The role of the scheduler from Fig. 2 is to prioritize learners
from different video classes p ∈ P and allocate the necessary
radio resources in the frequency domain at each TTI. Let us
suppose that the prioritization sequence, for example,

[p, 2, ..., p− 1, p+ 2, ..., 1]

is decided at TTI t, where learners requesting video service
from class p ∈ P are scheduled first, followed by learners from
class 2, and so on. In the proposed system, the number of video
classes from the prioritization sequence that are scheduled in
the frequency domain depends on the amount of remaining
radio resources. In OFDMA networks, the available bandwidth
is divided in B number of equal Resource Blocks (RBs).
Let B = {1, 2, ..., B} be the set of RBs that are allocated
at each TTI, where RB b ∈ B is the smallest resource unit.
Learners u ∈ Up within video class p ∈ P from the prioritized
sequence are competing in the frequency domain to get the
highest amount of RBs. Then, utility functions are used to rank
learners for each RB b ∈ B according to their QoS budget
[29]. In particular, for each RB b ∈ B and learner u ∈ Up,
an utility function targets specific types of QoS indicators in
terms of n and takes as input in each TTI t the measured KPI
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kp,u,n; in most cases, as output, such a function provides a
measure of how far each KPI of each class p ∈ P is from
the QoS requirement qp,n ∈ Qp. At the level of each RB
b ∈ B, the learner with the highest utility value is allocated
that particular RB. Learners u ∈ Up with higher utility values
over the entire bandwidth have higher chances to get more
RBs. Let Γn(kp,u,n) : R → R be such utility functions that
can take different forms depending on the target type of QoS
indicator (i.e. throughput, delay, PLR).

A. Optimization Problem

In the proposed optimization problem presented in (1.a),
the prioritization of video classes and resource allocation are
performed at each TTI t ∈ {1, 2, ..., T}, subject to constraints
(1.b)-(1.e), where T represents the number of TTIs of a given
scheduling session.

max
x,y

∑
p∈P

∑
u∈Up

∑
b∈B

xp,u(t) · yu,b(t) · Γn[kp,u,n(t)] · λu,b(t),

s.t. (1.a)∑
u
yu,b(t) ≤ 1, b = 1, ..., B, (1.b)∑

p
xp,u(t) = 1, u = u1, ..., uUp , p = 1, ..., P, (1.c)∑

p∗

∑
u
xp∗,u(t) =

∑
p∗
Up∗ , p∗ ∈ P∗, (1.d)∑

p⊗

∑
u
xp⊗,u(t) = 0, p⊗ ∈ P⊗. (1.e)

In such an optimization problem, the aim is to maximize
for each RB b ∈ B the sum of utility values over learners
u ∈ Up of class p ∈ P decided by the prioritization sequence
in each TTI t. However, the wireless environment must be
considered in the optimization problem to enable scheduling
and resource allocation for users with high utility values and
favorable channel conditions. Therefore, learner u ∈ Up gets
the RB b ∈ B if the metric

Γn[kp,u,n(t)] · λu,b(t)

is maximized relative to all other learners’ metrics, where
λu,b(t) is the achievable rate that could be obtained if RB
b ∈ B would be allocated to learner u ∈ Up at TTI t.

To solve such complex problems, two variables must be
determined each TTI t:
a) xp,u ∈ {0, 1} decides the learner u ∈ Up to be scheduled
in the frequency domain (i.e. if xp,u = 1, then video class
p ∈ P is prioritized and user ∀u ∈ Up passed in the frequency
domain; if xp,u = 0, then video class p ∈ P is not prioritized);
b) yu,b ∈ {0, 1} performs the scheduling and resource alloca-
tion (i.e. if yu,b = 1, then RB b ∈ B is allocated to learner
u ∈ Up; if yu,b = 0, then user u ∈ Up does not receive b ∈ B).

When obtaining the best combinations of users and RBs to
maximize (1.a) each TTI, a set of constraints must also be
considered. Therefore, constraints (1.b) indicate that each RB
b ∈ B is allocated to one learner at most. Also, as requested
by (1.c), once a video class p ∈ P is prioritized, all learners
u ∈ Up = {u1, u2, ..., uUp} within that class are competing to
get the available resources allocated, where Up is the number
of learners in class p ∈ P . In case of remaining resources after

scheduling the higher prioritized class, the optimization prob-
lem is repeated for the next video class from the prioritized
sequence. However, due to unfavorable networking conditions,
some video classes can remain unscheduled at certain TTIs.
In this sense, let us define by P∗(t) the set of video classes
scheduled at TTI t, while by P⊗(t) we define the set of
video classes remained unscheduled, where P∗∪P⊗ = P and
P∗ ∩P⊗ = {∅}. Accordingly, the constraints (1.d) show that
all learners in the scheduled classes p∗ ∈ P∗ are passed in the
frequency domain and compete for radio resource allocation.
Meanwhile, the other learners in p⊗ ∈ P⊗ are deprived of
receiving video packets in that TTI t due to the fact that there
are not enough radio resources left after scheduling learners
in p∗ ∈ P∗, as indicated by the constraints (1.e).

B. Problem Solving

To find optimal solutions in (1.a) in each TTI t, the
scheduler needs to identify the best type of utility function n
to be employed, and at the level of each resource block b ∈ B,
the most appropriate learner u ∈ Up and service class p ∈ P .
This decision-making should be done in such a way that the set
of constraints (1.b)-(1.e) are met in each TTI and the number
of KPIs kp,u,n that satisfy their associated requirements qp,n
is maximized in the subsequent TTI t+1. This approach raises
two main problems:
a) the decision process becomes time-consuming, as each
possible combination n × b × u × p must be tested, and the
best one has to be selected to perform scheduling;
b) finding the optimal solution in each TTI is complex, as the
performance (meeting the QoS requirements) of each possible
decision in a) needs to be known in advance.

Therefore, we want to simplify the solution-search problem
at each TTI by finding sub-optimal solutions of the original
optimization problem in two stages:
a) the prioritization sequence of video classes;
b) the scheduling of pre-selected learners and resource alloca-
tion by respecting the prioritization of video classes decided
in a).

To solve the first sub-problem, this paper employs a
PriMARL-based solution to increase the QoS provisioning
by deciding at each TTI the best prioritization of video
classes. However, the type of scheduling rule used in resource
allocation has a major impact in QoS and QoE provisioning
for the pre-selected users. In this paper, we train our PriMARL
method by employing three different scheduling rules in the
frequency domain [30]: PriMARL-BF, PriMARL-EXP, and
PriMARL-OPLF with their main focus on a particular QoS
performance indicator, namely throughput (n = 1), delay
(n = 2), and packet loss (n = 3), respectively.

IV. PROPOSED PRIMARL SOLUTION

A controller is employed in Fig. 2 to interact with the
scheduler entity and learn the best prioritization decision to
be taken at each TTI t. In a real system, this controller is
deployed at the MAC layer of the 5G gNodeB base station
and is owned by the network operator. The interaction between
controller and scheduler at the level of MAC layer is modeled
according to: state representing the observable data received
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from the scheduler, action corresponding to the prioritization
sequence, and reward that measures in the current state how
good the prioritization decision taken in the previous state is.
By experiencing a very large amount of interactions in terms
of previous state - action - reward - current state, the controller
learns from trials and errors to improve its decisions over time
based on reinforcement learning [31]. The controller considers
P number of agents trained to compute the prioritization
decision of video classes at each TTI t. In particular, each
agent p ∈ P learns to claim at each TTI the priority of
class p ∈ P to be passed in the frequency domain. Then,
the controller computes a joint action by ordering the priority
values given by each particular agent. Since each agent learns
based on its own state to compute a joint action together with
other agents, the proposed approach works in a multi-agent
reinforcement learning mode [8]. We argue that combining
the decisions of multiple agents with various priorities is more
efficient than using a single agent that decides the prioritization
sequence once at each TTI.

