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Abstract—Vehicular Edge Computing (VEC) has emerged as a
promising paradigm to enable low-latency Vehicle-to-Everything
(V2X) services by bringing computing resources closer to vehi-
cles. However, the high dynamicity of vehicular networks poses
significant challenges in designing an optimal policy for delivering
V2X services while ensuring security and timely service delivery.
To address these challenges, this paper proposes a Blockchain-
Enabled Vehicular Edge Computing (BEVEC) framework that
employs a dual-layer verification process empowered with a
permissioned blockchain to ensure data accuracy and integrity.
A novel system utility function is designed to measure the
performance of the BEVEC, which also serves as the basis
for a consensus mechanism of the permissioned blockchain. To
optimize this utility, a Deep Reinforcement Learning (DRL)
algorithm is proposed to enable timely service delivery in
BEVEC. Simulation-based results demonstrate the effectiveness
of the proposed algorithm when compared to existing approaches.
On average, it obtained an 18% reduction in latency, a 38%
improvement in successful service delivery, and a 65% decrease
in energy consumption.

Index Terms—Vehicular edge computing, blockchain, vehicle-
to-everything, deep-reinforcement learning, latency.

I. INTRODUCTION

VEHICLE-TO-EVERYTHING (V2X) communication is a
key paradigm which enables seamless communication

between neighboring road users (including vehicles, pedes-
trians, and infrastructure) and fosters advancements in road
traffic efficiency and provision of innovative services such as
autonomous driving, and onboard rich media entertainment
[1]–[3]. V2X applications exhibit unique characteristics such
as varied payload sizes and are associated with different types
of traffic with different priorities, as well as various quality
of service (QoS) requirements, including maximum tolerable
latency, reliability, and data rate. The primary concern of V2X
applications, particularly those related to safety, is related to
the latency, which decreases safety levels as the delays in
receiving safety information increase. However, certain V2X
applications, such as specific vehicular tasks like computation
offloading, may place a greater emphasis on other QoS require-
ments than on latency in applications such as sharing high-
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definition maps, augmented reality and virtual reality, online
gaming, etc. [4], [5]. A possible approach to increasing QoS is
to integrate more advanced computing and storage resources
into vehicles [6]. However, the limited physical space and the
high costs associated with providing these additional resources
make it challenging to ensure efficient and stable execution of
any associated onboard applications [7]. The latter cannot be
accommodated without increasing manufacturing costs, which
is not desirable [8].

Traditionally, cloud computing has been utilized to handle
computationally intensive tasks in mobile networks. However,
cloud computing yields high response times, which are un-
suitable for dynamic and latency-critical environments such
as vehicular networks [9]. To address these issues, multi-
access edge computing (MEC) has emerged as a promising
solution, particularly in the context of vehicular networks,
where it is referred to as Vehicular Edge Computing (VEC)
[9], [10]. VEC effectively deploys several computing and
storage resources in close proximity of vehicles, making use of
base stations (BS) and roadside units (RSU) to deliver robust
V2X services. Although VEC servers deployed on RSUs and
BSs can reduce connectivity latency due to their proximity
to vehicles, their limited computational and communication
resources require optimized resource management strategies.
Furthermore, the limited coverage range of RSUs restricts
the number of vehicles that can access their V2X services
without incurring additional delays, mostly due to the VEC
handover and migration of services [9], [11]. To address
these limitations, vehicles with sufficient resources can also
be employed as VEC servers to support V2X applications
[4], [7], [12]. However, the mobility of vehicles increases the
complexity of service delivery in such a context. Furthermore,
sensitive and private vehicle information, as well as data
migration between different VEC servers, present potential
security breaches and data leak vectors [13]. As a result, V2X
service delivery is a multifaceted and intricate issue that must
be carefully managed.

Blockchain has been integrated with VEC to ensure the
security and privacy of V2X applications [14]–[16]. By in-
corporating blockchain technology into VEC to support V2X
services, it is possible to create a highly effective and secure
data-sharing infrastructure among VEC servers. This system
not only facilitates the provision of information about adjacent
service providers to vehicles, but it also improves collaboration
and security within the network, enhancing the delivery of
V2X services. However, the consensus mechanism employed
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by blockchain introduces additional energy consumption and
delays in the vehicular network [17]. In a public blockchain,
every distributed node is obliged to participate in the con-
sensus procedure, resulting in longer duration of both block
generation and verification, and generating higher energy
consumption. These increased delay and energy consumption
are not suitable for the energy-constrained and delay-sensitive
vehicular networks. As a result, some studies [18], [19] have
opted for a permissioned blockchain approach within the VEC
system. Through this approach, only a distinct subset of nodes
is given permission to participate in the blockchain consensus
process, resulting in a notably faster overall procedure.

While researchers started to investigate the potential of
blockchain technology in enhancing data security within VEC
systems, to the best of our knowledge, its potential was not
yet explored within a versatile, all-encompassing V2X service
delivery platform. Furthermore, none of the existing solutions
take into account the critical aspect of traffic prioritization of
V2X applications for obtaining high QoS levels in the context
of low latency and reliable service delivery.

In this context, this paper makes the following contributions:

• Proposes a novel framework called BEVEC: Blockchain-
Enabled Vehicular Edge Computing for secure,
performance-oriented V2X service delivery. BEVEC
prioritizes V2X application traffic and delivers services
in a specified time, ensuring that critical applications
receive the resources they need and are executed on
time.

• Introduces a dual-layer verification process inside
BEVEC to ensure secure and reliable delivery of general-
purpose V2X services. The first layer, local verification,
guarantees the accuracy of exchanged data, while the per-
missioned blockchain of the second layer checks for data
integrity. This two-tier approach provides comprehensive
security for V2X services, ensuring the authenticity and
reliability of information exchanged in the vehicular
environment.

• Proposes a novel system utility function that takes into
account three key factors: consumed energy, exchanged
data size, and priority of V2X applications traffic. This
function serves as a measure of system performance and
also as a basis for selecting block verifier nodes in the
consensus mechanism. The goal is to achieve reliable and
low-latency delivery of V2X services.

• Describes a novel Deep Reinforcement Learning (DRL)
algorithm, named 3DPER, to improve the performance
of BEVEC in terms of energy consumption, latency,
and service delivery success rate. Simulations show how
3DPER outperforms existing methods in terms of these
metrics, achieving an average of 18% latency reduction,
38% improvement in successful service delivery, and 65%
decrease in energy consumption.

The structure of this paper is as follows. In Section II,
we dive into related work. Section III introduces the system
model and its underlying assumptions. The proposed solution
is elaborated upon in Section IV, and Section V provides an
in-depth analysis of performance. Section VI wraps up the

TABLE I
PRIMARY NOTIONS

Parameter Value
V/N Set of vehicles/RSUs and BSs also blockchain nodes
N̂ Subset of blockchain nodes
Mij Message from entity i to j
S(Mij) Size of message Mij

ci/T
max
i /ρi content/maximum tolerable latency/ traffic priority of Mij

τij Transmission latency from entity i to j
τprocj Processing latency of entity j
τbvj blockchain latency
Rij Communication rate between entity i and j
pij Transmission power from entity i to j
hij channel coefficient between entity i and j
dij channel coefficient between entity i and j

paper with our key conclusions. To ease readability, Table I
compiles a list of the major notations used in this paper.

