
An Interactive Heuristic Pattern Recognition System

Gabriel-Miro Muntean1, Stefan Holban2, Cristina Hava3

1 Ph. D. student, Performance Engineering Laboratory, Dublin City University, Ireland,
46, Munster Street, Dublin 7, Ireland, ++ 353 1 8308568

munteang@eeng.dcu.ie, gabriel@cs.utt.ro
2 Professor, Computer & Software Engineering Department, “Politehnica” University of Timisoara,

Romania,
2, Bd. Vasile Parvan, 1900 Timisoara, Romania, ++ 40 56 192049

stefan@cs.utt.ro, stefan@utt.ro
3 student, Computer & Software Engineering Department, “Politehnica” University of Timisoara,

Romania,
14, Circumvalatiunii Street, Entrance A, App. 36, 1900 Timisoara, Romania, ++ 40 56 147778

hc1256@cs.utt.ro, chava@mail.dnttm.ro

Abstract. In order to classify a set of objects and later on to recognize a new or an
already known one, one needs to collect, analyze, store and process data in a
meaningful way. Classical techniques for such tasks don’t always have good results
from all points of view. In this paper we describe an advanced heuristic pattern
recognition system based on “simulated annealing” and “tabu search”, algorithms
which have been improved in order to perform an interactive classification and
recognition of the objects. Experimental results and detailed explanations are provided
to demonstrate the effectiveness of the algorithms we have built and to offer a global
view of our contribution in this direction.

Key words: simulated annealing, tabu search, interactive, heuristic, algorithm

An Interactive Heuristic Pattern Recognition System

Abstract. In order to classify a set of objects and later on to recognize a new or an
already known one, one needs to collect, analyze, store and process data in a
meaningful way. Classical techniques for such tasks don’t always have good results
from all points of view. In this paper we describe an advanced heuristic pattern
recognition system based on “simulated annealing” and “tabu search”, algorithms
which have been improved in order to perform an interactive classification and
recognition of the objects. Experimental results and detailed explanations are provided
to demonstrate the effectiveness of the algorithms we have built and to offer a global
view of our contribution in this direction.

Key words: simulated annealing, tabu search, interactive, heuristic, algorithm

1 Introduction

Pattern recognition is the research area that studies the operation and design of systems
that recognize patterns in data. It encloses subdisciplines like discriminant analysis, feature
extraction, error estimation, cluster analysis (together sometimes called statistical pattern
recognition), grammatical inference and parsing (sometimes called syntactical pattern
recognition). Thus, pattern recognition consists of a set of methods and techniques used to
classify a group of objects, processes or phenomena.

The basic design concepts for pattern recognition may be implemented by three
principal categories of methodology: heuristic, mathematical and linguistic (syntactic). Even a
combination of the mentioned methodologies could be used as a solution [1]. A heuristic
solution is based on human intuition and experience, uses ad-hoc procedures and rules and does
not find the best solution, but an acceptable one. The mathematical approach is based on
classification rules which are formulated and derived in a mathematical framework and may be
subdivided into two categories: statistical (applied on large populations and make use of
statistical rules) and deterministic (does not make use of statistics and offers exact solution).
The syntactic methods makes use of grammar rules in order to select, assemble, analyse and
recognize patterns. In this work we have used two heuristic algorithms.

The biggest difficulty of the classification process is that the elements we want to
classify could have different properties not only from semantic point of view -which is normal
in the day-to-day life- but also from the existing possibilities to measure and compare them.
The classification of elements characterized only by properties, which could be quantitatively
expressed, lets only the problem of processing and analysing gathered information in an optimal
manner to be solved. Conversely, the majority of the objects, phenomena and processes from
the nature have many proprieties which could be expressed only qualitatively. The acquisition,
the storage, the process and the interpretation of the data from such objects are very difficult

and they need special structures, procedures and algorithms, not very easy to implement in a
computable manner. In this paper, we only took into consideration the classification of elements
with measurable proprieties. The remaining problems are to choose only the common properties
for the given set of the elements we want to classify and to decide which of them are relevant
for the further classification process.

