
1

OFLoad: An OpenFlow-based Dynamic Load
Balancing Strategy for Datacenter Networks

Ramona Trestian, Member, IEEE, Kostas Katrinis, and Gabriel-Miro Muntean, Senior Member, IEEE

Abstract—The latest tremendous growth in the Internet traffic
has determined the entry into a new era of mega-data-centers,
meant to deal with this explosion of data traffic. However this
big data with its dynamically changing traffic patterns and flows
might result in degradations of the application performance
and eventually affecting the network operators’ revenue. In this
context there is a need for an intelligent and efficient network
management system that makes the best use of the available
bisection bandwidth abundance to achieve high utilization and
performance. This paper proposes OFLoad, an OpenFlow-based
dynamic load balancing strategy for datacenter networks that
enables the efficient use of the network resources capacity. A
real experimental prototype is built and the proposed solution
is compared against other solutions from the literature in terms
of load-balancing. The aim of OFLoad is to enable the instant
configuration of the network by making the best use of the
available resources at the lowest cost and complexity.

Keywords—Load Balancing, OpenFlow, Software-defined Net-
works, Datacenter Networks.

I. INTRODUCTION

THE increasing reliance on streaming mobile video from
anywhere at anytime started causing new behaviour pat-

terns in the network traffic and changes in the traffic mix.
Cisco reports that the video-based traffic (TV, video on de-
mand, Internet and P2P) will reach 80%-90% of the global
consumer traffic by 2019 [1]. As mobile video becomes the
dominant traffic type it also causes extraordinary changes in
the network traffic patterns that in turn shape how data traffic
is consumed from the Enterprise datacenters. Focusing on
data communication aspects only, one of the leading cloud
datacenter equipment vendors reports [2] that 75% of the total
traffic present in a contemporary datacenter does not exit the
datacenter. This ratio is expected to persist - if not increase - as
a side-effect of trends such as the increasing number and scale
of new services and end user demands. All these elevate the
criticality of the in-datacenter network infrastructure, calling
- among others - for agile, per-tenant isolated and Service
Level Agreement (SLA) - abiding control-plane functionality.
Aligned with this trend, this paper focuses on proposing new

This work was supported by the Irish Research Council (IRC) through the
Enterprise Partnership Scheme with IBM Ireland.

R. Trestian is with the School of Science and Technology, Middlesex
University, United Kingdom (e-mail: r.trestian@mdx.ac.uk)

K. Katrinis is with IBM Research–Ireland, IBM Technology Cam-
pus, Damastown Industrial Estate, Dublin 15, Ireland (e-mail: ka-
trinisk@ie.ibm.com)

G.-M. Muntean is with the Performance Engineering Laboratory, School
of Electronic Engineering, Dublin City University, Dublin, Ireland (e-mail:
gabriel.muntean@dcu.ie).

Fig. 1. Illustration of Traffic Engineering in a Datacenter

traffic management techniques targeting specific classes of dat-
acenter network traffic, showing through real experimentation
their value in maintaining a well-balanced, hot-spot free and
low-latency datacenter network.

Following a bijective treatment of traffic engineering in the
datacenter, literature classifies traffic flows as either short-lived
(low-volume) - referred to as mice flows - or long-lived (high-
volume) flows - referred to as elephant flows as seen in Fig. 1.
For example, the mice flows could be represented by query
traffic (e.g., a mobile device could ping the datacenter for
a small amount of data, such as Google Search, Facebook
updates, etc.) whereas the elephant flows could be represented
by video traffic data (e.g., a mobile device requesting a
Youtube stream).

The study in [3] on real datacenter traffic reported that less
than 10% of the entire flow population is classified as elephant.
However, the elephant flow set was found to carry more
than 80% of the cumulative traffic volume exchanged within
the datacenter. The latter finding motivated intensive research
labour spent on deriving methods for dedicated treatment of
elephant flows, while leaving mice flows to be handled by
baseline, load-unaware traffic management methods. However,
as the mice flows represent 90% of the flow population [3],
they could have a significant impact when considered on
ensemble, rather than individually. For instance, space and
time correlation of trains of mice flows can be amplified,
as distributed data-intensive applications scale further out in
a cloud datacenter; these applications (e.g. MapReduce [4],

2

web search, NoSQL databases) exhibit group communication
patterns (one-to-many, many-to-one) even for short-lived com-
munication (e.g. data block lookup or heartbeat messages),
which in turn can lead to concentration of mice flows to a
specific destination rack. In fact, the non-uniform distribution
of active flows to switch ports is reported in [5]. In summary,
higher volume ”flows”1 can be created due to temporal and
spatial (same destination rack) correlation of ensembles of
mice flows; and while these flows qualify for being treated
as elephant flows, they will still get uncaught by previously
proposed elephant flow management methods due to their
inherent inability to treat flow aggregations. Equally, using
load-unaware traffic management solutions (e.g. local random
hashing) to spread the mice flows equally among multiple
paths is far from optimal, as some of the links might be already
loaded. This could lead to waste of bandwidth, congestion on
some links, and degradation of application performance due
to increased latency [6]. Moreover, as most of the datacenter
bandwidth is consumed by elephant flows, they could cause
latency and service disruption for mice flows without an
intelligent traffic engineering solution in place.

Motivated by the above, this paper proposes OFLoad,
an OpenFlow-based dynamic load balancing scheme for
datacenter networks that achieves optimal path configuration
and workload-optimization of the datacenter traffic. To better
handle the impact of the many-to-one traffic patterns within a
datacenter network, we propose a two-stage design framework
for load-balancing. First stage copes with the elephant flow
placement by defining the problem of minimizing the network
congestion under the constraint to route the elephant flow
traffic in a single path, minimum hop manner. The second
stage makes use of an adaptive aggregator that aggregates
the traffic of the mice flows and routes them in a weighted
multi-path manner, keeping the same path for a certain flow at
any given time. The problem is defined as a multi-commodity
flow problem aiming at minimizing the network congestion
under the constraint of minimum hops and minimum number
of paths allocated. The load-balancing is achieved by defining
a new multiplicative weighted multi-path routing algorithm
which heavily impacts the already loaded paths by allocating
them a lower weight value, thus less traffic will be routed
through the loaded paths. An experimental prototype is built
to validate the use of the OpenFlow-based technology and the
benefits of the proposed OFLoad solution.

The rest of the paper is organized as follows: Section
II discusses the related works and Section III presents the
problem statement and the design of the proposed OFLoad
solution. Section IV covers the experimental evaluation of
OFLoad highlighting its benefits and finally the conclusions
and future works are covered in Section V.