A. States, Actions, and Rewards

An instantaneous state of agent p ∈ P observed at TTI t
is given by the data sample sp(t) ∈ Sp, where Sp is the state
space of class p ∈ P . This state is divided into two parts:

sp(t) = [cp(t),np(t)],

where cp(t) are some controllable elements that can be
influenced by the prioritization decisions, while np(t) are
some non-controllable elements such as the Channel Quality
Indicator (CQI) that changes regardless of the applied decision.
The controllable sample is represented by

cp(t) = [kp,kp,dp] ∈ Scp,

where
kp = [kp,u1

,kp,u2
, ...,kp,uUp

]

is the KPI vector of all learners in class p ∈ P , kp is a vector
that computes the differences between each KPI kp,u,n from
vector kp and its associated QoS requirement qp,n ∈ Qp, and

dp = [dp,u1
, dp,u2

, ..., dp,uUp
]

is the vector containing the amount of queued data for each
learner at the level of MAC layer. At each TTI t, the controller
state s(t) ∈ S is obtained by encompassing all agents’ states:

s(t) = [s1, s2, ..., sP ] ∈ S,

where S is the controller state space.
A joint action is denoted by

a(t) = [ai]i=1,2,...,P ∈ A,

where ai ∈ P is the video class with the ith priority to be
scheduled at TTI t, and A is the P dimensional and discrete
controller action space. As mentioned, a number of P ∗ classes
can be used for scheduling, and consequently, the action

a(t) = [a1, ..., aP∗ , ..., aP ]

is partially used, where 1 ≤ P ∗ ≤ P .

The controllable state of each agent evolves to the next
states based on applied joint action:

c′ai
= fai

(sai
,a), (2)

where
c′ai

= cai(t+ 1)

is a controllable state at TTI t+1, and

fai
: Scai

× P → Scai

is the transition function that moves the agent from the state
sai(t) ∈ Sai to the next state sai(t+1) ∈ Sai when scheduling
learners in class ∀ai ∈ P at TTI t.

The reward function of the controller depicted in Fig. 2
measures the impact of applying action a(t) ∈ A in state
s(t) ∈ S, defined as [32]:

R(s,a)
(def)

= E
[
Rt+1|s(t) = s,a(t) = a

]
, (3)

where R : S ×A → R is the reward function, and E[·] is the
expectation operator, with a random state s(t) ∈ S so that,
P[s(t) = s] > 0 and P[a(t) = a] > 0 hold for all a ∈ A. For
our purpose, the reward function is computed as follows [7]:

R(s,a) =
∑P

i=1
χ(ai) · rai(sai ,a), (4)

where
rai : Sai × P → R

is the reward function that evaluates the QoS performance
when scheduling learners in video class ai ∈ P , and

χ : P → [0, 1], χ(ai) = (P + 1− ai)/
∑P

h=1
h

is the weight function that sets the importance of each reward
rai given the sequence [1, 2, ..., P ] requested by the prioriti-
zation standard. By using (2) and measuring the QoS perfor-
mance in each video class, the proposed reward becomes:

rai(sai ,a)
(2)
= rp(c′p) =

1

Up
· 1

N

∑
u

∑
n
ru,n(c′p,u,n), (5)

where we assume that action ai = p ∈ P , and ru,n is the
particular reward of user u ∈ Up and QoS requirement qn ∈ Q,
with the function argument given by the controlable sample

c′p,u,n = [k′p,u,n, k
′
p,u,n, d

′
n].

As shown in [7], the computation of the learners’ rewards ru,n
depends on type n of QoS requirement for each traffic class.

B. Policy and Value Functions
The proposed solution considers the stochastic game with

the tuple
〈S1, ...,SP ,A, f1, f2, ..., fP , R〉,

meaning that each agent p ∈ P learns based on its own
state space Sp to cooperate with other agents to maximize
the overall QoS provisioning in all video classes according to
the employed reward functions in (4) and (5).

Each agent keeps its own policy function

πp : Sp ×A → [0, 1]
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defined as the probability of selecting a given joint action a ∈
A in state sp ∈ Sp [32]. Similar to the joint action, we compute
the controller joint policy as the sequence of

π = [πp]p=1,2,...,P .

Furthermore, each agent keeps track of an action-value func-
tion to calculate the expected cumulative future reward if agent
p ∈ P is in state sp, executes the joint action a ∈ A by
obtaining the ith priority to be scheduled, and the joint policy
π is subsequently followed. We define this function by [32]:

Qp : Sp ×A → R,

Qp(sp,a) = E
[ T→∞∑

t=0

γtRt+1|sp(0) = sp,a(0) = a, π
]
, (6)

where 0 ≤ γ ≤ 1 is a discount factor that gives more
importance to the immediate rewards than to the later ones,
and E[·] is the expectation operator with the same properties as
shown in (3). The action-value function of each agent p ∈ P
is trained separately to claim the priority of the corresponding
video class to be scheduled in the frequency domain. When
the controller is trained and the action-value functions are
considered optimal or near-optimal, an action a ∈ A is
selected with a sequence of probabilities of π(a) = [1, 1, ..., 1]:

a = solvep∈P [Q∗p(sp, ·)]p=1,2,...,P , (7)

where Q∗p is the trained function, and solve gives the descend-
ing order of all action values and returns the agents’ indices.

In addition to the action-value functions of the individual
agents p ∈ P , we use the value function V (s) that considers
the initial controller state s(0) = s ∈ S and underlies the joint
policy π afterwards [32]:

V : S → R,

V (s) = E
[∑T→∞

t=0
γtRt+1|s(0) = s, π

]
. (8)

The role of V (s) is to coordinate agents in the training
process to learn the best prioritization decisions. In addition,
the transition between two consecutive states can also be used
based on [31]:

V (s) = R(s,a) + γ · V (s′), (9)

where s′ = s(t+ 1) ∈ S represents the next state. With these
consecutive states {s, s′} ∈ S and reward function R(s,a),
the value of the previous state V (s) is updated based on (9).

C. Solution Employment

In order to use the proposed solution in real-time systems,
two major aspects need to be considered:
a) the dimension of all states {s1, s2, ..., sP } depends on the
number of active learners {U1, U2, ..., UP } that can change
over time;
b) because of the multi-dimensionality of the state space,
the action-value and value functions cannot be updated using
conventional look-up tables.
Therefore, we address these challenges through compression
and approximation methods, respectively.

The original state space Sp is compressed to avoid the
dependency on Up by applying the transformation:

S̄p = T (Sp), (10)

where T is the transformation operator and S̄p is the com-
pressed state space of class p ∈ P of constant dimension
over a variable number of mobile learners. Depending on the
elements in sp ∈ Sp, the space transformation can have dif-
ferent computations. For example, descriptive statistics (mean
and standard deviation) are used for the vector of controllable
elements

[kp,u,n, kp,u,n, du]

for all p ∈ P , u ∈ Up and n ∈ {1, 2, ..., N} [29]. In case
of non-controllable elements (e.g. CQI), unsupervised and
supervised learning techniques are used [29].

With the compression mechanism, the obtained states s̄p ∈
S̄p are still multi-dimensional and function approximators
must be used to model the action-value and value functions. In
this paper, we adopt the use of feed-forward neural networks
as parameterizable functions to be learned over time to provide
the best prioritization sequence on each state. Therefore, each
agent p ∈ P is represented by

Qp(s̄p,a; Θp) ≈ Qp(s̄p,a),

where Θp is the set of weights that must be updated during
the training stage. To increase the training efficiency of the
proposed solution, we also employ the value function of the
controller state s̄ ∈ S̄ and approximated by the neural network

V (s̄; Θ) ≈ V (s̄).

Therefore, a number of P +1 neural networks must be trained
during the learning stage of the proposed PriMARL solution.

During training, a joint action a ∈ A is selected by each
agent on each state s̄p ∈ S̄p according to:

πp(a | s̄p) =

{
1− ε a = solve[Qp(·; Θp)]p=1,..,P ,

ε a = solve[randp]p=1,..,P ,
(11)

where randp ∈ [0, 1] is a sequence of random numbers. In
some cases, parameter ε ∈ [0, 1] is set to higher values at
the beginning of the training stage (more exploration in terms
of the random action selections), and to lower values at the
end of the training (more exploitation based on the trained
functions). In some other cases, ε can have constant value for
the entire training period. Regardless of the strategy used, the
same value of ε is used by all agents at each TTI.

Once a joint action a ∈ A is applied at TTI t, the system
moves to the next state, and a reward R(s̄,a) is computed.
We denote by

E(t+ 1) = {s̄,a, R, s̄′, P ∗(t)}

the controller experience at TTI t+1, and P ∗(t) is the number
of classes scheduled at TTI t. The experience of an agent
p ∈ P is given by

Ep(t+ 1) = {s̄p,a, s̄′p}.

