SOME SOFTWARE ISSUESOF A REAL-TIME
MULTIMEDIA NETWORKING SYSTEM

GabrietMiro Muntean, Liam Murphy
Performance Engineering Laboratory, School of Electronic Engineering,
Dublin City University, Dublin 9, Irdand

munteang@eeng.dcu.ie, murphyl @eeng.dcu.ie
Abstract

The transmisson of reated multimedia data causes problems because of their very
large sze and continuous nature. Unlike the maority of the existing solutions for transmitting
continuous media, which use connectionless protocols, we propose one that uses a
connectionoriented protocol (TCP/IP). An object-oriented gpproach is used to build both
saver and dlient, dlowing easer sysem debugging and expanson. We implemented a
buffering mechanism which dlows us to continue playing for a paiod when the network load
increases. Multithreading is used to solve some problems which require concurrent solutions.

1. Introduction

The process of transmission of related audio, video, images, text and/or data among
networked computers is known as multimedia networking. Both audio and video sreams have
timing requirements as well as a need to play out them in a continuous manner at the receiver.
Besdes thee individuad timing requirements, a combined multimedia stream requires
synchronization at the receiver to be understandable.

Another problem with multimedia streams is their large filesze. A lot of work has
dready been done [1] to reduce the size of multimedia files by using different compression
dgorithms, thereby reducing the necessary bandwidth for transmission and thus the network
load. For the system we have built, we have chosen MPEG format for compressing audio and
video because of its high compression factor and its ability to adjust the size of the compressed
stream depending on the requested qudlity.

The requested and expected quality of transmission depends on where the multimedia
dream is used. In some gpplications a high quality of service (QoS) is important. In other
cases the expectations for QoS are lower, but a smooth flow of the multimedia stream is
desrable. There were some proposds to improve multimedia transmisson qudlity like traffic
control and dynamic bandwidth renegotiation at the server [2], dynamic bandwidth alocation
and flow/congestion control [3], rate shaping [4] or a feedback mechanisms [5], [6]. The
mgority of them were either theoretica studies or smulaions Our client-server system
implements a reak-time multimedia streaming over the network. The current paper discusses
some of the software solutions used.

2. The System Overview

Our client-server system has two main parts: the client and the server application (Fig
1). The implementation of the both client and server gpplications required the presence of a
unit in charge of establishing and controlling the onnections between them. Another one
acquires information (e.g. video, audio) a the server and to play or display it a a client. A
third unit is responsible for encoding (at the server) and decoding (at the client) of the
multimedia sream while a fourth one implements the feedback mechanism a both sides (client
and server).

MPEG Decmder Symr hronisdinm ¢ AndinVides MPEG F [‘unlﬂ}] &u.:hu."‘l.-‘:l.:lm- |
Trnit. Wyt Pyygll'm F:m:adsrl'.l'nh, mit. |

\“‘1 Client ‘;—/f M‘ Xl Sen BT /
Application Application
j iy
| Connection & Feedback Manager | | Connectiom & Feedback Manager |
| Socket Manager | | Socket Manager |
ha
“a #/
Network |

Figure 1: The structure of the Client-Server application

An object oriented approach has been usad in the design of the system, which has
been decomposed into subsystems in order to meet the system gods. The implementation uses
pardle processing threads which are in charge of particular tasks. When an event occurs (e.g.
a connection request arrives, deta is received, a user command is sent), the system is informed
about it by amessage (asin any other windows application) and a specia thread is assigned to
handleit.

In order to reduce the quantity of data to be sent, we have used MPEG compression
for audio and video data [7]. Since it is computationally very complex [8], and we intend to
handle red-time transmissons, we have chosen a hardware encoding solution. Because the
feedback mechanism needs access to the MPEG stream components, we decided to
implement our own software MPEG decoder for video, audio (layer 1, 2 and 3) and system
streams.

3. Software Implementation Details

With the system architecture from the Fig. 1, we now discuss in more detail some of
the software problems occurred and the solutions we propose.

Client-Server Communication

We have used the services offered by the Windows Sockets 2 API to bind to a
particular port and |P address on a hogt, initiate and accept a connection, send and receive
data, and close a connection.

A bi-directiona connection, implemented and controlled by "Connection Managers’,
is needed for data transmisson and the implementation of the feedback algorithm. Our

"Connection Managers' improve the standard communication scheme by using the Windows
operating system message pump to cal the correct function to build the connection or read
incoming deta, saving the time usudly spent polling the sources for possible interruptions.

Idedly the encoding, the transmission over the network, decoding and playing or
displaying multimedia should be done at the same rate. Unfortunatdly, under heavier loading, it
is possible that the network could delay different audio or video packets by different amounts.
A buffer is necessary at each receiver (i.e. client) to store the arrived data until it is processed,
and again after decoding until it is played or displayed. Our feedback mechanism aso makes
use of receiver-gde buffers and therefore a rdatively complex buffering mechanism has been
devel oped.