II. SCOPE AND RELATED WORKS

To provide increased flexibility, resilience, and bisection
bandwidth, the datacenter network topologies are densely in-
terconnected offering support for multiple paths between pairs

1The classical definition of a five-tuple flow is here overloaded to embrace
a flow of bytes between a rack pair.

of end hosts. To this end, load-balancing techniques are needed
to make efficient use of the bisection bandwidth abundance. In
autonomous systems, the typical routing algorithms are based
on the shortest path computation. For example, a well-known
routing algorithm is the Open Shortest Path First (OSPF) [7]
where the shortest path between a source and a destination
pair is determined in advance and all the traffic is directed
through this path. However this solution does not provide
load-balancing over multiple paths. Because of the dense inter-
connected nature of the datacenter network topologies, using
single-path routing without any load-balancing mechanism will
not make efficient use of the network capacity. Moreover, this
could lead to congestion despite still having enough unused
bandwidth in the network. This problem can be avoided by
using the ECMP routing, which is widely supported by the
existing commodity switches. ECMP makes use of multiple
shortest paths to randomly distribute the traffic and achieve
load-balancing. However, ECMP cannot guarantee good load-
balancing as the path selection is done statically at each router
without any information of the current network-wide traffic.
Thus, by using ECMP overload may still appear on certain
links within the network.

Another technique which splits flows evenly and uses ran-
dom routing is Valiant Load Balancing (VLB) [8]. Randomly
spreading the traffic over multiple paths without considering
the uneven flow sizes could lead to short-term congestion on
some links. In the case of Spanning Tree Protocol (STP), all the
traffic traverses a single tree which leaves many links unused.
This technique avoids routing loops; however in high traffic
load conditions congestion may occur resulting in packet loss.

The rapid adoption of OpenFlow [9] and Software Defined
Networking (SDN) has introduced significant changes in to-
day’s enterprise datacenter network architectures and revenue
models. SDN enables the network operators to control and
efficiently move the data flows through the network to achieve
load-balancing. This enables usage of new ways of managing
the network components and the datacenter traffic. Within
the research community, increasing number of OpenFlow
deployments are expanding across the university campuses
fuelled by several large-scale projects such as: GENI [10],
FEDERICA [11], AKARI [12], OFELIA [13], SPARC [14],
etc. All these networks are used for measurements of the
user-generated traffic and performance analysis of different
aspects of SDN (e.g., application differentiation, predictability,
scalability, load-balancing, robustness, etc.). To this end, re-
searchers have proposed various traffic management solutions
that rely on a centralized controller for route configuration.
The centralized controller mostly leverages on the OpenFlow
technology for switch state maintenance and traffic statistics
gathering and needs to scale up to meet datacenter traffic
demands. As the intelligent decisions, topology virtualization
and policies lie on the control plane network, its reliability
becomes crucial [15].

DevoFlow [16], [17] is a flow management solution that
differentiates between the mice and elephant flows and reports
the elephant flows to the DevoFlow controller which maintains
the visibility over the elephant flows only. The detection of
the elephant flows is done at the edge switch by introducing

3

a threshold for the transferred bytes. The authors use static
multi-path routing and the microflow path is randomly selected
according to a pre-computed probability distribution. Similarly,
Hedera [18], another OpenFlow-based flow management solu-
tion aims to maximize the bisection bandwidth with minimal
scheduler overhead or impact on active flows. Initially, all
flows are assumed to be mice flows and the default switch
behavior is to forward the flows on equal-cost paths, similar to
ECMP. When elephant flows are detected at the edge switches,
Hedera uses placement algorithms to compute and allocate
good paths for them. Mahout [19] detects the elephant flows
and the central controller routes the elephant flows only on
the best available paths (the least congested). The mice flows
are routed using static load-balancing scheme (e.g., ECMP)
without sending them to the controller.

Hercules [20] represents an integrated control framework
which combines four controllers into one framework: (1)
SPAIN [21] and (2) HBR [22] - multi-pathing controllers
which pre-install a set of VLANs to be used for multi-
pathing and distribute active flows over them, the distribution
decision is dependent on the current traffic conditions; (3) QoS
controller [23] - automatically slices the network resources
to meet QoS requirements of multiple tenants, computes the
resource provisioning based on the flow’s QoS requirements
and current link traffic load, makes use of priority tags and rate
limits; (4) Mahout controller - for detection and distribution of
elephant flows to avoid flow collisions, complete knowledge
of incoming traffic is assumed.

Other traffic engineering solutions have been proposed in
the literature that focus on load balancing. Long et al. [24]
propose LABERIO, a load-balanced routing mechanism for
OpenFlow-based datacenter networks. However, LABERIO
relies on the information of traffic demand and does not
differentiate between data flows. The authors assume that each
single flow has the same size of 500M. FlowBender [25]
is an end-host-driven load balancing scheme that changes
a flow’s path selectively and only in response to congestion
in the network. However, as FlowBender does not have a
global view of the network, when congestion is detected, it
randomly reroutes the flow on a new path which might as well
be congested. Another approach that moves the network load
balancing functionality out of the datacenter network hardware
into the software-based edge host was proposed by He et al.
in [26] and is referred to as Presto. Presto performs sub-flow
load balancing by breaking the flows into equal size chunks of
64KB units of data named flowcells routed in a round-robin
manner among the available paths. However, splitting the flows
at the switch for load balancing could result in instability and
low throughput as well as out of order packet delivery. Niagara
[27] is another traffic-splitting solution for commodity switches
which offers similar performance to MicroTe [28]. A promising
distributed congestion-aware load balancing solution is pro-
posed in [29], [30] and referred to as Expeditus. Expeditus
is targeted at general 3-tier Clos topologies and conveys load
balancing to network edge using local congestion monitoring.

In our previous work, we proposed MiceTrap [31], an
OpenFlow-based traffic engineering approach that employs
mice flow aggregation together with a weighted routing al-

gorithm to spread the traffic across multiple paths and achieve
load-balancing. However, even though MiceTrap achieves
good load-balancing, the weighted routing algorithm is using
an additive function when computing the path weights and
does not consider the impact of the number of hops on path.