II. RELATED WORK

In this section, we explore the current research landscape
concerning the provision of V2X services within a VEC-
based environment, categorizing the literature into several
key areas. A significant portion of the available research
focuses on different aspects of service delivery, including task
scheduling, computation offloading, handover between VEC
servers, security considerations, blockchain integration, and
other unaddressed challenges.

A. Task Scheduling and Computation Offloading in VEC En-
vironments

Researchers have explored extensively optimization algo-
rithms, game-theoretic frameworks, and distributed decision-
making approaches to manage efficiently task distribution and
resource allocation in VEC networks. For example, Gao et
al. [20] proposed a two-layer optimization algorithm for joint
task offloading and resource allocation in VEC networks,
considering QoS constraints. They combine DRL and convex
optimization methods to optimize energy and delay reduction.
Zhao et al. [21] proposed a game-theoretic collaborative com-
putation offloading architecture that integrates edge and cloud
computing. The architecture jointly optimizes computation
offloading and resource allocation to maximize system utility
while minimizing task processing delay. However, the authors
restricted their VEC environment model to a single VEC
scenario, which does not accurately reflect the diverse range of
operational conditions and complexities present in real-world
VEC deployments.

Some studies have expanded their focus to include scenarios
that involve multiple VECs. For example, Luo et al. [22]
developed a model for a multi-vehicle, multi-VEC compu-
tation offloading framework. They proposed a self-learning
distributed computation offloading approach that formulates
the computation offloading problem as a distributed decision-
making game, where each vehicle is a player that seeks
to minimize its overall cost, which includes latency and
offloading expenses. Shang et al. [23] proposed a combined
deep learning and convex optimization method to reduce
energy consumption during edge offloading in a scenario with
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multiple vehicles and roadside edge servers. Ning et al. [24]
proposed a VEC framework that optimizes partial computation
offloading and uses an adaptive task scheduling algorithm
to maximize system-wide profit. They consider the selfish
behavior of vehicles and utilize game theory to demonstrate the
existence and optimality of the Nash equilibrium. Li et al. [25]
proposed a DRL-based method to optimize task completion
time and energy consumption in VEC considering the priority
of tasks.

Despite the introduction of multi-VEC server scenarios and
consideration of vehicle mobility in these studies, the re-
searchers overlooked the crucial aspect of handovers between
VEC servers to complete in-progress applications and the
possible necessity for retransmissions or addressing failures.

In light of this challenge, researchers have shown significant
interest in addressing handover between VEC servers. Specif-
ically, [26]–[28] have concentrated on the task offloading and
migration of individual vehicles in straightforward scenarios,
with their primary emphasis placed on service handover.
Unfortunately, these studies did not adequately address the
importance of resource competition among multiple vehicles
in real-world VEC environments. The challenges of handover
in multi-vehicle scenarios have only been explored in a few
other research papers [29]–[32]. Li et al. [29] proposed a DRL-
based vehicular task scheduling algorithm to minimize system
cost while prioritizing tasks based on deadlines and dependen-
cies. The authors modeled the scheduling problem as a Markov
Decision Process (MDP) to address the challenges associated
with the dynamic environment of vehicular networks. Dai
et al. [30] presented a model for uploading and migrating
tasks in an edge-cloud collaborative architecture, with the
aim of minimizing the latency of task execution. The authors
devised a probabilistic computation offloading approach to
optimize this process and achieved optimal results through
iterative means. Ma et al. [31] developed a solution to address
challenges associated with highly dynamic vehicular network
environments. The researchers introduced an enhanced hetero-
geneous earliest finish time algorithm that relies on gradient
routing to address the problem of joint optimization of compu-
tation offloading and routing. This algorithm aims to maintain
alignment between a vehicle’s movement direction and the
migration direction of tasks during offloading. By efficiently
offloading tasks onto edge nodes along the routing path, this
approach minimizes migration expenses and optimizes the
distribution of computing resources across the network.

However, existing studies have focused mainly on the direct
migration of vehicular data, disregarding the issues of data
security and handover. This oversight is concerning because
if the security of data exchange between vehicular network
entities is not effectively ensured, it can pose serious threats
to user privacy and even driving safety [33]. To address this
critical issue, it is imperative to integrate robust data security
measures and seamless handover protocols within the proposed
solutions in this space.

B. Blockchain Integration for Secure V2X Services
Blockchain technology, originally conceptualized as the

backbone of cryptocurrencies, has rapidly emerged as a ver-

satile tool for secure data sharing and decentralized consen-
sus mechanisms. Its decentralized nature and cryptographic
principles make it highly resilient to tampering and fraud,
thus gaining popularity beyond its initial applications. With
the potential to enhance data security, trust, and transparency,
blockchain has gained attention in the field of edge computing
and vehicular networks [34]. Blockchain functions as a dis-
tributed ledger that records transactions across multiple nodes
in a network. Each transaction, or block, is cryptographically
linked to the previous one, forming an immutable chain of
data blocks. This decentralized architecture eliminates the need
for a central authority, mitigating single points of failure and
reducing the risk of data manipulation or unauthorized access.

In recent years, researchers have explored the integration of
blockchain technology into V2X systems to address security
and trust issues inherent in vehicular networks. By leveraging
blockchain, V2X services can achieve secure and transparent
data sharing among vehicles, infrastructure, and other network
entities. In [35], a blockchain-based framework for secure V2X
data processing was proposed to address challenges related to
efficient energy usage and resource utilization by utilizing edge
servers to reduce latency. However, the proposed framework
does not consider how the performance of the system could be
affected by different types of messages, especially those that
have strict latency requirements. This could potentially limit
the effectiveness of the framework in certain scenarios. Zhang
et al. [36] proposed a blockchain-based, hierarchical VEC
platform. This approach uses a trust model to secure vehicle
communication links, and the blockchain system manages the
entire architecture. The aim is to optimize MEC performance
while ensuring blockchain consensus. The authors modeled a
joint optimization problem as an MDP and proposed a deep
compressed neural network scheme to solve it.

