Computer Networks 254 (2024) 110819

Contents lists available at ScienceDirect

ter
rks

Computer Networks i

journal homepage: www.elsevier.com/locate/comnet

An innovative NSGA-II-based Byzantine Fault Tolerant solution for software
defined network environments
Wagqas Ahmed ?, Nadir Shah ®*, Gabriel-Miro Muntean

2 Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
b School of Electronic Engineering, Dublin City University (DCU), Glasnevin Campus, Dublin 9, Ireland

ARTICLE INFO ABSTRACT

Keywords: Byzantine fault tolerance (BFT) of the control plane in Software Defined Networking (SDN) is achieved by
Byzantine Fault Tolerance (BFT) mapping each switch to 3/ + 1 number of controllers, where f represents the number of faulty controllers
NSGA-II

that can be tolerated at a time. A BFT approach protects the data plane from any potential malicious activity
at the control plane by detecting the inconsistency among the response messages from multiple controllers.
To compute the optimal mapping of switches to the controller, the existing literature does not consider some
important parameters. This paper proposes a novel approach, named NBFT-SDN, that extends an artificial
intelligence algorithm (i.e. NSGA-II) to solve a new formulated multi-objective optimization problem associated
with this mapping. NBFT-SDN considers the very important parameters link reliability and link load along
with switch-to-controller minimum delay, switch-to-controllers maximum reliability, controller-to-controller
minimum delay, minimum link load, minimum hop count, and controller load balancing when mapping the
switches to the controllers in optimum manner. The performance of our proposed approach is evaluated in
comparison to a state-of-art approach using real network traces with network topologies of diverse sizes. Our
proposed approach NBFT-SDN show improved network performance in terms of reliability, delay, hop count,
load balancing and link load.

Link reliability

1. Introduction inter-connectivity and placement to optimize the network performance,
mostly in terms of delay, but also in terms of fault tolerance [2-4].

Software Defined Networking (SDN) enables easy network control Multi-controller architectures often use open source controllers such as
and management by decoupling the control plane from data plane OpenDayLight and ONOS and they rely on consensus algorithm such
and implementing the control plane for all the devices at a logically as RAFT [5] to address state synchronization. RAFT is vulnerable to
central entity, called the SDN controller. The data plane consists of malicious controller attacks, that can inject malicious messages in the

SDN switches that forward data as per the instructions of the SDN con- network. These messages may route the traffic to paths different then
troller. The SDN controller is therefore responsible for the entire data

plane. It allows for an overall view of the entire network and enables
centralized configuration and easy policy enforcement (i.e. centered
at the controller) [1]. This SDN programmable nature allows easier
integration of SDN with other emerging technologies such as Network
Function Virtualization (NFV), Internet of Things (IoT) and Cloud Com-
puting. Despite of its obvious advantages, SDN is vulnerable to Single
Point of Failure (SPoF) of the controller due to software bugs, miss-
configuration or increased data plane requests that overwhelm single
controller to respond quickly. To address these issues, a distributed

the ones computed by legitimate controllers. The RAFT algorithm is
based on a single leader design that can distribute configuration up-
dates to the followers and therefore a malicious leader may inject false
configuration updates and even block correct replies from followers.
This behavior is known as a byzantine failure of nodes and such an
attack can compromise the entire network.

To address this issue (i.e., and make the network perform correctly
even in the case of a controller becoming compromised), byzantine
agreement-based solutions, called byzantine fault tolerant (BFT) ap-

control plane was proposed, where more than one controller manages proaches a}re proposed [6-9]. In a BFT approach, a. switch is mapped
the data plane. The resulting SDN multi-controller architecture solves toa ?ertaln n.umbe.r of controllers (ie. k) The sw1tc.h exchanges the
the scalability problem of SDN and provides fault resilience. However, state information with all k controllers. Similarly, a switch sends a flow
there are several research challenges including in relation to controller setup request to all k controllers. When the switch receives the flow

* Corresponding author.
E-mail address: nadirshah82@gmail.com (N. Shah).

https://doi.org/10.1016/j.comnet.2024.110819

Received 13 June 2024; Received in revised form 18 September 2024; Accepted 18 September 2024

Available online 23 September 2024

1389-1286/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

W. Ahmed et al.

rules (i.e. route information) against a flow setup request from the k
controllers, the switch compares the flow rules. There are two possible
cases: (i) If the switch finds that the flow rules of k controllers are
consistent, then it means none of its k controllers are compromised,
and subsequently installs the flow rules and performs the corresponding
action. (ii) Otherwise, when the switch receives different flow rules
from the k controllers, it identifies the compromised controller based on
a majority rule: the majority of controllers which have the same flow
rules, are considered not compromised, whereas the remaining ones,
are. The switch advertises the compromised controller(s) so that all the
switches assigned to the compromised controller will be disassociated
from it and be associated to existing non-compromised controllers
and/or new controllers. Some existing BFT approaches [6,9,10] map
3f + 1 controllers per switch to tolerate f malicious controllers, while
other approaches [7,8] map f + | primary and f secondary con-
trollers per switch. These are good solutions, but overlook important
performance-related aspects like the link reliability and congestion
delay in their switch-controller mapping process.

In SDN, link reliability is a critical concern because of path ad-
justments made by dynamic control plane which are vulnerable to
disruptions [11]. Work in [12] shows that link failure frequency is
every 30 min and these failure can lead to cascading disruptions, that
cause packet loss and increased recovery time [13]. Link failure has a
detrimental impact on applications, especially those involving latency-
sensitive and real-time communications [12,13], and the BFT. Existing
BFT approaches [7-9] overlook the link failure while mapping data
plane switches to controllers. Links are important as they carry data
packets and control packets such as synchronization messages between
controllers in in-band configuration. Moreover, a single link can be a
medium to transport synchronization messages from different 3/ + 1
controller clusters. In such a situation, obtaining a reliable switch-
to-controller mapping has paramount importance because link failure
causes loss of data and control packets and can lead to synchronization
process failure between controller clusters.

To fill the gap of the existing research, we propose a multi-
objective evolutionary computational approach based on the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) for performance-
oriented switch-controller mapping to tolerate byzantine faults.
The proposed approach aims at maximizing the data plane reliability,
minimizing the path delay for switch-to-controller and controller-to-
controller communications, minimizing hop count on the path between
switch-to-controller, minimizing the link load, and maximizing the
load balancing over the controllers. NSGA-II [14] is a multi-objective
optimization algorithm, which ensures the diversity in the population
in order to explore the search solution space efficiently. To the best of
the authors’ knowledge, we are the first to employ the NSGA-II algo-
rithm for controller placement in the context of BFT in SDN, especially
considering link reliability and link load which are totally overlooked
by the existing approaches. The proposed solution was named NSGA-
II-based Byzantine Fault Tolerant approach for SDN (NBFT-SDN) and
the paper’s contributions are described as follows.

» This paper considers the link reliability and link load for con-
trollers placement in the context of BFT in SDN. To the best of
our knowledge these parameters are not used by other existing
approaches.

We formulate controller mapping as a conflicting multi-objective
problem. Mapping solutions obtained via heuristic based ap-
proaches may not be optimal or using solutions based on linear
programming may not be suitable. To the best of our knowledge
we are the first to use the NSGA-II algorithm to address the BFT
mapping problem in SDN.

We modify the random selection process for initial population
generation by suggesting a new approach to generate random
switch-controller mapping population that satisfies the unique
requirement of mapping a switch to 3f+1 controllers. This enable
us to reduce the computation time of the algorithm.

Computer Networks 254 (2024) 110819

+ Additionally, we also modify the cross-over and mutation opera-
tors of NSGA-II in our target scenario to prevent solution becomes
infeasible after crossover between two parents and mutation of
offspring solution.

We include in our algorithm a good percentage of both infea-
sible and feasible solutions in the search space, to prevent the
algorithm to find the best solution from the feasible search space
only.

We evaluate the performance of NBFT-SDN on a wide range
of real small-to-large publicly available typologies [15,16] and
datasets [17], which was not done by existing approaches.

The rest of paper is organized as follows: Section 2 discusses re-
lated works, Section 3 describes the mathematical modeling of the
proposed approach NBFT-SDN, Section 4 presents NBFT-SDN in details
and Section 5 includes the evaluation in comparison with the existing
approaches. In Section 6, we present some challenging scenarios related
to our proposed solution. Finally, Section 7 concludes the paper.

2. Related work

In this section, we give an overview of some existing related works
in order to clearly highlight their limitations and the significance of
our contribution. We divided the existing approaches into different
categories as follows.

2.1. (3f + 1) Controllers

In this section, we describe the BFT solutions where a switch is
mapped to 3/ + 1 number of controllers.

The BFT solution proposed in [18] reduces the computational cost
of message comparison by offloading this process to programmable
switches. That is these programmable switches compare the configu-
ration response sent by the controllers and commit to data plane if
f + 1 identical Messages received. Moreover, the Message ordering in
it is ensured via appending time stamp with each packet. It does not
consider controller state synchronization before committing data plane
update and does not consider the link reliability and the link load while
mapping the switches to controllers.

To extend the solution proposed in [18], the BFT solution in [19]
targets a scenario where some of the controller replicas are slower than
others. Hence it groups the controllers into several groups depending
upon their processing speed. Then it achieves consensus among the
controllers in different groups to increase throughput of the overall
network in the context of BFT. However, this solution does not take
path reliability in mapping a switch to controller and thus does not
avoid/reduce loss of synchronization messages due to link reliability.

The BFT solution in [6] introduces a proxy layer between dis-
tributed control plane and data plane. The proxy layer collects and com-
pares the f + 1 number of identical messages from multiple controllers.
If the messages are consistent, configuration message is committed
on target switch. Otherwise, the faulty controller is identified. This
approach does not quantify the scalability of proxy layer in-terms of
important mapping parameters such as link delay, link reliability and
link load between data plane and control plane.

In the BFT solution proposed in [9], each switch is mapped to 2F,, +
F, + 1 controllers where (F,) represent the controller failures related
to their availability, and (F,,) represents the byzantine failure (Fy,).
Further, to obtain switch-to-controller mapping using integer linear
programming (ILP) [20], this solution considers the delay between
switch and controller, and controller processing capacity as objective
functions. However, this solution does not take link reliability or link
load parameters to find the optimal mapping for switch-to-controller.

The BFT solution proposed in [21] proposes a SDN-tree to hold
message exchange during BFT consensus to deduce faulty and corrupted

W. Ahmed et al.

controllers. However, this solution does not emphasize on parame-
ters like link reliability, link load and load-balancing for required for
switch-controller mapping.

The BFT solution proposed in [10] considers the switch level granu-
larity for byzantine fault tolerance, i.e. every switch decides its number
of faulty controllers (/) to be tolerated by the switch independent from
other switches demand for the BFT. However, this approach does not
consider the link reliability, link load and load balancing among the
controllers in mapping the switch to controllers for BFT.

2.2. (2f + 1) Controllers

In this section, we describe the BFT solutions which map a switch
to 2f + 1 number of controllers.

