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Abstract—In recent years, eXtended Reality (XR) applications
have been employed increasingly in various scenarios in tourism,
health care, education, manufacturing, etc. Such applications are
now accessible via mobile devices, wearables devices, tablets,
etc. However, mobile devices normally suffer from constraints
in terms of battery capacity and processing power, limiting
the range of applications supported or lowering user quality
of experience when using them. One effective way to address
these issues is to offload the computation to the cloud servers.
The inherent limitation of the cloud computing approach is the
long propagation distance to the end user from the processing
server, that may result in long latency which is not tolerable
by many mobile XR applications. To overcome such limitations,
Multi-access Edge Computing (MEC) is proposed to bring the
mobile computing, network control and storage services to the
network edges (for example at base stations, access points, etc) so
that the computation-intensive and latency-sensitive applications
can be deployed at the resource limited mobile devices. This
paper proposes a Deep Reinforcement Learning-based offloading
scheme for XR applications (DRLXR). The problem is formulated
as a utility function optimization equation that takes into account
both energy consumption and execution delay at devices and
the Markov Decision Process (MDP) framework is employed
as a decision maker. Next the Deep Reinforcement Learning
(DRL) technique is employed to train and derive the close-to-
optimal offloading decision for mobile XR devices. The proposed
DRLXR scheme is then validated in a simulation environment
and compared against other novel offloading schemes. The
simulation results show how our proposed scheme outperforms
the other counterparts in terms of total execution latency and
energy consumption.

Keywords— eXtended Reality, Offloading, Multi-access Edge
Computing, Deep Reinforcement Learning, Energy efficiency,
Quality of Service

I. INTRODUCTION

The eXtended Reality (XR) applications benefit from the latest
developments in 5G and beyond network communications. XR can
be defined as the combination of virtual 3D objects with real world
content [1] consumed via smart devices such as handheld smart
phones or head mounted glasses 1,2. Depending on the balance
between the amount of virtual content and reality, XR is denoted
as Augmented Reality (AR), Mixed Reality (MR), or Virtual Reality
(VR). However, regardless of the labeling, there is an exponential
increase in XR applications in various scenarios, including in health
care [2], tourism [3], education, and manufacturing.

Figure 1 illustrates a generic XR system, with the following
essential components:

• Input sensors that acquire information via various type of built-
in or companion sensors, such as: gyroscope, location, cameras,
etc.
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Figure 1: Components of an XR system [4]

• Processing modules are responsible for processing the collected
data, which is performed locally or via offloading to a cloud
server, fog server or edge server, depending on the required
computational complexity and available processing power.

• Outputs refer to post-processing actions that involve the XR
content display, including streaming of high definition video
content [5], activating actuators and interaction with external
devices. This stage uses head-mounted displays (HMD) [6],
handheld displays [7] and/or devices such as haptic gloves,
olfaction dispensers [8], etc.

Despite the latest fast pace of hardware design and development,
the mobile devices used for XR applications are still limited in terms
of resources in comparison to desktops or servers. The cost of high
mobility and reduced size is paid in terms of battery capacity and
processing power. On the other hand, due to the complex algorithms
used mostly in relation to video content processing, XR applications
require high computational resources. An effective way to cope
with the challenge of supporting immersive XR applications run on
resource-limited mobile devices is to offload the computation via the
network to resource-rich devices, such as cloud or edge servers.

Cloud computing has been a successful new computing paradigm.
Its intrinsic idea is the centralization of computing, storage and
network management in the cloud, providing support via data centers,
backbone networks and cellular core networks [9], [10]. In order to
execute computation in the cloud, the mobile devices and servers are
required to operate offloading frameworks, such as MAUI [11], or
ThinkAir [12]. However, recently, the function of cloud computing
is being increasingly moved towards the network edges, closer to
user devices [13]. By harvesting the idle computation power and
storage space distributed at network edges, sufficient support is made
available to XR applications to perform computation-intensive and
latency-critical tasks at user mobile devices. This principle is behind
the Multi-Access Edge Computing (MEC) [14] paradigm, in which
mobile devices can communicate and get support from MEC servers
via multiple wireless communications technologies such as LTE, 5G,
WiFi or a combination of them [15]. The general architecture of a
MEC system is illustrated in Figure 2.