Effective classification procedure -which has to group all forms into clusters- is the
next step after data have been taken and stored in a set of pattern vectors. Two major modalities
of the classification are: the creation of the partitions by using a certain algorithm to compare
the pattern vectors (based on a chosen metric) and the construction of a function called
classifier, which, for each given element, decides which is the group it best fits [4]. The
disadvantages of the first modality is the necessity of the existence of a structure to store the
clusters and of some functions to operate with which could be both space consuming and
processing time consuming. The main disadvantage of the second direction is the necessity of a
learning period or a training period which needs a large set of data to be available and a good
teaching method in order to have a well trained system and as a direct consequence, good
results. In the present work our decision was to choose only the first version of classification
procedure.
 Since the clusters have been formed or the system has been trained, we could use the
system in order to say either that a new object has close proprieties to one of the exis ting
groups, either that he is acceptable or not for a certain purpose (e.g. admittance in a restricted
area).

2 The description of the system

The most important feature of the system we have built is the existence of a
classification engine based on two of the most succesful heuristic algorithms : simulated
anealing and tabu search, engine which could be used with no modification to classfy a large
variety of objects. Their properies have to be acquired and stored into a set of pattern vectors by
a particular module which has to be attached to the engine. The demo of the system has already
built-in two modules for two different types of input objects:
?? one reads directly the pattern vectors values from a file where they have been stored in a

certain format;
?? the second reads image files which is supposed to contain signatures, gets the important

information from them and builds the associated pattern vectors.
Thus the system has -as the most part of the pattern recognition systems have- the

following subsystems: the object acquisition module, features selection and pattern vector
construction module, clasifying module and interrgation module.

2.1 The acquisition of pattern vectors

 The properties of an object or phenomena Xi, i = 1,M we want to classify, will be
represented by a set of values {xi1, xi2, ..., xiN} which is known as pattern vector [1]. For good
results in the classification process, it has been proved [2] that the number of the objects we
want to classify M, should be at least 3 times bigger than the dimension of the vector N for
binary classification, and at least 10 times bigger for the usual techiques used in pattern
recognition. If M and N are almost equal, the clusters will be randomly created.

In order to prevent random clustering, sometimes it is necessary to reduce the
dimension of the pattern vector space. Also, the pattern vectors could have values spread on a
large spectrum which will influence in a negative direction the classification procedure. There
are different methods to pre-process acquired pattern vectors, which is a very important
operation for a later successful classification and recognition of the implemented system.
Normalization (reduces the absolute values of the vectors components whitout affecting the
relation between them), othogonal vector set determination (finds an equivalent set of
orthogonal vectors which will replace the original set), Fourier transformation (ignores the less
significant components of the Fourier series) and iterative minimization of an error function
(reduces the dimension of the pattern vector space according to the function result) are a few of
the above mentioned pre-processive methods. We have chosen the first and the last method.

2.2 The pattern classification

 The key for a good pattern recognition process is a well done clustering procedure.
The implementation of the algorithm should satisfy the most important requests for a good
classification and our results prove that we have succeded.
?? Recognition consists of the program ability to realize a corect classification of the given

objects. The recognition speed counts how many from the total number of the objects are
classified correctly.

?? Convergence expresses the rapidity of the algorithms to succed to obtain a recognition
speed closer to 100%.

?? Trust is a very important property and refers to the correct recognition and classification of
the distorted input patterns. Few of the existing systems have a high trust percentage.

?? Prediction refers to the rate of correct classification of the data which are not a part of the
input training set.

 The experiments show that the system we have built has a very good recognition rate,
a very good convergence, a low trust rate and a good prediction if the algorithm’s parameters
are optimal chosen.

2.3 Pattern recognition

 In general there are two distinct ways a pattern recognition system could react in:

?? the acceptance or the rejection of a given element according to the input data set (there are
advanced systems which will take in consideration the previous answers for the next
decision);

?? the determination of the closest cluster to the given input object.
 After the classification of the input pattern vectors set, our system has the possibility
either to load an input element and to find the closest cluster or element, or to choose a
particular group for some of its properties and to find the closest match inside of that group. In
both cases the found element could be saved for further processings.

3 The classification algorithms

The classification module uses two heuristic algorithms (simulated annealing and tabu
search) in order to accomplish its task. The user has to decide which one will be used and also
he could modify the algorithm default parameters in order to have a greater influence on the
classification process (if he/she is interested in). The results of our experiments could be useful
in the decision he/she has to take.