The BFT solutions proposed in [7,8] map a switch to f + 1 number
of primary and f number of secondary controllers such that mini-
mum number of controllers are used, the switch-to-controller delay
is minimized and the load among the controllers is balanced. Their
proposed approach works as follows. First, a packet-in (a request for
flow rules for a data flow) message is sent to f + 1 primary controllers.
The response from the secondary controllers is only required if any
inconsistency is found in the response from primary controllers. This
BFT solution generates low traffic load, however, the controllers states
are not synchronized. Additionally, it overlooks the link reliability and
the link load in computing the placement for controllers.

2.3. Non-BFT approaches

As we have considered in our proposed approach the reliability of
controller-to-controller path in mapping a switch to controllers. This
is because the controllers exchange the messages with each other for
achieving the consensus among their status. Therefore, in this section,
we describe the existing approaches for the reliability and the con-
sensus among the controllers in multi-controller environment so that
we can differentiate the significance of our proposed approach. These
approaches do not consider the BFT for SDN controllers.

The study in [22] achieves consensus among the controllers via the
PAXOS [23] algorithm. The consensus procedure is carried in virtual
network function (VNF) based to reduce CPU overhead. Each replica
controller offloads its consensus procedure to VNF. Though this study
suggests an approach to achieve the consensus in an efficient way
among the controllers in a multi-controller SDN context, however, it
does not apply in the BFT scenario which has unique requirements.

The authors of [24] propose a solution to compute reliable con-
troller in multi-domain switch-controller arrangement. This solution
relies on heart beat messages to detect failure of particular controllers.
In case a controller is detected as faulty, the switches assigned to
the failed controller will be managed by another controller with high
reliability. By reliability of the controller, the authors mean the number
of times a controller fails. They do not consider the reliability of the
path connecting the switches to their controllers. The study in [25]
proposes a gossip protocol to detect controller failure that relies on
heartbeat messages between nodes. A failure detector estimates the
inter-arrival time of next expected heartbeat and decides the controller
failure if half of the nodes in the cluster agree with the failure of a
particular node. However, the proposed solution does not detect the
byzantine failure of controllers.

Ibrar et al. [17] targets a hybrid SDN, which is a network where SDN
switches are deployed along with legacy switches in the network. The
proposed approach predicts link reliability using a K-NN algorithm [26]
and historical link failure values. The historical values of every link are
represented as a 5-tuple (daytime, linkDowntime, linkUptime, linkDown-
frequency). The reliability value of each link is computed in each time
slot and predicted for a new link-down event. Further, the authors
compute the path from source to destination using a deep reinforce-
ment learning algorithm [27] based on several parameters, such as link

Computer Networks 254 (2024) 110819

bandwidth utilization, link delay, and reliability of the link. The same
authors have extended their previous work [17], and in [28] they have
computed Pareto-optimal paths between IoT devices and Fog servers
using the NSGA-II algorithm.

To summarize the research gaps, a comparison is provided in Ta-
ble 1 to emphasize the selection of different parameters in our pro-
posed approach NBFT-SDN, Next are the limitations of the existing
approaches.

» First, some important parameters like the reliability and utiliza-
tion of paths (a path consists of a number of links) connecting
switches to their corresponding controllers are not considered.
We aim to generate robust controller mapping against diverse
network events [30] so that packet loss is minimized and flow
setup requests traverse less loaded links.

Second, to compute the correct and efficient mapping of switches
to controllers in a BFT context using many parameters, it is an op-
timization problem [31]. To address this, the existing approaches
are mostly using general optimization algorithms like integer
linear programming [7,9,19,29]. Such optimization algorithms
are suitable for single objective optimization and they combine
the multiple objectives into a single objective by using the tech-
niques like normalization. However, this can miss the importance
of some parameters. So these existing optimization algorithms
are not suitable for multi-objective optimization problems. By
considering the link reliability and link load along with other
parameters (mentioned in Table 1 for computing an efficient
mapping of the switches to the controller in the context of BFT)
a multi-objective optimization approach, like NSGA-II [14] is the
best solution.

Third, our target problem involves several objectives as described
in Section 3.2 and constraints 4.3 which are conflicting in nature.
We opt for an Al-based multi-objective approach, like NSGA-
I [14], to simultaneously optimize all the objectives.

Fourth, though some of the existing approaches are evaluated
on real network typologies [9], however, they do not consider
the real traffic data of these typologies. So the results of their
proposed approaches cannot be well judged in the absence of the
real time traffic.

Next, the target problem is presented in the context of an exam-
ple scenario, that represents computation of 3/ + 1 controllers for a
particular data plane switch to tolerate byzantine faults.

3. Byzantine Fault Tolerant (BFT) problem in SDN

As we have explained in Section 2, the existing approaches for BFT
in SDN overlook important features like link reliability and link load
for controller placement. In the following section, we show through an
example scenario the importance of our problem statement.

3.1. Example scenario

First, let us assume a simple network topology consisting of five
switches and six controllers as shown in Fig. 1. The switches are
connected with each other using links. Each link is labeled with differ-
ent weights defining QoS constraints such as link reliability r,, and
transmission delay 7, ;. A switch i can reach any controller via path(s)
having different link reliability and delay values. For instance, the
source switch sw(i) can reach controller C, and Cjy via three different
paths shown in Table 2. Assume each switch needs to map to 3f + 1
controllers for BFT operation, and f = 1, as given in [8,9]. Our
objective is to map the switches to controllers such that the path from
a switch to its corresponding controllers have minimum transmission
delay, maximum reliability and minimum hop count. All of these
objectives are conflicting in nature and we need to find optimal 3f + 1
controllers for each switch in the data plane. Table 2 shows parameter

W. Ahmed et al. Computer Networks 254 (2024) 110819
Table 1
Existing literature comparison with proposed approach (NBFT-SDN)
Property [81] [7] [9] [29] [6] [19] [24] [21] NBFT-SDN
Switch-Controller Assignment v v v v v v v X v
In-band Control Plane v v 4 v v v X X 4
Controller Capacity v v v X X v X X v
Path Delay v v 4 v X v v X v
Path Reliability X X X X X X v X v
Controller Synchronization X X v v v v X v v
BFT (Byzantine Fault Tolerance) v 4 v v 4 4 v 4 4
Load Balancing v v X X X X X X v
Link Load X X X X X X X X v
Al (Artificial Intelligence) X X X X X X X X v
c1 c2 Table 2
ﬁ ﬁ Parameter computation.
Switch i to C, Paths R T HC
sw(j) Plspcq) Pspcq) Plspeg)
_A— C5 pis(sie) = s, 5,01}
swh) I 0 5eohbi 0 _E’ P;’ i Cl) = “"57’ skl’ swer)
D > p3,(s;,¢) = (s,,s/, S5 SgsSpyer) max(0.60,0.50,0.40) min(0.50,2.0,2.5) min(1,3,4)
=0.60 =0.50 =1
e(h.k) e(i,l) Switch i to C, Paths - - -
0.60, 0.50 0.60, 0.40
P15 (s 00) = {81,585, ¢}
sw(l) 2> (8i5¢2) = {8,818, ¢}
A P~ Ccé6 3. (5;.0)) = (sl,sh,s,(,s,,sj,cz) max(0.40,0.40,0.40) min(0.50,1.3,2.5) min(1,2,4)
4 e(k,) 5 Ly =040 =0.50 =1
SW(K) ‘Ij: 0.80, 0.70 { E'
¥ X v v Switch i to C; Paths - - -
| Delay, Reliability 21251, €5) = {81, 850 S10 €3]
1205 €37 = 1915 9ps Ik &3
c3 ca 3. (85, 63) = {57, 8, 8, ¢3} max(0.50,0.40,0.70) min(1.1,1.9,1.5) min(2,3,2)
=0.70 =1.1 =2
E-' Controllers {C1, C2, C3, C4, C5, C6} Switch 7 to C, Paths Z Z _
A < . P15 (siseq) = {55, ¢4}
Switch, h), sw(i), , sw(k), sw(l
I witches {sw(h), sw(i), sw(j), sw(k), sw(l)} Par G5 e) = {spr 505104
D3, (S5.¢4) = {81, 8, 845 51,64) max(0.70,0.40,0.50) min(0.70,1.1,1.9) min(1,2,3)
=0.70 =0.70 =1
Fig. 1. A multi-controller example topology. Switch i to C; Paths - - -
P> (s 00) = {5,587, 60}
Dys (si5¢0) = {318, 5,"‘2]
computation from switch i to all the controllers, thus our aim is to sort P35 (55€2) = {883 54551555 €} m%¥3(340,0»40, 0.40) mi(’)’<§(~)50~ 13,2.5) ””'I'(LZ*“)
optimal 4 among 6 controllers to map switch i. We compute functions _ — _
delay and reliability on all paths i.e. {p,(sy, cs), po(sy, c5), P3(sg.¢5)} and Switch i to C, Paths - - -
map the switches to the controllers such that each switch has the best pi»(s;,60) = ésnslscﬁ}]
. . I i . P> (8i:¢6) = {8587, 5., ¢6
path available (in terms of minimum transmission delay, maximum Do) = 51505106 max(070,0.40,0.50) min0.70.1.1,19) min(1,2.3)

reliability and minimum hop count) to its corresponding controllers.
We shall define these functions in the next section.

For switch i, using our proposed approach we computed 4 con-
trollers {c;,c3,¢4,¢¢} in contrast to other existing solutions like [9]
that rely on a single main objective i.e. delay between switches and
would output a different set of controllers such as {c;,c3.¢,,c5}. This
is because, as we consider link reliability, in this case the path from
sw(i) to ¢, and cg is a much more reliable path than to ¢, and cs. This
selection of controllers will cause at least 30% increase in successful
packet delivery ratio. Additionally, we also assume that all controllers
can reach each other via the same control path as we consider in-band
mode of communication. As our selected controllers synchronize their
states using more reliable paths as compared to the existing approaches
like [9], the packet loss due to the link failure is reduced.

As the problem suggests we have conflicting objectives to solve,
such as switch-to-controller delay minimization, switch-to-controller
reliability maximization, controller-to-controller delay minimization,
and controller-to-controller reliability maximization. Our problem
needs a robust multi-objective algorithm that explores a large search
space in the minimum time. ¢-MOEA can provide a uniformly dis-
tributed set of solutions in the search space. However, its convergence
is sensitive to the choice of value for the ¢ parameter. If the value of
€ is too large, the algorithm may converge into a sub-optimal region
of the search space. If the value of ¢ is small, then it makes the

=0.70 =0.70 =1

algorithm computationally expensive. Similarly, the Particle Swarm
Optimization (PSO) lacks a dedicated mechanism to preserve diversity
in the solution space during exploration. That leads to sub-optimal
convergence before reaching the optimal solution [32]. To address
these issues, NSGA-II introduces diversity in the solution space by
a non-dominated sorting and crowding distance mechanism. Non-
dominated sorting is computationally faster, and sorts the individuals
by their Pareto dominance. The crowding distance mechanism finds the
solutions with less crowded regions (higher crowding distance) in the
search space over the different generations. Even if solutions belong
to the same non-dominating front, solutions are prioritized, i.e. the
solutions with higher crowding distance are considered for the next
generation of the population.