In a MEC-enhanced cloud computing context, the challenge re-
mains to decide which XR processing-related tasks are to be offloaded
and where, in order to best balance XR application requirements
on one hand and make efficient use of device, MEC and cloud



Figure 2: General architecture of a MEC-enhanced cloud
computing system

computational, storage and network resources, on the other hand. This
is not trivial and diverse solutions were proposed using heuristic or
complex optimisation approaches [16].

This paper proposes a Deep Reinforcement Learning-based
offloading scheme for XR applications (DRLXR) that distributes
the computation between device, MEC and cloud in order to best
balance the XR application performance and energy efficiency in
given networked system resource constraints. The contributions of
this paper are as follows:

• A three-layer architecture for XR systems is proposed, and the
energy-efficient computation offloading issue to minimize the
overall power consumption while satisfying the stringent delay
constraints of XR applications is focused on.

• The problem is formulated by using the Markov Decision
Process (MDP) framework and the close-to-optimal offloading
decision making is derived via a Deep Reinforcement Learning
(DRL) technique. The XR applications are decomposed into
small tasks and are represented using Graph Theory.

• Finally, the proposed DRLXR solution is evaluated using
Network Simulator NS-3 and Open Gym AI library and is
benchmarked against other novel offloading schemes.

The rest of this paper is organized as follows: Section II surveys
some novel offloading schemes found in the research literature. The
technical background of the Deep Reinforcement Learning (DRL) is
discussed in Section III. Section IV provides details about our pro-
posed solution, including system architecture, problem formulation
and the DRL-based offloading algorithm. We evaluate the proposed
scheme in a simulation environment and discuss the results in Section
V. Finally, the paper is concluded in Section VI.

II. RELATED WORKS

This sections discusses some state-of-the-art offloading schemes
proposed in the research literature. According to their type of
offloading, four main groups of such schemes are considered: i)
binary offloading, ii) partial offloading, iii) stochastic model-based
and iv) deep learning-based offloading schemes.

A. Binary offloading
Kumar et. al., [17] provided guidelines for making offloading deci-

sions with the aim to minimize both computation latency and energy
consumption for mobile devices in a traditional cloud computing fash-
ion. The key factors that are considered for offloading include: CPU

speed at mobile devices and cloud servers, data size, and fixed rate of
wireless communication links. However, the assumptions made in this
paper are not realistic. The channel gain of wireless communication
is time-varying. Besides, the CPU power consumption increases in
proportional to CPU cycle frequency. So, adaptive offloading schemes
are necessary to overcome such limitations.

The authors of [18] and [19] employed an optimization framework
to formulate the offloading decision with the aim to minimize
energy consumption. In [18], the researchers considered multimedia
applications, which require the task to be completed within the
deadline with a given probability τ . The offloading decisions are
made following which computation modes (either local computing
or offloading) incur less energy consumption. Internet of Things
(IoT) systems where sensor nodes are powered using wireless power
transfer (WPT) technology are considered in [19]. Alongside reducing
the energy consumption, the optimization proposed in [19] also aims
to maximize the computation rate of all network nodes.

In reality, mobile applications normally consist of multiple proce-
dures/functions/components, like the components of the XR system
illustrated in Figure 1. In this case, offloading the whole program
or completely performing local execution as suggested by binary
offloading is not suitable.

B. Partial offloading
Partial offloading of tasks refers to the decomposition of one

application into two parts: one offloaded to edge servers and the
other one executed locally at the mobile device. Kao et al. in [20]
modeled the dependency between different procedures/components
of an application by using a Directed Acyclic Graph (DAG). Next,
the balance between energy consumption and delay is formulated via
an optimization equation. Saleem et. al. [21] studied the problem of
minimizing latency by considering the local energy constraint, while
taking into account the limited energy availability at the user. This has
a high impact on the data segmentation decision. Despite the manifold
benefits, such partial offloading schemes are not examined under
time-varying radio communications channels, such as poor channel
conditions and scarce bandwidth may affect the offloading latency. In
such case, multiuser cooperative edge computing can be considered
as a promising solution, where proximal devices can collaborate with
each other to scale up the services. An approach that combines MEC
and Device-To-Device (D2D) communications is proposed in [22].
Based on monitoring the interference on the radio communications
link, a device can decide to offload task execution to the edge server,
to another nearby device, or execute it locally. [23] proposed a joint
solution based on Mixed-Integer Nonlinear Programming (MINLP)
that considered multi-task partial computation offloading and network
flow scheduling problem in multi-hop network environments. The
output of the proposed optimization problem is a partial offloading
ratio.