3.1 Simulated Annealing

3.1.1 Starting point
 In 1953 Metropolis studied [2] the energy of an object (metal or cristal) which is
cooled. He observed that the structural properties of the object in the final “frozen” state,
depends on the process the material has passed through. In 1983, starting from the Metropolis
observations, Kirpatrick generalized the idea to any problem which solving has to converge
toward an optimal solution. In his case the final energy of the material has been replaced by a
cost function and the goal remained to find a solution for which the cost function has a
minimum value [3].
 An algorithm which leads towards an optimal solution could be an exact but inefficient
one (if it will explore all possibilities) or a heuristic one which starts from a possible solution
trying to improve it looking continously for a better solution in the nearest neighborhood of the
current one. The main disadvantage of the second option is that the final solution is dependent
on the initial chosen one. Another disadvantage is trying to find a better solution in the
neighbourhood of the current one, it is possible to stop the searching process at a local
minimum of the cost function, even when better possibilities remain unexplored. This is another
major disadvantage.

Fig. 1. A possible best local solution

 The latter has been solved by looking at the cooling experiment of a material. It has
been proved [2] that at a certain temperature T the probability to have an increase in energy of
? E is:

P = pow(e, -? E/kT) (1)

where k – Boltzman’s constant,
This proves that the cooling process is not linear one and by analogy we have accepted

in the algorithm a possibility to take even worse solutions with probability P. Thus we have
introduced a "hill climbing" character which will offer a chance to explore further
neighborhoods of the current solution.
 Minimization of the second disadvantage (the dependence of the final solution by the
initial chosen one) is also done by comparis on with the cooling process, where good results
have been obtained when starting temperature T is as high as possible (thus the cooling procces
is longer).

3.1.2 Algorithm parameters

Because of the analogy with the cooling process, we have decided to keep the names
of the algorithm’s parameters as they have been used in the original algorithm [5].
 Initial solution -because we don’t have pre-existing information about pattern vectors
space we have to deal with and to avoid using another heuristic algorithm in order to find an
acceptable initial solution, we start from M clusters Gi, i=1,M, each of them having only one
member Sj, where Sj, j=1,N are the objects of the pattern vector space S. The algorithm
changes the membership of the objects from a group to another, destroying or creating new
groups, if necessary.

Neighbour solution -is a possible solution built from the current solution by moving
an element from one of the groups to another. The selection of the two groups -source and
destination- and of the element which has to be moved will be at random.
 Initial temperature -it has been chosen equal to the number of the objects we have to
classify. Usually the input set S have a large number of elements. For the rare cases in which
the pattern vector space S is small, we offered a possibility to multiply initial temperature by
introducing the parameter of the algorithm N_Multiply. Thus we assure a high enough initial
temperature for a good performance of the clustering procedure in its descendant path.

 Temperature length -it has been chosen, after experiments, to a default value
N_Iterations, but its value could be interactively modified before each classification procedure.
 Temperature rate -in order to assure a very long classification process (from the
temperature point of view) which will affect the searching process in a positive way, for a better
solution, the decrement value should be as small is possible. Experimentaly we have chosen a
value N_Decrement as a default value, but it could be modified by the user, before each
classification process. To assure the convergence of the clustering, every time when the current
temperature reaches the neighbourhood of an integer value, we force a concatenation of the two
closest groups (if this didn’t happen automatically for a number of iterations: N_InterNotModif,
parameter which could be modified in an interactive manner).
 End condition -has three components: temperature reaches the low level we have been
chosen N_InfLimit; the number of the current groups are N_MinGroups; reaching the maximum
number of steps allowed N_NotModif without finding a better solution

3.1.3 Algorithm description

We will use pseudo-code in order to describe the algorithm because it is more general
and accessible. We have used the C++ programming language syntax.

Advanced_Simulated_Annealing{
 T = Initial temperature
 Choose an InitialSolution as the CurrentSolution
 while (not End condition){

for (Temperature length){
 Peek a NewSolution from the Solution neibourhood
 Calculate ? E = ? Cost = NewCost - OldCost
 Calculate P = pow(e, -? E/kT)

Compute Rand = Random(100)/100
 if (NewSolution is better than the CurrentSolution or Rand < P)
 Accept NewSolution as CurrentSolution

if (CurrentSolution is not modified for a long time)
 Concatenate the closest groups

}
T = T - Temperature decrement

}
Accept the CurrentSolution as the FinalSolution

}

3.1.4 Comments
1. As we already said, we have chosen the Initial temperature as being equal to the number of
the objects we have to classify, multiplied by a paramether N_Multiply which has a default
value of 1, but this value could be modified in an interactive manner. Usually the number of
objects is already big and also the Temperature decrement has a default value of 0.01. Hence,

there are a lot of steps in the algoritm execution, so the chances to find a better solution are
bigger.
2. The default value 0.01 for Temperature decrement has been chosen as a compromise
between the system reaction to a smaller and a bigger value for it. A value 10 times smaller,
would drastically increase the execution time, without a direct corespondence in the quality of
the solution. A value 10 times bigger, would give unconvincing results.