All these experiences e ∈ {E,E1, E2, ...., EP } are used at
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each TTI to reinforce the neural networks with the aim of
minimizing the following cost function:

C(θ) = Ee(t){
1

2
[η · δ(θ)]2}, (12)

where η ∈ [0, 1] is the learning rate,

θ ∈ {Θ,Θ1,Θ2, ...,ΘP }

is the set of weights of the trained neural networks, and δ(θ) is
the Temporal Difference (TD) error computed as a difference
between the target and the actual estimate of the network:

δ(θ) = FT (·; θ)− F (·; θ). (13)

By F (·; θ) we mean both the functions V (·; Θ) and Qp(·; Θp)
for all p ∈ P . The target FT (·; θ) is determined separately for
value and action-value functions. For example, the target of
value function takes the form of (9) and the TD error becomes

δ(Θ) = V T (s̄; Θ)− V (s̄; Θ).

We design the neural network that learns the value function as
a critic to determine whether the multi-agent system decision is
a good or bad option. If δ(Θ) ≥ 0, the prioritization sequence
a ∈ A has a positive effect and the cost values should be
reinforced in the networks with a relatively higher learning
rate η = α. If δ(Θ) < 0, such actions must be prevented in the
future by using a lower learning rate η = β and thus, β << α,
when choosing the parameters of the PriMARL controller.

Even when the TD error becomes positive, the prioritization
decision can infuse the over-provisioning effect and some
classes with met QoS requirements (rp = 1) are prioritized
at the expense of other classes with unmet QoS requirements
(rp′ < 1), ∀p 6= p′ ∈ P . To address this problem, we employ

h : P∗ × [0, 1]P → {0, 1}
as a penalty function to improve the decision-making, so that:
a) if h(ai∗ , r1, ..., rP ) = 1, i∗ = 1, 2, ..., P ∗, then all video
classes ai∗ ∈ P∗ meet the QoS requirements but are prioritised
at the expense of other classes whose QoS requirements are
not met and whose rewards are lower than rp′ < 1;
b) if h(ai∗ , r1, ..., rP ) = 0, i∗ = 1, 2, ..., P ∗, then prioritising
ai∗ ∈ P∗ among other classes is a fair choice. Then, the
proposed target of the action-value function becomes:

QT
ai∗

=


P

(P+1−i∗) , η = α if δ ≥ 0 and h(·) = 0,

−0.5 , η = α if δ ≥ 0 and h(·) = 1,

−1 , η = β if δ < 0,

(14)

where QT
ai∗

(s̄ai∗ ,a; Θp) is the target function of those classes
ai∗ = p∗ ∈ P∗ being scheduled at TTI t, while the rest of the
agents are not updated. As observed in (14), negative target
values are associated even when the value function error is
positive (δ(Θ) ≥ 0), but the penalty function shows inequity
between prioritized video classes (h(·) = 1). Therefore, the
error to be reinforced by the agent p∗ ∈ P∗ averaged with the
learning rate η = {α, β} becomes

δp∗(Θp∗) = QT
p∗(·; Θp∗)−Qp∗(·; Θp∗).

Finally, the weights of the critic neural network and all
agents are updated based on the Stochastic Gradient Descent

Algorithm 1: PriMARL Training in Traffic Prioritization and
Scheduling with a Particular Utility Function Γn

1: input: s ∈ S, a ∈ A, s′ ∈ S, P ∗(t)
2: output: a′ ∈ A, scheduling and radio resource allocation
3: for each TTI t+1
4: calculate rewards based on (3)-(5)
5: compress states {sp, s′p}p=1,..,P and {s, s′}
6: recall experiences {E1, E2, ..., EP , E}
7: calculate the value function error δ(Θ) based on (13)
8: back-propagate δ(Θ) and update weights based on (15)
9: // criticize previous action a ∈ A

10: if δ(Θ) ≥ 0, then η = α, else η = β
11: for i∗ = 1, 2, ..., P ∗

12: determine target function QT
ai∗ based on (14)

13: calculate error δai∗ (Θai∗ ) based on (13)
14: back-propagate and update Θai∗ based on (15)
15: end for
16: // act based on the joint policy
17: determine new action a′ ∈ A based on policy (11)
18: while B 6= ∅
19: pick video class a′i = p, ∀p ∈ P
20: perform scheduling based on (1.a)-(1.e)
21: add a′i = p in the set of scheduled video classes P∗
22: i = i+ 1
23: P ∗ = P ∗ + 1
24: end while
25: end for

(SGD) algorithm, which is given by the following formula [7]:

θ ← θ + η
∂F

∂θ
(·; θ) · δ(θ). (15)

In Algorithm 1, we describe how PriMARL is trained to
prioritize traffic classes and allocate radio resources through a
specific scheduling rule based on utility function Γn. As input
parameters, the algorithm considers two consecutive states
{s, s′} ∈ S , the action applied in the previous state a ∈ A,
and the number of video classes P ∗(t) being scheduled in
the previous state. As an output, Algorithm 1 provides a new
action a′ ∈ A as a prioritization sequence and executes the
scheduling and allocation of radio resources. In the first step
(lines (4)-(8)), the controller’s reward is calculated, the states
are compressed for each agent, the error of the value function
(critic) is back-propagated, and the weights are updated based
on the SGD algorithm. We set different learning rates for
the agents if the critic error is positive or negative (line 10).
In the second step, we update the agents representing the
traffic classes that were scheduled in the previous TTI (lines
(11)-(15)). In the third step, the video classes are prioritized
according to the new joint action a′ ∈ A decided by all agents
(line 17). In the frequency domain, radio resources in B are
allocated to prioritized learners competing with each other
based on the type of utility function Γn or scheduling rule
used (i.e. BF, OPLF, EXP). Learners from the prioritized list

a′(t) = [a′i]i=1,2,...,P ∈ A

have access to radio resources within the limits of the available
stock (lines (18)-(24)). For example, learners in class a′2 ∈
P compete for radio resources if there are enough resources
left after scheduling the higher-priority class a′1 ∈ P in the
sequence.
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Algorithm 2: PriMARL Testing in Traffic Prioritization and
Scheduling with a Particular Utility Function Γn

1: input: states s ∈ S
2: output: a ∈ A, scheduling and radio resource allocation
3: for each TTI t
4: compress states {sp}p=1,..,P and s
5: for p = 1, 2, ..., P
6: determine output Qp(·; Θp) of agent p ∈ P
7: end for
8: // prioritize based on the joint action
9: determine new action a = solve[Qp(·; Θp)]p=1,..,P

10: while B 6= ∅
11: pick video class ai = p, ∀p ∈ P
12: perform scheduling based on (1.a)-(1.e)
13: i = i+ 1
14: end while
15: end for

In Algorithm 2, each PriMARL algorithm is tested and
implemented in real-time scheduling. Here, the process is
simplified, since only the current states s ∈ S are needed
as input parameters, and the algorithm will provide a new
prioritization sequence given by the trained agents. The neural
networks are no longer updated, but the algorithm still needs
to compress the states (line 4) of each agent p ∈ P . The joint
action is decided at each TTI by ordering the agents’ outputs
(lines (5)-(9)), and the scheduling process is performed based
on (1.a)-(1.e), depending on the type of scheduling rule Γn

and the available stock of radio resources (lines (11)-(14)).

V. SIMULATION RESULTS

The proposed PriMARL framework is developed in a C/C++
software environment using intelligent OFDMA scheduling
in both the time and frequency domains, data compression
mechanisms, and neural networks to approximate agents’
decisions for each video class. The proposed tool inherits
the LTE-Sim functionality [33]. As explained above, the pro-
posed PriMARL-based solution considers three types of utility
functions as scheduling rules [6]: PriMARL-BF, PriMARL-
OPLF, and PriMARL-EXP. Since most of the state-of-the-art
works presented in Section II do not provide the level of
detail necessary to enable their implementation, we provide
a comprehensive comparison of the proposed solutions with
the following approaches: HiMARL [7], FLS [24], and RADS
[25]. We evaluate the performance of these schedulers from
the perspective of:
a) QoS provisioning, where throughput, delay, and packet loss
indicators are monitored in each TTI. To quantify the level
of QoS provisioning in the time domain, three types of QoS
requirements are considered for each video class: Guaranteed
Bit Rate (GBR, n = 1), packet delay (n = 2), and Packet
Loss Rate (PLR, n = 3).
b) QoE provisioning by calculating the perceived PSNR based
on throughput and arrival rates. As a result of PSNR assess-
ment, MOS is calculated on five different levels: excellent (5),
good (4), fair (3), poor (2), and bad (1).

