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Abstract—Bridging the gap between the Internet of Things and
collaborative robots, the recent advancements in the Internet of
Robotic Things (IoRT) aim at significantly improving production
and operation efficiency and quality. As the scope and complexity
of IoRT continue to expand, involving also very large numbers
of robots, there is a need for employment of innovative solutions
such as federated learning. However, this growing demand is
accompanied by multiple challenges, including threats to data
privacy and model integrity. Besides, the heterogeneity of the
robots and their interaction, multiplies these challenges. In this
paper, we discuss the key concerns of collaborative training
in IoRT, and propose a shuffling-based moving target defense
approach for federated learning in heterogeneous cross-silo
IoRT environments (FedMTD). Based on a hierarchical training
structure with node clustering, FedMTD bounds heterogeneity
by domains, thereby minimizing the learning error and privacy
loss. It also enhances resistance to poisoning attacks through
decentralized credit evaluation. Experimental results show that
FedMTD brings significant improvements in learning perfor-
mance, privacy enhancement, and poisoning resistance.

Index Terms—Internet of robotic things, Federated learning,
Privacy, Moving target defense

I. INTRODUCTION

S a central facet of Industry 5.0, the Internet of Robotic

Things (IoRT) [1] [2] aims to revolutionize manufac-
turing by amalgamating the Internet of Things (IoT), arti-
ficial intelligence, digital twins, human-robot collaboration,
and an array of emerging technologies. Recent advancements
in 6G integrated sensing, computing, and communication
(ISCC) coupled with Artificial Intelligence Generated Content
(AIGC) have equipped the latest generation of robots with
the capability to collaboratively perceive their environment
and make intelligent decisions. In the realm of IoRT, a
multitude of Al-powered services, such as Robotics as a
Service (RaaS), collaborative robots (Cobots), and Robotic
Process Automation (RPA), are thriving. According to the
“Global Opportunity Analysis and Industry Forecast” report
by Allied Market Research, the global IoRT market is antici-
pated to reach $2,461.9 billion by 2031, exhibiting a remark-
able compound annual growth rate (CAGR) of 28.6% from
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2022 to 2031 (https://www.alliedmarketresearch.com/internet-
of-robotic-things-market-A31839 [Accessed Sep. 8, 2023]).
To accommodate the highly diversified and increasingly
complex demands involving growing numbers of robots, em-
ployment of innovative solutions such as federated learning
(FL) is in urgent need [3]. As shown in Figure 1, taking
supervisory control and data acquisition (SCADA) system
as an example, geographically dispersed edge robot (ER)
nodes, each equipped with optical character recognition (OCR)
camera modules from multiple factories, can collaboratively
train an intelligent model to facilitate product sorting. Never-
theless, the following long-neglected yet important concerns
still hinder the wide deployments of FL in IoRT environments:

o High heterogeneity: ERs from varied factories or even
production lines can present distinct data distributions [3].

o Privacy breach: Although FL avoids direct exposure of
local data, new attack paradigms can still restore original
data from uploaded gradients or public models [4].

o Stealthy poisoning: Due to the unpredictability of het-
erogeneous ERs, malicious nodes can “poison” the model
with crafted uploads and manipulate the FL process [5].

Moreover, the distinctive characteristics of heterogeneous
cross-silo IoRT, setting it apart from other FL scenarios,
further complicate and necessitate specialized design consid-
erations for FL security measures tailored to this context:

o Despite variations at the global scale, micro-level similar-
ities also exist, exemplified by robots engaged in similar
tasks possibly having datasets with closely approximated
distributions. These resemblances can enhance learning
performance even in heterogeneous environments.

o Likewise, most privacy obfuscation technologies focus
on client-level differential privacy (DP) [6], which may
introduce substantial redundant privacy loss due to high
heterogeneity. In light of this, defenders can revisit pri-
vacy protection design to eliminate redundant loss [7].

¢ The advent of ISCC technologies provides ERs with great
processing ability. In contrast, the computing and com-
munication resources of the cloud server are relatively
limited [8]. Hence, edge-assisted credit evaluation can
improve both efficiency and accuracy, while avoiding
potential bottlenecks for IoRT.