Cui et al. [37] introduced a blockchain-based VEC platform
to improve the efficiency and security of computing. They
proposed a centralized controller equipped with a heuristic
algorithm to optimize computation delay and implemented
the platform in a real-world scenario. Zheng et al. [38]
proposed a secure computation offloading framework for a
blockchain-based vehicular network. The framework consists
of a hierarchical architecture for security, a trusted access
control mechanism using smart contracts, and a dynamic
offloading solution based on DRL. The framework is designed
to address the security and privacy challenges of offloading
computation tasks to untrusted servers, and it provides a
dynamic solution for optimizing offloading decisions and
resource allocation. Ren et al. [39] presented a two-layer
distributed SDN architecture with an integrated VEC plat-
form using blockchain to enhance delay-sensitive applications
and reduce energy consumption, achieved through a DRL-
based algorithm. To incentivize resource sharing for V2V
computation offloading, Shi et al. [40] proposed a blockchain-
enabled framework using dynamic pricing and DRL. A key
innovation is the integration of a dynamic pricing scheme,
where the task vehicle pays a service price proportional to the
computation size of the selected service vehicle executing the
offloaded task. Pricing, along with carefully designed utility
functions for both vehicles, provides short-term incentives for
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resource contribution. Furthermore, the reliability of vehicles
in resource allocation, evaluated from historical offloading
transactions recorded on the blockchain, is used for service
vehicle selection and consensus node rewards. Vehicles with
higher reliability have a higher chance of being selected for
offloading and obtaining rewards, thus providing long-term
incentives to maintain high reliability. The DRL-based task
allocation algorithm is used to dynamically determine the
service price and service vehicle to maximize the long-term
utility of the task vehicle. This framework combines pricing
incentives, DRL-based adaptation, and blockchain-enabled re-
liability management to incentivize resource sharing for V2V
offloading in a secure and reliable manner. Liu et al. [19]
introduced a blockchain-secured VEC framework for V2V
resource trading, aiming to maximize system utility through
incentivizing selfish vehicles in a decentralized architecture.
Wang et al. [18] proposed a consortium blockchain solution
to improve security and incentivize resource sharing in VEC.
Their approach includes multi-step smart contracts for secure
resource sharing and contract-based incentives to maximize
utility and social welfare for VEC participants. Lang et al.
[7] introduced a blockchain-based cooperative computation
offloading framework to enhance the security of V2I and V2V
computation offloading. Their approach included a combined
consensus mechanism for secure information sharing between
resource-idle vehicles. The authors also developed a coopera-
tive computation offloading game to validate the effectiveness
of their decision-making process.

As it can be seen, the blockchain technology has already
been employed for enhancing data security within VEC sys-
tems. However, none of the proposed approaches explored
blockchain’s potential within a versatile, all-encompassing
V2X service delivery platform. Furthermore, the aspect of
traffic prioritization of V2X applications is not addressed in
any existent approaches. This is critical in the quest to obtain
low latency and reliable service delivery QoS.

This paper proposes a holistic framework for secure delivery
of V2X services by integrating the blockchain with VEC.
Our approach guarantees the reliability of services through
optimization of a priority and energy-aware utility function.

III. SYSTEM MODEL

This section outlines the proposed BEVEC framework ar-
chitecture and then it presents an analysis of the latencies
involved and describes the proposed utility function aimed at
achieving reliable and low latency V2X service delivery.

A. BEVEC Description

The BEVEC framework consists of three layers: the vehicle
layer, the edge layer, and the blockchain layer, as shown in
Fig. 1.

The vehicle layer is composed of V = {1, 2, 3, . . . , V }
vehicles, each of which can function as either a V2X service
requester or a service provider. In the edge layer, multiple BSs
and RSUs, denoted as N = {1, 2, 3, . . . , N}, serve dual roles
as VEC servers and nodes of the permissioned blockchain.
This enables them to function as V2X service providers while

Fig. 1. BEVEC architecture

improving the security and integrity of the entire framework. In
the blockchain layer, each VEC server serves as a dedicated
blockchain node.

Every V2X application is represented in terms of exchange
of messages Mij transmitted from network entity i to entity
j. Each message is described as a tuple (ci, T

max
i , ρi), that

represents application’s content, maximum tolerable latency,
and traffic priority level, respectively. This definition opens a
wide array of possibilities for V2X applications. These possi-
bilities range from enabling vehicles to broadcast decentralized
environmental notification messages (DENMs) or cooperative
awareness messages (CAMs) to specific applications, such as
computation offloading requests or participating in resource
sharing. It also simplifies VEC handovers and service migra-
tions and facilitates shared offloading.

The traffic priority and delay sensitivity of Mij depend
on their content. For instance, messages with high priority
levels require low latency and high reliability, while messages
with low priority levels, such as offloading requests or re-
source sharing, can tolerate higher latency and are less delay-
sensitive.

Leveraging VEC enables efficient offloading of
computation-intensive messages, facilitating prompt and
reliable V2X service delivery. This not only reduces latency,
but also enables real-time data processing and analysis for
V2X applications, highlighting the critical role of VEC in
ensuring seamless and efficient V2X communication.

1) BEVEC’s Dual Layer Verification Process: is ensured
by i) a local verification process, on one hand, and ii) the
blockchain layer, on the other hand. When a vehicle broadcasts
its message, all nearby vehicles, RSUs, and BSs within its
communication range will receive it. To ensure privacy and
message integrity, only RSUs or BSs are granted access to the
message content.
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(i) The local verification process initiates when a RSU
receives a message from a nearby vehicle that requires
accuracy verification. To validate the accuracy of the
broadcasted message, at least two other vehicles in prox-
imity must participate by sending confirmation messages.
If the local verification process is successful and receives
confirmation from at least two other vehicles, indicat-
ing the message’s accuracy, the message is securely
recorded in the blockchain as a valid transaction. If
the local verification process fails, the RSU waits until
the specified expiration time of the local verification
period. If insufficient confirmations are received within
this timeframe, the message is disregarded. For unicasted
messages, the RSU’s role is to transmit message accuracy
acknowledgments to nearby vehicles and await their
responses. Validation is achieved through the successful
receipt of acknowledgments from nearby vehicles, typi-
cally requiring acknowledgment from at least two-thirds
of the nearby vehicles. If the RSU receives the requisite
acknowledgments confirming the message’s accuracy, it
considers the message a valid transaction and adds it to
the blockchain. Conversely, if there is an insufficient num-
ber of successful acknowledgments within the designated
time frame, the RSU disregards the message.

(ii) The blockchain layer offers each network entity a unique
identification consisting of a public key and a private key.
This unique identification enables the entities to utilize
asymmetric cryptography for secure message transmis-
sion. By incorporating these cryptographic techniques,
the blockchain layer ensures the confidentiality and in-
tegrity of messages exchanged within the network.

A unicasted message originating from the network entity i
and intended exclusively for the entity j must be signed using
the private key of the entity i, denoted as Sigi. This signature
process is essential to establish the authenticity and integrity
of the message. This signing process is as follows.

MU
ij = EPKj

(Mij ||ts||Sigi), (1)

where EPKj
indicates that the message Mij is encrypted

using the public key associated with the entity j. Furthermore,
the variable ts represents the timestamp, capturing the precise
moment when the message was generated.

However, periodic transmission of cooperation information
is vital in vehicular networks, where each vehicle must regu-
larly broadcast information such as its current location, speed,
direction of movement, and available resources. To achieve
this, a broadcast message using a unique key pair, known as
the broadcast key pair, is employed for transmission as follows.