A. Motivational Example

Researchers have put important efforts in understanding
network traffic flow characteristics for various applications.
Several classification schemes have been proposed in the
literature that differentiate the flows based on: size (mice
and elephant flows), duration (dragonfly and tortoise), or rate
(cheetahs and snails). To differentiate between each type of
flows within these classes, thresholds are defined. However the
values of these thresholds differ in the literature. For example
in the case of differentiation between mice and elephant flows,
several values for the threshold have been proposed, including:
100MB [8], 10MB [5], or 100KB [19] [20] [32]. Farrington et
al. in [33] define a mouse flow as a flow with rate < 15Mb/s.
Nevil et al. in [34] look at the duration of the flows and classify
the flows as: very short dragonflies, lasting up to 2s; short flows
lasting up to 15min.; and long running tortoises, lasting more
than 15min. The authors state that only 2% of the flows last
longer than 15min. and carry more than 50% of the total bytes,
whereas 45% of the flows last less than 2s. Lan et al. [32]
classify the flows based on their rate, such as cheetahs flows
with rate > 100KB/s and snails flows with rate < 100KB/s.
The authors state that more than 70% of the cheetah flows
have a size that is less than 10KB.

Moreover, Wu et al. in [5] state that 80% of the flows
have inter-arrival time between 400us and 40ms and their
duration is less than 10s, whereas 20% of flows last longer
than 10s. They also noticed that within one second interval at
one edge switch the number of active flows is between 1000
and 2000 and the flows are not uniformly distributed on each
link, causing high utilization on some links. Thus, large flows
will coexist with many small flows as the authors state that
90% of the mice flows have duration overlap with one or more
large flows. All these observations, motivate us to state that
although the elephant flows are responsible for carrying the
major proportion of bytes within the network, a large number
of mice flows could be sufficient to create significant loss in the
elephant traffic throughput, when considered as an aggregate.

For example, considering the case of a many-to-one traffic
pattern, where multiple synchronized servers send data to the
same receiver in parallel, it is feasible to assume that the mice
flows are not independent and that for the same destination
Top-of-Rack (ToR), there are a certain number of mice flows
arriving near one to each other within a certain time interval.
Moreover, let us assume a mouse flow size of 100KB, as most
of the previous works do, and a mean mouse flow duration
of 2s (based on [34] where the authors state that 2% of the
flows last longer than 15min, 45% of the flows last less than
2s, and the rest of 53% is between 2s and 15min). Thus, the
mouse flow rate would be 0.40Mbps. Furthermore, considering
that there are 2000 active mice flows at a ToR switch, that
means that the average rate of the aggregate mice flows would

4

be around 800Mbps. Even if we consider 1000 active mice
flows at a ToR switch their aggregated rate would be around
400Mbps. If we take a smaller mean mouse flow duration, the
numbers increase even more. In either case it is obvious that
when considered as an aggregate the mice flows could have
an important impact. Consequently, using ECMP to spread the
amount of mice flows equally among the paths is far from
optimal, as some of the links might be already loaded. This
could lead to waste of bandwidth, unbalanced link utilization
leading to hot-spot links, critical degradation of the application
performance and latency [6]. In this context, applying traffic
engineering solutions on 10% of the flows (the elephant flows)
in a datacenter only, may not be very effective [3].

B. Contributions
In the context of previous work, the main contributions of

this paper are as follows:
• OFLoad is proposed, an OpenFlow-based two-stage de-

sign framework for data center networks that handles
the aggregated mice flow traffic and achieves load-
balancing;

• a new multiplicative weighted multi-path routing algo-
rithm is proposed based on the link utilization and the
number of hops within a path to route the aggregated
mice flow traffic;

• a real experimental prototype is built to validate the
benefits of the OpenFlow mice flow aggregation and the
performance of the proposed solution is analyzed and
compared with ECMP and MiceTrap in terms of load-
balancing.

III. LOAD BALANCING PROBLEM FORMULATION AND
OFLOAD PROPOSED ARCHITECTURE

This section defines the general communication datacenter
network model, formulates the load-balancing problem ad-
dressed and describes the proposed OFLoad architecture.

Figure 2 illustrates the concept behind the proposed OFLoad
solution, which addresses the load-balancing problem in a
datacenter network. This load-balancing problem is formulated
as a two-stage problem. In the first stage the elephant flows
are routed on the path with the minimum number of hops and
the minimum link utilization in single-path manner. The mice
flows are routed as per default switch behavior, defined as
wildcarded rules and ECMP routing. The aim is to reduce
the network congestion. In the second stage, an adaptive
aggregator is used to group the mice flows into bundles which
are then spread across multiple weighted paths, maintaining
the same path for a certain flow at any given time. The goal
is to make use of multi-path weighted routing to reduce the
network congestion considering the minimum number of paths
and hops on paths, the weighted cost of each path and the
exiting path load/number of existing flows on the path.

A. OFLoad Architecture
The architecture of OFLoad, the proposed OpenFlow-based

load balancing solution is illustrated in Figure 3. The architec-
ture includes the end-host, which integrates an elephant flow

Fig. 2. General Concept of OFLoad

Fig. 3. OFLoad Architecture

detection/marking mechanism, the custom OpenFlow-based
switch with support for OpenFlow v1.3, and the custom Open-
Flow controller that manages the two-stages of the OFLoad
load-balancing, as already described. These three components
are described in more details next.

1) The End-Host - Elephant Marking Mechanism:
The problem of differentiating between mice flows and ele-
phant flows has already been well researched and various
solutions are available, as elaborated in the previous section.
In general the elephant detection and marking mechanism
can be integrated at the end-host by using a kernel-level
shim layer, similar to the approach introduced in [18]. The
mechanism makes use of a shim layer integrated in the end-
host that monitors TCP socket buffers. Given a predefined rate
threshold, the shim layer identifies and marks the flow as an
elephant flow (e.g. by using the Differentiated Services (DS)
field in the IPv4 header), when the number of bytes in the
buffer exceeds the threshold over a given time window. As
soon as a flow is tagged as an elephant flow, it is sent to
the controller and is handled by the Elephant Flow Routing

5

module (see Figure 3) which will select the best routing path
for that particular flow.

2) OpenFlow-based Switch:
The OpenFlow-based switch is a custom switch with support
for OpenFlow v1.3. OpenFlow v1.3 adds support for multipath
routing, by using the group tables along with the flow tables.
For example, when a switch receives a packet from a flow and
if there is no matching in the forwarding table, the switch will
forward the packet to the controller. The controller decides
the way the packet will be forwarded and sends the rule to the
switch. The switch will then use this rule for the following
packets of the same flow. Multipath routing is enabled by
adding the ability to a flow to point to a group. Each group
is composed of a set of group action buckets, and each group
bucket contains a set of actions to be applied to matching
flows. Each bucket contains a weight field which defines the
buckets share of the traffic processed by the group.