C. Stochastic Task model-based Offloading
[24], [25], [26], and [27] are among solutions that consider stochas-

tic task models that are characterized by random task arrivals. In
[24], the problem of minimizing long-term execution cost was solved
via jointly optimizing computation latency and energy consumption.
The proposed scheme employed a semi-MDP framework to control
local CPU frequency, modulation scheme and data rates. Zhang
et. al. [25] proposed an optimization based offloading scheme for
unmanned aerial vehicle (UAV) systems that aim to minimize the
energy consumption subject to the constraints on the number of
offloading computational tasks. These tasks were assumed to arrive
in stochastic manner and be independent and identically distributed
(iid). In [26], the problem of stochastic computation offloading is
formulated by using the MDP framework and solved via using Q-
learning algorithm. A joint solution that combines channel allocation
and resource management for making offloading decision (JCRM)
with the aim to maximize network utility was proposed in [27]. JCRM
then leverages the Lyapunov optimization technique to make optimal
offloading decisions.



D. Reinforcement Learning-based Offloading
Since there is limited training data and novel applications appear

continually, supervised learning becomes difficult for feature learning.
Although unsupervised learning is promising to exploit the features
of network traffic, it is challenging to achieve real-time processing
[28]. On the other hand, reinforcement learning paradigm can be used
without having access to a pre-existing data set for training. Training
can be achieved via direct interaction between learning agent and
surrounding environment.

[29], [30], and [31] proposed to make use of reinforcement learn-
ing and/or combine it with deep learning in order to propose diverse
offloading schemes for MEC-enhanced Internet of Vehicle (IoV)
systems. In [29], Li et. al., proposed an online reinforcement learning
method from the feedback and traffic patterns to balance traffic
loads. In order to fulfil high-efficient traffic management, a joint
communication, caching and computing problem was investigated in
[30]. [31] proposed an offloading scheme that addressed the trade-
off between energy consumption and delay for IoV system. The RL
based solution were then employed to derive offloading strategy for
IoV nodes.

The authors of [32] considered IoT nodes that are powered fol-
lowing energy harvesting. The proposed scheme allowed IoT devices
to select the edge server and offloading rate based on current battery
level and previously monitored radio transmission rate. DRL was
employed to improve the offloading performance in a highly complex
state space.

Wang et. al. [33] transformed the original joint computation
offloading and content caching issue into a convex problem then
solved it in a distributed and efficient way. Hao et. al. [34] considered
the offloading problem that takes into account both constraint of
computing and storage capacity of mobile devices when optimizing
the long term latency. The proposed scheme was formulated by using
DRL and the solution proposed showed noticeable results in terms
of convergence time and latency reduction.

Wang et. al. [35] proposed a Meta Reinforcement Learning-
based scheme (MRLCO) to provide optimal offloading decision for
User Equipment (UE). Mobile applications are modeled as Directed
Acyclic Graphs (DAG). The author employs Meta Reinforcement
Learning (MRL) in order to find the close-to-optimal offloading
decisions for UEs with the aim to reduce latency. UE applications are
defragmented into multiple sub-tasks. Each sub-task is then decided
to be processed locally or offloaded to a virtual machine at MEC
server. MRLCO outperforms the other baseline algorithms in terms
of average latency. The main disadvantage of MRLCO is the lack of
UE mobility and energy consumption consideration.

Despite pursuing different avenues, most of the existing works did
not consider a holistic approach that takes into account the complexity
of the latest applications, such as the XR ones. These applications
comprise of many small tasks and their performance is influenced
jointly by network conditions and energy consumption. This gap is
bridged in this article.

III. TECHNICAL BACKGROUND

This section briefly discusses the background related to Markov
Decision Process (MDP) and Deep Reinforcement Learning (DLR),
techniques used in the proposed solution.

A. Deep Reinforcement Learning
DRL is a research area of machine learning that combines Deep

Neural Network and Reinforcement Learning (RL). Deep learning
enables RL to scale problems that were previously intractable, i.e.,
the environment with a high dimensional state and large action spaces.
Some successful applications of DRL include video games, robotics,
etc.