MB
ij = EPKB

(Mij ||ts||Sigi), (2)

In this configuration, the public key is known to all entities
of the network, while the private key is shared among BSs and
RSUs. The broadcast key pair enables efficient communication
between vehicles and infrastructure elements, ensuring that
the necessary data can be securely and consistently shared
across the network. Public keys enable vehicles to encrypt their

Fig. 2. Delegate node selection: Nodes with larger diameters (higher collected
utility) have a greater probability of being chosen.

messages so that they can only be decrypted by authorized BSs
and RSUs possessing the corresponding private key.

2) BEVEC’s Consensus Mechanism: The security and im-
mutability of data in the blockchain are typically upheld
by a consensus mechanism, which is a set of rules that all
nodes in the network must follow in order to agree on the
state of the ledger. However, this mechanism can introduce
delays to the network, as it can take time for all nodes to
reach a consensus on a new block. Delegated Proof of Stake
(DPoS) is a consensus mechanism that addresses this issue by
relying on a voting and selection process to choose a small
number of delegates to validate blocks. This reduces the time
and energy required to reach consensus, while still securing
the blockchain against centralization and malicious activities
[10]. The BEVEC framework’s blockchain layer consensus
mechanism builds on the foundational principles of DPoS and
comprises two fundamental elements: delegate selection and
block production and verification.

A subset of blockchain nodes denoted N̂ (N̂ ⊂ N ), is cho-
sen as delegates based on their collective utility, as elaborated
in the following subsection III-C. In the block production and
verification phase, the delegates are divided into a leader node
and verifier nodes (Fig. 2). The leader node is responsible
for collecting transactions and producing blocks, whereas the
verifier nodes focus on verifying blocks. During each block
production process, one of the |N̂ | delegates is selected as
the leader node in a round-robin fashion, ensuring that each
delegate has the opportunity to become a leader and produce
blocks. The other delegates act as verifiers. In a specific block
production and verification process, the leader collects trans-
actions and computes a correct hash to generate an unverified
block. The block verification process follows a three-phase
protocol that involves block broadcast, block verification, and
confirmation (Fig. 3). During the block broadcast phase, the
leader transmits |N̂ | − 1 messages to the other delegates for
verification. In the block verification phase, each verifier first
validates the signature of the received message. Subsequently,
verifiers assess the correctness of each transaction and then
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Fig. 3. Block verification process.

share their signed audit results in a distributed manner. In the
confirmation phase, each verifier compares its audit result with
those received from other verifiers and sends a confirmation
message to the leader. The confirmation message includes
the audit results and comparison outcomes. Upon receiving
confirmation from all delegates, the leader analyzes them to
determine the block’s correctness. If more than two-thirds of
verifiers agree on the block’s validity, the leader broadcasts
it to all delegates for storage. Nodes that are not included in
the delegate commission periodically synchronize with nearby
delegates to obtain the latest blockchain. If all delegates have
served as leaders once, their order is shuffled, and they produce
future blocks in a round-robin manner once again. In cases
where a delegate fails to create a block during their turn, the
block is skipped and transactions from the skipped block are
transferred to the next one.

Note that the BEVEC framework’s dual layer mechanism
comes with a cost. This cost is due to the communication
overhead imposed by the local verification process and the
blockchain’s consensus mechanism and it is reflected in the
next section on Latency Analysis. However, the dual-layer
mechanism is required to provide an additional level of se-
curity and reliability.

B. Latency Analysis

Fig. 4 illustrates the steps involved in sending a message
from vehicle i to the network’s entity j, processing it, and
storing it on the blockchain in the BEVEC framework.

The overall delay can be expressed as follows:

TMij
= τij + τprocj + τverfj + xjτ

bv
j + (1− xj)TMjj′ , (3)

where τij denotes the transmission latency for sending
message Mij from the entity i to j. τprocj and τverfj are
respectively the processing and verification delays incurred
in the j-th entity and τ bvj denotes the block verification
latency of the blockchain. xj ∈ {0, 1} is a binary variable
indicating whether the entity j is a blockchain node or not. The
processed message Mij must be recorded as a transaction in
the blockchain before it can be considered complete. However,
when the entity j is a vehicle or in VEC handover, it should
send the processing result to the nearest blockchain node in
the form of a new message Mjj′. The new message should
contain the signature of the origin entity i with revised maxi-
mum tolerable latency. The revised value can be expressed as
Tmax
j = Tmax

i − (τij + τprocj ). To ensure that the message

Mjj′ is integral to the vehicle i, entity j′ (i.e. the blockchain
node) must verify the integrity of the message from entity j
with respect to entity i.

The transmission latency can be expressed as follows [40]:

τij =
S(Mij)

Rij
, (4)

where S(Mij) is the size of the message Mij in bits and
Rij denotes the communication data rate between the entities
of the vehicular network i-th and j-th, which can be expressed
as the Shannon-Hartley capacity (5) or the finite length capac-
ity (7) depending on the size of the message S(Mij). In cases
where S(Mij) is very large, the decoding error rate is very
small. However, in the majority of V2X applications, the data
exchanged is typically minimal, increasing the likelihood of
encountering a non-zero decoding error. As a result, Shannon-
Hartley capacity is not applicable, as the achievable rate falls
within the regime of finite block-length channel coding [41],
[42]. For messages of sufficient size, the communication rate
is defined as follows:

R∞
ij = B log2(1 + Γij), (5)

where B is the channel bandwidth, the signal-to-noise ratio
(SNR) between the entities i-th and j-th of a vehicular network
is denoted by Γij and can be expressed by the following
equation:

Γij =
pij |hij |2d−ν

ij

σ2
, (6)

where pij is the transmission power of i-th vehicular
network’s entity toward the j-th element of the network, hij
and dij are presenting the Rayleigh fading coefficient and
distance, respectively, ν denotes the path loss exponent, and
σ2 is the noise power. The data rate for short-length messages
is represented as [42]:

Rij = R∞
ij −

√
Uij

S(Mij)
Q−1(ϵ), (7)

where Q−1(.) is the inverse of the Gaussian Q-function
as (8), ϵ > 0 is the transmission error probability, and Uij

represents the characteristic of the channel called the channel
dispersion, i.e., Uij determines the stochastic variability of the
channel when compared to a deterministic channel with the
same capacity, given by (9).