The purpose of this section is to demonstrate that setting
a multi-objective target (n = {1, 2, 3}) to maximize the QoS
provisioning does not guarantee the same effect in terms of

perceived PSNR and MOS levels. In particular, we show
that the proposed PriMARL solution is able to outperform
HiMARL, RADS, and FLS when monitoring the number
of learners achieving excellent MOS levels while viewing
different types of educational video content. Therefore, we
organise this section as follows: a) first, we present the traffic
characteristics, network, scheduler and controller settings; b)
then, we present the QoS analysis in terms of throughput,
delay, packet loss, and the number of TTIs when all three
QoS objectives are met. c) In the third part, QoE analysis
is performed for PSNR and MOS levels for all approaches
which are involved in this comparison framework. d) Finally,
we provide additional results and insights to better highlight
the importance of using PriMARL approaches with static
scheduling rules from the perspective of QoE performance.

A. Video Traffic Settings

As shown in Fig. 1, learners access the heterogeneous video
contents from mobile devices. To cope with the different
financial situations of learners, in this study we consider two
resolutions of mobile devices, 240p and 480p, linked to lower
and higher prices, respectively. According to [34], for each
resolution, maximum thresholds for low and high bit rate
values are recommended: a) for 240p, 150kbps and 250kbps;
while for 480p, maximum rates of 0.6Mbps and 1Mbps are
recommended. Based on the subjective surveys conducted in
[7], learners were asked to rate video quality using mean
opinion scores for seven categories of educational videos with
low and high quality levels. All content categories with low
quality levels were perceived as good by all viewers, with
the exception of slideshow content, which was perceived as
fair. Similarly to [7], we consider the same classes of video
services, i.e. low and high quality slideshows with a resolution
of 240p, as well as animations and screencasts for devices
with a resolution higher than 480p. By modeling animation
as video traffic with a variable bit rate and screencast video
with a constant bit rate, as well as by standardizing the QoS
requirements [28], we obtain P = 4 video classes with the
following characteristics:
• p = 1 : video_1 (slideshow, high quality), q1,1 =

242kpbs, q1,2 = 150ms, and q1,3 = 10−3, ∀u ∈ U1;
• p = 2 : video_2 (slideshow, low quality), q2,1 =

138kpbs, q2,2 = 300ms, and q2,3 = 10−6, ∀u ∈ U2;
• p = 3 : video_3 (animation, low quality), q3,1 = 512−

1024kpbs, q3,2 = 300ms, and q3,3 = 10−6, ∀u ∈ U3;
• p = 4 : video_4 (screencast, low quality), q4,1 =

640kpbs, q4,2 = 300ms, and q4,3 = 10−6, ∀u ∈ U4.
Figure 3 illustrates an example of a video frame from each
educational video class considered.

In such environments, the role of PriMARL is to increase
the QoS provisioning in all classes by learning the best
prioritization sequence to apply at each TTI according to the
actual traffic and networking conditions. We then study the
impact of this dynamic prioritization and different scheduling
rules (BF, OPLF, EXP) on the QoE metrics, namely PSNR
and MOS. During the training and testing stages, the ag-
gregate traffic load of all classes is varied in an interval of
u ∈ [6.60], while respecting the following ratios between video
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Fig. 3: Example of Educational Content Video Classes

classes: video_1 (16.53%), video_2 (16.53%), video_3
(33.3%), and video_4 (33.3%). Then, the QoS and QoE per-
formance is evaluated based on three traffic load settings: low
(U ∈ [6, 20]), medium (U ∈ [21, 40]), and high (U ∈ [41.60]).
All scheduling approaches are tested for each configuration
of U , and then, the results are averaged over the number of
possible configurations in each traffic setting.

B. Network Settings

From the network perspective, we consider downlink
scheduling sessions over the OFDMA interface with a system
bandwidth of 20MHz and a number of B = 100 RBs.
The radio channel model uses fast fading based on Jakes’
model due to the high diversity provided in the CQI reports
necessary to employ unsupervised learning techniques to find
patterns and supervised learning methods to automate the CQI
compression process [29]. The most widely used 7-cell cluster
inter-cell interference model is considered. Each cell follows
a macro-urban model with a radius of 1 km, since a wide
range of CQI reports should be captured. When training the
PriMARL controller, we consider a generic speed of 30km/h
to teach the neural networks how to behave under different
channel conditions, while when testing its performance, we
consider static positions of the learners over several trials, as
explained in more detail later in this section. We neglect intra-
cell interference between mobile devices and other electronic
devices, as this aspect is not relevant to our study. When
training the machines, all ML-based approaches (HiMARL,
PriMARL-BF, PriMARL-OPLF, PriMARL-EXP) are trained
separately with different networking conditions. In the test
phase, all candidates use the same network conditions.

C. Packet Scheduler Settings

At the level of the packet scheduler, the modulation and
coding scheme is adapted at three levels (QPSK, 16-QAM,
and 64-QAM) and the scheduling is done at each TTI in the
time and frequency domain. In the radio link protocol layer,
video packets are transmitted in acknowledged mode, with a
maximum of five re-transmissions allowed for each lost packet.
Once the scheduling process is complete and the system moves
to the next TTI, the QoS indicators obtained are compared with
the QoS requirements for each video traffic to verify the level

of QoS provisioning. The delay of learner u requesting one of
the video services is measured as the head-of-line packet delay
and should not be greater than the requirement. The packet loss
and the throughput performance are measured by averaging
all instantaneous lost packets and throughput, respectively,
in a sliding time window of 1000 TTIs. Depending on the
method used, scheduling in the time and frequency domains
is performed based on different metrics:
a) Time-domain scheduling: On one hand, the PriMARL and
HiMARL approaches prioritize learners from the same class
by deciding the sequence of classes to schedule at each TTI.
On the other hand, FLS and RADS prioritize learners from
different video classes based on different metrics. For example,
as explained in Section II, in time-domain scheduling, the FLS
scheduler estimates the amount of real-time data to be trans-
mitted in the next frame of 10 TTIs based on discrete linear
control theory arguments. Then, the learners from different
classes are prioritized based on the approximated quota of data
needed to meet the delay requirements. In the case of RADS,
learners requesting different video services are ranked based
on a metric that considers fairness, delay, and throughput.
b) Frequency-domain scheduling: The proposed PriMARL
approach uses different scheduling strategies to allocate data
in the frequency domain, namely BF, OPLF, and EXP rules.
HiMARL uses reinforcement learning solutions at the level
of each video class to learn the best rule to apply each time
that class is selected in the prioritization sequence. As the
results will show, this scheme is able to balance the QoS
provisioning between the PriMARL with separate scheduling
rules, by affecting the QoE performance in terms of perceived
video quality. In case of FLS, the proportional-fair scheduler is
used in the frequency domain to improve the fairness between
the pre-selected learners, while RADS uses OPLF to improve
the PLR performance since this QoS indicator is not part of
the metric used in the time domain.

The scheduling performance is assessed by comparing the
six candidates based on different metrics. As performances
can vary depending on the network and channel conditions,
different trials are conducted, with all schedulers using the
same conditions (number of learners, mobility, channel and
traffic characteristics) in each trial to allow a fair comparison.
Subsequently, the performance metrics are averaged using the
following formula:

µp(mp) = 1/G ·
∑G

g=1
mp,g, (16)

where G is the number of trials in the test stage and mp,g is
the metric that evaluates the performance of a given indicator
(QoS or QoE) for each video class p ∈ P in one trial g. In
this study, we consider a number of G = 10 trials, where each
trial has a duration of the scheduling process of about 50s.

D. PriMARL Controller Settings

The PriMARL controller is trained for a duration of 107

TTIs and the number of learners switched randomly from
IDLE to ACTIVE and vice-versa every 1000 TTIs, taking into
account the traffic load ratio between classes. To improve the
generalization in decision-making, the speed of each mobile
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Fig. 4: PriMARL Training: Errors and Parameter Settings

learner is set to 30kmph. Several configurations of neural net-
works were tested, and only the best ones are considered in this
paper. For example, each neural network used to approximate
an agent’s ranking decision uses a hidden layer with 80 hidden
nodes. When covering the entire state of all video classes,
the value function uses a neural network with one hidden
layer and 200 hidden nodes. In our settings, we choose a
discount factor of γ = 0.99, which gives more importance
to the value of the next-state when calculating the target value
based on (9). Throughout training, we also consider equal
chances of selection between exploration (random actions) and
exploitation (actions based on trained functions) by setting
ε = 0.5. The learning rates for the critic and all agents are
varied according to the minimum errors found during the
training period.