In general, DRL can be formulated as an Markov Decision Process
(MDP) framework using a tuple ⟨S,A,P,R, γ⟩, where:

• S is a finite set of states

• A is a finite set of actions
• P is a state transition probability matrix,
Pa

ss
′ = P[St+1 = s

′
|St = s,At = a]

• R is a reward function,
Ra

s = E[Rt+1|St = s,At = a]
• γ is a discount factor γ ∈ [0, 1]
MDP uses a definition of total expected return, return Gt, or the

total discounted reward from time-step t as follows:

Gt = Rt+1 + γRt+2 + · · · =
∞∑

k=0

γkRt+k+1. (1)

A policy π in an MDP is a distribution over actions given states:

π(a|s) = P[At = a|St = s]. (2)

The goal of MDP is to derive an optimal policy π∗(a|s) = P[At =
a|St = s], which is a distribution of actions in corresponding states,
so as to maximize the total discounted cumulative reward.

In general, there are two main approaches to solving RL problems:
value function based and policy search based methods.

1) Value functions methods are based on estimating the value
(or expected return) of being in a given state. The state-value
function vπ(s) is the expected return when starting from state
s and following policy π:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s].
(3)

The optimal policy, denoted as π∗, has a corresponding state
value function v∗(s) that is defined as:

v∗(s) = max
π

vπ(s). (4)

If we know the value of v∗(s), the optimal policy can be
derived by choosing among all available actions in state st
and picking the action a that maximizes Est+1∼P(st+1|st,a).
In a RL environment, as the state transition probability matrix
P is not available, another function, state-action value function
qπ(s, a) is constructed as follows:

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s].
(5)

The best policy, given qπ(s, a) can be found by choosing a
greedily in every state: argmaxaqπ(s, a). Under this policy,
the value vπ(s) can be derived by maximizing qπ(s, a):
vπ(s) = maxa qπ(s, a)

2) Policy search methods do not maintain a value function
model, but directly search for an optimal policy π∗. In general,
a parameterized policy πθ is chosen, where parameters θ are
updated to maximize the expected return E[R|θ] using either
gradient-based or gradient-free optimization [36]. Gradient-
free methods find the best policy via using heuristic search
across a predefined class of models. For gradient-based learn-
ing, the gradient can be estimated [37].

In order to combine the advantages of value function and policy
search methods, a hybrid solution that employs both value functions
and policy search, named Actor-Critic [38], was introduced. Actor-
Critic method combines a value function with an explicit repre-
sentation of the policy, resulting in actor-critic methods, as shown
in Figure 3. The actor (policy) learns by using feedback from the
critic (value function). Actor-Critic methods use the value function
as the baseline for policy gradients, so that the only fundamental
difference between the actor-critic method and other baseline methods
is that the actor-critic method utilizes a learnt value function. Some
advantages of Actor-Critic methods [38] include: i) they require
minimum computation in selecting actions in comparison to the
other two methods; ii) they can learn an explicitly stochastic policy
or optimal probabilities of selecting various actions. Due to these
advantages, the Actor-Critic method is employed as a decision maker
for XR device task offloading. This is discussed in details in the next
section.



Figure 3: The concept of Actor-Critic [38]. The actor (policy)
chooses an action following the received state from environ-
ment. At the same time, the critic (value function) receives the
state and reward resulting from the last interaction. The critic
uses TD error calculated to update itself and the actor.

Table I: Abbreviations

Parameter Meaning
CPU Central Processing Unit
CSI Channel State Indicator

DAG Directed Acyclc Graph
DRL Deep Reinforcement Learning

LSTM Long Short Term Memorty
MEO Multi-Access Edge Orchestration
OSS Operations Support System
RSSI Received Signal Strength Indicator
VM Virtual Machine

Figure 4: Testing topology

IV. PROBLEM FORMULATION

This section discusses the proposed offloading scheme. First, the
system architecture is described and then the details of problem
formulation based on MDP are provided. Finally, the DLR-based
offloading scheme is introduced in details. We include all the abbre-
viations used in this paper in Table I.

In order to evaluate and compare our proposed schemes against
another algorithms, we use the following metrics:

• Average energy consumption (in Joules) over all devices
• Average total completion time of tasks

A. System Architecture
The general architecture of the MEC-enhanced network system is

considered to consist of three levels: core network, edge network,
and XR devices, as illustrated in Figure 5.

The Operations Support System (OSS) and Multi-Access Edge
Orchestration (MEO) are located at the top core network level. The
OSS block is responsible for receiving requests from customers,
and determines requests granting, sending the requests to MEO.
MEO maintains an overall view of the MEC-based system, knowing
the available resources, services and deployed MEC hosts, and it
also monitors the topology. MEO also selects the best hosts where
to deploy an application, considering available resources, services
availability and constraints such as latency.