Buffering Mechanism

A circular system of buffers (Fig. 2) has been implemented &t the client side, dlowing
data to be received and stored into a FREE buffer, which will then be marked as FULL. The
Decoder Unit takes FULL buffers and decompresses the data, storing the ready-to-display or
ready-to-play datainto READY buffers.

BuffActive

" FirstRea
e W

Figure 2: Thecircular buffer system at aclient

Separate threads are playing or displaying data which is contained in buffers. These
buffers are marked ACTIVE while playing and immediately after the process is over are
marked FREE. Thus we dlocate a number of buffers and reuse them, without losing the time
to allocate and free them one-by-one as needed. One of the disadvantages of this schemeis
the hgh memory space usage dl the time, even if there is no datato store in dl the buffers; but
this is less of a problem with today's memory capacities. By introducing different pointers for
the firs FREE, FULL, READY and ACTIVE marked buffers respectively, we reduce to the
minimum the time spent on sequential parsing of the circular buffer sructure. Such a circular
system of buffersisalocated to each type of MPEG stream (audio, video and system), both at
server and at client Sde.

Multithreading

Our system uses multithreading for both server and client gpplications. At the server
side, different threads are assgned to read data from afile and to send them to the client as is
shown in Fg. 3. FllThread is in charge of filling the server buffer (SvCircBuff) with the
encoded data at the same time as they are being reed and sent for decoding by a loca
decoder thread. TxThread trangmits data from SvCircBuff to the client every time a signd
comes from atimer.

At the dient Sde (Fig. 3), there are three threads for each instance of an audio or
video stream. FillThread takes the encoded data received from the server and stores it in a

circular buffer (CliCircBuff). DecThread decodes data taken from the CliCircBuff and sends
the decoded data to the audio or video driver, which puts it in the DriverBuff. PlayThread
plays or displays the decoded data dready sent to the Play/Display Driver, according to the

stream's properties.
o |||
IT'{}- [FillThread | Dec’{hmif Tmyrhmdj#

SerichnITJ | |C]i[‘-irr_;; J

v —

B, B S e
[Er]—)[TxThread | xuruet;- [Nm-mrk (sncm' [FllThread L(—[E
L W ! A

Figure 3: Dataflow through threads and buffers both at server and at client sides

Criticd sections are used in order to protect the shared resources (e.g. circular
buffers) from being accessed by more than one threed a a time. Events are used to signd
threads (e.g. a new buffer was filled and is waiting to be decoded). The Windows message
system wakes up a thread if an important event occurs, such as receiving a packet with data
from the server.

The system stream decoding needs to be able to decode both audio and video
encoded data. Thus an extra number of threads have to be launched. Unfortunately, the CPU
time dice given by the operating system to dl the threads was not enough for a smooth play
(especidly of the audio stream). To keep up with the playing, the decoding thread had to be
granted a higher priority than the other threads. This in turn meant that the system decoding
thread also had to be higher priority.

Streams Synchronization

The Synchronization Unit is not active unless a system dream is trangmitted. The
MPEG system decoder sends data to the video and audio circular buffer systems at irregular
intervas. With the help of the decoding time stamps (DTS) and the presentation time stamps
(PTS), the system, audio and video stream decoders are able to decode received data and
play/display them at the appropriate times.

Audio Data Video Data
Audio Play Video Play
Audio |y EVEM Bvent 1 Video
Timer Timer
Synchro Event
System Clock

A System Clock Reference
Figure 4: Synchronization Unit

A System Clock is crested by the Synchronization Unit at the dlient sde (Fig. 4) when
the server sends the first part of the system file requested. The initidization and adjusting is
done when the client decodes the System Clock Reference (SCR) components of the system

sream. DTS and PTS are sent along with the decoded data to the play/display drivers. The
System Clock repestedly sends synchronization events (Synchro Event) to the audio playing
thread and to the video displaying thread. If the two streams are not played or displayed
smultaneoudy, by usng DTS, PTS and the Synchro Event sent by the System Clock, the
skew can be reduced to zero by adjusting the displaying rate of the video. We didn't interfere
with the audio playing thread because from experience we noticed that any change in the rate
the audio data are played badly affects the generd qudity.

4. Preiminary Reaults

The sarver was built usng multi-template and multi-document approach, so it can
open more than one type of document template and, for each document template, more than
one document a atime. Thus the server gpplication can accept client requests for connections
while playing one or more MPEG or AVI audio, video and system files.

The following charts show the buffers occupancy for both audio and video, in both
cases. dementary sreams and system stream. Next we will discuss the results obtained
dlocating a Circular Buffer of the type described earlier, with 500 equa size buffers. The size
of the buffers depends on the case: for audio we have used 4096 bytes large buffers and for
video 16384 bytes large buffers.