Figure 4 shows the convergence analysis of the PriMARL
algorithm in terms of mean and minimum errors and learning
rates. By EV mean we denote the TD error of the critic
neural network δ(Θ) averaged over 1000 TTIs, and by EV
min the minimum value reached during training. By EQ mean,
we denote the error averaged over all agents and 1000 TTIs
(1/4000

∑P
p=1 δ(Θp)), while EQ min denotes the minimum

value. It is worth noting that each time a new minimum is
found in the mean error of each agent p ∈ P , the set of weights
Θp is stored. When evaluating the PriMARL approaches, the
most recently stored set of weights is used. As can be seen
in Fig. 4, the error of critic neural network drops below the
value of 0.1 and remains relatively constant for the rest of the
training period. In contrast, the mean error of all four agents
converges to a value of 10−3 by the end of the training period.
The learning rates associated with the critic (LRV) and agent
(LRQ) neural networks are set to an initial value of 0.02 at
the beginning of the training period, and gradually decrease
with a step of 10−7 each time a new minimum error is found
for each type of neural network.

E. QoS Analysis

To analyse the performance of QoS indicators in all video
classes, we measure the levels of throughput, delay, and PLR

for low, medium, and high traffic loads when employing the
proposed PriMARL and state-of-the-art scheduling solutions.
When quantifying the QoS provisioning, we are particularly
interested in counting the number of TTIs when all QoS
requirements are met in each video class.

1) Throughput, Delay, and Packet Loss: are collected for
each scheduling scheme, traffic class, and mobile learner
during the entire period of each trial. In particular, we are
interested in calculating the percentiles for each collection
of QoS indicators and identifying the worst indicators that
could help us distinguish between the PriMARL solutions and
other scheduling techniques. In this sense, we measure the
percentiles of 5th throughput, 95th delay, and 95th packet loss
in each video class and average them over G = 10 trials.

Figure 5 (first row) shows the performance of scheduling
candidates when monitoring the 5th throughput percentile.
For video_1 and video_2, similar throughput is achieved
by all solutions at low traffic load. However, for video_3
and video_4, HiMARL, PriMARL-BF, PriMARL-OPLF,
and PriMARL-EXP improve the level of the 5th throughput
percentile by about 30kbps compared to the non-ML candi-
dates RADS and FLS. At medium traffic load, PriMARL-
EXP is the best option in the video_3 class, while in the
video_4 class PriMARL-OPLF outperforms PriMARL-EXP
by more than 20kbps. By increasing the traffic load to ’high’,
in the first two prioritized video classes the throughput level
remains nearly similar in both cases. A larger discrepancy in
performance between ML and non-ML approaches could be
observed in the case of video_3, where PriMARL-OPLF
outperforms the FLS scheduler by more than 100kbps. The
impact of dynamic prioritization of PriMARL schemes can
be observed when comparing the throughput performance of
the classes video_3 and video_4. In this case, it can
be observed that PriMARL-BF, PriMARL-OPLF, PriMARL-
EXP, and HiMARL allocate a higher amount of resources to
learners in the video_3 class, while RADS and FLS are not
able to prioritize video_3 over video_4, achieving nearly
the same throughput for both video classes. Except in the
case of video_3 with medium traffic load, the PriMARL-
OPLF solution remains the best option when measuring the
5th throughput percentile in all traffic classes.

Considering the high traffic load and summing up the
5th throughput percentiles across all four traffic classes and
for each scheduler, we obtain gains higher than 55% and
36% when comparing PriMARL-EXP with RADS and FLS,
respectively. As we discussed in Section II, MDV [26] and
NRADS [27] achieve throughput gains of about 25% and 10%
when compared to FLS and RADS, respectively. Therefore,
we can estimate the throughput gains of about 45% and 10%
when comparing the PriMARL-EXP approach with the recent
state-of-the-art schedulers NRADS and MCV, respectively.

The delay performance in terms of 95th percentile is evalu-
ated in Fig. 5 (middle row) for low, medium, and high traffic
loads. In the first case, it can be observed that ML-based
approaches perform better than RADS and FLS, especially
for the video_3 and video_4 classes. Among all options,
PriMARL-BF has the lowest delay in all video classes. When
the traffic load is increased to medium and high, the delay
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Fig. 5: The QoS performance evaluation averaged over G = 10 trials when measuring: the 5th throughput percentile; the 95th delay
percentile; and the 95th PLR percentile, each for low, medium, and high traffic load.

increases, especially in video_3 and video_4. At medium
traffic load, PriMARL-BF and PriMARL-OPLF minimize the
delay in video_1, FLS in video_2, PriMARL-EXP in
video_3 and RADS in video_4. For high traffic load,
PriMARL-BF, FLS, PriMARL-EXP, and PriMARL-OPLF are
the best solutions in the video_1, video_2, video_3 and
video_4 classes, respectively. However, when correlating the
delay and throughput performance (Fig. 5 first and second
rows), it is generally observed that lower delay percentiles are
associated with higher throughput levels.

As shown in Fig. 5 (third row), the PLR performance is
measured by the 95th percentile of packet losses, averaged
over the number of G = 10 trials. In case of low traffic
load, the MARL approaches outperform RADS and FLS in
video_1, while almost the same performance is obtained in
video_2. In other traffic classes (video_3 and video_4),
PriMARL-OPLF generally remains the best option among all
candidates when scheduling low traffic load. For medium traf-
fic load, PriMARL-OPLF gets the minimum PLR in video_1
and video_4, FLS in video_2, and PriMARL-EXP in
video_3. When increasing the traffic load to high, the lowest
PLR level is obtained by PriMARL-OPLF in all video classes.
Similar to delay and throughput, when correlating the packet

loss and user throughput, we observe that lower PLR involves
higher throughput in terms of 5th percentile and vice versa.

Looking at the performance of the QoS indicators in Fig.
5, we notice that PriMARL-OPLF generally performs better
when measuring the 5th throughput and the 95th PLR per-
centiles, with a few exceptions. These exceptions relate to the
PriMARL-EXP solution, which performs better in video_3
and video_4 when scheduling medium and low traffic loads,
respectively. By using the reward as a multi-objective func-
tion of throughput, delay, and PLR, the HiMARL approach
achieves a better balance of QoS performance in all video
classes compared to the PriMARL approach with static rules.
However, it remains to be verified whether this method is the
best option for measuring duration when all QoS requirements
are met in each video class.

2) Duration of QoS Provisioning: Figure 6 shows the
normalized number of TTIs when all QoS requirements are
met in each video class, averaged over G = 10 scheduling
trials. In low traffic load settings, PriMARL and HiMARL
approaches perform better compared to FLS and RADS
schedulers. Since the video_1 and video_2 classes have
a higher variability in arrival rates (242kbps and 138kbps,
respectively) compared to animation and screencast videos
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Fig. 6: The mean normalized number of TTIs when all QoS requirements (throughput, delay, PLR) are met in each video class for low,
medium, and high traffic loads.

Fig. 7: Worst PSNR (1st percentiles) levels averaged over the ten data sets for low, medium, and high traffic load.

(video_3 and video_4), it is very difficult to maintain cer-
tain levels of average throughput for these classes (video_1
and video_2) at the imposed GBR requirements over a very
long period of time. This explains the longer duration of QoS
provisioning in classes video_3 and video_4 compared to
video_1 and video_2 when a low traffic load is scheduled.
When the traffic load increases to medium and high, it is
observed that the duration of QoS provisioning in video_1
and video_2 is similar to the previous case for all scheduling
approaches, except for RADS where a higher performance
degradation is obtained. However, in higher rate classes
such as video_3 and video_4, PriMARL-EXP, PriMARL-
OPLF, and HiMARL maintain the duration of providing high
QoS significantly longer compared to FLS and RADS. In both
settings of medium and high traffic loads, PriMARL-EXP is
the best option, followed by HiMARL and PriMARL-BF in
video_3 and PriMARL-OPLF in video_4. Therefore, the
best strategy to maximise the duration of QoS provisioning is
to schedule learners with the highest delay in each video class
given the prioritization sequence decided for each TTI.