At the Edge Network level, the major components are MEC Server,
and MEC Platform. The latter is responsible for managing the life
cycle of both applications and MEC platforms, informing the MEO
if any relevant event happens. MEC platform manager allows for
platform configuration and applications life cycle procedures.

Finally, at the bottom are XR devices that are running high
computation-intensive applications, such as: deep learning-based ob-
ject detection, 360◦ video streaming, etc. and need to offload some
tasks to MEC servers.

Next, the block diagram for MEC server and XR devices, as
illustrated in figure 6 is discussed.

• At mobile XR device: The Application Monitor block is re-
sponsible for monitoring all applications running in parallel
at the device. A Energy Consumption monitor block notifies
the remaining battery level and depletion rate. The Channel
State Information (CSI) module keeps tracking the signal level,
in terms of Received Signal Strength Indicator (RSSI). All
these three blocks provide information to the Local Trainer
for collecting data and Deep RL based Decision Maker for
calculating the offloading decision. The computation is either
fed into Offloading Scheduler module and then offloaded via
Radio Transmission Unit to MEC server or executed locally at
Local Executor block.

• At MEC server: The Data Aggregation part collects all the
requests from all devices from Radio Transmission Unit in the
vicinity then feeds them into Traffic Management block. The
Traffic Management block manages all the Virtual Machine
(VM) and assigned resources for corresponding mobile device’s
requests. All requests are then processed and the responds are
sent back to XR devices via Remote execution service block.
MEC sever also has connections to Remote Cloud servers,
but in the scope of this paper, we ignore the effect of such
communications.

B. Definitions and Assumptions for the Optimization Model
1) Multitasking Application Modelling: In this paper, we

assume that an XR device is executing a resource-hungry multitasking
XR application by offloading some sub-tasks to the MEC server. Such
offloading decisions aim to minimize the device’s energy consump-
tion, whereas the predefined stringent requirements of completion
time of the application are met.

A multitasking application can be decomposed into a set of fine
granularity atomic non-preemtive tasks. We use a Directed Acyclic
Graph (DAG) to formulate the dependencies between these tasks.
Denote G = (V,E) as the construction of multitasking, where V is
the tasks and E refers to the dependencies. The total number of tasks
of the application is N = |V |.

Depending on how developers model the applications [39] [40],
there are, in general, three types of multitasking DAG: i) Sequential,
ii) Parallel, and iii) General dependencies. Due to their simplicity,
the Sequential and Parallel models cannot reflect the complexity of
dependencies between sub-tasks of an XR application. Therefore,
in this paper, we consider a general dependencies model for XR
applications, as illustrated in Figure 7. Each node from 1 to N = |V |
represents a computation task of the application that can be executed
locally or offloaded to the MEC server. Normally, for an XR initiated
application, the first and last steps (i.e. 1 and N ), which receive I/O
data and display the final results on the device screen, respectively,
must be executed at the XR device. XR devices decide for the tasks



Figure 5: System Architecture of a MEC-based Network System

Figure 6: Block diagram of the proposed solution

Figure 7: Example of a general dependencies model for XR
application computation tasks

associated with the remaining nodes (i.e. from 2 to N−1) if they will
be offloaded or executed locally. The tasks that are being offloaded
to MEC server is highlighted in blue whereas the pink ones refers to
the tasks that are executed locally at XR devices.

2) Energy Consumption Model: In general, the energy con-
sumption of mobile device can be decomposed into four parts:

• The energy consumption by the local CPU due to local process-
ing, denoted as ϵprocessing .

• The energy consumed by wireless network interface when
uploading to remote servers code source and data of offloaded
tasks, denoted as ϵup.

• The energy consumed by wireless network interface when
downloading task execution results from MEC servers, denoted
as ϵdown

• The energy consumed by wireless network interface when it is
in idle mode. This mode is enabled when the mobile device is
waiting for the execution of offloaded tasks, denoted as ϵidle.