Similarly, other techniques like Integer linear programming (ILP)
used in MORPH [7,9] and the heuristic algorithm used in Pri-Backup
[8] used for switch-to-controller mapping in the context of BFT also
have limitations, as follows. These techniques use only a small subset
of the search space and return sub-optimal solutions [33]. ILP solves
problems involving a single objective and cannot solve non-linear prob-
lems. However, our proposed problem NBFT-SDN involves conflicting
objectives such as maximizing network reliability and minimizing path

W. Ahmed et al.

delay. Optimizing such conflicting objectives involves a high degree of
dispersion of data [33]. An evolutionary algorithm, such as NSGA-II,
finds the solutions dealing with such conflicting objectives and explores
a large search space effectively to find near-optimal solutions that are
distributed across the Pareto-optimal front.

NSGA-II involves elitism, a non-dominated sorting mechanism to
preserve the best-performing solutions for the next generation. It eval-
uates solutions by all objectives and sorts them. This sorting results in
solutions division in different optimal fronts that are better in at least
one objective of the problem and not worse in any other objective.
The proposed approach is formally described in the next Section 3.2,
where we define the mathematical notations, Objective functions, and
Problem constraints regarding our proposed approach NBFT-SDN.

3.2. Problem formulation

Consider we have a network topology consisting of switches and
controllers represented by an undirected graph G(V, E) where the set
V = {v,v,,...,0,} represents the set of switches and controllers. The
set of switches is S = {s,,s,,...,5,]}, and the set of controllers is
C = {¢,¢,...,¢c,} such that ¥V = S uUC. The set E = e en, .. ey}
represents the edges connecting a switch to a switch or a switch to
controller. That is an e¢; = (v;,v;) where either both v; and v, € §
(ie. e; = e(s;,s)), orv; € C and v, € S (ie ¢ = e(c,s)), or v; € S
and v, € C (ie. ¢; = e(s;,). Both v; and v, & C.

Eq. (1) defines the path from a switch s, to a controller ¢, consisting
of a set of edges that connect nodes (switches and the controller).
This path consists of switches and the controller ¢, which can also be
represented as in Eq. (2).

Dispcq) = {e(sy, ;). e(s;, sj), cose(sg sy} 1

Pss (Sps€q) = {Sps Sis+vv s Ss g} 2

where s, is the source switch and s, is the destination switch to which
the controller ¢, is directly connected to. Each switch can reach a
controller by multiple available paths. So a set of paths from s, to ¢,
are represented as:

Prspca) = 1010515 €0)s P2(S1€0)s -2 Py spean) 3

Eq. (3) formulates the finite @ number of paths between switch s,
and controller c;, where p ., represents the gth path. To find the
maximum reliable paths in our proposed solution we followed [17] to
label every link with its respective reliability value, calculated based
on 5 distinct link features collected from the real network operation
against each link. These features include (a) daytime: recorded event
time, (b) linkDowntime: link failure starts time, (c) linkUptime: the time
when the link recovered from failure, (d) linkDownfequency: frequency
of link failure, (e) linkFailureCause: link failure cause. Reliability of the
edge between switch s, and s, is represented as r,), Whereas the set
R, includes the minimum reliability of all edges forming the path from
s, to ¢, in Eq. (4).

Similarly, we define the set R with the maximum reliability of all ¢
paths originating from s, to ¢, in Eq. (5), where Ry, (s TEPTESENLS the
reliability of the gth path. We also compute a path with the maximum
reliability among all ¢ paths originating from s, to c¢; as in Eq. (6),
where the set R* represents the path from switch s, to ¢, with the
maximum reliability.

RP(S;pCd) = min({r@('yh"yi)’ rE(SiA,S,’)’ e re(sksfd)}) 4
Plspca) = max({Rp](xh,cd)s sz(sh,cd)s cees qu,(sh,cd) }) (5)
R* = max {R } (6)

Ve €C Pspeca)

We model the transmission delay of a link as the fraction ¢ of the
time required to send a packet of length /., on the transmission link

Computer Networks 254 (2024) 110819

with the available bandwidth b;;. The transmission delay of an edge
between s, and s; is represented as t,, ,, whereas the set T}, includes
the transmission delay of a path between switch s, and ¢, as shown in
Eq. (7). A path with the minimum transmission delay between s, to ¢,
is represented in Eq. (8). Similarly, we define the set T* that computes
the path with the minimum transmission delay from s, to V¢, € C in
Eq. (9).

Tp(s;,,cd) = min({te(sh,s,)’ te(:,,s])’ ter te(:k,:d) }) (7)
T.vuh,cd) = min({TDl(Shst)’ Ty tspeqy - TD,,s(Shst) H ®
T = } (©)]

v?;lenC{TPthd)

To minimize the link load on overloaded links, we define Eq. (10)
to compute packet-in count on every edge that exists between source
switch s, and destination controller c¢;, and Eq. (11) is defined to
compute the minimum flow count on set of all paths that exists between
switch s, and c;. Set L* in Eq. (12) represents the path that exists
between s, and all controllers ¢; € C with the minimum flow count
from s, to controller c,.

Lp(sh,cd) = min({le(sh.x,-)’ le(s[,s,)’ cee le(sk,xd) }) (10)
pioneg = ULy (5y.c000 Losisperr -+ Ly tspear) an
L* = min {L } 12)

Ve €C Fspeq)

We define the set s that determines the hop count of a path from
the source switch s, to destination controller ¢, in Eq. (13), whereas
Eq. (14) represents the path with the minimum hop count among all the
available paths that exist between s, and c,. To represent the minimum
hop count from s, to Vc; € C, we define the set H in Eq. (15)

hp(sh,cd) = |pgs (spscy)l (13)
P(sp.cy) = min({hﬁl(“hvcd)’ hPZ(Shvcd)’ s hpq.(s;,,cd)}) 14)
H* = min (15)

Ve €C HP(’Y"’C")

In our target scenario, since a switch is managed by multiple
controllers and each configuration message is sent by multiple con-
trollers for achieving consensus among the controllers, the controller-
to-controller path for communication should have the maximum reli-
ability value and minimum delay for the controllers mapping to the
switches. This will result in the lowest communication overhead in the
consensus process. Thus, we define a first constraint function @? that
determines the path from V{c,, ¢, € C} with the minimum transmission
delay. Function @" determines the path with the maximum reliability
among all Y{c,, ¢, € C}. All the symbols used in our proposed approach
are included in Table 3. After formulating our target scenario, we de-
scribe in the following section our proposed NSGA-II-based algorithm.

= R 16
V(cgn,cafxeC}{ Plegep) } (16)
! = i T, 17
v Treyep) a7

4. NBFT-SDN: The proposed algorithm

We propose the new NBFT-SDN technique, a Non-dominated Sorting
Genetic Algorithm II (NSGA-II)-based algorithm to perform efficient
mapping of switches to multi-controllers such as the network tolerates
at least f byzantine faulty controllers. The goal is for each switch
to be mapped to 3f + 1 controllers, such as the path from a switch

W. Ahmed et al.

Table 3
Symbols description.
Symbols Description
G Undirected Network Graph
N Set of Switches i-e S = {s,5,,...5,}
C Set of Controllers i-e C = {c,¢,,...c,}
E Set of edges i-e E = {e;,e,,...e,} where ¢; = e(s;, 5)
P Set of paths from source switch s, to destination controller c,
R, Set representing maximum reliable path in set P
Tp Set of path with minimum transmission delay in set P
Lp Set of path with minimum flow count in set L
R* Maximum reliable path from s, to ¢,
T Path with minimum transmission delay from s, to ¢,
L* Path with minimum hop count from s, to ¢,
H Minimum hop count of path in set P

to its corresponding controller has maximum reliability, minimum
transmission delay, minimum load over the link and minimum hop
count, as indicated in Section 3.2. Therefore, our target problem is a
multi-objective optimization problem.

NSGA-II is a multi-objective optimization algorithm that is com-
monly used to solve problems with multiple, often conflicting, objec-
tives like the ones described in Section 3.2 on Problem Formulation,
where Egs. (14) and (17) are minimization objectives and Eq. (16) in-
cludes a maximization objective. NSGA-II is an evolutionary algorithm
to sort individuals on the basis of dominance. A solution is said to be
dominating other if it is better in at least one objective and not worst
in any remaining objectives. Sorting of individuals in this criteria forms
Pareto-optimal fronts where set of best solution sorted in first non-
dominated front, the second front contains the next best non-dominated
solutions and so on.

Fig. 2 shows the complete integration of NBFT-SDN to the data and
distributed control plane. NBFT-SDN is working at the application layer
of the SDN architecture. The Read Topology module uses link layer dis-
covery protocol (LLDP) [34] to learn underlying network topology, link
delays, and link states to construct a global view of the entire network.
This information is inputted to our proposed NSGA-II algorithm where
each individual is evaluated based on the indicated objectives and con-
straints, as described in Section 4. The Population is refined repeatedly
using non-dominated sorting, crossover and mutation operators until
the optimal switch-controller mapping is obtained. Each controller in
the Control plane gets the list of its assigned switches, which is the
outcome of the proposed NBFT-SDN solution running at the application
layer. At this point, the control plane is configured and can accept the
data plane requests (Packet-In messages) from their assigned switches.
When a client request is received by a switch, it will forward it to its
3f + 1 controller group. For each switch, there would be a controller
cluster that processes the client request. Selection of the controller in
the 3/ + 1 cluster is an output of NBFT-SDN algorithm, meeting all
the objectives and constraints discussed in Section 4.2 and Section 4.3,
respectively. For every data plane request, Synchronization takes place
between 3f + 1 controllers to maintain state consistency. In NBFT-SDN
we obtain reliable switch-controller mapping, unlike for instance in
the approach [9] where the synchronization process may fail if one
malicious node is present among the 3f + 1 nodes. In the last step,
after successful synchronization process, the controller updates their
internal state and sends a computed response to the data plane switch.
The switch compares the control messages to commit the configuration
response to the switch.

Fig. 3 summarizes the steps of the proposed solution NBFT-SDN. To
achieve optimal Switch-controller mapping. This algorithm considers
the Graph (G) nodes (i.e. controller and switches) and edges with
associated reliability and delay attributes. This information is passed
to Step 1 of the algorithm where a random population is generated.
The Random population represents switch mapping to set of 3f + 1
controllers against each switch. Algorithm 1 discusses the generation

Computer Networks 254 (2024) 110819

[) D

. Non Generate
Papilation Evalulate —»|Dominated -»{ offspring ——
Gen Obj Sorti :
orting Population
Resd NBFT-SDN A

Topology (G)
__ A Application Plane 4

ﬁ.ink State | 1 < o %
Statistics || Controller 3 i\\ ¥ Controller 4
: A Controller 5 ,{ Controller 6
Controller 1| *|Controller 2 S— \A'
7 N\
3f+1 Controller Cluster Controller 1+ *'Controller 2
1 1 A
1 f 1 ! 3f+1 Controller Cluster
1 T
kontrol Plane: ! : ' ' 4
¥ ' ¥ : T ——
Message : Message 1 ' Message
Comparison) | |Comparison) ! : Comparison
Request ‘Data Plane _ _1 Data Plane L " ---- Data Plane
Switch 1 Switch 2 Switch 3
In-band S2C Path - - - - »
Data Plane In-band C2C Synchronization Path - - - - -/

Fig. 2. NBFT-SDN Architecture.

mechanism in detail. Step 2 takes the population and computes the
fitness of every individual(/; € Z) as per objective functions and
constraints, formulated in Section 4.2 and Section 4.3. These computed
fitness scores are utilized by step 3 of the algorithm where every
individual is sorted in non-dominated fronts represented as F. All the
individuals placed in the first front f, if they are not dominated by
any other solution in the population, similarly, solutions sorted in the
second front f, are dominated by at least one objective by the solutions
placed in the first front. Algorithm 2 explains this process in detail. Step
4, illustrated Fig. 3 selects individuals(parents) from high-rank fronts
for cross-over operation. If it is required to choose individuals from the
same front, then individuals with the highest crowding distance relative
to the other individuals are selected.