In the first stage the mice flows are wildcarded, while
the elephant flows are routed in a single-path manner. Thus,
the elephant flows will have a switch forwarding table entry
that will map the flow to the minimum hop path. In the
second stage, to efficiently use the bisection bandwidth, all
the incoming mice flows that match the flow-entry destination
ToR are pointed to a group. The group table contains the action
buckets with each bucket corresponding to a possible path
the aggregated mice flow may take to reach its destination.
However, the packets belonging to the same flow will follow
the same path at any given moment, avoiding the possibility
of the packet re-ordering problem.

3) OpenFlow-based Controller:
The OpenFlow-based Controller consists of the following
blocks: (1) Topology block - stores information about all the
links currently up in the network. The topology discovery is
done by generating link events using the Link Layer Discovery
Protocol (LLDP) packets; (2) Network Monitoring block -
keeps track of the links load by periodically collecting load
information from the switch ports counter; (3) Elephant Flow
Routing block - computes the path for the elephant flows, (4)
Mice Flow Aggregator block - aggregates the mice flows based
on the same destination ToR, (5) Mice Flow Routing block
computes the multiple paths the mice flows could take to reach
the destination, (6) Set of Rules and Path Installation block -
sends the computed paths and rules to the switch; (7) Network
Map block - stores a map of the network.

As we have seen in the previous section, traffic engineer-
ing and monitoring in data center networks has been well
researched. Benson et al. [28] show that a significant fraction
of the data center traffic is predictable on short time-scales of
1 or 2 seconds. Moreover, the authors argue that for 70% of
the ToR pairs the traffic remains stable for an average of 1.5 to
2.5 seconds. Thus, the Network Monitoring block could collect
updates every one second. Based on the averaged information
received, the routing components will compute the set of paths
and rules to be installed into the Openflow switches. The
minimum re-computation interval could be set to 1 second
[28]. Moreover, the aggregator component will group the most
popular flows that match the same flow-entry destination ToR
by using the short-term history, such as the last two polling

messages. Additionally, the mice flow grouping reduces the
control traffic overhead, as instead of having a rule for each
flow the controller will send a group message installing a
single rule matching the ToR destination. To further reduce
the control overhead a mechanism similar to [28] could be also
integrated. In this case, only one server per rack is responsible
for collecting and aggregating the network statistics for the
entire rack. Thus, every server in the data center collects traffic
monitoring information every 0.1 seconds and sends it to the
designated server every second. The designated server will
update the controller only if some thresholds are reached.

B. Problem Description and Definitions
A datacenter network topology is represented by a connected

graph G = (V,E) where V is the set of nodes and E
represents the directed set of links/edges. Let us assume that
N = |V | and M = |E|. A simple path p is defined as a
finite sequence of distinct nodes p = (v0, v1, ..., vh), such that
∀n ∈ [0, h − 1],(vn,vn+1) ∈ E. A commodity is represented
by the pair of nodes (i, j) ∈ V xV where node i represents
the source node and node j represents the destination node
of the commodity. Any given commodity has assigned a non-
negative demand of γ(i,j), and let us assume that β represents
the set of all commodities with positive demand such that
β = {(i, j)|(i, j) ∈ V xV,∀γ(i,j) > 0}. If |γ| > 1 it means
that the network has a multi-commodity flow demand.

Let P(i,j) be the set of simple directed paths from the source
i to the destination j in the network, and ∀p ∈ P(i,j) and link
e ∈ E there is a ∆e(p) that represents the probability that the
link e appears multiple times along the path p.

Furthermore each link e ∈ E has assigned a link weight
we ∈ Z+ and a link capacity ce ∈ Z+. The link weights we

define the level of the link load with we ∈ [0, 1]. The higher
the weight, the less loaded the link is. It is considered that the
OpenFlow-based Controller has an image of the entire network
stored in the Network Map block so that the link state of each
node in the network is collected from the OpenFlow-based
switch ports counters. For example, the link load could be
reported by polling the respective switch port using standard
OpenFlow mechanisms.

Definition 1. Given a network topology G(V,E), a path
flow is defined as a real valued function f : P → R+ ∪ {0}
that satisfies the following properties:
• Capacity Constraints: ∀e ∈ E,

∑
p∈P ∆e(p)f(p) ≤ ce

• Flow Demand: ∀(i, j) ∈ V xV,
∑

p∈P(i,j)
f(p) = γ(i,j)

Definition 2. Given a network topology G(V,E) and a path
flow f : P → R+∪{0}, a link flow of a comodity (i, j) ∈ V xV
is defined as a real valued function f : P → R+ ∪ {0}, that
satisfies the following: ∀e ∈ E, f

(i,j)
e

def
=

∑
p∈P ∆e(p)f(p)

where fe
def
=

∑
(i,j)∈V xV f

(i,j)
e .

Definition 3. Given a network topology G(V,E) and a link
flow fe, the link congestion factor is defined as fe/ce.

Definition 4. Given a network topology G(V,E) and a
link flow fe, the network congestion factor is defined as the
maximum link congestion factor value within the network such
as: maxe∈E{fe/ce}. The network congestion factor is used to

6

provide information about the network congestion within the
network and the aim is to minimize it.

Definition 5. Given a network topology G(V,E), a path
p ∈ P(i,j), a path weight W (p) of path p is defined as a
multiplicative function of its containing link weights we and
the number of hops within the path Mp, such that W (p) =
(
∏

p∈P we/Mp)/
∑

p∈P (
∏

p∈P we/Mp), and
∑

p∈P W (p) =
1.

Definition 6. Given a network topology G(V,E) and a
path p ∈ P(i,j), the available capacity C(p) of path p
is defined as the capacity of the bottleneck link, such that
C(p) = Mine∈E{ce}.

Definition 7. Given a network topology G(V,E), a path
p ∈ P(i,j) and link e ∈ E, a link weight we within the path
p is defined as a function of the link congestion factor such
that: we = 1− fe/ce.

The path weight is then used to distribute the aggregated
mice flow traffic. The higher the path weight value the more
traffic is routed through that path. It has been shown, that
in case of decision making problems, the main drawback of
using a simple additive weighted function is that a poor value
for one parameter (e.g., heavily loaded link) could be heavily
out-weighted by a very good value of another parameter
[35] values. For example, in our case, considering a path
with multiple hops on which several link segments present
a light load but only one link is heavily loaded. If we use
a simple additive function, the path weight will still get a
good overall value and will determine the heavily loaded link
segment on the path to become the bottleneck. However, by
using a multiplicative function we overcome this problem by
penalizing the alternatives with poor parameters values more
heavily. Thus, the path with the heavily loaded link segment
will receive a poor weight value meaning that less traffic will
be routed through that path, avoiding in this way a bottleneck
situation.