Q(x) =
1

2π

∫ ∞

x

e−
t2

2 dt, (8)

Uij = 1− 1

(1 + Γij)2
, (9)

We define Pij =
fj,d
Ωi

as the CPU cycles (Hz) required to
process the message Mij . Here, Ωi represents the number
of CPU cycles needed to process each bit of message Mij ,
which is appended to the content section of every message.
Furthermore, each VEC server is equipped with Dj virtual
machines based on its computing capabilities. The variable
fj,d represents the computational capacity of a single virtual
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Fig. 4. Life cycle of processing a message in BEVEC

machine within entity j. The processing delay can then be
computed as follows [8]:

τprocj =
S(Mij)

Pij
, (10)

τverfj can be expanded by considering the set of K =
{1, 2, 3, . . . ,K} as the local verification vehicles and using
a predefined time as the timeout time for the local verification
phase as follows:

τverfj = min
(
Ttimeoutj , 2×max{τj1, τj2, . . . , τjK},

max{τproc1 , τproc2 , . . . , τprocK }
)
, (11)

The value of Ttimeoutj ∈ [0, Tmax] varies depending on
whether the message requires local verification or not. For
instance, low-priority messages are not subject to local verifi-
cation. Therefore, by setting the Ttimeoutj equal to zero, the
τverfj term in the overall delay of (3) will automatically be
removed. It is worth noting that, for the sake of simplicity,
the transmission latency for sending the acknowledge request
message and receiving it has been assumed to be equal in (11).
τ bvj consists of three parts: 1) block broadcasting, 2) cross-

verification among verifiers, 3) block confirm, which can be
described similarly to [10] as:

τ bvj = τ bbj + τ cvj + τ bcj , (12)

Denote j ∈ N̂ as the leader node and j′ ∈ N̂ \{j} as
verifiers. Since the leader j broadcasts its produced block as
message Mjj′ to verifiers simultaneously, the block broad-
casting time is determined by the longest block transmission
time, so

τ bbj = max
j′∈N̂\{j}

τjj′, (13)

where τjj′ is the transmission delay between the leader j
and verifier j′. Cross-verification consists of three steps. Each
verifier first performs verification individually to verify the
raw block from the leader (Mjj′) and then broadcasts its
verified result to other verifiers. After receiving the verified
result (Mj′′j′), verifiers perform a second audit. The block
cross-verification time consumption can be written as in (14):

τ cvj = max
j′,j′′∈N̂\{j},j′≠j′′

{τj′′j′+τprocj′ (Mjj′)+τ
proc
j′ (Mj′′j′)},

(14)
Block confirm time is determined by the longest second-

audit result transmission time, which is:

τ bcj = max
j′∈N̂\{j}

τj′j , (15)

Overall energy consumption is determined by the combined
effect of transmission, processing, local verification, and the
consumed energy in the blockchain layer. Assuming that the
power consumed during each stage of the process, local
verification, and blockchain is identical, denoted as p0, the
total energy consumed can be expressed as:

Eij = pijτij + p0

(
τprocj + τverfj + xjτ

bv
j

)
, (16)

C. Proposed Utility Function and Problem Formulation

The core objective of the BEVEC framework is to minimize
energy consumption while maintaining security and privacy
during data exchange. However, achieving this objective re-
quires the implementation of an incentive mechanism, par-
ticularly for participants within the vehicle layer. The utility
function defined to meet the aforementioned objective is:

Iij(Eij ,S(Mij), ρij) =
(
ω1|IEij |2 + ω2|ISij |2 + ω3|Iρij |

2
) 1

2

,

(17)
where IEij , ISij , and Iρij represent the energy, message, and

priority utilities, respectively. The weight factors ω1, ω2 and
ω3 are used to balance the effects of these utilities where ω1+
ω2 + ω3 = 1.

The utility functions are extended in the following manner:

IEij = e
aE(

Eth−Eij
Eth

)
, (18)

ISij = e
aS(

Sij−Sth
Sth

)
, (19)

Iρij = e
aρ(

ρij−ρth
ρth

)
, (20)
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where Eth, Sth, and ρth represent the thresholds for de-
manded energy, message size, and priority level, respectively,
and aE > 0, aS > 0, and aρ > 0 denote the weighted
factors for the utility function. If the energy value exceeds
the threshold while the message size and priority level are
below the specified thresholds, the utility function values are
always greater than 0 and less than 1, meaning 0 ≤ IEij ≤ 1,
0 ≤ ISij ≤ 1, and 0 ≤ Iρij ≤ 1. On the other hand, if
the energy is below the threshold but the message size and
priority level requirements are satisfied, the utility function
values are always greater than or equal to 1, namely 1 ≤ IEij ,
1 ≤ ISij , and 1 ≤ Iρij . Furthermore, the utility function value
decreases as energy consumption increases, while the message
size and priority level utility function values increase as the
message size and priority level increase. In this case, the value
of Iij increases as energy consumption decreases for sufficient
message size and reasonable priority levels.

The problem of utility maximization can be expressed as:

P1 : max
∑
i∈P

∑
j∈P\{i}

αijIij , (21a)

s.t. C1 :
∑

j∈P\{i}

TMij
≤ Tmax

i , ∀i ∈ P (21b)

C2 :αij ∈ {0, 1}, ∀i ∈ P,∀j ∈ P\{j} (21c)

where P = V ∪ N is the set of all entities in the vehicle
and edge layer, binary variable αij , indicates the existence
of a connection between entity i and j, the constraint (21b)
is enforced to ensure that transmitted messages are processed
within the maximum tolerable time.

Problem P1 illustrates the interaction between the utility
function and performance metrics of the BEVEC. Utility
functions are inversely proportional to energy consumption,
which means that higher energy consumption leads to lower
utility. Additionally, condition C1 specifies that messages
must be delivered within a specific timeframe to receive
the associated utility. As a result of this requirement, low
latency is preferred. In addition to latency reduction, meeting
this deadline increases the probability of successful message
delivery, since lower energy consumption naturally results in
lower latency.

IV. PROPOSED DRL APPROACH

Problem P1 presents a challenge due to the binary variable
αij , which makes the feasible set and the objective function
non-convex. While approximate algorithms can be used to
solve the problem, they may not scale well, particularly as
the number of vehicles increases. Moreover, the ad-hoc and
on-demand nature of messages exchanged in the vehicular
network introduces additional complexities. Conventional opti-
mization methods may struggle to keep up with the changing
demand over time, especially as the network lacks a fixed
infrastructure.

Given the challenges associated with decision-making in
problem P1, it is essential to handle high-dimensional and
time-varying features appropriately. However, conventional
models-based algorithms, such as greedy and meta-heuristic

algorithms, are not suited for scaling up in large applications
due to the requirement for near-complete information [43]. To
overcome scalability and adaptability limitations, an efficient
model-free solution based on DRL is proposed.

Before exploring the proposed approach, it is essential to
establish the RL-compatible version of the problem, which
encompasses the state and action spaces and the reward
function. In the following, the set T represents the discrete
time intervals of the system.