Taking the aforementioned characteristics of IoRT into
account, in this paper, we attempt to jointly address the plu-
ralistic security-related concerns and develop a moving target
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defense (MTD) approach for FL. with Heterogeneous Cross-
Silo IoRT, named FedMTD. By actively shuffling participant
groups and changing the attack surface during the FL training
process, FedMTD can protect data privacy and model integrity
at the same time. The contributions are four-fold:

o To the best of our knowledge, we provide the first MTD
solution for federated learning in heterogeneous cross-
silo IoRT environments. By constructing a lightweight
hierarchical clustering structure, privacy and integrity
could be jointly ensured without too many compatibility
requirements or excessively high overhead.

During the iterative training process, FedMTD inte-
grates a lightweight cluster-specific sample-level privacy-
enhanced mechanism. Compared to widely-adopted
client-level privacy obfuscation methods, the accuracy
loss is significantly limited, especially for highly hetero-
geneous [oRT environments.

To safeguard the integrity of FL tasks without compro-
mising privacy, we further design a credit-based defense
strategy, which can accurately thwart multiple poisoning
attacks from stealthy malicious participants.

Finally, the results of a series of experiments highlight
the performance of FedMTD in terms of convergence,
model accuracy, privacy cost, and poisoning mitigation
in heterogeneous cross-silo scenarios.

The rest of this paper is structured as follows: the key
problems of IoRT are analyzed in Section II. The framework
of the proposed FedMTD is described in Section III, where the
detailed description of cooperative training, privacy enhance-
ment, and poisoning resistance are illustrated, respectively.
The experimental results are presented in Section IV. Finally,
Section V concludes this paper and briefly discusses the future
directions.

II. FEDERATED LEARNING IN IORT: KEY PROBLEMS
A. Heterogeneity

As IoRT continues to expand, it becomes evident that edge
robots are prone to exhibit highly diverse distributions. This
diversity can result in accuracy drop or convergence failure.

In recognition of this challenge, a straightforward solution
is personalized FL, which reconciles divergence between edge
participants and central aggregator by adding local-adaptive

Federated learning in heterogeneous cross-silo IoRT environments with privacy leakage and covert poisoning attacks

regularization term into the iterative training process [9].
PWFL [3] proposes a comprehensive task scheduling algo-
rithm that employs proximal policy optimization to find an
optimal task scheduling policy in automated warehouses with
heterogeneous autonomous robotic systems. SCAFFOLD [10]
further adopts variance reduction to correct client drift derived
from non-iid data distributions.

Cluster-based FL is another approach to alleviate the per-
formance degradation caused by heterogeneity. Aggregators
can adopt pairwise cosine similarity between gradients, data
distribution distance, and other criteria to group participants
and minimize the inner variance [8].

However, despite substantial research efforts invested in
heterogeneous federated learning, there remains room for
improvement. As shown in figure 3 (b), most existing methods
compromise the convergence speed for better learning accu-
racy. As edge robots are distributed discretely over a large area,
the number of communication rounds contributes the most to
the efficiency bottleneck. Hence, in this paper, the cross-silo
FL training process should be task-customizable, efficient, and
accurate, even in highly heterogeneous IoRT environments.

B. Privacy

By exchanging global models and local gradients, FL avoids
over-the-air transmission of sensitive data and thus signifi-
cantly protects the privacy of participants. Hence, emerging
privacy-focused attacks, such as deep leakage and gradient
inversion, have revealed that sophisticated adversaries could
still restore data samples and exploit sensitive information.
Owing to the relatively small processing and communication
overhead, differential privacy has emerged as a promising
lightweight solution for IoRT environments. For example,
DPFL [6] designs a novel differential private model with
adaptive gradient descent algorithm. NbAFL [11] further pro-
poses client random scheduling strategy and duplex privacy
obfuscation to provide tight and provable privacy guarantees.
To ensure an anonymized local model update and counter poi-
soning attacks, PPAFL[4] integrates with an Autoencoder and
a Gaussian mechanism for smart mobile robotic applications.

Nevertheless, existing approaches often overlook the inher-
ent similarities between edge robots, potentially resulting in
redundant privacy obfuscation measures. This oversight can



lead to significant performance degradation. Therefore, we
attempt to adjust the privacy definition by introducing cluster-
specific sample-level DP, to better depict privacy needs.