Considering all these aspects the two main problems of each
stage are formulated in the following sections. Both stages are
trying to minimize the network congestion factor subject to
different conditions.

C. First Stage - Elephant Flow Placement
The first stage handles the elephant flow placement. The

objective is to assign the elephant flows to the paths with min-
imum number of hops and minimum load such that network
congestion is minimized.

1) Problem Formulation:
Given a network topology G(V,E), for each link e ∈ E with
the link capacity ce, we compute a link weight we ∈ [0, 1],
and for each commodity (i, j) ∈ V xV marked as an elephant
flow from the source node i to the destination node j with
a demand of γ(i,j), find the shortest path p ∈ P(i,j) for the
path flow f(p) that minimizes the network congestion factor
and reduces the number of hops within the path, Mp. Thus the
elephant placement problem can be formulated as follows:

minimize: maxe∈E{fe/ce}

subject to:
∑

p∈P f(p) ≤ ce, ∀e ∈ E

∑
p∈P(i,j)

f(p) = γ(i,j), ∀(i, j) ∈ V xV

2) Elephant Flow Path Selection:
After a flow is marked as an elephant flow by the end-host, the
first packet of the flow arrives at the OpenFlow-based switch,
which routes the packet to the Controller. At the Controller
side, the Elephant Flow Routing block will compute the set of
shortest paths, based on the minimum number of hops, between
the source and destination of the elephant flow. The path
with the lowest path utilization (e.g., minimum link congestion
factor) will be selected as the target path. After the best path is
computed, the Controller installs the rules into the OpenFlow
switches among the path. The elephant flow is routed in a
single-path manner on the best selected path, thus all the other
packets appertaining to the elephant flow will follow the same
route.

D. Second Stage - Mice Flow Aggregation
The second stage handles mice flow aggregation and path

selection. The objective is to aggregate the mice flows and
route them in a multi-path manner, by identifying a set of
shortest paths such that the load of the most utilized links in
the network is minimized.

1) Problem Formulation:
Given a network topology G(V,E), for each link e ∈ E with
the link capacity ce we compute a link weight we ∈ [0, 1], and
for each commodity represented by the aggregated mice flows,
(i, j) ∈ V xV with demand γ(i,j), and a path restriction K(i,j)

find the shortest path set ∈ P(i,j) for the path flow f(p) that
minimizes the network congestion factor. Thus the aggregated
mice flows placement problem can be formulated as follows:

minimize: maxe∈E{fe/ce}

subject to:
∑

p∈P∗
(i,j)

W (p)f(p) ≤ C(p), ∀p ∈ P ∗(i,j)∑
p∈P∗

(i,j)
f(p) = γ(i,j), ∀(i, j) ∈ V xV

where P ∗(i,j) ⊆ P(i,j), the set of shortest paths such that
|P ∗(i,j) |≤ K(i,j).

2) Adaptive Mice Aggregation and Path Selection:
Initially, the default OpenFlow switch behavior is to use
wildcards and forward the flows using ECMP. When a flow
is marked as an elephant flow, the Controller will install the
specific rules into the switches so that the elephant flow is
routed in a single-path manner. The controller collects flow-
related information and statistics from the OpenFlow switches
periodically by using custom OpenFlow polling messages.
Based on a short-term history (e.g. last two polling messages)
the Mice Flow Aggregator groups the most popular flows
that match the same flow-entry destination ToR. The Mice
Flow Routing block will compute the set of shortest paths
between the source and destination ToR and the weights for
each specific path. To take full advantage of the datacenter
network bisection bandwidth available, as well as to protect
the application performance, OFLoad routes the mice flow
aggregates using a weighted multi-path routing algorithm.

7

Fig. 4. Experimental Prototype Setup

The weights are dynamically computed using a multiplicative
function as given in Definition 5. When using a multiplicative
function, the links that are already loaded will be impacted
more heavily by receiving a low value weight, such that less
traffic is routed on those links. Once computed, the path weight
is updated in the action bucket weight field of each path
within a specific group. To avoid the re-ordering problem, each
demand from a node i is required to route its entire flow on the
same path within the group. To this end, a hash function on a
packet is defined in the switch to distribute the flows across the
multiple weighted paths by sending the packets appertaining
to the same flow on the same path.

IV. EXPERIMENTAL PROTOTYPE, RESULTS AND
DISCUSSIONS

This section describes the real life experimental prototype
setup and the experimental scenarios, presents the results and
performs result analysis. The aim of this section is to validate
the benefits brought by the proposed OFLoad mechanism
in terms of grouping and routing the mice flows within a
datacenter to enable load balancing. As previously seen, most
of the solutions in the literature use ECMP for mice flow
routing whereas the elephant flows are routed using the shortest
least congested path. Thus, the performance of OFLoad is
compared against MiceTrap and ECMP, where the mice flows
are routed using ECMP and the elephant flows are routed on
shortest least congested path similarly to the approaches in the
literature.

A. Experimental Prototype Setup
The real life experimental prototype setup is illustrated

in Figure 4. It consists of four OpenFlow-based switches
connected in a clique topology, three racks for hosts, and one
OpenFlow-based controller.

As most of the hardware OpenFlow-based switches work
with OpenFlow version 1.0 only, which does not offer support
for the group option, an alternative is the use of OpenFlow-
based software switches. Consequently, the OpenFlow-based
switches used in this experiment are based on the OpenFlow
1.3 Software Switch (OFSoftSwitch131) that offers support for
the OpenFlow group option, integrated in OpenFlow version
1.3.

One OpenFlow-based controller that offers support for
OpenFlow version 1.3 is the nox13oflib controller2, which is
a compatible version of the NOX controller. Nox13oflib is
based on the Niciras NOX Zaku3 controller with the OpenFlow
processing library being replaced with Oflib from OpenFlow
1.3 Software Switch.

The traffic generator used to generate traffic between the
hosts in the racks is iperf4, a widely used network traffic
generator that can create TCP and UDP data streams between
end hosts.

Tcpdump5 is used to capture all the traffic in the experimen-
tal test-bed. The traffic is captured at each port of the switches
to analyse how the packets are routed within the network.

Tcptrace6 and TRace Plot Real-time7 (TRPR) are used to
analyze the output files from the tcpdump packet sniffing
program.

All the machines used in the experimental test-bed are
running Red Hat Enterprise Linux Server release 6.2 x86 (64-
bit). Each machine has two Intel Xeon Processors X5670 (2.93
Ghz, 6-core, 4 flops per cycle) for improved performance.