Cross-over operation takes place in step 5 where new offspring are
generated by cross-over between two parent individuals. We use our
modified cross-over operator that eliminates the chances of offspring
being infeasible. This operator enhances the proposed solution to ex-
plore the search space to find the best solution. Step 6 introduces
the mutation operator, which is based on inversion mutation. The
procedure selects two random bits in an individual and swaps their
places. The operator enhances the search space exploration strategy
of NBFT-SDN. We generate 50% offspring population and combine it
with 50% elitist population selected by non-dominated sorting in step
3 to generate a new population. The proposed solution NBFT-SDN
iteratively improves the population until no further improvement is
observed. Next, we describe the step-by-step working of our NBFT-SDN
algorithm as a proposed solution to our problem.

4.1. Step 1: Random initialization of population

We represent our input to the NSGA-II algorithm in the form of
a matrix Z of size m X n where m number of rows correspond to
the switches and »n number of columns correspond to controllers, as
given in Fig. 4. This matrix represents our binary search space. More
specifically, a matrix Z = (0|1)™" represents particular switch mapping
to required number of controllers. One particular individual I shown in
Fig. 4 represents one possible solution from entire search space, where
“1” in a row s; and column ¢; means switch s, is mapped to controller
¢y, and “0” indicates in row s; and column c; that switch s; is not
mapped (i.e. controlled) by controller c;.

I

between individuals

R

Input = Network Graph (G),

consist of Switches(S) and
connecting Edges(e)

|

Generate random initial
population (Z)
{21, 22, Z3,.... Zp}

Evaluate Objectives and
Constraints
R(I;),T(I;),L(I;),

H(I;),0(I;)

Sort Individuals into
Non Dominated Fronts
F= {fy, o, 3,000, i,
f1= {21, 2, Z3}
f100= {Z100: Z21: Z3a}

Tournament Selection:

Select Parents from the
highest rank front,
individuals sharing same
front will be chosen as per
higher crowding distance

/c—"7ﬁ

rossover: Crossover
between two parents at a
crossover point chosen by
random value lies at a
specific interval
(Interval-1<rand<Interval)

Mutation: Two bits of an
individual swapped
randomly at a chosen

interval

Computer Networks 254 (2024) 110819

1

1
Z 1 55
B O

I::>5201111 11

E |
| [ERoNEmEaEE |
S AR 0

Population Generation

Step
2(a,b)

Crossover between Parents

Parent 1 Parent 2
zi[c1[C2[Cs] [Ca] [z2]Ci[Ca]Cs]]Ca
s+ [EEREECRERED| | s, [ol
s, [FONRRERIMEE N [so |1 [1 [o[1] 1
|55 [EIREIRECHENEN s, |1 [1] 1[a]3
| [N | |1 [1 [1[0
S [EIRIRIEIRINBRON] (5. |7 [1 | o] 1]
Offspring 1 Offspring 2
zi[Ci[C2[Cs] [Ca| [z2]ci]Ca]Cs] [Ca
s, [EERECMEREN| [s, [7 |7 o111
S,| 0 1 i N R
E> IS [404 [4 [0 1| [s; [EREREREE
| e fofar| [(N
Spl a1 [0 [1] [s,, [EiE o E RS
22]cq[co[cs] e
|:> S, |1 1 1 1 Inversion Mutation
g 1 1 101 of Offspring
s[4 4 o4 /
111101
Is... [EDEcA o

Fig. 3. NSGA-II based Switch-Controller Mapping Algorithm.

W. Ahmed et al.
Optimal Switch-
controller mapping
achieved Step 1
Step 3
Step 4
Combine 50% Elitist and
50% offspring population to
generate new population
Step 5
A
is 50%
Population <«
Step 6
C1 Co C3 cen
S1 1 1 1 -
so |1 0 1 -
ss |1 1 0 -

Sm |1 0
Fig. 4. Individual representation controller choice

m

Cn

— = O

0

for particular switch.

We generate the whole search space by | |.(3 4 1). From this search
space, we select a random population of Py, ,. However, we note
that the total search space of Z may have an individual where a
switch is mapped to less than 3 f + 1 number of controllers. To address
this problem, we modify the random selection process of NSGA-II by
randomly selecting the initial population of Pg;,, where every switch
is mapped to exactly 3/ + 1 number of controllers by using some
domain knowledge of problem as follows. As a bit pattern representing
controller mapping to specific switch must contains 3f + 1 bits as ‘1’

and rest of bits remain ‘0’, because other all combinations are not desir-
able or considered infeasible. Our this mechanism enforces our initial
population into feasible region and reduces the computation time of
the algorithm as well. Formally, this mechanism for random population
generation of Pg,,, is given in Algorithm 1. Algorithm 1 takes as input
the population size Pg;,,, the set of controllers C and the set of switches
S. It computes the probability of presence of controller for any switch
based on uniformly distributed random number generator. This step is
shown in line 6. At line 11, we ensure for each iteration of controller
assignment to switch, and the number of controllers obtained should
be equal to 3/ + 1.

However, if this condition is not met, the algorithm remains in
the loop for a new controller assignment until the required number of
controllers is assigned to the switch. This algorithm outputs a three-
dimensional matrix Zlff(’,fe representing individuals of random initial
population. This output is passed on to the next module of NSGA-II
as given in Fig. 3, i.e. calculate the Objective Functions, as described in
Section 4.2.

4.2. Step 2a: Calculate the objective functions

As in our target problem, a switch s, is mapped to 3/ +1 controllers,
for switch-to-controller communications, there can be k number of fi-
nite paths. A path can have different values of the link state information
like the values of link reliability, transmission delay and hop count. As

W. Ahmed et al.

Algorithm 1 Random Population Generation Algorithm

Require: C, S, Pg;,, > set of Controllers, Switches and Population Size
Ensure: Z,fi";“
for each n in Pg;,, do
for each x in S do
for each y in C do
while (|Z("X’Vy)| #3f +1 and Z("X,y) #1do
rnd < rand()

if (rnd < 3f + 1/Cont) then

> Random Population

if (y=|C| and |
y<0
end if
end while
end for
end for
end for

n
Z(X’Vy)| <3f+1) then

described in Section 3.2, we model objective functions represented in
Eq. (5) - Eq. (11) to select the most suitable controller that optimizes all
our objectives and constraints from switch Vs, € S to V¢, € C. These
objective functions compute all the required number of controllers to
map each switch to the 3/ + 1 number of controllers. We map the
objective functions described in Section 3.2 to the objective functions
of NSGA-II as follows. After selecting a random population of size Pg;,,
in Section 4.1, we compute the objective functions for each individual
element of the population in our proposed NBFT-SDN as follows.

The first objective is to compute the minimum delay objective func-
tion represented as 7 (I;) for the individual 7; in the random population
of size P, from each switch s, to its corresponding controllers c; € C
for each individual I; as given in Eq. (18).

1, ifr =

! ez,

(FU):vi=1to Py} = {{Tp 1.1l
Siz Plspea) 0, otherwise,

Vs, € S,¢; €C,i=1to Pg,,} (18)

Secondly, in order to choose the controllers with the maximum
reliability path, we compute the second objective function &(I;) rep-
resenting the reliability value of an individual I; as given in Eq. (19)
by considering the reliability value of the path from a switch s, to its
corresponding controller c,.

1, i =1

{RU) Vi =110 Py} = {(Rp, VLl { L ez,

0, otherwise,

Vs, € S,c, €C,i=1to Pg,,} 19

Eq. (20) indicates an individual that computes the minimum flow
count for paths from Vs, € S to controller ¢, € C.

1, ifr’" =1

(ZU) :Vi=1t0 P} = {{Ly,)| { I ez,

0, otherwise,
Vs, € S,¢, € C,i =1to Py} (20)

Eq. (21) indicates the controller arrangement that minimizes the
hop count of paths from s, € .S to ¢, € C.

#U):Vi=1to Py} = {{h g v =
(7)) : Vi=1to Pg;..} = {Cp(%fd}} il 0. otherwise, i €4,

Vs, €S.,c,eC,i=1to Pg,_,} 21

Computer Networks 254 (2024) 110819

After computing these objective functions, we consider the con-
strains (i.e. maximum load balancing, minimum delay for controller-
to-controller communications, and minimum number of controllers) in
Section 4.3.

4.3. Step 2b: Calculation of constraints violation

As we considered a set of constraints defined in Egs. (16) and (17)
in Section 3.2, now we compute the constraints for each individual I;
in the random population of size Pg,,, as follows.

Eq. (22) computes the transmission delay for controller(c,)-to-
controller(c f) communications, this communication is among 3/ + 1
number of controllers ¥{c,,c,} € C mapped to switch s,.

Lo <
{p(I) :Vi=1to Pg, .} = {{Tp YLI4 = ¢ l,eZ,

cqe . i
<y 0, otherwise,

Vs, € S.¥{cy ¢} € Coi =1 to Py, {22)

Similarly, Eq. (23) computes the value of path reliability for the
controller(c,)-to-controller(c) among the 3f + 1 number of controllers
mapped to switch s;,. Selection of particular controllers are dependent
upon the respective bit as 1 in individual I;, as shown in Fig. 4.
Loifnes =

o I, €z,
0, otherwise,

(@) : Vi=110 Py} = {{Ry)Ll {

Vs, € S,V{c;,c,} € C.i=1to Py} (23)

Eq. (24) minimizes the number of controller instances used for
mapping all the switches. A fitness function with this constraint will
prefer the solutions having the minimum number of controller instances
used.

i _ ey, [1AL =1
¢y :Vi=1to Py} = Y {) 1" I, ez,

VspeS Ve,eC 0, otherwise,
Vs, € S,Vc, € C} (24)

Let the set c, be defined as {c,|I;™ = l.c, € C}, where c,
represents the set of all controllers used to map the entire data plan
switches, where Vs, € § is a particular individual. We aim to achieve
load balancing among the controller set c,, in-terms of equal number of
switches assigned to each controller. Since each c,, € C is mapped to
3 f+1 available controllers, we scale load balancing fraction in Eq. (25).

1, ifrr =1
TS 1) < ceillnGf + 1>/|cmn|{ i lez.