Fig. 2. Cost function and execution time evolution for Temperature decrement values in [0.001, 0.01]

Fig. 3. Cost function and execution time evolution for Temperature decrement values in [0.01, 0.1]

3. The default value for Temperature length is 100. A value 10 times bigger for N_Iterations,
increased the number of attempts to find a better solution, successful from the cost function
point of view, but the execution time increased. A value 10 times smaller decreased heavily the
chances to find better solutions apart from the close neighbourhood, even if the execution time
decreased, with today’s powerful computers, this shouldn’t be a major concern.

Fig. 4. Cost function and execution time evolution for Temperature length values between 10 and 100

Fig. 5. Cost function and execution time evolution for Temperature length values between 100 and 1000

4. End condition is affected by three paramethers. Modifying N_InfLimit has the same effect as
the modification of N_Decrement had; changing the value of N_MinGroups will affect in a
limited manner the final solution. This is due to the fact that if we use a big value we will stop
the proper operation of the algorithm; N_NotModif has a big importance because its value
decides when there is no more sense in searching for a better solution. It stops the execution
after a consecutive number of unsuccessful steps.
5. According to the initial algorithm [6], a candidate solution from the neighbourhood of the
current solution has to be taken at random. A candidate solution differs from the current
solution by the fact that a single element belogs to a different group. We kept the idea of
randomly chosen candidate solution by taking at random two different groups from the partition
and moving a random chosen element from one of the groups to the second one.

a = Random(GetNrOfGroups());
while((b = Random(GetNrOfGroups())) == a)

 ;
 Group1 = GetGroupAt(a);

Group2 = GetGroupAt(b);

 k = Random(Group1->GetNrOfElements());
 Elem = Group1->GetElemAt(k);
 Group1->ExtractElemAt(k);
 if (Group1->GetNrOfElements() == 0)
 DeleteGroupAt(a);
 Group2->InsertElemAt(Elem, Group2->GetNrOfElements());
6. Because experimentally we couldn’t prove that the number of the candidate solutions which
will become current solutions is much bigger than the number of rejected candidate ones, we
took the decision that it is better to let them become new current solutions. The cost function is
calculated incrementaly from the previous value and then we take the decission to keep the new
current solution or to retake the previous one. Thus the algorithm has to change the belonging
of an element (removing it from a list and adding it to another) twice if the solution won’t be
selected, but it gains in terms of calculations of the cost function.
7. In order to calculate the cost function, we have defined a cohesion factor which will count
the spread of the elements inside of the same cluster. We keep a cohesion factor for each
partition’s group and its value would be modified only if a new member is addded/removed
to/from that particular group.

 NrElemi-1 NrElemi
Coezi = [? ? dist(Elemi[j], Elemi[k])] / NrElemi,
 j=1 k=j+1

(2)

for every group Gi and where dist is the Manhattan or Euclidian distance between the two
pattern vectors which represent the elements j and k from the group Gi. We provide to the user
the posibility to switch the default distance formula between those two. The incremental
formula for cohesion factor if removing an element Elem[k] from the group Gi [eq. (4)] and
adding it to the group Gj [eq. (3)] is:

 NrElemj
Coezj = [(Coezj * NrElemj + ? dist(E, Elemj[k])] / (NrElemj +1)
 k=1

(3)

 NrElemi

Coezi = [(Coezi * NrElemi - ? dist(E, Elemi[k])] / (NrElemi -1)
 k=1, k<>poz(E)

(4)

8. In a similar manner we define Meani -for each group Gi of the partition- as a vector which
best describes that group. Their values will be actualized incrementaly as Coezi values have
been, for each i=1, NrGroups. Meani will be used for the calculation of the cost function.
 N

Meani = [? ? Elemi[k]] / NrElemi ,
 k=1

(5)

where N is the dimension of the pattern vector space.
9. The cost function has been built from two components which describe intragroup relations
between pattern vectors and intergroup relations. Its formula is given bellow.