C. Integrity

In the realm of countering poisoning attacks and preserving
the integrity of FL, two predominant strategies have emerged:
mitigation and detection.

Mitigation-based strategies focus on reducing the impact of
malicious actors by modifying aggregation rules. For instance,
the Krum [5] algorithm selects a subset of gradients based on
Euclidean distance, but these methods are unable to entirely
remove attackers from the distributed learning process.

In contrast, detection-based approaches evaluate uploaded
gradients to eliminate identified malicious nodes. Effective
methods include using validation datasets (e.g., Zeno [12]),
employing a feedback loop (e.g., BaFFLe [13], or utilizing
pre-trained anomaly detection models like autoencoders [14].

It’s worth noting that these methods are often designed for
homogeneous FL scenarios with identical data distributions. In
heterogeneous environments, distinguishing deliberate attacks,
such as backdoor clients, from benign participants under
uniform rules can prove challenging, making these methods
less effective.

III. THE PROPOSED FEDMTD FRAMEWORK

A. FedMTD overview

In this section, we will introduce the main framework of
FedMTD. Assuming there is a Parameter Server S and multi-
ple factories collaborating to train a universal global model in
the IoRT environment. All N ERs form the global robot set
R ={FER;,...,ERy}, and each needs to identify local data
with set D = {Ds,..., Dx}. The normalized distribution of
local data categories for E'R; can be represented as P;. ERs
from different factories and production lines have different
data distributions, while ERs with the same functionality
have similar data distributions. In the cross-silo environment
mentioned above, we designed FedMTD as a mobile target
defense technology, integrating three modules to jointly solve
the heterogeneity, privacy, and security issues of FL. The initial
step involves the implementation of a cluster-based scheme,
facilitating ER node shuffling—a critical element that under-
pins subsequent heterogeneous training, privacy protection,
and poisoning resistance. ER nodes undergo clustering and
regrouping, assuming the role of virtual nodes (VN) for partic-
ipation in batch-based FL training. Similar to LSSM, MOTAG,
and other MTDs [15], each ER node involved in collaborative
learning tasks is assigned a dynamically changing credit value.
This value serves the purpose of identifying compromised
nodes during periodic regrouping and FL interactions. Con-
currently, a modified differential privacy noisy obfuscation
technique is introduced to enhance privacy guarantees. To
be specific, the FedMTD framework comprises the following
three core components:

B. Hierarchical cross-silo training process

To provide accurate and fast convergence performance for
FL tasks among a mass of heterogeneous and cross-silo edge
robots, we first realize the hierarchical cross-silo training
process (HCTP) as the foundation of FedMTD. Besides, HCTP
also facilitates our scheme to achieve tighter privacy loss and
stronger poisoning resistance, which will be illustrated in the
following two subsections, respectively.

As shown in figure 2, the workflow of proposed hierarchical
cross-silo FL training for heterogeneous IoRT can be explained
as follows:

Step 1 (Data acquisition): As depicted in figure 1, ER
nodes yield and collect data samples through equipped sensors.

Step 2 (Local training): At each round’s beginning, par-
ticipant ERs calculate gradients with local datasets.

Step 3 (Similarity-based edge robot clustering): Then,
heterogeneous ER nodes are divided into nearly homogeneous
clusters, to facilitate privacy enhancement and active defense.

Step 4 (Virtual participant node construction): Next,
based on specific requirements of current FL task, the com-
position of VN is determined. Subsequently, ER nodes are
randomly selected to construct multiple VNs.

Step 5 (Global aggregation among virtual nodes): Finally,
the parameter server aggregates the uploads from all VNs and
generates the global model.

Steps 1 and 2 align with the vanilla FL process and require
no further elaboration. The subsequent discussion will focus
primarily on the detailed implementation and design rationale
for steps 3, 4, and 5.

1) Similarity-based edge robot clustering: Firstly, consid-
ering the high heterogeneity among participants, edge nodes
are divided into different clusters based on pairwise similarity
to avoid hindering the convergence performance of FL tasks.
The similarity between ER nodes can be quantified based
on gradient distance, gradient direction, or data distribution
[8]. For simplicity, unless indicated otherwise, we only adopt
data distribution in the experimental part of this paper. The
similarity between distributions is denoted by the L; norm.