A. State
The state space is the reflection of the observed vehicular

environment. Let {S, t ∈ T } be the state space. The state in
time period t evolves across T and can be expressed as:

st = {M(t),R(t),F(t),Λ(t)}, st ∈ S, (22)

where
• M(t) is the flattened vector of |P| × |P − 1| message

matrix, representing the set of message pairs at time
period t;

• R(t) is the rate vector with the same dimensions as the
message vector, representing communication data rates
between different entities of the vehicular network at time
period t;

• F(t) is a vector that represents the current processing
capability of each entity at time period t;

• Λ(t) is a |P| × |P − 1| flattened matrix and contains
elements λij ∈ {−1, 0, 1}. These elements represent the
relative movement between vehicles and other network’s
entities at time period t, where a value of 1 indicates that
they are approaching each other, −1 indicates that they
are moving away from each other, and 0 indicates that
their positions are relatively fixed.

B. Action
Let {A, t ∈ T } denote the action space. We define the

action vector at ∈ A at time period t as follows:

at = vec
( α12, α13 · · · α1P

...
. . .

...
αP1, αP2 · · · αP (P−1)


T )

, (23)

The objective of problem P1 is to find the appropriate values
of αij that maximize the overall utility function.

C. Reward Function
Once the action at is taken, the environment will provide

an immediate reward, which can be expressed as follows:

ψt(st, at) =

{
Iij , if C1 ∩ C2

−Υ, otherwise
(24)

where Υ > 0 is the constant that represents the penalty.
The optimal solution of problem P1 is achieved by maxi-

mizing the expected cumulative discounted rewards also called
the long-term reward and defined in (25).

Ψ = maxE
[ T∑
t=0

γtψt(st, at)
]
, (25)
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where γ ∈ [0, 1] is the discount factor which indicates the
weight of the future reward. For a fixed t, a larger value of γ
corresponds to a greater emphasis on the future reward. It is
worth noting that, when γ is fixed, the quantity γt approaches
zero as t becomes sufficiently large. This implies that the
contribution of the future reward to the long-term reward
decreases over time.

D. A Novel DRL-based Approach

We begin by providing a concise overview of the foun-
dational principles of DRL, with a particular focus on Q-
learning algorithms. This overview lays the groundwork for
our proposed methodology, which we introduce subsequently
to address the problem P1.

1) Technical background: DRL is a powerful approach that
combines RL with deep learning to tackle problems with
high-dimensional raw data inputs [44]. In the training process
of DRL, a deep neural network called the Deep Q-Network
(DQN) is used to approximate the action-state pair and the
Q function Q(s, a; θ), where θ represents the weights of the
neural network. The DQN is trained iteratively by updating its
weights θ to approximate the real Q values. Two techniques,
experience buffer and target network with target Q function
QT (s, a; θT ), are employed to improve the training efficiency
of DQN. To train the main DQN, a mini-batch of size M
experiences (s

(i)
t , a

(i)
t , ψ

(i)
t , s

(i)
t+1) stored in the buffer is used

to minimize the loss which can be expressed as:

L(θt) =
1

M

M∑
i=1

(y
(i)
T −Q(s

(i)
t , a

(i)
t ; θt))

2, (26)

The loss is defined as the squared difference between the tar-
get Q value, y(i)T , and the estimated Q value, Q(s

(i)
t , a

(i)
t ; θt),

which is also known as the temporal difference error (TDE).
The target Q value is given by:

y
(i)
T = ψ

(i)
t + γmax

at+1

QT (s
(i)
t+1, a

(i)
t+1; θTt

), (27)

The parameters of the DQN network are updated using the
gradient descent method with a learning rate, lr, as shown in
the following equation:

θ = θ + lr × 1

2
∇θ(L(θ))

2, (28)

Additionally, the target DQN network parameters can be
updated periodically every G step using the:

θTt = θt−G, (29)

2) 3DPER - a novel double-dueling DQN with prioritized
replay experiences: To solve problem P1 and find optimal
matches between different entities, a double-dueling DQN
with prioritized replay experiences (3DPER) is proposed.
To manage extensive action space of (23), |P| parallel Q
networks are employed, as illustrated in Fig. 5. Adopting the
strategy from Wang et al.’s dueling network approach [45],
and considering that not all actions impact the state in certain
scenarios, 3DPER separates each of the Q-values into two
components: the state’s value (V (s)) and the advantage of
executing a specific action within that state (A(s, a)). Thus,

the Q-value specified for entity j can be represented as a
combination of these two streams:

Qj(s, aj ; θj) = Vj(s) +Aj(s, aj), (30)

where aj denotes an action applicable to entity j, which
can also be interpreted as the j-th row of the action vector
before its vectorization, i.e. a = vec([a1, . . . , aj , . . . ]

T ).
Define Q =

∑|P|
j=1Qj ; then, the loss function in (26) can

be replace by:

L(θt) =
1

M

M∑
i=1

[
(ψ(i)+γ

(
max
a′

|P|∑
j=1

QTj
(s′, a′j)

)
−Q(s, a))2

]
,

(31)
where s′ and a′j are equal to st+1 and ajt+1

respectively. Since maxa′
∑|P|

j=1QTj (s′, a′j)) is equal
to

∑|P|
j=1 maxa′j QTj

(s′, a′j)) and due to quality of
maxa ′jQj(s′, a′j) with Qj(s′, argmaxa ′jQj(s′, a′j))
and for decoupling action selection from action evaluation to
avoid overestimation and reduce biases, as described in [46],
the final form of the loss function in 3DPER can be written
as:

L(θt) =
1

M

M∑
i=1

[
(ψ(i) + γ

( |P|∑
j=1

QTj
(s′, argmax

a′j
Qj(s′, a′j))

)
−Q(s, a))2

]
,

(32)
Furthermore, 3DPER utilizes a replay memory experience

buffer to store and randomly sample experiences, but with a
distinctive twist. Unlike traditional replay memory, 3DPER
assigns a priority level to each experience based on the
magnitude of the TDE. This prioritization scheme allows for
the sampling of experiences that have a greater impact on the
learning process, leading to faster convergence and improved
performance, as demonstrated in [47]. The complete approach
of 3DPER is described in Algorithm 1.

E. Complexity Analysis

1) Computation complexity: In this subsection, we analyze
the computational complexity of the proposed 3DPER algo-
rithm and compare it with the conventional DQN algorithm.

The dimensionality of the action space is a critical factor in
determining the computational complexity of DQN algorithms.
In conventional DQN, each entity has |P|−1 potential actions,
resulting in an exponential increase in the action space dimen-
sion with the number of entities, i.e., (|P|−1)|P|. This makes
it intractable for larger values of |P|. In contrast, the 3DPER
architecture proposed in this paper aggregates the Q network
of each entity, resulting in a linear increase in the action
space dimension with the number of entities, i.e., (|P|−1)|P|.
This significantly reduces the computational complexity of the
algorithm, making it more scalable and practical for larger
problems.

The state st in the 3DPER algorithm has |P|(3|P| − 2)
parameters, as given by (22). For approximating state-
action values using |P| separate Q networks, each with
L fully connected hidden layers along with value and
advantage streams containing Wl parameters, the overall
computation complexity of the 3DPER algorithm in
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Fig. 5. 3DPER architecture.