 NrGroups-1 NrGroups NrGroups
Cost = [- ? ? ? dist(Meani,Meanj) + ? Coezi] / M
 i=1 j=i+1 i=1

(6)

where M is the total number of objects we have to classify (the elements of the set S).
Its value is modified incrementaly (which reduces the complexity of the calculus from N2 to N)
when an element is moved from a group Gx to a group Gy according to the following formula:
Cost = [Cost’*NrGroups’
 NrGroups NrGroups
+ ? dist(Meani,Meanx’) + ? dist(Meani,Meany’)
 i=1, i<>x i=1, i<>x,y
 NrGroups NrGroups
– ? dist(Meani,Meanx) – ? dist(Meani,Meany)
 i=1, i<>x i=1, i<>x,y
– Coezx’ – Coezy’ + Coexx + Coezy] / NrGroups,

(7)

where Cost’, NrGroups’, Meanx’, Meany’, Coezx’ and Coezy’ are the old values, before the
moving was performed.
10. We took the decision that, every N_InterNotModif unsuccessful trials, to reduce the number
of groups by concatenation of the closest two groups (the distance between their representants
Meani and Meanj is the smallest of the distances between the rest of the reprezentants). We
have decided for this option (instead of choosing a group with the smallest cohesion factor and
to spread its components to the groups they are the closest) because the second would
necessitate (NrGroups-1) * NrElemi calculations of distances and NrGroups-1 comparisons for
determination of minimum instead of (NrGroups-1) * NrGroups/2 in the implemented one
which has also the advantage to keep together the already grouped elements.

3.1.5 Tests

For the default values for the algorithms paramethers, we tested the recognition of a
pattern by the system as follows:
?? for the pattern vectors of the training set, the recognition is around 90% (the majority of the

given patterns have been successfully recognized);
?? for new pattern vectors, the system finds a close enough group and within the chosen group

a pattern vector if asked;
?? for distorted pattern vectors from the input set, the results haven’t been very convincing,

sometimes the system performed well, sometimes not, which is explicable by the way the
system has implemented the recognition procedure.

3.2 Tabu Search

3.2.1 Starting point
 Analysing Simulated Annealing algorithm we could observe that the uphill trials are
done at random. For better performances of the algorithm, an “intelligent” control of the
process of choosing a worse solution, with the hope that a better solution will be discovered

later on, has to be performed [7]. In the same time a record of the last steps toward an optimal
solution could be useful in order to improve the convergence of the algorithm.
 Following those aims we have built a short term memory and a long term memory.
The short term memory stores information about the latest moves in the better solution finding
process. Its main scope is to avoid taking into account the same candidate solution and entering
into a cycle. Still we could decide to retake in consideration an already processed candidate
solution in several conditions (e.g. if the cost of the candidate solution is one of the best ever)
 The long term memory stores information about the global evolution of the algorithm
and it is used to diversify the moves in order to reach different types of candidate solutions and
also to fix some of the components from the good solutions already discovered.
 But for a good classification process (independent of the initial solution taken in
account) it is recommended to restart the algorithm with the best solution found as the initial
solution.

3.2.2 Algorithm’s parameters

Apart from the parameters we have already described, there are some new ones:
 Temperature rate –we have renounced at the concatenation procedure because the
algorithm itself performes the classification task (reducing the number of the groups if
necessary) without any external help.
 End condition -has three comp onents: temperature reaches the chosen low level
N_InfLimit; the number of the current groups reaches N_MinGroups; the current number of
restart times becomes N_MaxRestart.
 Future benefit -is a condition which allows taking into account even an already
studied candidate solution if it seems very promising; we accept it if N_Amplif * OldCost >
CurrCost, where N_Amplif is a value which can be modified by the user if wanted.

3.2.3 Algorithm description

We will use pseudo-code in order to describe the algorithm because it is more general
and accessible. We have used the C++ programming language syntax.

Advanced_Tabu_Search{
 T = Initial temperature

Choose an InitialSolution
do{
 for (Temperature length){

Peek in order NewSolution from Solution neghibourhood withNewCost
Calculate ? E = ? Cost = NewCost - OldCost
Calculate P = pow(e, -? E/kT)
Compute Rand = Random(100)/100
if (NewSolution is better than the CurrentSolution or Rand < P)

Accept NewSolution and add it to SOL_LIST
 Add time penalties

 for (Solution from SOL_LIST in order of Cost)
 if (Solution not in TABU_LIST or Future benefit){

Accept Solution as CurrentSolution
 Actualize TABU_LIST

}
 if (Restart Condition)