Ve €C VspeS 0, otherwise,
Vs, € S,VY¢, € C} (25)

Eq. (23)-Eq. (25) represents our problem as a constrained multi-
objective optimization problem. Individuals of the random population
Pg;,. can be divided into two categories: (i) if an individual I; meets
all these constraints, it is considered as a feasible one and is added
to the set of feasible individuals Uy,,. (i) if an individual, say I,
violates any of the constraints described in Eq. (23) - Eq. (25), then
that individual is added to the set of infeasible individuals U, ;..
Most of the evolutionary algorithms including NSGA-II prefer feasible
solutions over infeasible solutions in the evaluation process (i.e. number
of generations) [14]. Therefore, this guides the evolutionary process to
search and then to converge into the feasible search space. However,
constrained problems have their optimal solutions on the boundaries
between the feasible and infeasible search space, as shown in [35].
Motivated by this, we keep a good percentage of infeasible individuals
into the offspring population until the optimal solution is found. This is
an important aspect introduced in NBFT-SDN and is not present in the
NSGA-II algorithm. This approach is based on [35] and helps keep the
search space around marginal constraints boundary for finding optimal
solutions.

W. Ahmed et al.

We define a set CV(I) = {cv;,cv;,...,cv,) that represents the
constraints violation measure for particular individuals, where cuv,
represents a violation of the kth constraint. For each constraint, we
define the threshold value set TH = {th;,th;, ..., th,} where th is the
threshold value of the kth constraint. CV measure is computed as the
CV number present for any individual, as shown in Eq. (26).

GUﬁ={Efwa%L%4m if cv; > th;,Yev € CV 26)

otherwise

After computing CV, if an individuals I; € Z has ©(I;) # 0, then
I; is added to the set U,,,,- Both of these sets are ranked (in Step
3 in Section 4.4) based on the objectives defined in Section 4.3 and
the additional objective (i.e. CV) to select the best individuals. We
select a proportion of individuals from set Uy,,, and U,,,, into the
population with parameter a. If « percent of individuals are selected
from the feasible set Uyosps the remaining (1 — @) percent of individuals
are selected from the infeasible set U, .. The following step applies
the non-dominated sorting on these individuals.

4.4. Step 3: Non-dominated sorting of individuals

In this section, we will sort individuals in non-dominating fronts
represented as set F/esb {f,./m,fjf”b, . fleP) and Finfesb =
(et pmiesh | frYe?) where F = F/esby Finfeh We obtained 50
percent of the elitist individuals from both fronts with a proportion
defined as a and included in the next generation. This is as we
have conflicting objectives to optimize, and one solution may perform
better for one objective, while others perform better for another. Non-
dominating sorting is used to organize solutions into levels or fronts,
where each front consists of solutions that are not dominated by any
other solution in that front.

Based on the objective functions defined in Section 4.2, individual
I; € Z is said to dominate individual I; € Z if [; is better then I;
in at least one objective. Each individual is compared with all other
solutions. If no other solution dominates it, then it is considered as
part of the first front f; as shown in linel3 and linel5. Similarly,
dominance is checked for all other solutions. If they are not dominated,
they are included in the subsequent fronts. This process continues
until all individuals are sorted in their respective fronts. However,
solutions placed in front 1 have rank 1 and best of among all other
solutions. Once all solutions are placed in fronts from line 1-21 then
we determine individuals for next population set containing at least 50
percent elitist solutions from the current population.

New population set Z is formed by selecting elitist « percentage of
feasible individuals from their highest rank fronts and | — « percentage
of infeasible individuals from their highest rank fronts (ie. f) infesh
Finfeshy If certain solutions are needed to be obtained from any specific
front of the same level, then solutions will be further sorted on the basis
of crowding distance shown in line 26 and the individuals with higher
crowding distance are included in new population (see line 27 and line
35). Set f! defines remaining r individuals to add in population Z. Note
that the crowding distance of set f; computes the Euclidean distance
between the current individual and its neighboring solutions. Assume
f; is sorted based on each objective function, the crowding distance
of an individual is computed by assigning the normalized difference
between its neighboring solutions fitness values as shown in Algorithm
2.

4.5. Step 4: Tournament selection

In this step, we select the pair of individuals from set F for tourna-
ment selection in order to select the best individual as parent. For each
pair of individuals, one becomes the winner, and is called parent, if

Computer Networks 254 (2024) 110819

Algorithm 2 Non-Dominating Sorting

ReqUire: Z’ = Ufexb U Uinfexb! PSize
Ensure: F = F/esbyy Finfesb
while Z' # ¢ do
k<0
for each 1, in Z' do
for each I, in Z' do
if I; # I; then
if I, > I, then
c—c+1
end if
end if
end for
if ¢ =0 then
if I, e Uy, then
ffesb ffe:b

> Random Population
> Non dominate fronts

else
f;(nfesb - f}infesb Uli
end if
end if
end for
Z’ - Z/ an(/esb,ln/esb}
k—k+1
end while

for each fif b in F do
if |ZuV{I € f/*"}| < a(Pg;,,/2) then
Z V{1 e [/
else
fi< CrowdingDistance(flf”b, Obj)
Z « Zuv{I e[}
end if
end for
for each fii"f b in F do
if |Zuv(I e £} < (1 - a)P,,,/2 then
7 < V{I c fiinfc.sb}
else
Sl < CrowdingDistance(fiinf“b, Obj)
Z < ZuvV(I e[}
end if
end for

it belongs to a higher rank front or has a higher crowding distance, if
both solutions came from equal rank fronts.

4.6. Step 5: Crossover

In this step, we apply a single point crossover operator on two
selected parents to produce a pair of offspring individuals. We define
crossover point to chosen at interval i € {1,...,|.S|} such that random
number r lies between interval =! < r < ﬁ Where each interval has
a width represented as w = 1/ |S\ This method of choosing random
point at interval will eliminate chances for the offspring individual to

become infeasible.

4.7. Step 6: Mutation

We define the mutation operator as an inversion of bits associated
with a randomly chosen switch s, corresponding to the interval i €
{1 |S|} A random number r is generated such that it lies between

<r<— SI where each interval has a width represented as w = 1/|S].
Atjter chosen switch, two bits corresponds to the controller mapping are
swapped.

W. Ahmed et al.

09
0.8
0.7

0.

o o
£ Unon

=2

= =
= oMW

(=

Mormalized Delay

[=]

Abvt Surfnet

Deltacom Congentco

Computer Networks 254 (2024) 110819

W MORPH
M NBFT-SDN

Gtsce Panapticon

Data Plane Avg Path Delay

Fig. 5. Average Path delay from Switches to 3/ + 1 Controllers.

Algorithm 3 Sorting of Individuals in front f based on Crowding
Distance
Require: f;, A= {T 1), RU,), #1,),Z,)} v i front, Allobjectives
Ensure: f =1,>1 > >, > sorted individuals based on higher
crowding distance i « 1
1: for each obj; in 4 do
2: Sort(obji(fi)) _
3: d?ibjeoo,d‘;f/eoo,iei+l
4 for each I; in f do
5: d;bj - d;[bj + (fit(;_y) = fit(I;41))/(max(obj;) — min(obj;))
6
7
8

end for
: end for

’
2 f < sort(dyres,y)

5. Performance evaluation

In this section, we first describe the evaluation metrics used to quan-
tify the effectiveness of the proposed approach. We used real network
typologies of different sizes from the internet zoo-topology [15] and
Panopticon network [16] summarized in Table 4. Links are labeled with
sampled data [17] obtained according to the used topology size. We
simulated our algorithm using the Python Networkx [36] library on a
Ubuntul6.04 machine with 16 GB RAM.

5.1. Evaluation metrics

We use the following metrics to compare our proposed algorithm
NBFT-SDN with the existing solutions Pri-Backup [8] and MORPH [9].

« Data plane delay: It measures the average delay incurred on the
paths from all the data plane switches to their corresponding
3f + 1 controllers. Among all delay components (i.e. processing,
queuing, transmission and propagation), the transmission delay is
most relevant in this context, as it depends on the link bandwidth
and the packet size. As the transmission delay is different for
different links because the bandwidth of the links are different,
we select the path whose available bandwidth is maximum. This
will lead to the shortest transmission delay. The transmission
delay is considered in this approach as done in other existing
approaches for BFT in SDN like MORPH [9] and Pri-Backup [7,8]
on byzantine fault tolerance, and for general SDN [28].

Data plane reliability: It is a measure of the average reliability
level of the path from all the data plane switches to their corre-
sponding 3/ +1 controllers. We compute the reliability of links by
technique given in [12], reliability values range between 0 and 1.

10

Table 4

Topology nodes and size.
Topology No. of nodes No. of edges
Abvt 22 68
Surfnet 49 68
Deltacom 113 161
Gtsce 149 193
Cogentco 197 243
Panopticon 415 570

+ Link load by BFT traffic: This parameter measures the effec-
tiveness of minimization of link load by increased traffic load
introduced by making network byzantine fault tolerant.
Controller load balancing - Coefficient of Variation (CoV): It
computes the spread of data around its mean, in our context, we
have switch mapping to 3/ + 1 controllers. We computed it as
a fraction between the average sum of the absolute difference
between actual switch mapping of controllers (x;) to the mean
value (u) as shown in Eq. (27). A ratio near to 0 means that
there is an even load distribution among controllers. We scale CoV
between 0 and 100 for better visualization.

Z,Zl“ [x; = pl
@f +Du

CoV = 27)

Switch-Configuration Delay: It is measured as the total delay
experienced by all data plane switches i.e. time to reach packet-
in to distributed control plane for consensus and configuration
committed by the data plane.

Re-Synchronization Delay against link failures: It is a measure
of synchronization process failure in case of link failures. Our
proposed approach NBFT-SDN considers link reliability as a pa-
rameter to find an optimal mapping. We simulated data plane
traffic and measured the delay incurred due to synchronization
failure.

Packet Congestion Delay experience: This metric measures con-
gestion level induced by mapping switch to 3f + 1 controllers.
We allocate link capacity randomly and measure the data rate on
each link to compute the link utilization.

Fig. 5 shows the comparison of data plane delay for both our
proposed solution NBFT-SDN and MORPH, computed by calculating the
delay from every source switch to its 3 f +1 mapped controllers for each
packet_in request. We measure this delay by running both algorithms
on networking topologies of different sizes. In all experiments, our
proposed solution NBFT-SDN finds the paths with shorter delays as
compared to the existing solution MORPH.

First, NBFT-SDN considers the transmission delay as an objective
and selects the path with the minimum transmission delay. Second, our

W. Ahmed et al.

0.5
0.8
0.7
0

(=1}

0.5
0.4

Nomalized Reliability

0.3

)

]

0.1

Abvt Surfnet

0 || “ ‘I || || ||

Deltacom Congentco

Computer Networks 254 (2024) 110819

W MORPH
W NBFT-SDN

Gtsce Panapticon

Data Plane Avg Path Relaibility

Fig. 6. Average Path Reliability from Switches to 3/ + I Controllers.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Cummulative Probability

54 109 164 218

27

3

e N BF T-5 DN
s MORPH

328 382 437 4%2 547

Link load { Mo. of Pkt-In Meszages)

Fig. 7. Link load under BFT Operation.

proposed solution NBFT-SDN also considers the hop count in mapping
the switch to its corresponding controllers. This also helps in consid-
ering the shorter path for switch to its corresponding controllers. This
is as the proposed algorithm finds the optimal solution by optimizing
the multi-objective fitness function. It is observed that the obtained
switch-controller mapping has significantly reliable paths to carry data
plane messages as shown in Fig. 6. Its reason is that our proposed
solution NBFT-SDN computes the mapping of switches to controllers
such that the path switch-to-controller path has the maximum link
reliability. By considering a more reliable path for mapping a switch
to its corresponding controllers, it reduces the chances of failure and
then subsequently its recovery in case of link failure.