Algorithm 1 3DPER Algorithm
Input: experience buffer B, minibatch size M , initial weights
θ and θT , minimum exploration probability εmin, explo-
ration decay rate δε, discount factor γ, learning rate lr;

1: Initialize the experience replay buffer B = {};
2: Get the initial state s0 from environment and set ε = 0.99;

3: for each episode do
4: Setup vehicular environment;
5: for t = 1 : T do
6: for j ∈ P do
7: Initialize the main network with random weights

θj ;
8: Initialize the target network with weights such that

θTj
= θj ;

9: #Epsilon greedy policy:
10: Choose a random probability p;
11: if p > ε then

ajt = argmaxajt
Qj(st, ajt ; θt);

12: else
Randomly select an action ajt ;

13: end if
14: end for
15: Update exploration probability ε using

ε = max{εmin, ε(1− δε)}

16: Execute action at by aggregating all ajs, and observe
the reward rt and the next state st+1;

17: Store the experience (st, at, rt, st+1) in B with prob-
ability P using the method of [47];

18: Sample a mini-batch of M experiences
(si, ai, ψi, s′i) from the experience buffer B
using the importance sampling method of [47];

19: Perform a stochastic gradient descent step on L(θ)
in (32);

20: Every G steps reset θT = θ;
21: end for
22: end for

terms of the number of required multiplications is given by:
|P|

(
|P|(3|P| − 2)W1 + 2

∑L−1
l=1 WlWl+1 +WL|P|(|P| − 1)

)
.

The third term, WL|P|(|P|−1), depends on the action space
dimensionality, which is typically increasing exponentially
with the number of entities in conventional DQN methods.
However, in 3DPER, the action space dimensionality grows
linearly with the number of entities, making the third term
much smaller than in conventional DQN. This is one of the
key advantages of 3DPER, as it makes the algorithm much
more scalable and practical for large-scale problems.

2) Communication complexity: In this subsection, we ex-
amine the communication complexity of 3DPER and contrast
it with traditional DQN algorithms. Because single-agent DQN
algorithms have minimal communication complexity [48] and
3DPER is a DQN-based single-agent algorithm, the communi-
cation complexity of 3DPER is also minimal and is determined
by the size of the state vector, which is on the order of |P|×S̄
bits, where S̄ is the average size of the exchanged messages.

V. PERFORMANCE EVALUATION

A. Experimental Setups

In our experimental setup, we integrated the BEVEC frame-
work into a simulated environment covering an area of ap-
proximately 4.48km2 using the SUMO 1simulation platform,
as illustrated in Fig. 6. This choice of simulation platform
is notable for its ability to closely emulate real-world traffic
scenarios, providing a robust foundation for our evaluations.
Within this simulated area, we positioned 9 BSs and 20
RSUs to mimic a realistic deployment scenario. Each BS
has a coverage area of approximately 0.5 km2, and within
these coverage areas, we included approximately 2 RSUs
per BS to facilitate comprehensive network coverage and
connectivity. This configuration was designed to closely re-
semble the deployment characteristics observed in practical,
urban settings. Furthermore, to assess the performance of the
BEVEC framework comprehensively, we introduced varying
traffic densities into the simulation environment, enabling

1SUMO website: https://eclipse.dev/sumo

https://eclipse.dev/sumo
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us to evaluate its adaptability and efficiency under diverse
conditions. To validate the effectiveness and advantages of our
proposed 3DPER algorithm, we utilized RLlib and PyTorch
and executed the experiments on an Ubuntu 20.04.5 LTS
operating system. RLlib leverages Ray to enable distributed
processing, harnessing the power of distributed computing
resources for faster and more efficient reinforcement learning
training [49]. In contrast to Q-learning algorithms, where
mathematical analysis of convergence during training is pos-
sible, understanding convergence in DQN methods, including
ours, is more challenging [44]. Since a theoretical analysis of
convergence in DQN algorithms is not feasible, we relied on
simulations to evaluate the convergence of our method and
ensure its reliability and efficiency. While this approach lacks
the theoretical foundation of Q-learning analysis, it provides
valuable insights into the practical convergence behavior of
our DQN algorithm.

Furthermore, we conducted an in-depth analysis of the
3DPER algorithm’s performance across different parameter
configurations, examining reward, latency, success rate, and
energy consumption. This comprehensive evaluation high-
lighted the algorithm’s advantages and identified optimal pa-
rameter settings. To further substantiate our approach, we
compared it against other strategies, including:

• Random Method: In this approach, actions are selected
entirely at random, leading to a purely exploratory
methodology that does not take into account past rewards
or environment knowledge.

• Greedy Method: Building upon our previous work [3],
this method models network entities as graph nodes and
assigns weights to each vertex based on rewarded utility
and feasible paths. A well-known shortest path algorithm
is then employed to match different network entities.

• DDPG Method: Due to the large action space size of the
equivalent MDP for problem P1, the Deep Deterministic
Policy Gradient (DDPG) method was used [50]. DDPG
uses both an actor and a critic neural network. The actor
network learns the policy (the action selection), while
the critic network learns the value function to evaluate
the chosen actions. As DDPG is capable of handling
continuous action spaces only, a rounding method was
employed to convert continuous actions into discrete ones
to make DDPG applicable.

Table II summarizes detailed information regarding the spe-
cific parameter values utilized in our experiments, motivated
by [7], [8], [40]. In cases where the specific value of a
parameter is not specified, the values are selected uniformly.

B. Results and Analysis

We start by evaluating the 3DPER algorithm’s convergence
behavior for different learning rates. Fig. 7 shows that different
learning rates produce different reward trajectories. For exam-
ple, with a learning rate of 0.001, the algorithm converges to
the maximum reward in about 500 episodes. With a learning
rate of 0.0001, the algorithm converges to the maximum
reward, but it takes about 2,000 episodes to do so. Notably,
with a learning rate of 0.00001, the algorithm fluctuates in the

TABLE II
SIMULATION PARAMETER TABLE

Parameter Value
B 10 MHz
fj (Vehicle) 1 GHz
fj (RSU) 2 GHz
fj (BS) 3 GHz
Dj (Vehicle) 1
Dj (RSU) 4
Dj (BS) 8
pij 0.2 W
p0 2 W
Sij [0.0012 - 4] Mbits
Message arrival rate λ 10 messages/s
|N̂ | 5
Tmax
i {0.25,0.5,1,2,4} s

Ωi {5,15,20,25} cycles/bit
σ2 10−14 W
ν 3
γ 0.95
εmin 0.01
δε 0.005
M 64
Size of B 100000
Υ 100
Optimizer Adam
Activation function ReLu

Fig. 6. Simulation environment
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Fig. 7. Impact of different learning rates in convergence of 3DPER algorithm.

early episodes and eventually gets stuck at a local maximum,
which is not the best possible reward.

Because the 0.001 learning rate allows the algorithm to
achieve the maximum reward while converging more quickly,
we use it for subsequent simulations.