Audio Stream: Circular Buffer Occupancy vs Time Video Stream: Circular Buffer Occupancy vs Time
600 600

500 500

400 \h-—_ /// Sml:; 400 \ / —:’r{z:(s
300 DECoDEd] 2300 —— DEcoDE]
2 = Buffers 2 Buffers

e Fuers

100 /I\ 100

,) S . N
1 151 301 451 601 751 901 1051 1201 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Time Time
Figure 5: Audio Stream: Figure 6: Video Stream:
Buffer Occupancy vs. Time Buffer Occupancy vs. Time

Looking et figures 5 and 6, in which the number of different marked buffers againgt the
time were plotted, we can see that, when the stream the user wants to be played has been
chosen, the incoming data is decoded and some of the EMPTY marked buffers are filled.
Thus an increasing trend of the DECODED marked buffers can be remarked. When the
streams started to be played, the number of buffers sent to the playing driver increases. In the
case of audio stream whose decoding is not so CPU time-consuming, the increase is sharper
than the one observed in the case of video dementary stream.

To be able to play the stream correctly to the end, we have to decode, in a timey
fashion, enough data to submit to the play or display driver. When the decoding threads finish
their jobs, the playing or displaying ones continue their jobs until the data they have received is
finished. We notice that the number chosen for the available buffers (500) is big enough to
cover the requirements of both streams. To save memory, 250 buffers for audio decoding and
200 buffers for video decoding solve the problem; even a smaler number of buffers may be
enough.

The system stream has a much harder job to be done in the same time, because its
sreams have to be split before decoding is performed on each of them. Thus, looking at Fig. 7

and Fig. 8 which show the audio and video buffer occupancy respectively, we notice a more
gradual incresse of the decoded data filled buffers and of the ready-to-play or ready-to-
display one. In the system case as well, the number of the used buffers does not tend to
exceed the number alocated.

System Stream: Audio Buffers Occupancy System Stream: Video Buffers Occupancy

140 350
120 00 —— Encoded
I\ [Encoded] 250 I\ Data
100 ata.
:;' 80 I ze‘code ézoo f/ \ - Z:ta‘ T
Eso I bata 2150 , \ Driver
40 l \ g:‘:lTo 100
l / \ Driver . | _ N
V7 ~3 N ——__
0 T - e d8J 88 8IF ¢ B I8 TR
H@:Snﬁagmigsssszs Time
Figure 7: System Stream: Audio Buffer Figure 8: System Stream: Video Buffer
Occupancy vs. Time Occupancy vs. Time

5. Conclusion and Further Development

The prototype system is ill under development. The "Connection Managers' are
running as required. They have been tested by sending files of both MPEG and AV types and
have yidded satisfactory results. The MPEG Decoding Unit successfully decodes MPEG-1
system, audio and video streams, with the help of the buffering scheme implemented. Some
improvements may be necessary regarding system performance. Streaming has been redized
with the help of buffers. Thus a multimedia stream can be decoded even though the whole file
isnot available yet.

References

[1] W. T. Oai, B. Smith, S. Mukhopadhyay, H. H. Chan, S. Weiss and M. Chiu, "The Ddi
Multimedia Software Library”, SPIE Multimedia Computing and Networking 1999, San Jose,
CA, January 25-27, http://www.cs.cornell.edu/zeno/Papers/#Dali

[2] B. Zheng and M. Atiquzzaman, “Traffic Management of Multimedaover ATM Networks’,
| EEE Communications Magazine, vol. 37, no. 1, Jan. 1999, pp. 33-38

[3] M. Krunz, “Bandwidth Allocation Strategies for Transporting Variable-Bit-Rate Video
Traffic”, IEEE Communications Magazine, vol. 37, no. 1, Jan. 1999, pp. 40-46

[4] B. Sheu and A. Ortega, "Microsystems Technology for Multimedia Applications’, 1EEE
Press, May, 1995

[5] P. Bindal and L. Murphy, “Multimedia Feedback Control in ATM Loca Area Networks’,
Proceedings of the 35th ACM Southeast Conference, Murfreesboro, TN, April 24, 1997, pp.
243-250

[6] G. Muntean, L. Murphy, "An Object-Oriented Prototype System for Feedback Controlled
Multimedia Networking", | SSC, University College of Dublin, Ireland, June 29-30, 2000

[7] ISONEC Internationa Standard 11172, “MPEG-1 - Coding of Moving Pictures and
Associated Audio for Digital Storage Media up to 1.5 Mbits/s’, Nov. 1993.

[8] D. LeGdl, “MPEG: A Video Compresson sandard for Multimedia Applications’,
Communications of the ACM, val. 34, no. 4, April 1991, pp. 46-58