To handle BFT, a significant traffic and computation overhead is
incurred both at the data plane and control plane because it introduces
the communication of a data plane device (ie. the switch) with a
number of replicated control plane, and the communication required
among controllers for achieving the synchronization. Therefore, we
measure the load of packet-in messages from every switch to its mapped
controllers. It has been observed that our proposed solution NBFT-SDN
incurs 14% less traffic load compared to the existing approach proposed
MORPH [9]. This is because NBFT-SDN considers the objective function
of minimum traffic among the controllers in Eq. (12) while computing
the mapping of switches to controllers and the controllers deployment.

Fig. 7 shows a comparison of the Cumulative Density Function
(CDF) of link traffic load of our proposed solution NBFT-SDN and

11

the existing solution MORPH [9]. Moreover, our proposed approach
NBFT-SDN considers the shortest path for communication among the
controllers. Further, when we use reliability as the objective function to
find the path with maximum reliability, our approach performs better
than MORPH [9] because it avoids less reliable links and unnecessary
packet re-transmission that contributed to the link load.

We also evaluate the performance of our proposed approach in
terms load balancing among the controllers in Fig. 8. We measure
controller load balancing as the spread of controller mapping around
the mean value of assigned switches to 3/ + | controllers. This param-
eter ensures a fair accounting of load balancing among controllers. For
example, if all of the controller in set of 3/ + 1 controllers is mapped
with an equal number of switches then we compute CoV as 0, closer
the ratio to O is considered as fairer load distribution. If a controller
is more overloaded, then it will introduce the delay. In Fig. 8(a), 8(b)
and 8(c) we computed CoV for three different fault tolerance settings:
f =1, f =2and f = 3, respectively. Due to fact, that, to tolerate
more byzantine faults, we need more number of controllers to map data
plane switches. For example for f = 3, we need exactly 10 controller
for every switch in the data plane to tolerate 3 malicious controllers,
hence it will require fair load distribution across control plane. In all
experiments, our proposed approach finds better load distribution even
when we have a larger topology in the experiment. The reason that
we consider this load balancing metric is that, by including a specific
constraint in Section 4.3, we evaluate each solution in terms of number
of constraint violations.

W. Ahmed et al.

Computer Networks 254 (2024) 110819

70
=
s} 60
5 50
i
5 40
} -
“S 30 W Pri-Backup
‘5’ W NBFT-5DN
G 20
=
=1
a
0
Abvt SurfMNet DeltaCom Cogentco Gtsce
Topologies
(a)f=1
30
=
§ 5
5
E. 20
5 o5
B M Pri-Backup
‘g 10 W NBFT-S5DN
o
=
& L
=}
a
0
Abvt SurfNet DeltaCom Cogentco Gtsce
Topologies
(b) f=2
25
o
o
S 2
=
o
= 15
g
e
= i0 M Pri-Backup
2 M NBFT-SDN
o
=)
= 5
o
(=]
¥
0

Abvt SurfiNet

Topologies

DeltaCom

Cogentco Gtsce

(c)f=3

Fig. 8. Controller Load Utilization: Coefficient of Variation.

In Fig. 9, we compare the CDF of switch configuration delay of
our proposed solution NBFT-SDN against the existing solution MORPH.
This delay is the time experienced by a switch by sending configuration
message to 3/ + 1 controllers, plus the time to compute the response
at the controllers and plus the time required by the controllers to
synchronize their state with each other, and plus the time required to
commit that response by the controllers to target switch. Our proposed
approach finds the paths with the minimum delay between switch-to-
controller, and controller-to-controller. Additionally, the reliability of
the selected path is maximum, and so our mechanism prevents packet
loss due to link failures. Third, our load balancing among controllers

12

is the best, as almost equal queuing delay at the 3f + 1 controllers is
achieved. Minimizing the delay for controller-to-controller communica-
tion is a critical component to minimize the controllers consensus time
that leads to over all switch configuration delay. This optimization has
improved the throughput of entire network by computing configuration
response in less time. Fig. 9 shows that there is 90% probability that
the switch configuration delay computed by NBFT-SDN is 14.8msec
whereas it is 15.8msec in the case of MORPH.

In our target scenario, we are computing a reliable path from the
data plane switch to 3f + 1 controllers, and also between controllers
for a reliable synchronization process to take place. In the MORPH

131

Computer Networks 254 (2024) 110819

w— NEFT-SDN
S— MORPH

138 145 152

Switch-Configuration Delay (ms)

Fig. 9. Switch configuration delay.

W. Ahmed et al.
1
0.2
208
3 07
3 0.
0
S 06
o
2 05
=
B 04
3
E 03
£
8 o2
0.1
0
97 104 111 118 124
500
450
400
— 350
(8]
% 300
£ 250
= W NBFT-SDN
= 200 W MORPH
2 150 !
100
50
0
100 200 300 400 500 600

Data Plane Request Rate{No. Of Pkt-In Messages)

Fig. 10. Synchronization delay in case of link failure.

approach [9] the paths between switch to controllers and between
controllers are not reliable. We also computed the synchronization
overhead by simulating the data plane traffic randomly and showed
the additional delay incurred due to the loss of packets and the effect
on the synchronization process. Fig. 10 illustrates a cumulative delay
comparison of our proposed approach NBFT-SDN and MORPPH [9].
Data plane requests are randomly generated in the network and the
number of synchronization failures were counted. For every counted
value there is an extra configuration delay including time taken by
the synchronization process. Our approach NBFT-SDN considers the
reliability of the paths and has experienced less packet loss during the
synchronization.

The performance of the proposed approach NBFT-SDN is evaluated
by measuring the packet delay experienced on the network links. We
randomly vary the link capacity(Cp, ;) from 1 kbits/s to 5 kbits/s
on the topology links under test. The average packet size(pkty,.,) is
1400 bytes, a little less than the Maximum Transmission Unit (MTU)
size of 1500 bytes.

We plot the CDF of the congestion delay experienced by packets
on the particular link. Fig. 11 compares the proposed approach NBFT-
SDN and MORPH. Packets experience about 26% less congestion when
our approach is employed. This is because we model link load as one
of the parameters of the multi-objective optimization. In our proposed
approach NBFT-SDN, the congestion value is 0.0133 s or less on 69%
of the links, whereas, in the approach MORPH, this value is measured
on 42% of the links only. Traffic load induced by mapping on a
large number of controllers (3 + 1) to tolerate byzantine faults can
overload links. To overcome this problem, it is important to avoid
congested links. This improves the network throughput in terms of
synchronization and switch configuration delay.

13

s NBFT-SDN
e MORPH

Commulative Probability

0.0399 0.0532 0.0665 00798 00931 0.1064 0.1197 0.133

Congesion Delay (Sec)

Fig. 11. Per packet congestion delay.

6. Discussion

In this section, we present some challenging scenarios related to our
research problem. First, we describe the link failure scenario, that can
impact the performance of the proposed approach NBFT-SDN. Second,
we highlight the synchronization overhead introduced by BFT in the
context of SDN. Third, we explain the effectiveness of the proposed
approach to reduce the re-transmission of packets due to packet lost
during link failure.

6.1. An example of a link failure scenario

Note in Fig. 1 from Section 3 the BFT problem in SDN, after execut-
ing the NSGA-II algorithm, the switch sw(i) is mapped to the controllers
{C,,C;5,C4,Cy} as shown in Fig. 12. Further, suppose a link, say e(s;, s;)
of the path p, (i-e p,, (s;.¢4) = {s;,5;,¢4}) connecting a switch, sw(i) in
this case, to a controller C4, fails, then the switch sw(i) can connect
to C4 via another path p, or p,, as shown in Fig. 12. The path p, is
better than p, in terms of delay from switch sw(i) to sw(l), whereas
path p, is a more reliable path between sw(i) and sw(l). Although path
p, seems better from the sw(i) perspective, if we execute the NSGA-II, it
will result in the following optimum solution {C;,C,, C;,Cs}. So there
are two alternatives as either we should only recompute the path from
the sw(i) to C4 without recomputing the re-mapping of all switches
to all controllers using NSGA-II algorithm, or we should recompute
the re-mapping of all the switches to all the controllers from scratch
using the NSGA-II algorithm. Both of these alternatives have their own
advantages.

W. Ahmed et al.
c1
—=(4
sw(i)

y 7/ A
« e(h,i) e(i,j)
sw(h) P 0.50, 0.60 0.50, 0.40

e(h.k)
0.60, 0.50

A
5
< >

==

C3

e(jl)
0.60, 0.40

E—' Controllers {C1, C2, C3, C4, C5, C6}

_a—
@ISwitches {sw(h), sw(i), sw(j), sw(k), sw(l)}

Fig. 12. A multi-controller example topology(Link Failure).

In the former approach, recalculating a new path from the sw(i)
to C4 would be computationally less expensive, but may not give the
global optimum mapping of switches to controllers with the given
objectives and constraints. In the later alternative, all the switches will
be optimally mapped to the controller based on the given objectives and
constraints using the NSGA-II algorithm. However, this introduces a sig-
nificant computation delay. Additionally, if during this re-computation
process, the switch sw(i) migrates to a new cluster e.g. C,,Cs are
new controllers in cluster {C,,C,,C;,Cs} then the state will not be
synchronized among all controllers. So, in this case, the switch-to-
Controller migration cost in terms of number of transmissions in the
network can be significant. For example, migrated sw(i) may have large
number of data plane requests in comparison with the previous optimal
controller mapping i.e. {C,,Cs,Cy, Cg}.

Moreover, the switch-to-controller mapping is a challenging prob-
lem for variable link delays, link failures, and data plane traffic. First,
link congestion is a common problem in computer networks and it
is observed on the router/switch interconnect. Second, link failures
can disrupt the byzantine fault tolerance in terms of a failure of the
synchronization process that leads to excessive packet re-transmission
to tolerate more than one byzantine fault. Third, data plane traffic
is also highly variable in production environments where the number
of users and their usage traffic have diverse service level agreements.
The dynamic nature of these three parameters may degrade the perfor-
mance of the network if switches are statically mapped to controller
using an optimization algorithm. However, obtaining new optimal
solutions after any change in these parameters will determine frequent
recomputing of the switch-to-controller remapping, and thus it is com-
putationally expensive. Moreover, such frequent recomputing of the
mapping of switches to controllers introduces a control plane scalability
problem.