2) Virtual participant node construction: Once ER clus-
ters are determined, the system selects nodes to construct
VN5 that are closest to the task objectives. As illustrated in
figure 2, ER nodes with different data distributions can be
combined to minimize the difference between their general
data distributions and the target data distribution, subject to
multiple constraints (the maximum number of nodes in each
cluster). It’s evidently an NP-hard problem. The problem can
be transformed into a multi-dimensional knapsack problem
with upper-bound constraints, further simplified into a 0-1 inte-
ger programming problem through binary splitting. Therefore,
FedMTD employs heuristic algorithms for efficient solving.

As shown in figure 2, by building VNs close to the global
data distribution and isomorphic to each other, and conducting
the global aggregation of FL in VN as a unit, HCTP handles
the heterogeneity problem in federated learning. Specifically,
large-scale FL tasks are difficult to converge because of the
huge number of ERs and their heterogeneity in the IOR en-
vironment. HCTP reduces the aggregation range of heteroge-
neous ERs to small batch VN, alleviates the gradient conflict,
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Fig. 2. Design of Hierarchical cross-silo training process for heterogeneous IoRT

and realizes the effective convergence of the FL models. VNs
not only have an approximate global data distribution but
also have similar gradient directions. Therefore, the global
aggregation process of hierarchical cross-silo training will
become the aggregation process between isomorphic VNs to
achieve the safe and robust aggregation of global models,
so as to solve the problem of FL heterogeneity in the IoRT
environment.

As revealed by the results in figure 3 (a), it can be observed
that finer-grained clustering can better limit the diversity
within ER clusters, resulting in a smaller differential privacy
sensitivity. However, more clusters may lead to a reduced
number of ERs within each cluster, potentially undermining
privacy amplification and anonymity in return. The number of
cluster centers has a similar effect on VN construction: too few
clusters may expand the gap between VNs and optimization
objectives, while too many clusters limit the number of virtual
nodes that can participate in computations due to insufficient
ER nodes within each cluster. Therefore, it is evident that an
optimal number of cluster centers exists from both privacy
and learning performance perspectives. In FedMTD, we em-
pirically approximate this number with iterative functions.

3) Global aggregation among virtual nodes: In the global
aggregation phase, the parameter server dynamically scales
the number of VNs based on specific task requirements,
resource consumption, network communication quality, and
other conditions. This optimization process aims to create a
cost-effective and highly efficient FL deployment that provides
satisfactory learning quality while minimizing unnecessary

overhead. Furthermore, post-global aggregation, the parameter
server distributes the global model to participating ER nodes
in the next communication round. It also dynamically adjusts
or updates the resource utilization of VNs, including local
iteration epochs, data scale, and sizes of VNs, based on the
regret between the model’s current state and task objectives.
In addition, incentive mechanisms designed based on game
theory principles, such as contract theory, can also be incor-
porated. These mechanisms can be distributed to participating
ER nodes through a feedback loop, motivating ER nodes with
highly related data to actively engage in the collaborative
computation of FL. This approach can facilitate reaching
the optimal matches between multiple different FL tasks and
potentially suitable ER nodes.

C. Cluster-specific sample-level privacy-enhanced mechanism

Despite the emergence of various differentially private fed-
erated learning algorithms, the excessive privacy overhead
resulting from heterogeneous environments remains inade-
quately addressed. In this part, cluster-specific sample-level
privacy-enhanced mechanism (CSPM) focuses on the cluster-
ing characteristics of ER nodes in IoRT scenarios, building
upon HCTP to further minimize performance losses under
the same privacy protection level. To be specific, our privacy
enhancement mechanism comprises two modules:

