

SOME SOFTWARE ISSUES OF A REAL-TIME
MULTIMEDIA NETWORKING SYSTEM

Gabriel-Miro Muntean, Liam Murphy
Performance Engineering Laboratory, School of Electronic Engineering,

Dublin City University, Dublin 9, Ireland
munteang@eeng.dcu.ie, murphyl@eeng.dcu.ie

Abstract

The transmission of related multimedia data causes problems because of their very

large size and continuous nature. Unlike the majority of the existing solutions for transmitting
continuous media, which use connectionless protocols, we propose one that uses a
connection-oriented protocol (TCP/IP). An object-oriented approach is used to build both
server and client, allowing easier system debugging and expansion. We implemented a
buffering mechanism which allows us to continue playing for a period when the network load
increases. Multithreading is used to solve some problems which require concurrent solutions.

1. Introduction

The process of transmission of related audio, video, images, text and/or data among
networked computers is known as multimedia networking. Both audio and video streams have
timing requirements as well as a need to play out them in a continuous manner at the receiver.
Besides these individual timing requirements, a combined multimedia stream requires
synchronization at the receiver to be understandable.

Another problem with multimedia streams is their large filesize. A lot of work has
already been done [1] to reduce the size of multimedia files by using different compression
algorithms, thereby reducing the necessary bandwidth for transmission and thus the network
load. For the system we have built, we have chosen MPEG format for compressing audio and
video because of its high compression factor and its ability to adjust the size of the compressed
stream depending on the requested quality.

The requested and expected quality of transmission depends on where the multimedia
stream is used. In some applications a high quality of service (QoS) is important. In other
cases the expectations for QoS are lower, but a smooth flow of the multimedia stream is
desirable. There were some proposals to improve multimedia transmission quality like traffic
control and dynamic bandwidth renegotiation at the server [2], dynamic bandwidth allocation
and flow/congestion control [3], rate shaping [4] or a feedback mechanisms [5], [6]. The
majority of them were either theoretical studies or simulations. Our client-server system
implements a real-time multimedia streaming over the network. The current paper discusses
some of the software solutions used.

2. The System Overview

Our client-server system has two main parts: the client and the server application (Fig

1). The implementation of the both client and server applications required the presence of a
unit in charge of establishing and controlling the connections between them. Another one
acquires information (e.g. video, audio) at the server and to play or display it at a client. A
third unit is responsible for encoding (at the server) and decoding (at the client) of the
multimedia stream while a fourth one implements the feedback mechanism at both sides (client
and server).

An object-oriented approach has been used in the design of the system, which has
been decomposed into subsystems in order to meet the system goals. The implementation uses
parallel processing threads which are in charge of particular tasks. When an event occurs (e.g.
a connection request arrives, data is received, a user command is sent), the system is informed
about it by a message (as in any other windows application) and a special thread is assigned to
handle it.

In order to reduce the quantity of data to be sent, we have used MPEG compression
for audio and video data [7]. Since it is computationally very complex [8], and we intend to
handle real-time transmissions, we have chosen a hardware encoding solution. Because the
feedback mechanism needs access to the MPEG stream components, we decided to
implement our own software MPEG decoder for video, audio (layer 1, 2 and 3) and system
streams.

3. Software Implementation Details

With the system architecture from the Fig. 1, we now discuss in more detail some of
the software problems occurred and the solutions we propose.

Client-Server Communication
We have used the services offered by the Windows Sockets 2 API to bind to a

particular port and IP address on a host, initiate and accept a connection, send and receive
data, and close a connection.

A bi-directional connection, implemented and controlled by "Connection Managers",
is needed for data transmission and the implementation of the feedback algorithm. Our

Figure 1: The structure of the Client-Server application

"Connection Managers" improve the standard communication scheme by using the Windows
operating system message pump to call the correct function to build the connection or read
incoming data, saving the time usually spent polling the sources for possible interruptions.

Ideally the encoding, the transmission over the network, decoding and playing or
displaying multimedia should be done at the same rate. Unfortunately, under heavier loading, it
is possible that the network could delay different audio or video packets by different amounts.
A buffer is necessary at each receiver (i.e. client) to store the arrived data until it is processed,
and again after decoding until it is played or displayed. Our feedback mechanism also makes
use of receiver-side buffers and therefore a relatively complex buffering mechanism has been
developed.