6.2. Controllers synchronization overhead

Our proposed solution maps each switch to 3 f+1 controllers, where
f is the number of byzantine faults being tolerated. Each data plane
request packet is forwarded to 3 f+1 controllers, where synchronization
between controllers takes place in a series of steps, as shown in Fig. 13
and already used by the existing approach [19]. In the first phase (Re-
quest), the data plane request is being forwarded to 3f + 1 controllers.
In the second stage (Prepare), every controller multicast its received
request to other controllers to enforce the execution order of the client

14

Computer Networks 254 (2024) 110819

request. In the Commit phase, controllers independently execute client
requests to find the responses and multicast the computed responses to
other controllers in the 3f+1 cluster. In the last stage, each controller
sends its response to the client to commit the configuration response.
For the configuration message to be successfully committed to the
switch, it is necessary to find at least 2f + 1 identical messages in the
reply phase. Thus the number of tolerated byzantine faults must be f.
This process attempts to ensure consistency and synchronization among
the controllers. However, some inconsistency due to link failure may
still occur as discussed next.

To maintain the synchronization between 3f + 1 controllers, all
controllers must have the same global view of the network to compute
an identical response. Link failure can cause the network’s global view
to be inconsistent. For example, the control plane is in the process of
computing a response for resource reservation requests from the data
plane. Assume the path p, is their consistent output, however, due to
the link failure of the same path, one or a few of the controllers may
not get this change in time. As a result, those controllers which have
received the link failure event timely compute a different path (e.g. path
p,) for resource reservation. However, path p, will be computed by a
controller that did not receive a link failure event within the threshold.
Since in our target scenario we have 3 f + 1 controllers mapped to each
switch, We still compute consistent response if one controller may not
get a link failure message because 2/ + 1 controllers remain consistent
as shown in Fig. 13. However, if more than one controller out of four
controllers (3f + 1, wheref = 1) did not receive a failure event then
the consensus will not be reached for path computation. In Fig. 13 we
have Controller 4 as a malicious controller (or maybe in an inconsistent
state) that may not get a link failure message and compute a malicious
response. Though this link failure can cause an inconsistency among the
controllers, therefore, our proposed approach uses the path with the
maximum link reliability for the switch-to-controller communication,
and maps the switches to the controllers using the maximum link
reliability as one of the objectives along with the other objectives.

6.3. Re-transmission of packets due to link failure

Re-transmission occurs in the network frequently due to the loss of
packets during communication. The following example explains link
failure and re-transmission of data in the context of BFT in SDN. As-
sume, we have already computed optimal switch-to-controller mapping
using the NSGA-II algorithm in Fig. 1 from Section 3 where switch sw(i)
is mapped to 3f + 1 controllers (ie. {C,,Cs,Cy4,Cg}). To compute a
response against a data plane request, sw(i) must communicate with
all its mapped controllers via a reliable path. Suppose, the link between
sw(i) and sw(l) is failed (i.e. e(i,!)) during communication as shown in
Fig. 12 (Section 6.1). Due to this failure, the data packets are lost at
the data link and routing layer. In SDN, switches and controllers com-
municate using OpenFlow protocol [37]. OpenFlow is an application
layer protocol that uses the Transmission Control Protocol (TCP) for the
reliable delivery of packets. The loss of packets due to the link failure is
detected at the TCP layer of the switch/controller, which re-transmits
them. This re-transmission of data packets occurs frequently due to link
failures and can overload other paths.

Moreover, for BFT in SDN, each switch is mapped to minimum 3 f+1
controllers. In this scenario, links are shared to carry data packets from
other switches and controllers as well. Link failure in such cases causes
link congestion [38] and impacts the available bandwidth of other
available links. To reduce the unnecessary re-transmission of data pack-
ets, we handle this situation in two ways. First, we used link reliability
as an objective function defined in Section 4.2 to maximize it, so that
we find a path for switch-to-controller communication, and between
controllers with the maximum reliability value. This ensures the lowest
packet loss, leading to the fewest re-transmission of data packets. Sec-
ond, we reduce the load on congested links by computing link load as

W. Ahmed et al.

Computer Networks 254 (2024) 110819

Identical Response (2f+1)
Malicious Response (f = 1)
Commit

Request Prepare g Reply
Data plane £
Controller 1 ////
Controller 2 \\\ ///
Controller 3
Malicious \ /
Controller 4
Data plane Synchronization Correct ™ Malicious
Request | Messages | Response Response

Fig. 13. Controller Synchronization in presence of (f=1) malicious (or inconsistent) node.

¢ c2
-' -'
~ BV, , Pki(hghy) PktInCount(e(ih)=5 ENE
= = —> !
ET | T;—‘ Pkt(iy) sw(i) / |5W(J)
e — <« v y / C5
A e(h,i) A e(i,j) 44 ——
swih) M@K 0.50,0.60 POK 0.50,0.40 _ PON B
“4
e(h,k) g e(j,l)
0.60,0.50 |5 0.60, 0.40
= Pkt(hs)
Pkt(ig) sw(l) —>
y _ / Yy /7 C6
swik e(k,) -'
(k) 0.80, 0.70 = =]
2 o ol
= - 2 Pki(is)
L\’i Delay, Reliability ;3 3)
_a— — = Fkt(hy)
== =
c3 c4

Pkt(i4) = Pkt_In from sw(i)
Pkt(h4) = Pkt_In from sw(h)

E-f Controllers {C1, C2, C3, C4, C5, C6}

_a—
EEEISwitches {sw(h), sw(i), sw(j), sw(k), sw(l)}

Fig. 14. Link load due to packet-in messages.

an objective function to minimize it. Our proposed solution NBFT-SDN
avoids congested links and enables packets to be transmitted through
less loaded links. This is because BFT operation involves mapping of
data plane switches to a large number of 3/ + 1 controllers. Further,
synchronization between 3/ + 1 controllers increases the number of
messages exchanged between switch and controllers to commit a single
packet-in response. We explain the computation of link load by an
example scenario in Fig. 14.

We obtain the switch-controller mapping using NBFT-SDN and this
algorithm iteratively evaluates the individuals by conflicting objective
functions and constraints as defined in Sections 4.2 and 4.3. The link
load is one of the objectives minimized in NBFT-SDN. The figure shows
our concept of excessive link load in the case of making network
Byzantine Fault Tolerant, and computing link load over the single link
i.e. e(i,]). The switches sw(i) and sw(h) are mapped to controller list
{C},C5,Cy4,Cg}. The data plane switches such as sw(i) and sw(h) send
packets towards all the 3f + 1 controllers, link e(i, /) shows the flow of
three packets from sw(i) and two packets from sw(h), making the total
count to five on this link. Similarly, we counted all the packet messages
on each link and computed CDF function in Fig. 7 (Section 5). This

15

figure shows the percentage of less loaded links in comparison to the
alternative approach MORPH [9].

Al algorithms [39-41] are the most appropriate for predicting link
reliability dynamically over discrete time intervals before switch-to-
controller mapping. In this way we have prior knowledge of link
reliability before the switch-to-controller mapping. Further, mapping
of all switches to all the controllers using the NSGA-II algorithm based
on the given objectives and constraints can be performed in advance
before the link failure occurs. So, when the link failure occurs, we
remap the switches to controllers for BET as per the output of the NSGA-
II algorithm. This helps save the computation time taken by the NSGA-II
algorithm in case of link failure improving the system’s response time
significantly.

However, despite its advantages, predicting link reliability before
switch-to-controller mapping using an Al algorithm has some overhead
due to several factors. First, modern Al algorithms [42] require the
existence of powerful computational resources like hardware acceler-
ators [43] and Graphical Processing Units (GPU) [44] to train on large
data. These accelerators have upfront costs and take significant time
to train the model to make accurate predictions. They use parallelism

W. Ahmed et al.

to increase throughput against a CPU that is 100 times slower. Real
network topology has hundreds of switches and in order to manage all
these switches we need a distributed control plane for scalability and
BFT. This type of network contains hundreds of paths that can exist
between one source (switch) to a destination (controller). Each path
has a distinct reliability value and an Al algorithm must be trained on
all such paths with accurate reliability values.

Second, Al algorithms do not have 100% accuracy and may result
in inaccurate predictions. For example, in our scenario, an Al algorithm
can predict a most reliable link as a less reliable link. Similarly, an Al
algorithm can predict a less reliable link as the most reliable. This is
termed as False Positive (FP). In this case, our proposed approach will
use this link for switch-to-controller mapping by assuming that this link
is the most reliable and will not fail. However, as the link is less reliable,
so this link will fail. When it fails, then the concerned switch will detect
it and then our proposed will compute the remapping the switch-to-
controller, and then will reperform the switch-to-controller mapping.
During this time of remapping, the performance of switch-to-controller
communication will be degraded. This is another effect of employing an
Al algorithm. The primary cause of FP and FN in the prediction made by
the Al algorithm can be a bias in the training data [45,46]. For example,
training data contains imbalanced samples of positive (reliable) and
negative (unreliable) paths.

Third, real networks are changing over time for example a reliable
link can become unreliable due to congestion or link failure due to
hardware malfunction. An Al algorithm [26,42] trained on specific data
may recognize this event as per its seen samples during training and
predict this path as a reliable one from switch-to-controller. This would
result in further loss of data and synchronization packets.

7. Conclusions and future work

In this paper, we proposed a novel approach NBFT-SDN to tolerate
/ number of faulty controllers in the context of BFT for SDN. Along
with parameters used in the existing literature, our proposed approach
used some new parameters (i.e. link reliability and link load) and used
a new Al algorithm (NSGA-II) to solve the multi-objective problem
formulated. BFT operation in SDN consumes a significant portion of
the bandwidth of data links in case of link failure that leads to data
re-transmission, and for BFT control traffic, particularly for the in-band
mode of network operation. Since BFT in SDN requires 3 f+1 controllers
to map for each switch, we cannot decrease this transmission overhead
by BFT algorithm requirement. However, our approach NBFT-SDN
avoids less reliable and congested links during the switch-to-controller
mapping such that the traffic overhead is reduced in the network.
The results showed that NBFT-SDN-based mapping of switches to the
controller results in 10% lower delay and up to 10% improvement in
the average path reliability for the switch-to-controller communication
in comparison with an alternative solution. The proposed approach also
performs better in terms of switch load balancing and minimization of
the link load by up to 10% and 14%, respectively. Future work will
consider the extension of NBFT-SDN in other challenging contexts such
as those of vehicular networking, where Switch-Controller mapping is
challenging problem for variable link delays and data plane traffic. We
would also like to explore the scenario where the traffic load on the
link that causes the congestion (due to queuing delay) is predicted
using a machine learning algorithm. Based on this predicted traffic
load and along with existing objectives and constraints, we would like
to compute the mapping of the switches to the controllers using an
improved version of the NSGA-II algorithm.

CRediT authorship contribution statement
Waqas Ahmed: Writing — review & editing, Writing — original

draft, Validation, Software, Resources, Project administration, Method-
ology, Investigation, Formal analysis, Data curation, Conceptualization.

16

Computer Networks 254 (2024) 110819

Nadir Shah: Writing — review & editing, Writing — original draft,
Visualization, Validation, Supervision, Software, Resources, Project ad-
ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization. Gabriel-Miro Muntean:
Writing — review & editing, Writing — original draft, Visualization,
Validation, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation, Con-
ceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

N. Shah wishes to acknowledge the support of Higher Education
Commission (HEC), Pakistan via the project no. 20-14884/NRPU/
R&D/HEC/2021.