F. QoE Analysis
When we analyse the quality of experience of each learner

being scheduled in each video class, we calculate the perceived
PSNR at each TTI by employing the following formula [35]:

PSNR[dB] = 20 · log10 ·
Rp,u

|Rp,u − Tp,u|
, (17)

where Rp,u is the arrival rate in the data queue and Tp,u is
the throughput of learner u receiving video services from class
p ∈ P . The PSNR levels are collected during each trial from
each learner and at each TTI. In each trial, we compute the
associated percentiles from the collected PSNR values. We
then calculate the number of percentiles associated with each
MOS level, starting with the worst PSNR percentile. Based on
the calculated PSNR values, the MOS levels are determined
as follows [36]: Excellent if PSNR[dB] ≥ 36; Good if 29 ≤
PSNR[dB] < 36; Fair if 24 ≤ PSNR[dB] < 29; Poor if
20 ≤ PSNR[dB] < 24; and Bad if PSNR[dB] < 20. We
average the percentage of MOS levels over G = 10 trials and
present the results for low, medium, and high traffic loads.

1) Perceived PSNR: Since we could not differentiate
between the MARL-based scheduling candidates in the
video_1 and video_2 classes at the 5th PSNR percentiles,
we decided to plot the worst percentiles. Depicted in Fig.
7 are the 1st PSNR percentiles averaged over 10 trials for
each traffic load. In case of low traffic, the ML-based ap-
proaches outperform RADS and FLS in all video classes,
except for video_2 where RADS performs slightly better.
By assigning MOS levels to the calculated PSNR percentiles,
an excellent MOS is ensured to all learners by all scheduling
approaches in the first two prioritized classes; good and fair
MOS levels are obtained by the ML-based approaches in
video_3 and video_4, while fair to bad levels are obtained
through RADS and FLS approaches. In medium traffic load,
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TABLE I: MOS Levels for Low Traffic

Traffic MOS RADS (SD) FLS (SD) HiMARL (SD) PriMARL PriMARL PriMARL
-BF (SD) -OPLF (SD) -EXP (SD)

5 (exc.) 97.99 (3.39) 98.69 (1.97) 99.22 (1.44) 99.21 (1.42) 99.27 (1.36) 99.24 (1.43)
4 (good) 0.15 (0.31) 0.057 (0.15) 0.09 (0.21) 0.11 (0.25) 0.07 (1.16) 0.08 (0.2)

video_1 3 (fair) 0.22 (0.44) 0.11 (0.28) 0.11 (0.27) 0.11 (0.25) 0.13 (0.31) 0.12 (0.28)
2 (poor) 0.26 (0.56) 0.03 (0.09) 0.06 (0.19) 0.07 (0.16) 0.05 (0.13) 0.07 (0.17)
1 (bad) 1.39 (2.34) 1.11 (1.88) 0.51 (0.98) 0.51 (0.98) 0.48 (0.93) 0.5 (0.97)
5 (exc.) 99.11 (1.53) 99.09 (1.41) 99.06 (1.38) 99.08 (1.37) 99.02 (1.47) 99.05 (1.41)
4 (good) 0.04 (0.12) 0.04 (0.12) 0.15 (0.34) 0.11 (0.29) 0.13 (0.29) 0.11 (0.3)

video_2 3 (fair) 0.09 (0.24) 0.17 (0.32) 0.16 (0.34) 0.19 (0.39) 0.21 (0.42) 0.18 (0.37)
2 (poor) 0.06 (0.14) 0.05 (0.12) 0.18 (0.42) 0.16 (0.37) 0.17 (0.38) 0.18 (0.4)
1 (bad) 0.7 (1.22) 0.65 (1.12) 0.45 (0.79) 0.46 (0.81) 0.48 (0.83) 0.48 (0.84)
5 (exc) 96.82 (3.21) 95.15 (4.68) 99.18 (0.9) 99.2 (0.88) 99.15 (0.92) 99.21 (0.83)

4 (good) 0.34 (0.42) 0.16 (0.34) 0.14 (0.27) 0.11 (0.26) 0.14 (0.31) 0.1 (0.24)
video_3 3 (fair) 0.25 (0.4) 0.19 (0.4) 0.06 (0.16) 0.07 (0.14) 0.1 (0.22) 0.08 (0.18)

2 (poor) 0.27 (0.33) 0.34 (0.49) 0.07 (0.15) 0.05 (0.12) 0.06 (0.13) 0.05 (0.13)
1 (bad) 2.31 (2.66) 4.16 (4.02) 0.55 (0.58) 0.59 (0.62) 0.55 (0.57) 0.56 (0.59)
5 (exc) 94.42 (3.47) 95.14 (4.62) 98.02 (2.24) 97.8 (2.64) 98.08 (2.12) 98.21 (1.86)

4 (good) 0.77 (0.84) 0.18 (0.34) 0.35 (0.55) 0.24 (0.4) 0.55 (0.8) 0.3 (0.46)
video_4 3 (fair) 0.59 (0.55) 0.19 (0.37) 0.32 (0.46) 0.26 (0.4) 0.37 (0.6) 0.23 (0.36)

2 (poor) 0.5 (0.51) 0.31 (0.54) 0.22 (0.42) 0.25 (0.41) 0.21 (0.4) 0.23 (0.43)
1 (bad) 3.72 (3.37) 4.18 (3.99) 1.08 (1.3) 1.45 (1.97) 0.79 (0.88) 1.03 (1.19)

the best 1st percentiles are obtained by using PriMARL-
OPLF in video_2 and video_4 and PriMARL-EXP for
the remaining classes. HiMARL provides a balance in PSNR
performance within classes, without being the best option in
any of them. Correlating to MOS, PriMARL-OPLF can get a
good level in the video_1 and video_2 classes. However,
in the remaining classes, a bad MOS level is experienced by
all scheduling approaches. When increasing the traffic load to
high, good MOS levels are obtained only in video_2 class
by all ML-based approaches. When looking at the performance
of 1st PSNR percentiles for all traffic settings and video
classes, the best values are obtained by PriMARL-OPLF and
PriMARL-EXP solutions. We can conclude at this point that
aiming to maximize the multi-objective function in terms
of throughput, delay, and PLR will not guarantee the best
performance in terms of worst PSNR percentiles, as we have
seen in the case of the HiMARL approach.

2) MOS Analysis: This analysis counts the number of
PSNR percentiles which falls in the five MOS levels averaged
over ten trials in downlink scheduling. Highlighted in green,
we represent the best performance in terms of the highest
and lowest number of PSNR percentiles with excellent and
bad MOS, respectively. In Tables I, II, and III we present
the MOS analysis in the form of numerical results for each
of the scheduler type in low, medium, and high traffic load.
The results are averaged over G = 10 trials and the Standard
Deviation (SD) values are reported in brackets.

When scheduling low traffic load of video_1 (Table I), the
PriMARL-OPLF provides the highest number of percentiles
in excellent MOS and the lowest in bad MOS. In the second
prioritized class, more than 99% of the PSNR percentiles are in
excellent MOS level for all approaches. The same performance
is obtained in video_3 by MARL-based approaches only,
while a degradation of more than 2% in excellent MOS level
is obtained by the other approaches (RADS and FLS). When
scheduling learners in video_4, PriMARL-EXP, PriMARL-
OPLF and HiMARL achieve a percentage higher than 98% of

the PSNR percentiles with excellent MOS, while the lowest
amount of percentiles in bad MOS is obtained when using
PriMARL-OPLF. In case of RADS and FLS, more than
3% degradation of excellent MOS services can be observed.
When looking at the overall performance in low traffic set-
ting, PriMARL-EXP, PriMARL-OPLF, and HiMARL could
be identified as the best options.

In medium traffic load (Table II), all candidates except for
RADS obtained nearly the same performance of 98% PSNR
percentiles with excellent MOS when scheduling learners
from the video_1 and video_2 classes. For video_3,
the PriMARL-EXP solution achieves the highest and lowest
amount of percentile with excellent and bad MOS levels,
respectively, placing it as the best option among the candidates.
HiMARL follows the PriMARL-OPLF policy by degrading
the performance uniformly over the MOS levels. RADS
achieves a similar performance in terms of the percentage
of PSNR percentiles with excellent MOS, but it substantially
increases the amount of percentiles located at the bad MOS
level. However, being unable to respect the imposed prioriti-
zation scheme, RADS provides the highest and lowest number
of PSNR percentiles with excellent and bad MOS respectively,
when scheduling learners in the video_4 class. Looking
at the overall MOS performance within the video classes
with medium traffic load, it can be concluded that PriMARL-
OPLF is the best option for video_1 and video_2, while
PriMARL-EXP can achieve a much higher percentage of
excellent PSNR percentiles when scheduling the video_3
and video_4 classes.