B. Experimental Prototype Limitations
There are some limitations imposed by the use of the

OpenFlow-based software switch which might depend on the
underlying hardware on which OFSoftSwitch13 is running.
In this situation, everything is handled by the system CPU,
and therefore the switch performance is also influenced by
the CPU power. To determine the limitations imposed by the
software switches a set of experiments were conducted with
the following observations:

1) OFSoftSwitch13 Delay:
The delay introduced by the software switch was measured
considering two topology scenarios:
• One OFSoftSwitch13 Topology - one softswitch is used

between two hosts (e.g. Host A and Host B), and the
controller. Host A pings Host B, and the path taken by
the first packet is Host A→ Softswitch→ Controller→
Softswitch→ Host B with a latency of 1.71ms including
the messages exchanged between the softswitch and the
controller for path setup. After the path setup the average
RTT is 0.456ms.

1OpenFlow 1.3 Software Switch (OFSoftSwitch13) - https://github.com
/CPqD/ofsoftswitch13

2NOX13oflib - https://github.com/CPqD/nox13oflib
3NOX Zaku Controller - http://www.noxrepo.org/nox
4Iperf - http://sourceforge.net/projects/iperf/
5Tcpdump - http://www.tcpdump.org/
6Tcptrace - http://www.tcptrace.org/
7TRace Plot Real-time (TRPR) - http://pf.itd.nrl.navy.mil/proteantools

/trpr.html

8

Fig. 5. Experimental Prototype Scenario

• Two OFSoftSwitch13 Topology - two softswitches are
used between two hosts (e.g., Host A and Host B), and
the controller. Host A pings Host B, the path taken by
the first packet is Host A → Softswitch1 → Controller
→ Softswitch1→ Softswitch2→ Host B with a latency
of 4.9ms including the messages exchanged between the
switches and the controller. After the path setup the
average RTT is around 1.52ms.

2) OFSoftSwitch13 Bandwidth Limitation:
For testing the bandwidth limitation imposed by the softswitch
two topology scenarios were considered:
• One Path Topology - we created one path between two

hosts (e.g., Host A and Host B) and generated traffic. We
noticed that regardless of the number of hops between
the two hosts, when using only one path the maximum
achievable traffic rate is around 180Mbps.

• Multiple Paths Topology - we created multiple paths
between two hosts (e.g., Host A and Host B) and
generated traffic. We noticed that when more than one
path is used the maximum achievable traffic rate is
around 110Mbps.

C. Experimental Scenarios
To analyze the performance of the proposed OFLoad solu-

tion, we have considered the experimental prototype already
described and the scenario illustrated in Figure 5, under various
traffic load. This section presents testing results and analyzes
the performance of the proposed algorithm under different
heavily loaded network conditions. It is assumed that Rack
3 generates traffic towards Rack 2 to heavily load the link
between Switch2 and ToR2. We name this traffic elephant
flow traffic (e.g., video flows), however it can also represent
the aggregated traffic load from Rack 3 towards Rack 2. To
see if the mice flow distribution impacts the elephant flow
traffic, Rack 1 generates mice flow traffic towards Rack 2
over three possible paths. It is assumed that the mean mouse
flow duration is less than 2s, the inter-arrival time is between

400ms and 40us with all the mice flows pointing to the same
destination ToR. The mice flow size is considered to be <
100KB and the number of active mice flows at any given
moment is between 1500 and 2000. These values were selected
based on the motivation presented in Section II and based
on the limitations of the experimental prototype, previously
introduced.

TABLE I. EXPERIMENTAL SCENARIOS

Scenario Elephant Flow Rate [Mbps] Aggregate Mice Flow Rate
[Mbps]

1 150 75
2 150 100
3 170 75
4 170 100

Four scenarios are considered, as listed in Table I. Scenario
1 and Scenario 2 consider the elephant flow traffic as 83%
of the maximum link capacity. Because between Rack 3 and
Rack 2 the traffic is assumed to be routed in a single-path
manner, the maximum achievable rate is around 180Mbps, as
previously discussed. Consequently, the elephant flow traffic
rate is 150Mbps. The mice flow traffic is generated such
that an average rate of 75Mbps for Scenario 1 and 100Mbps
for Scenario 2 of the aggregated mice traffic is maintained.
As between Rack 1 and Rack 2 there are three available
paths considered, the maximum achievable rate is 110Mbps, as
discussed in the experimental prototype limitations section. In
Scenario 3 and Scenario 4 the elephant flow traffic is increased
to 94% of the link capacity, reaching 170Mbps.

D. Results and Discussions
1) Reducing the Number of TCAM Entries:

In general the OpenFlow-based switch needs to maintain a
rule in the forwarding table for each incoming flow. However
doing this is very expensive as switch’s memory is a scarce
resource. The main idea behind OFLoad is to make use of the
OpenFlow group option to reduce the number of TCAM entries
in the OpenFlow switch. As the many-to-one traffic pattern is
very common in datacenters for applications like MapReduce
and web search, we propose to group the mice flows pointing
to the same destination ToR. For example, assuming around
2000 active mice flows at a ToR switch pointing to the same
destination ToR, the controller will group the mice flows based
on the same destination ToR and will install a single rule
matching the destination, instead of having a rule for each flow
(e.g., 2000 rules in the TCAM entries). Moreover, by pointing
to the group table, whenever changes in traffic distribution
occur, a single explicit group message can update a set of
flow entries avoiding sending an explicit message for each
flow. In the experimental prototype as illustrated in Figure
5, the OpenFlow SoftSwitches makes use of the OpenFlow
group option when routing the aggregated mice traffic from
Rack 1 to Rack 2. For example, ToR1 has a group which
points to three available paths of different weights, and Switch1
has a group which points to two available weighted paths.
Without using the OpenFlow group option as we propose,
the OpenFlow switch would have to install a rule for each

9

Fig. 6. Traffic Distribution on Paths for Scenario 1

incoming flow which may lead to an overload of the flow
tables in the switches.

2) Load-Balancing and Multipath Routing:
To validate the benefits of the proposed OFLoad in terms
of load-balancing, we compared its performance against that
of ECMP, which is widely used in the commodity switches,
and MiceTrap, another weighted routing algorithm in the four
considered scenarios. In case of ECMP, the traffic is distributed
equally on the multiple paths, so the weights are equal. In
case of MiceTrap, the weights are computed using a simple
additive function, as introduced in [31]. For both MiceTrap and
OFLoad the weights are computed based on link utilization,
and thus their computation depends on the already existing
traffic in the network. This means that there will be two sets
of weights, one set for Scenario 1 and Scenario 2, where the
elephant flow rate is 150Mbps and another set for Scenario 3
and Scenario 4, where the elephant flow rate is 170Mbps. The
two sets of path weight values are listed in Table II.