1) Privacy enhancement: As the heterogeneity among par-
ticipants in large-scale cross-silo distributed learning can grow
exponentially, leading to substantial accuracy losses when
applying conventional DP algorithms, researchers have been



exploring alternative DP obfuscation approaches. For instance,
in contrast to most client-level DP solutions, Liu et al. intro-
duced a silo-specific sample-level DP concept in [7], where
distinct privacy budgets (i.e., ¢;) are assigned to different silos
i to facilitate efficient and personalized FLs. Nevertheless,
these approaches usually overlook the micro-level similarities
among ER nodes. Consequently, we propose the cluster-
specific sample-level DP method tailored for heterogeneous
cross-silo FL. Instead of altering the privacy guarantees, our
solution focuses on limiting the sensitivity of gradients from
protected ER nodes, achieving a similar level of privacy
enhancement. To attain this objective, we employ a “divide
and conquer” method to handle heterogeneous ER nodes into
different homogeneous clusters, providing an upper bound of
obfuscation degree within each cluster. In essence, CSPM
significantly reduces the scale of injected noise, promoting
the deployment of FedMTD in heterogeneous environments.
However, it is important to note that this enhancement comes
at the expense of a reduced anonymity space. Therefore,
cluster radii should be carefully adjusted to strike the optimal
balance between sensitivity and cluster size, particularly in less
heterogeneous scenarios.

2) Privacy amplification: Although the previous part en-
hances the privacy performance by reducing sensitivity A f
with cluster-specific similarity. We further find that, under the
same obfuscation operation and protected target features (e.g.,
Af), FedMTD can still amplify the privacy protection level.
Due to the superior compatibility of our hierarchical cross-silo
structure, the following modules could be integrated jointly:

Random subsampling uniformly selects a certain propor-
tion of ER nodes within each cluster to participate in every
round, instead of involving all nodes every time. Consequently,
the uncertainty regarding whether a specific node’s data exists
in the set is further increased, reducing the demand for
obfuscation under the same privacy budget. Additionally, this
approach can reduce the probability of ER nodes engaging
in excessive consecutive rounds of computation, partially
alleviating the straggler effect caused by differences among
the processing capabilities of participants.

Partial concealing usually modifies shared gradients to
amply the privacy. Since most FL tasks employ iterative
stochastic gradient descent algorithms for updates, retaining
the direction of gradients (i.e., the sign of gradients) is
sufficient to guarantee the correct training while significantly
reducing interaction overhead and the risk of sensitive infor-
mation leakage. Nevertheless, everything comes with a price.
The convergence rate of FL may be reduced. Therefore, it
is better suited for scenarios involving large-scale complex
models. In FedMTD, partial concealing is nullified by default;
it is only activated when the dimensionality of the model
exceeds a certain amount.

D. Compound active defense strategy

After achieving satisfactory FL performance and privacy
protection levels, FedMTD further develops a compound active
defense strategy. Based on ER nodes’ distributed dynamic
credit evaluation, both malicious behaviors and attackers are
effectively thwarted.

1) Credit evaluation: To accurately and efficiently identify
the malicious participants (i.e., compromised ER nodes), the
credit evaluation includes two modules:

Evaluation criteria define the maliciousness of participant
behaviors. Specifically, the criteria can be divided into two
parts: cosine similarity-based and auxiliary verification-based
modules. As the name suggests, the former regards the gradi-
ents uploaded from ER nodes as multi-dimensional weighted
vectors, forming an evaluation metric through the computation
of normalized cosine similarity between vectors. Additionally,
the latter makes full use of publicly available data. It samples
a small auxiliary verification dataset from non-sensitive global
public datasets based on the data distribution information of
targeted clusters, facilitating rapid model validation.

It is worth noting that defenders can also set credit evalu-
ation functions arbitrarily according to personal security de-
mands or preferences. Besides, more complex Al-empowered
methods could also be adopted, e.g., outlier detection models
based on unsupervised learning, graph neural networks, or
variational autoencoder.

Evaluation method first calculates four types of credit
evaluation values with decaying factors: instantaneous intra-
cluster, instantaneous inter-cluster, long-term intra-cluster,
and long-term inter-cluster. Subsequently, the inverse-entropy
weighting method is employed for the fusion calculation of the
above multi-variate credits. Ratings of pairwise credit provided
by ERs or clusters with higher similarity are considered
more valuable references and are therefore assigned greater
aggregation weights. In this mechanism design, attackers are
unable to exploit global heterogeneity to conceal deviations
between local malicious and benign behaviors.