 Construct an new InitialSolution
 }

}
while (not End condition)
Accept the CurrentSolution as the FinalSolution

}

3.2.4 Comments
1. SOL_LIST is a structure which temporily stores better candidate solutions than the current
one (or worse with probability P) in the order of cost function. This lets us to choose the
candidate solutions in an intelligent way.
2. TABU_LIST stores the last N_DimTabu moves in order to prevent the aparition of a cycle.
N_DimTabu could be interactive changed by the user. The default value is 10.
3. Time penalities are a part of the measures we take in order to diversify the candidate
solutions we take into account by considering in the cost function formula a third component.
 NrGroups-1 NrGroups NrGroups
Cost = [- ? ? ? ? dist(Meani,Meanj) + ? Coezi
 i=1 j=i+1 i=1
 NrGroups
 + ? Punishi] / M
 i=1

(8)

Where
NrElemi

Punishi = [? ? PunishElemj] / NrElemi ,
 j=1

(9)

The PunishElemj is a value which is reset every time the element Elemj is moved from a group
to another and incremented every step the algorithm takes in its searching for a better solution.
4. The same Punish values have been taken into account for building a new initial solution
when the algorithm restarts. This time is necessary to keep in the proposed solution all those
elements that have been a part of a certain group for a long time. For those who have Punish
values under a N_MinPunish value, we create a new group for each of them and give them a
chance to find the best group to be a member of during the execution of the classification
procedure.

3.2.5 Tests

The experimental results have proved that Advanced Tabu Search gives much better
cost functions than Advanced Simulated Annealing, but with double the price: high execution

time which has increased due to the multiple restart procedure and large memory necessary for
storing the TABU_LIST, the SOL_LIST and Punish values. We will offer some comparative
results obtained for sets of 100, 200 , 300, 400 and 500 pattern vectors, classified with both
algorithms, using the same default values as parameters for both experiments.

Fig. 6. Comparison between cost function and execution time respectively for the described algorithms

No. of
pattern
Vectors
-total-

Simulated
Anealing

-recognized-

Tabu
Search

-recognized-

 No. of
pattern
Vectors
-total-

Simulated
Anealing

-recognized-

Tabu
Search

-recognized-

100 92 0.920 95 0.950 100 34 0.340 45 0.450
200 191 0.955 194 0.970 200 87 0.435 89 0.445
300 286 0.953 291 0.970 300 122 0.407 109 0.363
400 378 0.945 386 0.965 400 167 0.418 213 0.533
500 485 0.970 483 0.966 500 201 0.402 221 0.442
Table 1. Successfully recognized pattern vectors from the input sets (absolute numbers and percentage)

Table 2. Recognition of the distorted pattern vectors from the input sets (absolute numbers and percentage)

4. Conclusion and further work

The main goal of our work was to realize a system capable of recognising a plant

giving some of its characteristics or choosing interactively one from an available set, taking into
account some of their properties. The given plants characteristics are acquired by a special
module which has a posibility to display them, too.

Fig. 7. Visualization of the pattern vectors in a 2-dimensional space (whose axes could be interactively

modified)

We have built a classification engine which realizes the classification in an interactive
manner and a module used for selection of the desired object either by automatic recognition, or
by interactive direct selection.

Fig. 8. Configuration of parameters for Tabu Search algorithm and interactive selection from a list of good

solutions

 Besides the aim we wanted to accomp lish, we had the idea of creating a classification
engine which could be used for different types of input data with little other work to do. Thus
we have separated our system into separate modules which communicate in a standard way
between them. For acquiring plant characteristics, available in a text file, we have used a simple
reading module, but for more complex input data it is necessary to build more complicated
modules. We tried to build such a module which reads an image file which is supposed to
contain a signature. The image is processed and transformed into a set of characteristics, which
after further processing will form a pattern vector. The latter is still under tests.

Fig. 9. An image file is read and the user has the possibility to select the signature and realize a clipping

References

1. J. T. Tou, R. C. Gonzalez – Pattern Recognition Principles, Addison-Wesley Publishing Company,
Massachusetts, 1974

2. K. Varmuza, Pattern Recognition in Chemistry, Lect. Notes, vol 21, Springer Berlin, 1980
3. P. C. Jurs, T.L. Isenhour, Chemical Applications of Pattern Recognition, Wiley-Interscience,

New York, 1975
4. Stefan Holban, Pattern Recognition - Lecture Notes, Computer & Software Engineering Department,

“Politehnica” University of Timisoara, Romania, 1998
5. Petru Eles, Heuristic Algorithms - Lecture Notes, Computer & Software Engineering Department,

“Politehnica” University of Timisoara, Romania, 1997
6. K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974
7. R. Vancea, S. Holban, D. Ciubotariu, Pattern Recognition -Applications, Academy

Publishing House, Bucharest, Romania, 1989