TABLE II. PATH WEIGHTS

Path Scenario 1-2 Scenario 3-4
MiceTrap OFLoad MiceTrap OFLoad

Path 1 0.33 0.250 0.33 0.250
Path 1.1 0.33 0.100 0.33 0.040
Path 1.2 0.66 0.900 0.66 0.960
Path 2 0.28 0.076 0.28 0.030
Path 3 0.39 0.673 0.39 0.720

The results for Scenario 1 are presented in Figure 6. In this
scenario the average elephant flow rate is 150Mbps and the
average aggregate mice flow is 75Mbps. In this situation the
elephant flow is not impacted by the aggregate mice traffic.
However looking at the traffic distribution among paths, we can
see that in comparison with ECMP and MiceTrap, OFLoad, the
new proposed algorithm, penalizes the loaded paths (Path 1.1
and Path 2) more heavily by giving them a poor weight. This
results in less traffic transferred on the loaded paths and more
on the unloaded paths, such as Path 3 and Path1.2, eventually
increasing the overall transport performance.

In Scenario 2 we increase the aggregated mice traffic to
100Mbps. The results of this scenario are illustrated in Figure
7. It can be seen that in case of ECMP the increase in the
aggregated mice traffic impacts the elephant flow traffic rate,
which experiences a 6% decrease. Both MiceTrap and OFLoad

Fig. 7. Traffic Distribution on Paths for Scenario 2

Fig. 8. Traffic Distribution on Paths for Scenario 3

achieve good traffic distribution among the paths and do not
affect the elephant flow traffic.

Figure 8 illustrates the results for Scenario 3. In this scenario
the elephant traffic is increased to 170Mbps such that the link
between Switch2 and ToR2 became heavily loaded (up to 94%
of the link capacity). The aggregated mice flow rate is kept at
75Mbps. As it can be seen, the elephant flow rate presents
a decrease of 14% when using ECMP, and a 8% decrease
when using MiceTrap. However when using OFLoad, the
elephant flow rate is not affected at all by the aggregated mice
flow traffic. This is because OFLoad is using a multiplicative
function when computing the path weights and the heavily
loaded paths are penalized more than when using a simple
additive function, as in case of MiceTrap. This results in much
less traffic routed through the loaded paths and the consequent
OFLoad improvement in transport performance.

In Scenario 4, we maintain the 170Mbps rate for the
elephant flow, and we increase the aggregated mice flow rate
to 100Mbps, to study the behavior of the mechanism in heavily
loaded conditions. It can be seen how the elephant flow rate
goes down by 17% when ECMP is employed, and by 12%
when using MiceTrap. However in case of OFLoad, which
is based on a multiplicative weighted routing algorithm, the
elephant flow rate is not impacted by the extra traffic. Most
of the traffic is distributed on the unloaded paths such as Path
3 and Path 1.2 and this contribute decisively to the evident
OFLoad usage benefit.

10

Fig. 9. Traffic Distribution on Paths for Scenario 4

E. Conceptual Comparison to Other Solutions
This section provides a conceptual comparison of the pro-

posed OFLoad solution to other solutions from the literature
introduced previously. Table III provides a summary of the
existing solutions highlighting their main findings.

Looking at the OpenFlow-based flow management solutions
for datacenter networks, such as DevoFlow [16], [17], Hedera
[18] and Mahout [19], they all propose a method to differen-
tiate between mice and elephant flows. However, the proposed
traffic management/flow-scheduling schemes cope with ele-
phant flows only while the mice flows have not been taken into
account as much. The controller should have a global traffic
view to make efficient routing decision. For example, Hedera
uses ECMP for short-lived flows and the OpenFlow controller
handles the elephant flows (> 100MB) only. The authors in
[28] showed that Hedera performs comparable to ECMP for
a traffic matrix in which most of the contending traffic is
carried by flows with less than 100MB of data. Hercules [20]
assumes that mice flows do not affect the throughput of the
elephant flows because they are typically small and evenly
distributed over all links. However, this cannot guarantee
good load balancing as the mice flows could be spread
among links that might be already loaded. This could lead
to waste of bandwidth, unbalanced link utilization and hot-
spot links, critical degradation of the application performance
and latency. The proposed OFLoad in turn, groups the mice
flows and routes them as an aggregate using a weighted multi-
path routing algorithm in order to overcome the limitations of
ECMP and achieve load balancing.

Moreover, ECMP, Hedera, DevoFlow, Mahout, etc. rely on
static flow-level traffic splitting by selecting a path for a flow
based on the current network conditions. However, as the
network conditions change over time, the statically-selected
path may not be optimal anymore.

Compared to OFLoad, other load balancing solutions like
LABERIO [24], FlowBender [25], Presto [26], Niagara [27],
or Expeditus [30] they either do not look into differentiating
between the mice and elephant flows or they try to move the
load balancing functionality at the network edge limiting the
global view of the controller. Breaking the flows into sub-flows
is another option adopted by some of the solutions. However,
this could actually lead to instability, low throughput and out-

of-order packet delivery.

V. CONCLUSIONS AND FUTURE WORKS

This paper argues and demonstrates that in case of many-
to-one datacenter traffic patterns, a large number of mice
flows which are very common in case of MapReduce or web
search applications, have the potential to negatively impact the
elephant flow traffic throughput. It is known that the traffic
throughput for elephant flows is critical to ensure the good
performance of the overall applications as more than 80% of
the cumulative traffic volume within the datacenter is carried
by the elephant flows. Consequently the mice flows need not
to be ignored, as their aggregate effect is sufficient to degrade
other applications’ performance. This paper proposed OFLoad,
a novel OpenFlow-based two-stage design framework for data
center networks. OFLoad makes use of the OpenFlow group
option to aggregate the mice flows based on the destination
rack. The aggregated mice flow is then routed using a new
proposed multiplicative weighted multi-path routing algorithm
which achieves good load-balancing.

We built an experimental prototype to investigate the bene-
fits of using OpenFlow-based grouping option and to analyze
the performance of OFLoad when compared to ECMP and
MiceTrap, in terms of load-balancing. Their performance was
analyzed under various traffic load network conditions scenar-
ios. The results show that in heavily loaded network conditions,
for example Scenario 4, employing ECMP could lead to
17% decrease in the elephant traffic throughput. Athough
MiceTrap has a 30% increase in elephant traffic throughput
when compared to ECMP, by using OFLoad the elephant flow
traffic throughput is not impacted at all. This is because of the
routing algorithm employed by OFLoad in which an innovative
multiplicative function is used to penalize heavily the loaded
paths, by giving them poor value weights. This results in less
traffic sent on the loaded paths and favorising the unloaded
paths.