Furthermore, considering the emergence of large-scale,
structurally complex FL tasks, such as those involving AIGC,
it is not necessary to utilize information from all dimensions
of gradients for identification. For example, one can opt to
use only the neural network’s neuron weights before the final
softmax layer or employ sparse sampling to select a few
significant parameters.

2) Active defense: By evaluating the cumulative scores
of participant ER nodes, we can effectively cease covert
poisoning attacks through active elimination. Our design for
eliminating poisoning attacks serves two key purposes. Firstly,
it aims to nullify the influence of malicious activities on the
FL training process, a focus shared with existing mitigation-
based countermeasures like robust FL approaches. Secondly, it
seeks to directly remove malicious participants, aligning with
the objectives of existing detection-based countermeasures.
Consequently, FedMTD enables swift responses to poisoning
behaviors, ensuring the maintenance of high FL performance.
Additionally, this proactive approach prevents futile participa-
tion by compromised nodes, mitigating the risk of resource-
exhausting attacks stemming from persistent adversaries. Our
active defense strategy encompasses both soft and hard elim-
ination measures:

Soft elimination mainly controls two key parameters:
aggregation weights in the global aggregation rule (GAR)
and ER selection probabilities. Based on the comprehensive
credit assessment values calculated as mentioned above, highly



trustworthy ER nodes will experience an increased probability
of selection during the construction of VNs in the subsequent
round. Conversely, ER nodes with lower credit ratings will
experience a reduction in the probability of being chosen for
computational tasks. Similarly, highly trustworthy ER nodes
who engage in collaborative computations will have their
uploaded gradients assigned larger aggregation weights. All
weights and selection probabilities are normalized to ensure
compliance with the requirements of FL global aggregation
and differential privacy subsampling definitions. Furthermore,
in addition to assessing the participating edge nodes, FedMTD
considers the phenomenon where malicious data or gradients
from existing poisoning attackers often exhibit exception-
ally high similarities. Highly homogeneous ER clusters with
anomaly maliciousness will be removed. It’s worth noting
that due to the highly heterogeneous environment, adopting
different aggregation weights can slow down convergence.
Therefore, in FedMTD’s global aggregation phase, the aggre-
gation weights for each VN are averaged.

Hard elimination sets a hard threshold thr to locate and
purge the identified adversaries out of the IoRT. As the ERs
are randomly selected and reassigned to new VN groups, the
accumulated credit values are distinctively different between
compromised and benign ER nodes after long enough commu-
nication rounds. Therefore, based on Cantelli’s inequality, thr
is set to be the median value p of credit evaluation results,
adding weighted standard deviation term Ao and a bias, as
thr = pu+Xo+bias, which provides false positive upper bound
asymptotic to O(1/(1 + a?)). Apparently, A can balance the
poisoning resistance ability and the false recognition rate of
FedMTD. With larger A, the number of ill-treated benign ER
nodes is minimized at the expense of robustness decreasing.

The primary computational load of FedMTD lies on the
server side, resulting in a relatively minor impact on resource-
constrained robot terminals. Moreover, the main computational
load of FedMTD is associated with cosine-similarity calcula-
tions. Assuming the current epoch involves the selection of n
clients and the model parameter quantity is denoted as B, the
computational time complexity is O(n2B). It has a limited
impact on server with high computational capabilities.

IV. EXPERIMENTS

To verify the performance of FedMTD, we have established
an experimental platform consisting of a workstation equipped
with an Intel i9-10940X CPU, 128GB of RAM, and two
RTX3090 24GB GPUs. All software components are devel-
oped using Python 3.8 and rely on the PyTorch library. We
adopted the MNIST dataset as our benchmark dataset. The
MNIST dataset encompasses 10 handwritten digit classes, with
all images standardized to 28x28 pixels. We allocated data
in an 8:2 ratio to construct our training and validation sets.
For the learning task on the MNIST dataset, we employed
a four-layer CNN model comprising two 5x5 convolutional
layers, one fully connected layer, and a softmax output layer.
In our experimental setup, we constructed a heterogeneous
federated learning environment, consisting of 200 ER nodes
and a parameter server. The global communication involves

200 rounds. For the local training of each edge node, we chose
a training epoch of £ = 1, a batch size of b = 128, a learning
rate of n = 0.1, and a momentum value of m = 0.9.