By increasing the traffic load from medium to high (Table
III), it can be observed that RADS allocates more resources
to video_4 with the lowest priority requirements and de-
grades the MOS levels in the first prioritized service classes,
video_1 and video_2. In these cases, all other scheduling
options provide more than 98% of the PSNR percentiles
with excellent MOS level, of which PriMARL-OPLF is the
best option. In video_3, PriMARL-EXP outperforms other
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TABLE II: MOS Levels for Medium Traffic

Traffic MOS RADS (SD) FLS (SD) HiMARL (SD) PriMARL PriMARL PriMARL
-BF (SD) -OPLF (SD) -EXP (SD)

5 (exc) 91.67 (7.19) 98.76 (1.04) 97.75 (2.93) 98.5 (1.61) 98.32 (2.12) 98.2 (2.44)
4 (good) 1.28 (1.20) 0.11 (0.23) 0.43 (0.72) 0.15 (0.31) 0.39 (0.7) 0.24 (0.47)

video_1 3 (fair) 1.2 (1.08) 0.08 (0.21) 0.4 (0.61) 0.26 (0.47) 0.27 (0.51) 0.24 (0.41)
2 (poor) 1.17 (1.15) 0.03 (0.08) 0.34 (0.62) 0.15 (0.28) 0.22 (0.43) 0.21 (0.39)
1 (bad) 4.69 (4.82) 1.01 (1.0) 1.09 (1.49) 0.95 (1.01) 0.82 (0.91) 1.12 (1.56)
5 (exc) 98.59 (1.29) 98.69 (0.83) 98.8 (1.27) 97.86 (2.57) 98.91 (1.17) 98.4 (1.68)

4 (good) 0.12 (0.22) 0.18 (0.34) 0.08 (0.17) 0.09 (0.21) 0.07 (0.17) 0.08 (0.18)
video_2 3 (fair) 0.08 (0.16) 0.17 (0.33) 0.14 (0.29) 0.21 (0.39) 0.09 (0.22) 0.13 (0.26)

2 (poor) 0.12 (0.25) 0.06 (0.17) 0.16 (0.39) 0.47 (0.87) 0.18 (0.4) 0.35 (0.69)
1 (bad) 1.1 (0.99) 0.92 (0.76) 0.83 (0.94) 1.38 (1.72) 0.76 (0.85) 1.05 (1.23)
5 (exc) 78.09 (14.13) 74.11 (13.03) 79.14 (18.74) 88.19 (9.48) 74.05 (19.13) 92.23 (7.58)

4 (good) 1.23 (1.17) 0.66 (0.65) 6 (6.11) 0.57 (0.61) 10.39 (8.48) 1.19 (1.26)
video_3 3 (fair) 1.21 (1.07) 0.92 (0.77) 4.73 (4.68) 0.63 (0.63) 6.06 (5.12) 0.96 (0.99)

2 (poor) 1.3 (1.11) 1.01 (0.82) 3.23 (3.49) 0.74 (0.68) 3.41 (3.32) 0.86 (0.95)
1 (bad) 18.19 (12.12) 23.23 (12.19) 6.94 (7.55) 9.88 (8.41) 6.1 (6.56) 4.78 (4.89)
5 (exc) 81.23 (10.63) 74.6 (12.42) 61.24 (20.66) 67.92 (14) 55.97 (21.65) 73.67 (14.17)

4 (good) 0.75 (0.69) 0.6 (0.61) 5.22 (4.35) 1.24 (0.91) 9.41 (8.47) 3.28 (2.12)
video_4 3 (fair) 0.84 (0.71) 0.9 (0.71) 4.9 (3.77) 1.25 (0.84) 7.8 (6.31) 2.71 (1.72)

2 (poor) 0.96 (0.82) 1.07 (0.86) 4.71 (3.71) 1.61 (1.02) 6.04 (4.66) 2.51 (1.75)
1 (bad) 16.23 (9.73) 22.84 (11.74) 23.95 (15.5) 27.98 (12.89) 20.79 (15.95) 17.84 (10.42)

TABLE III: MOS Levels for High Traffic

Traffic MOS RADS (SD) FLS (SD) HiMARL (SD) PriMARL PriMARL PriMARL
-BF (SD) -OPLF (SD) -EXP (SD)

5 (exc) 72.3 (12.22) 98.54 (0.7) 98.7 (2.43) 98.73 (0.88) 98.83 (1.03) 98.77 (1.42)
4 (good) 2.9 (1.36) 0.15 (0.26) 0.29 (0.57) 0.09 (0.23) 0.26 (0.54) 0.11 (0.26)

video_1 3 (fair) 3.24 (1.57) 0.09 (0.23) 0.24 (0.48) 0.13 (0.24) 0.13 (0.23) 0.13 (0.28)
2 (poor) 3.59 (1.68) 0.05 (0.14) 0.21 (0.49) 0.12 (0.29) 0.07 (0.19) 0.14 (0.32)
1 (bad) 17.96 (10.19) 1.18 (0.73) 1.08 (1.27) 0.93 (0.62) 0.71 (0.54) 0.86 (0.94)
5 (exc) 96.18 (4.02) 98.76 (0.62) 99.44 (0.6) 99.29 (0.76) 99.45 (0.57) 99.43 (0.58)

4 (good) 0.51 (0.69) 0.23 (0.42) 0.03 (0.07) 0.04 (0.13) 0.04 (0.11) 0.04 (0.09)
video_2 3 (fair) 0.29 (0.41) 0.14 (0.29) 0.03 (0.09) 0.04 (0.11) 0.04 (0.11) 0.05 (0.15)

2 (poor) 0.44 (0.63) 0.04 (0.11) 0.04 (0.09) 0.05 (0.14) 0.01 (0.02) 0.04 (0.09)
1 (bad) 2.58 (3.05) 0.82 (0.59) 0.47 (0.51) 0.59 (0.63) 0.47 (0.5) 0.45 (0.48)
5 (exc) 38.89 (12.99) 43.16 (11.46) 19.35 (21.62) 55.15 (14.4) 11.85 (13.56) 60.23 (19.17)

4 (good) 2.81 (1.68) 0.81 (0.64) 12.4 (9.04) 0.94 (0.7) 17.48 (11.53) 4.68 (2.2)
video_3 3 (fair) 2.79 (1.75) 1 (0.74) 15.74 (7.47) 1.25 (0.69) 18.21 (7.43) 4.06 (2.12)

2 (poor) 2.66 (1.71) 1.52 (0.88) 13.77 (5.87) 1.63 (0.98) 14.67 (5.32) 3.69 (1.89)
1 (bad) 52.86 (13.1) 53.5 (11.4) 38.74 (21.38) 41.03 (14.23) 37.79 (21.85) 27.34 (15.24)
5 (exc) 48.8 (13.21) 43.44 (13.25) 5.75 (7.93) 31.55 (11.92) 1.06 (2.28) 26.48 (11.24)

4 (good) 1.03 (0.71) 0.81 (0.63) 2.15 (2.63) 1.34 (0.8) 2.24 (3.42) 6.19 (1.8)
video_4 3 (fair) 1.4 (0.83) 1.06 (0.69) 3.24 (3.85) 1.69 (0.97) 4.49 (5.96) 5.84 (1.82)

2 (poor) 1.61 (0.97) 1.38 (0.81) 5.08 (5.01) 2.1 (1.13) 6.59 (7.05) 5.26 (1.66)
1 (bad) 47.16 (13.54) 53.31 (13.14) 83.79 (17.31) 63.32 (12.25) 85.63 (16.98) 56.21 (12.82)

scheduling candidates by achieving more than 60% of the
percentiles in excellent MOS and around 27% of the per-
centiles with bad MOS level. The second best option in
this case is the PriMARL-BF approach with 55% percentiles
in excellent MOS and with 41% in bad MOS. As previ-
ously observed in lower traffic settings, the PriMARL-OPLF
scheduling technique aims to minimize the packet loss for all
learners without any specific control on PSNR performance.
The HiMARL approach follows the OPLF scheduling rule for
the resource allocation in video_3 and increases consistently
the percentage of PSNR percentiles in fair, poor and bad MOS
levels. When scheduling learners in video_4, FLS obtains
the same performance as for the video_3 class, which means
that only the group of video_1 and video_2 services is
prioritized over the video_3 and video_4 classes. Looking
at the performance among ML-based approaches, PriMARL-

BF can get the highest amount of PSNR percentiles with
excellent MOS of about 32%, while PriMARL-EXP gets the
lowest percentage of percentiles with bad MOS of about 56%.