G.-M. Muntean wishes to acknowledge the support of Science Foun-
dation Ireland, Ireland grants 12/RC/2289_P2 (Insight) and 21/FFP-
P/10244 (FRADIS).

References

[1] Yassine Maleh, et al., A comprehensive survey on SDN security: threats,
mitigations, and future directions, J. Reliab. Intell. Environ. 9 (2) (2023)
201-239.

Bassey Isong, et al., Comprehensive review of SDN controller placement
strategies, IEEE Access 8 (2020) 170070-170092.

Murat Karakus, Arjan Durresi, A survey: Control plane scalability issues and
approaches in software-defined networking (SDN), Comput. Netw. 112 (2017)
279-293.

Dan Marconett, S.J. Ben Yoo, Flowbroker: A software-defined network controller
architecture for multi-domain brokering and reputation, J. Netw. Syst. Manage.
23 (2) (2015) 328-359.

Diego Ongaro, John Ousterhout, In search of an understandable consensus
algorithm, in: 2014 USENIX Annual Technical Conference, Usenix ATC 14, 2014,
pp. 305-319.

Karim ElDefrawy, Tyler Kaczmarek, Byzantine fault tolerant software-defined
networking (SDN) controllers, COMPSAC, in: 2016 IEEE 40th Annual Computer
Software and Applications Conference, vol. 2, IEEE, 2016, pp. 208-213.
Purnima Murali Mohan, Tram Truong-Huu, Mohan Gurusamy, Primary-backup
controller mapping for Byzantine fault tolerance in software defined networks,
in: GLOBECOM 2017-2017 IEEE Global Communications Conference, IEEE, 2017,
pp. 1-7.

Purnima Murali Mohan, Tram Truong-Huu, Mohan Gurusamy, Byzantine-resilient
controller mapping and remapping in software defined networks, IEEE Trans.
Netw. Sci. Eng. 7 (4) (2020) 2714-2729.

Ermin Sakic, Nemanja Derié, Wolfgang Kellerer, MORPH: An adaptive framework
for efficient and Byzantine fault-tolerant SDN control plane, IEEE J. Sel. Areas
Commun. 36 (10) (2018) 2158-2174.

He Li, et al., Byzantine-resilient secure software-defined networks with multiple
controllers in cloud, IEEE Trans. Cloud Comput. 2 (4) (2014) 436-447.
Cing-Yu Chu, et al., Congestion-aware single link failure recovery in hybrid SDN
networks, in: 2015 IEEE Conference on Computer Communications, INFOCOM,
IEEE, 2015, pp. 1086-1094.

Muhammad Ibrar, et al., Reliability-aware flow distribution algorithm in SDN-
enabled fog computing for smart cities, IEEE Trans. Veh. Technol. 72 (1) (2022)
573-588.

Yaser Al Mtawa, Anwar Haque, Hanan Lutfiyya, Migrating from legacy to
software defined networks: A network reliability perspective, IEEE Trans. Reliab.
70 (4) (2021) 1525-1541.

Kalyanmoy Deb, et al., A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197.

S. Knight, et al., The internet topology zoo, IEEE J. Sel. Areas Commun. 29 (9)
(2011) 1765-1775, http://dx.doi.org/10.1109/JSAC.2011.111002.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

W. Ahmed et al.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Dan Levin, et al., Panopticon: Reaping the {Benefits} of incremental {SDN} de-
ployment in enterprise networks, in: 2014 USENIX Annual Technical Conference,
USENIX ATC 14, 2014, pp. 333-345.

Muhammad Ibrar, et al., IHSF: An intelligent solution for improved performance
of reliable and time-sensitive flows in hybrid SDN-based FC IoT systems, IEEE
Internet Things J. 8 (5) (2020) 3130-3142.

Sol Han, et al., Switch-centric Byzantine fault tolerance mechanism in distributed
software defined networks, IEEE Commun. Lett. 24 (10) (2020) 2236-2239.
Ermin Sakic, Wolfgang Kellerer, BFT protocols for heterogeneous resource allo-
cations in distributed SDN control plane, in: ICC 2019-2019 IEEE International
Conference on Communications, ICC, IEEE, 2019, pp. 1-7.

A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons,
1998.

Chien-Fu Cheng, et al., Reaching consensus with byzantine faulty controllers in
software-defined networks, Wirel. Commun. Mob. Comput. 2021 (2021) 1-9.
Giovanni Venancio, et al.,, VNF-consensus: A virtual network function for
maintaining a consistent distributed software-defined network control plane, Int.
J. Netw. Manage. 31 (3) (2021) e2124.

Leslie Lamport, The part-time parliament, in: Concurrency: The Works of Leslie
Lamport, 2019, pp. 277-317.

Shadi Moazzeni, et al., Improving the reliability of Byzantine fault-tolerant
distributed software-defined networks, Int. J. Commun. Syst. 33 (9) (2020)
e4372.

Ermin Sakic, Wolfgang Kellerer, Decoupling of distributed consensus, failure
detection and agreement in sdn control plane, in: 2020 IFIP Networking
Conference (Networking), IEEE, 2020, pp. 467-475.

Munwar Alj, et al., Semantic-k-NN algorithm: An enhanced version of traditional
k-NN algorithm, Expert Syst. Appl. 151 (2020) 113374.

Volodymyr Mnih, et al., Human-level control through deep reinforcement
learning, Nature 518 (7540) (2015) 529-533.

Aamir Akbar, et al., SDN-enabled adaptive and reliable communication in IoT-
fog environment using machine learning and multiobjective optimization, IEEE
Internet Things J. 8 (5) (2020) 3057-3065.

Ermin Sakic, et al.,, P4BFT: Hardware-accelerated Byzantine-resilient network
control plane, in: 2019 IEEE Global Communications Conference, GLOBECOM,
IEEE, 2019, pp. 1-7.

Suhail Ahmad, Ajaz Hussain Mir, Scalability, consistency, reliability and security
in SDN controllers: a survey of diverse SDN controllers, J. Netw. Syst. Manage.
29 (2021) 1-59.

Songbai Liu, et al., A survey on learnable evolutionary algorithms for scalable
multiobjective optimization, IEEE Trans. Evol. Comput. (2023).

Faezeh Pasandideh, et al.,, Topology management for flying ad hoc networks
based on particle swarm optimization and software-defined networking, Wirel.
Netw. (2022) 1-16.

Vahid Ahmadi, et al., A hybrid NSGA-II for solving multiobjective controller
placement in SDN, in: 2015 2nd International Conference on Knowledge-Based
Engineering and Innovation, KBEI, IEEE, 2015, pp. 663-669.

Ahmed Binsahaq, Tarek R. Sheltami, Khaled Salah, A survey on autonomic
provisioning and management of QoS in SDN networks, IEEE Access 7 (2019)
73384-73435.

Tapabrata Ray, et al., Infeasibility driven evolutionary algorithm for constrained
optimization, Constr.-Handl. Evol. Optim. (2009) 145-165.

Aric Hagberg, Pieter Swart, Daniel S. Chult, Exploring Network Structure,
Dynamics, and Function Using NetworkX, Tech. Rep., Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

Birglang Bargayary, Nabajyoti Medhi, SDBlock-IoT: A blockchain-enabled
software-defined multicontroller architecture to safeguard OpenFlow tables, J.
Netw. Syst. Manage. 32 (4) (2024) 66.

David Franco, et al., Quantitative measurement of link failure reaction time for
devices with P4-programmable data planes, Telecommun. Syst. 85 (2) (2024)
277-288.

Yi-Ren Chen, et al.,, RL-routing: An SDN routing algorithm based on deep
reinforcement learning, IEEE Trans. Netw. Sci. Eng. 7 (4) (2020) 3185-3199.
Junjie Zhang, et al., CFR-RL: Traffic engineering with reinforcement learning in
SDN, IEEE J. Sel. Areas Commun. 38 (10) (2020) 2249-2259.

17

[41]

[42]

[43]

[44]

[45]

[46]

Computer Networks 254 (2024) 110819

Xuancheng Guo, et al., Deep-reinforcement-learning-based QoS-aware secure
routing for SDN-IoT, IEEE Internet Things J. 7 (7) (2019) 6242-6251.

Ali Malik, et al., Intelligent SDN traffic classification using deep learning: Deep-
SDN, in: 2020 2nd International Conference on Computer Communication and
the Internet, ICCCI, IEEE, 2020, pp. 184-189.

Manar Abu Talib, et al., A systematic literature review on hardware imple-
mentation of artificial intelligence algorithms, J. Supercomput. 77 (2) (2021)
1897-1938.

Muthukumaran Vaithianathan, et al., Comparative study of FPGA and GPU
for high-performance computing and AI, ESP Int. J. Adv. Comput. Technol.
(ESP-IJACT) 1 (1) (2023) 37-46.

Chong Zhang, et al, A cost-sensitive deep belief network for imbalanced
classification, IEEE Trans. Neural Netw. Learn. Syst. 30 (1) (2018) 109-122.
Fang Feng, et al., Using cost-sensitive learning and feature selection algorithms
to improve the performance of imbalanced classification, IEEE Access 8 (2020)
69979-69996.

" Wagqgas Ahmed has been doing Ph.D. from COMSATS Uni-
versity Islamabad, Wah Campus, Pakistan. His interest is in
computer networking and SDN.

Nadir Shah received the B.Sc. and M.Sc. degrees from
Peshawar University, Peshawar, Pakistan, in 2002 and
2005, respectively, the M.S. degree from International
Islamic University, Islamabad, Pakistan, in 2007, all in
computer science, and the Ph.D. degree from Sino-German
Joint Software Institute, Beihang University, Beijing, China.
He was a Lecturer with the Department of Computer
Science, COMSATS Institute of Information Technology,
Abbottabad, Pakistan, from 2007 to 2008. He is currently a
Tenured Professor with the COMSATS University Islamabad,
Wah Campus. He has authored several research papers
in international journals/conferences, such as the ACM
Computing Surveys and the IEEE Communication Letters.
His current research interests include computer networks,
distributed systems, and network security. He is serving in
the editorial board of IEEE Softwarizations, AHWSN, 1JCS,
and MJCS. He has been serving as a Reviewer for sev-
eral journals/conferences, including ICC, INFOCOM, WCNC,
Computer Networks (Elsevier), IEEE Communications Let-
ters, IEEE Communication Magazine, IEEETransactions on
Industrial Informatics, and The Computer Journal.

Gabriel-Miro Muntean (M’04, SM’17, F’23) is Professor
with the School of Electronic Engineering, Dublin City
University (DCU), Ireland, and Co-Director of the DCU
Performance Engineering Laboratory. He has published over
500 papers in top-level international journals and confer-
ences, including 4 authored and 6 edited books. His research
interests include quality, performance, and energy saving
issues related to rich media delivery, technology-enhanced
learning, and other data communications over heteroge-
neous networks. He is an Associate Editor of the IEEE
Transactions on Broadcasting, the Multimedia Communica-
tions Area Editor of the IEEE Communications Surveys and
Tutorials, and chair and reviewer for important international
journals, conferences, and funding agencies.