Using the model from [40], [41] and following the previous
considerations, the energy consumption ϵ for task t can be derived
as follows:

ϵt = ϵtup + ϵtdown + ϵtprocessing + ϵtidle. (6)

In case task t is executed locally, we have ϵup = ϵdown = 0.
By summing up, the total energy consumption E of the application

with n tasks is:

E(t) =

n∑
t=1

ϵt. (7)

3) Completion Time: When the computation is executed lo-
cally, it will utilize the computing resources of the mobile device,
including CPU, memory, storage, battery capacity, etc. Denote CPU
cycle frequency as fm, task input-data size as L (bit), computation
workload/intensity X (in CPU cycles per bit), the execution latency
for local processing for task t is:

τ t
local =

LX

fm
. (8)

For the task that is offloaded to the MEC server, the time spent
on transferring data is calculated as follows:

τ t
off = τup + τdown + τqueue + τprocess. (9)

The completion of an application is obtained when the final task
n = |V | is executed. We use T to refer to the processing duration of
all application tasks, plus transmission time to/from the MEC server.

T (t) =

n∑
t=1

(
(1− xt)τ t

local + xtτ t
off

)
, (10)

where xt denotes the offloading decision at time t. xt = 1 refers to
the offloading of the task at time t to a MEC server, and xt = 0
indicates local task execution at the level of the XR device.

In order to meet the strict deadline τmax, we have the condition:
T (t) < τmax.

The utility function that takes into account the energy consumption
and completion time is derived as follows:

U = −(σẼ(t) + (1− σ)T̃ (t)), (11)

where Ẽ(t) and T̃ (t) are energy consumption and completion time
values, after normalization.

C. DRL-based Offloading Algorithm Design
This section presents the algorithm of the DRL-based offloading

scheme for XR devices. First, the problem formulation is described. It
employs the Markov Decision Process (MDP) framework, as follows.

1) STATE SPACE
The state space of the agent (located at XR devices) includes
all possible observations. Each observation is specified by a
tuple ⟨P, E , C⟩, where:

• P = 0, 1, . . . N denotes the set of Application sub-tasks
that are specified as single-chain applications with N
being the number of tasks.

• E denotes the remaining energy of the XR device (ex-
pressed as percentage %)

• C refers to the Channel State Information (CSI), monitored
in the current state.

2) ACTION SPACE
The Action space incorporates |A| available actions that the
agent can perform in a given state. We define the action space
with two values: A = 0, 1, 2 where: 0 and 1 denote local
computing and offloading to MEC server, respectively, and 2
indicates that the device is in idle or waiting states.

3) REWARD FUNCTION
The reward signal is calculated by using eq. (11) to calculate
the feedback of the chosen action for a specific state.

Figure 8: The LSTM based representation network

Figure 8 illustrates the Long Short Term Memory (LSTM) Actor
Critic (AC) based architecture for solving the MDP. LSTM is a
powerful artificial neural network architecture that is widely used
in prediction and classification, such as in time series data [42]. In
this paper, LSTM is used to learn the temporal regularity of states in
terms of RSSI, energy consumption and application sub-task status
due to device mobility. Details of the LSTM AC-based architecture
are described next.

• Representation network incorporates a fully connected (FC)
layer and an LSTM layer. This network is responsible for
detecting the temporal correlation of states. The FC layer takes
the buffer B as input and then feeds the extracted feature
tensor to the LSTM layer. The output of the LSTM layer is
the variation regularity of of states from the last T observation
vectors in the buffer. After T updates, last LSTM cell outputs
a completed representation of the environment ht that is then
used as input for both Actor and Critic networks.

• Actor network comprises one FC layer that takes the output
from the representation network and generates actions for the
current states that is specified by a Softmax function. The output
of Softmax function is a probability of different available actions
π(at|st). Then, the taken action is sampled following π(at|st).

• Critic network estimates value of current state and incorporates
two FC layers. The first FC layer takes the ht from representa-
tion network and extract value-related features. Then, the second
FC layer output the estimated state value V (st)

Algorithm 1 presents the DRLXR scheme in details. θ and w are
Actor and Critic network parameters. We use a buffer B with length
T to concatenate a series of states to feed into the LSTM layer. We
initialize the buffer via running a loop with T iterations to take a
series of states into B. From the beginning of each loop, all states in
the buffer B are concatenated and fed into the representation network.
The output ht is then considered as input of both Critic and Actor
networks. The action at is taken via sampling from the output of the
Actor network and the next state st is then appended into the buffer
B. The output of the Critic network is the estimated value of V (st).
Next, the agent continues to concatenate the data from buffer B to
form another input st+1. The value V (st+1) is then estimated from
the output of Critic network. We calculate the Temporal Difference
(TD) error δ by using equation δ = rt+γV (st+1)−V (st). If αA and
αC are the learning rates of Actor and Critic networks, respectively,
the values of θ and w are updated according to eq. (12) and eq. (13).