A. Convergence performance

We first examine the convergence performance of the pro-
posed FedMTD. Figure 3 (a) illustrates the maximum L;
norm between the mean value (clustering center) and arbitrary
node’s distribution within each ER cluster. With more clusters,
the differences can be reduced, which paves the way for pri-
vacy enhancement and accurate adversary identification. Then,
we choose the vanilla FedAvg algorithm and personalized FL
method SCAFFOLD [10] as benchmarks in Figure 3 (b). The
number of clusters has a significant impact on the convergence
performance of the global model. Too few clusters make it
difficult to build a VN that fits the global data distribution in
a fine-grained way. The resulting data drift shifts the VN’s
optimization objectives and reduces the performance of the
global model. However, too many clusters will reduce the
participation rate of ERs because the number of ERs in the
cluster is not enough to build VN. The overfitting caused by
too few training samples will reduce the generalization ability
of the global model. The results in Figure 3 (b) suggest that
FedMTD can provide a significantly faster convergence rate
and better test accuracy compared with existing countermea-
sures. It is reasonable to expect greater improvements with
more heterogeneous environments and more complex models.

B. Privacy enhancement

Subsequently, to elucidate the privacy enhancement
achieved by FedMTD, we further compare the average accu-
racy of FedMTD with two widely adopted privacy-preserving
federated learning mechanisms, NbAFL [11] and DPFL [6].
All edge robot nodes construct local heterogeneous datasets
following Dirichlet distribution Fir(a) with o« = 0.05. As
depicted in figure 3 (c), the red line (FedMTD) can achieve
better learning results with less than 5% loss, while the green
line (NbAFL) and orange line (DPFL) suffer about 17% and
55% loss, respectively. Under the same privacy protection level
(e = 1), DPFL tailors the gradient directly via median clipping
bound, which introduces huge yet unnecessary Gaussian noise.
NbAFL can reduce the noise without sacrificing € by duplex
noise injection. But the sensitivity of protected gradients is
still overlarge. In contrast, FedMTD limits the variance within
each robot group via clustering, and eliminates the redundant
obfuscation operations accordingly.

C. Poisoning resistance

Finally, we scrutinize the resistance ability of FedMTD
against poisoning attacks involving heterogeneous participants,
gauged through the average recognition rate after 100 com-
munication rounds. Unless otherwise specified, the proportion
of malicious ER nodes is set at 20%. As Byzantine-robust
FLs like Krum or GeoMed can only mitigate the influence
of malicious uploads, we adopt three detection-based defense
schemes as benchmarks: Zeno [12], BaFFLe [13], and an
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Autoencoder-based method [14]. Similarly, the data of het-
erogeneous participants are sampled following Dir(«) from
MNIST. Higher value of a denotes an increased degree of
heterogeneity. As illustrated in Figure 3 (d), the majority of
the defense methods perform admirably when dealing with
data distributions that exhibit approximations (o > 1). In stark
contrast, only FedMTD sustains an accuracy rate exceeding 0.8
when faced with highly heterogeneous participants (o < 0.1).
This underscores the precision of our defense strategy in iden-
tifying malicious adversaries, even in highly heterogeneous
environments, while other methods experience a sharp decline.

V. CONCLUSIONS

This paper delves into the intricate security challenges
inherent in federated learning within cross-silo Internet of
Robotic Things environments. It explores the critical issues
of heterogeneity, privacy breaches, and model poisoning. To
address these concerns, we introduce an innovative approach
known as FedMTD, which employs a moving target defense
strategy to simultaneously safeguard data privacy and model
integrity during federated learning training, particularly in
highly heterogeneous multi-robot systems. Moreover, a series
of experiments on publicly available datasets are conducted
to assess the effectiveness and feasibility of FedMTD. In
terms of future directions, to meet the escalating demands for
large-scale model training, we aim to enhance FedMTD by
extending its capabilities to encompass federated split learning
(FSL) and federated transfer learning (FTL) within heteroge-
neous environments. Furthermore, given the ever-evolving at-
tack paradigms, more complicated and Al-enhanced advanced
persistent threat (APT) models should also be considered for
future proactive defense strategies.
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