To evaluate how varying numbers of vehicles impact
BEVEC performance, we initiate our analysis by comparing
reward curves using different algorithms, as illustrated in Fig.
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Fig. 8. Average reward under different traffic densities.

8. The comparison highlights that our proposed algorithm
outperforms other algorithms in terms of average reward due
to several key factors. Unlike the greedy method, which
focuses only on maximizing immediate reward, our algorithm
optimizes for expected long-term rewards. Additionally, unlike
the random algorithm, which explores actions without a spe-
cific policy, both our algorithm and DDPG leverage learned
policies, leading to higher average rewards. Furthermore,
unlike DDPG, which approximates action selection via an
actor network that may introduce errors, our approach directly
explores the real action space, exploiting the most effective
actions. It’s worth noting that the average reward exhibits
an increasing trend as traffic density rises. However, as the
vehicular network’s resources become saturated, the average
reward begins to decline. Fig. 9 assesses the success rate
(SR) of various algorithms across different levels of traffic
density. In line with our expectations based on the average re-
ward analysis, the 3DPER algorithm consistently outperforms
the other algorithms, with an average improvement of 38%
compared to the other methods. This observation highlights
a crucial distinction: while in some scenarios, the average
rewards of different algorithms may be relatively similar, the
actual number of messages exchanged and successfully written
to the blockchain within an acceptable time frame varies
significantly.

To illustrate, consider the performance of the random al-
gorithm, which achieves an SR of less than 30%. This result
indicates that a substantial portion of the messages fail to find
the opportunity for timely exchange. Meanwhile, by ignoring
the random method, the average improvement of 3DPER to the
average of DDPG and greedy algorithms is 4.5%, highlighting
the significant advantage of 3DPER in terms of successful
message exchange.

Fig. 10 presents the average latency across various traffic
densities. Our proposed algorithm stands out for its lower
average latency, which is on average 18% lower than other
algorithms. Although the latency of greedy and DDPG al-
gorithms is similar to our proposed algorithm, 3DPER still
achieves a 2.3% average latency reduction compared to them.
This proximity in latency values is because average latency
calculations are contingent on successful message deliver-
ies. However, the performance of the random algorithm un-
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Fig. 9. Success rate under different traffic densities.
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Fig. 10. Average latency under different traffic densities.

derscores the significance of prerequisite matching among
network entities, which can substantially influence latency.
For instance, Fig. 11 portrays the average latency when
the maximum tolerable latency for messages is fixed. The
average latency remains below the maximum tolerable latency.
However, this consideration alone, without factoring in the
SR, is insufficient. As we are bound by the constraint of
ensuring that the sum of latencies remains below a threshold,
the impact of latency must be evaluated in conjunction with
SR. Fig. 12 illustrates the SR of various algorithms under
varying, yet fixed, maximum tolerable delays. Predictably, the
random algorithm records the lowest SR, while the 3DPER
algorithm consistently outperforms the greedy and DDPG
algorithms in this regard. As the maximum tolerable delay is
increased, more time is available for message transmission and
processing, which results in improved SR. Fig. 13 examines
the average latency under varying exchanged data sizes, where
the maximum tolerable latency for each message has been
set proportionally. Notably, the 3DPER algorithm exhibits the
lowest latency, particularly as the data size increases. This can
be attributed to the algorithm’s ability to collect more rewards,
which in turn allows for a better balance between message size
and overall latency, as illustrated in Fig. 8.

Fig. 14 illustrates the average energy consumption trends
under varying traffic densities. Notably, the random algorithm
exhibits suboptimal performance and excessive energy con-
sumption compared to the other algorithms. As traffic density
increases, the energy usage in the other algorithms increases
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Fig. 13. Average latency versus different message size.

marginally, whereas the 3DPER algorithm demonstrates better
performance and reduced energy consumption compared to the
greedy and DDPG algorithms. On average, 3DPER reduces
energy consumption by approximately 65% compared to other
algorithms. By excluding the random algorithm due to its poor
performance, 3DPER achieves an average energy reduction of
7.5% when compared to the greedy and DDPG algorithms.

Fig. 15 illustrates how the reward varies in response to
changes in the message arrival rate for different schemes. No-
tably, as the rate increases, the rewards gradually decline and
eventually reach a saturation point. This decline is primarily
attributed to factors such as extended processing times and
execution failures resulting from resource limitations.
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Fig. 14. Consumed energy under different traffic densities.
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Fig. 15. Average reward under different message arrival rates.

Fig. 16 presents the results of the 3DPER algorithm’s
examination of the effect of integrated blockchain on BEVEC
performance in terms of average energy consumption and
latency across various delegate nodes. The results indicate that
the average latency in the block verification process increases
marginally as the number of delegate nodes increases. This is
because the likelihood of selecting nodes at distant locations
from each other increases with the number of delegate nodes,
leading to slightly longer average latency. However, note that
the number of delegate nodes itself does not have a significant
impact on the block verification latency. Instead, the maximum
of delays between delegates is the main factor in determining
the overall block verification latency. In contrast, energy
consumption is directly impacted by the number of delegate
nodes. Each delegate node as a block verifier contributes to
the total energy usage, resulting in a cumulative impact on
the consumed energy. BEVEC performance is affected by the
trade-off between increasing the number of delegate nodes and
increasing the security of the blockchain. On one hand, this
leads to a slight increase in average latency, but on the other
hand, it significantly affects energy consumption.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a secure framework for in-time
delivery of V2X services by combining deep reinforcement
learning and permissioned blockchain in vehicular edge com-
puting networks. Our approach features a dual-layer verifica-
tion process to ensure accurate and secure delivery of vehicular
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Fig. 16. Average consumed energy and latency under different delegate nodes.

messages. The first layer involves local verification to ensure
the accuracy of disseminated messages, while the second layer
uses a permissioned blockchain to guarantee the integrity of
the messages. We introduced a new system utility that serves
as a performance metric to ensure the prompt delivery of
services as well as a measure for the selection of verifier
nodes in the blockchain consensus mechanism. To optimize
this utility function in the dynamic vehicular environment, we
formulated the problem of in-time vehicular message delivery
as a sequential decision problem and proposed a novel DRL-
based algorithm - 3DPER - to solve it. Simulation results
show that the proposed algorithm can effectively improve V2X
service delivery performance in terms of energy consumption,
latency, and success rate. However, further investigation into
the limitations and potential enhancements of the proposed
BEVEC framework is necessary. For instance, it would be
worthwhile to investigate the suitability of BEVEC’s archi-
tecture for services with strict delivery time requirements due
to the dual layer verification. This could prove a limitation
of the current architecture. In addition, although the 3DPER
algorithm is currently capable of scaling with the number of
vehicles, it is still a centralized approach, hence it is necessary
to explore decentralized approaches, particularly in scenarios
in which such scalability is critical. Our future efforts will
focus on developing a decentralized algorithm that maintains
security and trust while minimizing latency. Our objective
is to expand the framework’s utility across a wide range of
application scenarios, to enhance its broad applicability.
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