The parameters θ for the Actor network and w for the Critic
network are updated based on the following equations:

θ ← θ + αAδ∇lnπ(at|st, θ). (12)



Algorithm 1 Deep Reinforcement Learning based Offloading

1: procedure DRLXR
Initialize Actor network parameters θ, Critic network

parameters w
Initialize an empty replay buffer B of length T
Output Offload decision 0, 1, 2

2: for i = 1 to T do do
Randomly choose an action ai ∈ A and perform ai
The agent takes the next state Oi

Append Oi to buffer B
3: while TRUE do

Concatenate states in the buffer B to form st =
{Ot−T , . . . , Ot−1}

Feed Ot to the representation network and take the
output ht

Feed ht to Critic network and calculate V (st)
Feed ht to Actor network and take π(at|st) and

perform at
The agent receives the reward rt and gets the new

observation Ot

Append Ot to the buffer B
Concatenate observations in the buffer B to form

st+1 = {Ot−T+1, . . . , Ot}
Feed Ot+1 to the representation network and take the

output ht+1

Feed ht+1 to Critic network and calculate V (st+1)
Calculate Temporal Difference (TD) error δ = rt +

γV (st+1)− V (st)
Update θ of the Actor network following eq. (12)
Update w of the Critic network following eq. (13)

Figure 9: Testing topology

w← w + αCδ∇v̂(st,w). (13)

V. PERFORMANCE EVALUATION

This section discusses the validation of our proposed scheme in a
simulation environment under different test scenarios.

A. Experimental Setup
We build our testing environment in Network Simulator NS-3 [43].

Then, we implement the Actor-Critic model on TensorFlow 2.43 and
train the agent on OpenGym AI [44] framework. The computer for

3https://blog.tensorflow.org/2020/12/whats-new-in-tensorflow-24.html

Figure 10: Example of main computation components in the
XR application [45]

Figure 11: General dependency of a XR application

testing is installed with Ubuntu Linux 18.0 LTS and has 32 GB
memory and an Intel Core i7 6th gen processor. In this testing, there
is no need for using a GPU for training. Figure 9 illustrates the
network topology employed for testing. We assume that a number of
mobile XR devices are moving around in an area at walking speed
under the coverage of some MEC servers.

Figure 10 [45] illustrates the computation components of an XR
application. The functionality of the major components is briefly
introduced next.

• Video Source fetches video frames from the camera hardware.
• Renderer renders an overlay on the screen.
• Tracker component processes the camera frames and estimates

the camera position with respect to the world based on a number
of visual feature points. The more feature points we use, the
more stable the tracking. Increased feature points also makes
tracking the camera more robust during sudden movements.

• Mapper creates a model of the world by identifying new feature
points and estimating their position, which can then be used for
tracking.

• ObjectRecognizer tries to recognize known objects in the world
and notifies the Renderer of their 3D position when found.

Depending on the latency requirement and current energy con-
sumption situation, XR device can decide one component is either
executed locally or offloaded to MEC server. For example, Tracker,
Mapper, ObjectRecognizer components can be offloaded to MEC
server whereas Video Source and Renderer computation are executed
locally as illustrated in Figure 10. Based on the relation between
components, we built the dependency model based on DAG, as
illustrated in Figure 11. We assume that multiple applications are
running in parallel in an XR device.

In order to evaluate and compare our proposed schemes to other
algorithms, we use the following metrics:

• Average energy consumption (in Joules) across all devices
• Average total completion time of tasks
We compare our proposed solution DRLXR with the following

baseline algorithms:



Table II: Simulation Setup Details

Parameter Value
Simulation Length 100000 seconds

No. of nodes 5, 10, 15, 20, 30, 40, 50
No. of MEC servers 0, 2, 4, 6, 8, 10, 15

Cell layout Single cell; Radius - 50 meters
WiFi Mode IEEE 802.11ac 2.4/5.0 GHz

Antenna Model Isotropic Antenna Model
WiFi 802.11ac 2.0 Mbps
Walking speed 5km/h

• No-Offloading scheme (NO) [46]: All tasks are handled locally
at devices and all data is received from the network.

• Greedy policy (Greedy): Each task is greedily assigned to the
XR device or a MEC server based on its estimated completion
time.

• Q-Learning method (Q-Learning) [47]: That is a traditional
temporal difference algorithm, which always pursues the largest
reward in the next time step. In addition, Q-Learning always
records rewards in each iteration. When system state or action
spaces are large, this solution tends to use large memory.