Summarizing the results from Tables I, II and III, the
following conclusions can be drawn from the perspective of
MOS levels over the calculated PSNR percentiles:
a) RADS does not respect the imposed prioritization scheme
and provides higher number of PSNR percentiles with excel-
lent MOS in the video_2 and video_4 classes than in
video_1 and video_3 respectively, especially for medium
and high traffic loads;
b) FLS prioritizes between the group of video_1 and
video_2 classes and the rest, but it cannot prioritize
video_3 over video_4 and provides nearly the same dis-
tribution of MOS levels in both classes for all traffic settings;
c) HiMARL aims at maximizing the multi-objective reward
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function in terms of QoS requirements for all learners in
all video classes, and thus, degrading the amount of learners
experiencing excellent MOS levels of video content;
d) PriMARL-BF and PriMARL-OPLF are fair options to
learners from all classes regardless of the wireless channel
conditions, which is why the higher amount of PSNR per-
centiles with bad MOS is obtained, especially when providing
video_3 and video_4 services at medium and high traffic
loads;
e) being able to properly prioritize and schedule learners based
on the highest packet delay, PriMARL-EXP provides the best
results by substantially improving over other candidates in
terms of percentage of results in the excellent MOS category.

G. Additional Results

As we observed, the MARL-based approaches are able to
prioritize learners from the considered video classes much
better when compared to more conventional scheduling ap-
proaches, such as RADS and FLS. When evaluating the
QoS performance in Fig. 5, we observe that PriMARL-OPLF
and PriMARL-EXP obtain the highest throughput levels (5th

percentiles) and lowest rates in packet loss (95th percentiles) in
different video classes and traffic settings. The HiMARL meta-
scheduler provides the best trade-off between PriMARL-OPLF
and PriMARL-EXP in terms of delay, PLR, and throughput
because a different scheduling rule is selected to perform
the radio resource allocation based on the networking con-
ditions in each class. However, only focusing on improving
the QoS performance and ensuring a good trade-off between
throughput, delay, and PLR does not guarantee an enhanced
performance when measuring the perceived QoE.

When evaluating the PSNR and MOS, we considered three
levels in traffic load. For our discussion, we would like to
find an approximate average number of learners that can be
supported in excellent MOS in all video classes with different
scheduling approaches. So far, in Tables I-III, we averaged the
MOS levels over the number of learners in the intervals of [6,
20], [21, 40], and [41, 60], in low, medium, and high traffic
load settings, respectively. Then, we can average over the
intervals to get the number of learners supported by each traffic
setting and we obtain, 12, 30 and 50 for low, medium, and high
traffic load, respectively. With the ratios between video classes
introduced in Section V.A, the following averaged numbers of
learners in each video class are obtained: a) in low traffic
load, U1 = 2, U2 = 2, U3 = 4, U4 = 4; b) in medium traffic
load, U1 = 5, U2 = 5, U3 = 10, U4 = 10; c) in high traffic
load, U1 = 8, U2 = 8, U3 = 17, U4 = 17. Based on the MOS
statistics exposed in Tables I, II, and III, we would like to find
next an approximate number of learners experiencing excellent
MOS of video content in each class when employing the best
PriMARL scheduling schemes compared to other approaches.

In low traffic settings (Table I), the thresholds of dropping
MOS from excellent to lower levels is about 50% for slideshow
content with high and low quality (video_1 and video_2),
and 75% for animation and screencast contents with low
quality (video_3 and video_4). All scheduling approaches
analysed in Table I achieve more than 94% of PSNRs in

excellent MOS, and therefore, all 12 learners from different
video classes experience an excellent MOS level of the viewed
content most of the time.

When scheduling medium traffic load (Table II), we approx-
imate the number of learners to five with excellent MOS for
all scheduling approaches when watching slideshow content
at high and low quality (video_1 and video_2). In case
of video_3, PriMARL-EXP and PriMARL-BF provide ex-
cellent MOS to nine learners when watching animation, while
RADS and HiMARL handle eight, and FLS and PriMARL-
OPLF seven learners. When scheduling learners with screen-
cast content, eight of them can get excellent MOS with RADS,
seven with PriMARL-EXP, FLS and PriMARL-BF, and six
with HiMARL and PriMARL-OPLF. By summing the number
of learners experiencing excellent MOS in all video classes, we
observe that both RADS and PriMARL-EXP support the same
number of learners with this quality, which is 26. However,
PriMARL-EXP prioritizes the viewers with animation content
(video_3) much better compared to the ones with screencast
(video_4) content (U3 : U4 = 9 : 7 for PriMARL-EXP
compared to U3 : U4 = 8 : 8 for RADS).

In high traffic load settings (Table III), all eight learners can
receive slideshow content at high quality with excellent MOS
when employing the analysed scheduling approaches, except
for RADS which supports only six viewers. At a lower quality
of video_2, RADS provides nearly the same performance
as other candidates supporting the same number of learners
with excellent MOS level. When delivering animation content
(video_3), PriMARL-EXP is the best option by supporting
ten viewers, followed by PriMARL-BF with nine, RADS and
FLS with seven, HiMARL with three, and PriMARL-OLPF
with two learners. In case of screencast video streaming and
scheduling, eight, seven, five, and five viewers are supported
by RADS, FLS, PriMARL-BF and PriMARL-EXP approaches
respectively. By summing the number of viewers with ex-
cellent MOS in all video classes, PriMARL-EXP remains
the best option with 31 learners, PriMARL-BF and FLS
support 30 learners with the same QoE. However, PriMARL-
BF prioritizes animation better compared to screencasts. The
list continues with the RADS, HiMARL and PriMARL-OPLF
schedulers that can obtain excellent MOS for 29, 20, and 18
learners, respectively.

H. Summary

The QoS analysis (Section V.E) shows that, with few
exceptions, PriMARL-OPLF achieves the best results when
measuring the 5th throughput and 95th PLR percentiles, while
PriMARL-EXP performs slightly better when measuring the
95th delay percentile. When monitoring the time when all
QoS requirements are met for each video class, PriMARL-
EXP performs better than all other candidates, especially in
case of medium and higher traffic load when lower prioritized
video services are delivered. From the QoE analysis (Section
V.F), PriMARL-OPLF gets the highest level of 1st PSNR
percentiles in almost all cases. However, when considering
the QoE levels for all traffic loads, the PriMARL-EXP obtains
the highest number of PSNR percentiles with excellent MOS
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while maintaining the required prioritization between video
classes. Further analysis (Section V.G) shows that PriMARL-
EXP outperforms other candidates in terms of the number of
learners experiencing excellent MOS values of video content
in each class and traffic load. Compared to the previous work
[7], in which HiMARL is proposed to decide at each TTI
the prioritization among classes as well as the selection of
the scheduling rule for each class, in this paper we show that,
from a QoE perspective, maintaining the static scheduling rule
in the frequency domain is more efficient.

VI. CONCLUSION

This paper proposes a PriMARL-based decision-making
solution to improve the QoS and QoE provisioning when
delivering heterogeneous educational video content in the
context of remote education. The proposed PriMARL frame-
work employs an intelligent agent for each class of service
that learns to claim its own priority to be scheduled in the
frequency domain through a neural network. All agents are
cooperating under the form of a joint action to be applied to
maximize the overall QoS provision in all classes. Simulation
results show that ensuring a good QoS performance does not
guarantee excellent QoE levels in different prioritized video
classes. We also observed that the scheduling rule which
is employed to conduct the scheduling and radio resource
allocation plays a crucial role in obtaining high QoE. Among
all options analysed in this paper, the proposed PriMARL-
based prioritization scheme with exponential scheduling rule
works best in terms of perceived QoE. The proposed approach
supports 100%, 86%, and 62% of learners with excellent MOS
in low, medium, and high traffic settings, respectively.

ACKNOWLEDGEMENT

G.-M. Muntean and I. Tal would like to acknowledge the
Science Foundation Ireland grant 13/RC/2094 P2 to Lero.

REFERENCES

[1] ITU, “Special emergency session of the broadband com-
mission pushes for action to extend internet access and
boost capacity to fight covid-19,” 2020. [Online]. Avail-
able: https://www.itu.int/en/mediacentre/Pages/PR05-2020-Broadband-
Commission-emergency-session-internet-COVID-19.aspx
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