Buffering Mechanism
A circular system of buffers (Fig. 2) has been implemented at the client side, allowing

data to be received and stored into a FREE buffer, which will then be marked as FULL. The
Decoder Unit takes FULL buffers and decompresses the data, storing the ready-to-display or
ready-to-play data into READY buffers.

 Separate threads are playing or displaying data which is contained in buffers. These
buffers are marked ACTIVE while playing and immediately after the process is over are
marked FREE. Thus we allocate a number of buffers and reuse them, without losing the time
to allocate and free them one-by-one as needed. One of the disadvantages of this scheme is
the high memory space usage all the time, even if there is no data to store in all the buffers; but
this is less of a problem with today's memory capacities. By introducing different pointers for
the first FREE, FULL, READY and ACTIVE marked buffers respectively, we reduce to the
minimum the time spent on sequential parsing of the circular buffer structure. Such a circular
system of buffers is allocated to each type of MPEG stream (audio, video and system), both at
server and at client side.

Multithreading
Our system uses multithreading for both server and client applications. At the server

side, different threads are assigned to read data from a file and to send them to the client as is
shown in Fig. 3. FillThread is in charge of filling the server buffer (SrvCircBuff) with the
encoded data at the same time as they are being read and sent for decoding by a local
decoder thread. TxThread transmits data from SrvCircBuff to the client every time a signal
comes from a timer.

At the client side (Fig. 3), there are three threads for each instance of an audio or
video stream. FillThread takes the encoded data received from the server and stores it in a

Figure 2: The circular buffer system at a client

circular buffer (CliCircBuff). DecThread decodes data taken from the CliCircBuff and sends
the decoded data to the audio or video driver, which puts it in the DriverBuff. PlayThread
plays or displays the decoded data already sent to the Play/Display Driver, according to the
stream's properties.

 Critical sections are used in order to protect the shared resources (e.g. circular
buffers) from being accessed by more than one thread at a time. Events are used to signal
threads (e.g. a new buffer was filled and is waiting to be decoded). The Windows message
system wakes up a thread if an important event occurs, such as receiving a packet with data
from the server.
 The system stream decoding needs to be able to decode both audio and video
encoded data. Thus an extra number of threads have to be launched. Unfortunately, the CPU
time slice given by the operating system to all the threads was not enough for a smooth play
(especially of the audio stream). To keep up with the playing, the decoding thread had to be
granted a higher priority than the other threads. This in turn meant that the system decoding
thread also had to be higher priority.

Streams Synchronization

 The Synchronization Unit is not active unless a system stream is transmitted. The
MPEG system decoder sends data to the video and audio circular buffer systems at irregular
intervals. With the help of the decoding time stamps (DTS) and the presentation time stamps
(PTS), the system, audio and video stream decoders are able to decode received data and
play/display them at the appropriate times.

 A System Clock is created by the Synchronization Unit at the client side (Fig. 4) when
the server sends the first part of the system file requested. The initialization and adjusting is
done when the client decodes the System Clock Reference (SCR) components of the system

Audio
Timer

Audio Play
Event Video

Timer

Video Play
Event

Synchro Event

System Clock

System Clock Reference

Audio Data Video Data

Figure 4: Synchronization Unit

Figure 3: Data flow through threads and buffers both at server and at client sides

Video Stream: Circular Buffer Occupancy vs Time

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Time

B
u

ff
er

s

EMPTY
Buffers

DECODED
Buffers

READY
Buffers

Figure 6: Video Stream:

Buffer Occupancy vs. Time

Audio Stream: Circular Buffer Occupancy vs Time

0

100

200

300

400

500

600

1 151 301 451 601 751 901 1051 1201
Time

B
uf

fe
rs

EMPTY
Buffers

DECODED
Buffers

READY
Buffers

 Figure 5: Audio Stream:
Buffer Occupancy vs. Time

stream. DTS and PTS are sent along with the decoded data to the play/display drivers. The
System Clock repeatedly sends synchronization events (Synchro Event) to the audio playing
thread and to the video displaying thread. If the two streams are not played or displayed
simultaneously, by using DTS, PTS and the Synchro Event sent by the System Clock, the
skew can be reduced to zero by adjusting the displaying rate of the video. We didn't interfere
with the audio playing thread because from experience we noticed that any change in the rate
the audio data are played badly affects the general quality.

4. Preliminary Results

 The server was built using multi-template and multi-document approach, so it can
open more than one type of document template and, for each document template, more than
one document at a time. Thus the server application can accept client requests for connections
while playing one or more MPEG or AVI audio, video and system files.