• Dynamic RL Scheduling (DRLS) [48]: A reinforcement
learning-based offloading scheme that combines both D2D and
MEC systems.

B. Results Discussion
In all cases, the energy consumption and total completion time

of the Non-Offloading (NO) scheme are unchanged due to the local
execution. We consider this case as the baseline for the other schemes
to compare against.

Figure 12 illustrates the average energy consumption with different
offloading data sizes. We observe that the energy consumption of XR
devices is proportional to the increase in the offloaded data size due
to the energy usage for transmitting and receiving data over the radio
link. When the offloading data size is small (less than 40MB), the
average energy consumption of all cases is similar (experiences slight
differences only). At the breaking point of 80MB, the Greedy method
results are increasing sharply. Although the other schemes perform
more stable, DRLXR has better results with lower energy consumption
of about 150 ×106 Joules in comparison to 160 ×106 Joules and 177
×106 Joules of DRLS and Q-Learning methods, respectively.

Figure 13 and Figure 14 illustrate the average energy consumption
and average total completion time with different numbers of MEC
servers, respectively. It can be observed that the energy consumption
decreases with the increase in the number of MEC servers used.
Initially when there is no MEC server, all schemes consume about 150
(×106 Joules) energy and require 129 s completion time, respectively.
The breaking point appears when number of MEC servers is equal
to 8 and all schemes except NO show stability. Greedy, Q-Learning,
and DRLS methods’ average energy consumption are around 77 ×106
Joules, 75 ×106 Joules and 63 ×106 Joules, respectively, whereas
the result of DRLXR is around 60 ×106 Joules. A similar situation
also occurs at about 8 MEC servers and above related to the results
of the average total completion time. Starting from 130 s, the average
total completion time of all schemes decreases and is kept stable at
70 s, 68 s, 62 s and 60 s for Greedy, Q-learning, DRLS and DRLXR,
respectively. The following are the reasons that explain the benefits of
using DRLXR in comparison with the alternative solutions. In DRLS,
XR devices can offload the computation to other peers via D2D
communications, that lead to higher total energy consumption. On the
other hand, Q-learning does not specify an exploration mechanism,
but a greedy manner and requires all actions be tried infinitely in all
states. Such a mechanism has lower accuracy when making offloading
decisions. Unlike them, DRLXR employs the Actor-Critic method that
specify a full exploration mechanism by the action probabilities of
the Actor. In addition, DRLXR is trained from historical data that
lead to higher accuracy of offloading decisions.

Figure 12: Average energy consumption with various offload-
ing data sizes

Figure 13: Average energy consumption with various number
of MEC servers

Figure 14: Average total completion time with various number
of MEC servers

Finally, the total completion time with different numbers of XR
devices is shown in Figure 15. The number of mobile devices at
each MEC server is randomly generated by a uniform distribution,
and the average total completion time is calculated as a performance
indicator. Greedy and Q-learning methods’ results are similar to those
of the NO scheme for 50 XR devices, with a time completion of
around 127 s. DRLS completion time increases at lower speed due
to the probability of data exchange with other D2D peers. However,
due to the limitation in computation, other XR devices that receive
the offloaded computation from their peers cannot process the large
amounts of data (due to the characteristics of XR applications) in



Figure 15: Average total completion time with various number
of XR devices

a timely manner. On the contrary, XR devices in DRLXR make
offloading decisions with higher accuracy than Q-learning and all
high intensive computation tasks are guaranteed to be processed at
MEC servers and the stringent latency requirements are met. As a
consequence, DRLXR time completion increases at a lower pace and
outperforms other counterparts.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed and designed the Deep Reinforcement
Learning-based Offloading scheme for XR devices (DRLXR) in the
context of a MEC-enabled network environment. A hierarchical net-
work architecture with three levels is considered. The task offloading
problem at the XR device is formulated using DRL. Based on the data
monitored at the XR devices, including radio signal quality, energy
consumption and status of running application, the devices employ
an Actor-Critic method for training and decision making on task
offloading. The proposed DRLXR scheme is evaluated in a simulation
environment and compared against other offloading methods. The
simulation results show how DRLXR outperforms the other solutions
in terms of average energy consumption and total completion time.

Future works will focus on a joint solution that combines the
proposed offloading scheme and resource management at MEC server
under heterogeneous QoS requirements.
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