 The following charts show the buffers occupancy for both audio and video, in both
cases: elementary streams and system stream. Next we will discuss the results obtained
allocating a Circular Buffer of the type described earlier, with 500 equal size buffers. The size
of the buffers depends on the case: for audio we have used 4096 bytes large buffers and for
video 16384 bytes large buffers.

Looking at figures 5 and 6, in which the number of different marked buffers against the
time were plotted, we can see that, when the stream the user wants to be played has been
chosen, the incoming data is decoded and some of the EMPTY marked buffers are filled.
Thus an increasing trend of the DECODED marked buffers can be remarked. When the
streams started to be played, the number of buffers sent to the playing driver increases. In the
case of audio stream whose decoding is not so CPU time-consuming, the increase is sharper
than the one observed in the case of video elementary stream.

To be able to play the stream correctly to the end, we have to decode, in a timely
fashion, enough data to submit to the play or display driver. When the decoding threads finish
their jobs, the playing or displaying ones continue their jobs until the data they have received is
finished. We notice that the number chosen for the available buffers (500) is big enough to
cover the requirements of both streams. To save memory, 250 buffers for audio decoding and
200 buffers for video decoding solve the problem; even a smaller number of buffers may be
enough.

The system stream has a much harder job to be done in the same time, because its
streams have to be split before decoding is performed on each of them. Thus, looking at Fig. 7

and Fig. 8 which show the audio and video buffer occupancy respectively, we notice a more
gradual increase of the decoded data filled buffers and of the ready-to-play or ready-to-
display one. In the system case as well, the number of the used buffers does not tend to
exceed the number allocated.

5. Conclusion and Further Development

 The prototype system is still under development. The "Connection Managers" are
running as required. They have been tested by sending files of both MPEG and AVI types and
have yielded satisfactory results. The MPEG Decoding Unit successfully decodes MPEG-1
system, audio and video streams, with the help of the buffering scheme implemented. Some
improvements may be necessary regarding system performance. Streaming has been realized
with the help of buffers. Thus a multimedia stream can be decoded even though the whole file
is not available yet.

References

[1] W. T. Ooi, B. Smith, S. Mukhopadhyay, H. H. Chan, S. Weiss and M. Chiu, ”The Dalí
Multimedia Software Library”, SPIE Multimedia Computing and Networking 1999, San Jose,
CA, January 25-27, http://www.cs.cornell.edu/zeno/Papers/#Dali
[2] B. Zheng and M. Atiquzzaman, “Traffic Management of Multimedia over ATM Networks”,
IEEE Communications Magazine, vol. 37, no. 1, Jan. 1999, pp. 33-38
[3] M. Krunz, “Bandwidth Allocation Strategies for Transporting Variable -Bit-Rate Video
Traffic”, IEEE Communications Magazine , vol. 37, no. 1, Jan. 1999, pp. 40-46
[4] B. Sheu and A. Ortega, "Microsystems Technology for Multimedia Applications", IEEE
Press, May, 1995
[5] P. Bindal and L. Murphy, “Multimedia Feedback Control in ATM Local Area Networks”,
Proceedings of the 35

th
 ACM Southeast Conference , Murfreesboro, TN, April 2-4, 1997, pp.

243-250
[6] G. Muntean, L. Murphy, "An Object-Oriented Prototype System for Feedback Controlled
Multimedia Networking", ISSC, University College of Dublin, Ireland, June 29-30, 2000
[7] ISO/IEC International Standard 11172, “MPEG-1 - Coding of Moving Pictures and
Associated Audio for Digital Storage Media up to 1.5 Mbits/s”, Nov. 1993.
[8] D. LeGall, “MPEG: A Video Compression standard for Multimedia Applications”,
Communications of the ACM , vol. 34, no. 4, April 1991, pp. 46-58

System Stream: Audio Buffers Occupancy

0

20

40

60

80

100

120

140
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Time

B
u

ff
er

s

Encoded
Data

Decoded
Data

Data
Sent To
Driver

Figure 7: System Stream: Audio Buffer
Occupancy vs. Time

System Stream: Video Buffers Occupancy

0

50

100

150

200

250

300

350

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Time

B
u

ff
er

s

Encoded
Data

Data
Sent To
Driver

Figure 8: System Stream: Video Buffer

Occupancy vs. Time