Furthermore, unlike the basic behavior of the OpenFlow
switch requiring to install a rule for each incoming flow
and may lead to an overload of the forwarding tables in the
switches, OFLoad makes use of the OpenFlow group option to
aggregate the mice flows, thus reducing the forwarding table
size significantly.

As Software Defined Networks is still maturing there are
many questions left to be answered. For example, the choice
between an overlay SDN solution vs. an underlay SDN so-
lution might worth investigating. With the overlay SDN the
traffic is tunnelled over the existing physical network without
any visibility into the paths the flows are taking. Whereas,
underlay SDN makes use of global information knowledge
to directly manipulate the network components and route the
traffic flows on specific paths. However, selecting between
overlay or underlay SDN is not trivial as it has implications in
terms of complexity, monitoring, troubleshooting, security, per-
formance management, SLA compliance, etc. As the research
community would benefit from such a study, it is included in
our future works.

11

TABLE III. CONCEPTUAL COMPARISON WITH EXISTING APPROACHES

Mechanism Application Topology Workload Findings

DevoFlow [16],
[17]

OpenFlow-based flow
management solution for
datacenter networks

three-level Clos and two-
dimensional HyperX
topologies

MapReduce job (shuffle
phase) and Microsoft Re-
search measurements of
a 1500-server cluster

Differentiates between mice and elephant flows by using a threshold
at the edge switch for the transferred bytes. The DevoFlow controller
maintains visibility of the elephant flows only.

Hedera [18]
OpenFlow-based flow
management solution for
datacenter networks

fat-tree network topology

synthetic workloads:
stride, staggered
probability, random,
random bijection shuffle

Differentiates between mice and elephant flows at the edge switches.
Makes use of placement algorithms to compute good paths for the
elephant flows only.

Mahout [19]
OpenFlow-based flow
management solution for
datacenter networks

three-level Clos topology MapReduce job (shuffle
phase)

Differentiates between mice and elephant flows at the end-host. The
controller routes the elephant flows only on the least congested paths.

Hercules [20]
traffic management solu-
tion for datacenter net-
works

two-level fat-tree net-
work topology synthetic traffic

It integrates four existing controllers including Mahout [19]. It enables
multiple controllers to leverage each other and achieve the goals
collectively.

LABERIO [24] OpenFlow-based load
balancing scheme

fully populated fat-tree
network topology

uniform, semi-uniform,
hot spot

In a hot-spot scenario LABERIO reduces with up to 13% the
transmission time when compared to round robin and provides similar
performance for uniform and semi-uniform scenarios.

FlowBender [25]
distributed end-host
driven load balancing
scheme

fat-tree network topology all-to-all, storage-type

In a real setup, FlowBender achieves up to 40% reduction in the
flow completion tail latencies for large flows compared to ECMP. The
simulation results show that FlowBender achieves similar performance
to other schemes from the literature.

Presto [26] software-based edge
driven load balancing Clos network topology

synthetic workload:
shuffle, stride(8);
random, random
bijection

For shuffle workload Presto achieves similar performance as ECMP.
Whereas for non-shuffle workloads Presto improves by 38%− 72%
upon ECMP in terms of elephant flow throughput.

Niagara [27] SDN-based traffic split-
ting solution

basic campus network
and symmetric and
asymmetric datacenter
topologies

synthetic VIP traffic and
real datacenter traces

For symmetric topologies Niagara performs better than ECMP but
offers similar performance to MicroTE. Niagara incurs > 20%
imbalance for 15% time frames. For asymmetric topologies Niagara
performs slightly worse than MicroTE for < 2% imbalance.

Expeditus [30]
distributed congestion-
aware load balancing
protocol

three-level Clos topology web search and data min-
ing workloads

For mice flows, Expeditus outperforms ECMP by up to 45% in tail
flow completion times and by up to 38% in mean flow completion
time for elephant flows in 3-tier Clos networks.

OFLoad OpenFlow-based load
balancing mechanism clique topology many-to-one workload

OFLoad aggregates the mice flows and routes them in a weighted
multi-path manner such that less traffic is sent on the loaded paths and
the unloaded paths are favourised. Thus, the elephant flows throughput
is protected whereas by using ECMP the elephant flow rate could go
down by up to 17%. Moreover, OFLoad reduces the forwarding table
size significantly.

REFERENCES

[1] Cisco Systems Inc., “Cisco visual networking index: Forecast and
methodology, 2014–2019,” 2015.

[2] ——, “Cisco global cloud index: Forecast and methodology, 2014–
2019,” 2015.

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceed-
ings of the 9th ACM SIGCOMM conference on Internet measurement
conference. ACM, 2009, pp. 202–208.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[5] W. Wu, Y. Chen, R. Durairajan, D. Kim, A. Anand, and A. Akella,
“Adaptive data transmission in the cloud,” in IWQoS, 2013 Proceedings
IEEE/ACM International Symposium on Quality of Service. IEEE,
2013.

[6] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127–138, 2012.

[7] J. Moy, “OSPF Version 2,” RFC 2178 (Draft Standard), Internet
Engineering Task Force, July 1997, obsoleted by RFC 2328. [Online].
Available: http://www.ietf.org/rfc/rfc2178.txt

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4. ACM, 2009, pp. 51–62.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation

in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[10] J. S. Turner, “A proposed architecture for the geni backbone platform,”
in Architecture for Networking and Communications systems, 2006.
ANCS 2006. ACM/IEEE Symposium on. IEEE, 2006, pp. 1–10.

[11] V. Maglaris and C. Cervelló-Pastor, “With evolution for revolution:
Managing federica for future internet research,” IEEE Communications
Magazine, p. 3, 2009.

[12] H. Harai, “Designing new-generation network: Overview of akari ar-
chitecture design,” in Asia Communications and Photonics Conference
and Exhibition. Optical Society of America, 2009.

[13] A. Köpsel and H. Woesner, “Ofelia–pan-european test facility for open-
flow experimentation,” in Towards a Service-Based Internet. Springer,
2011, pp. 311–312.

[14] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for openflow,” in Communications
(ICC), 2012 IEEE International Conference on. IEEE, 2012, pp. 6606–
6610.

[15] S. Song, H. Park, B. Y. Choi, T. Choi, and H. Zhu, “Control path
management framework for enhancing software-defined network (sdn)
reliability,” IEEE Transactions on Network and Service Management,
vol. PP, no. 99, pp. 1–1, 2017.

[16] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis,
and S. Banerjee, “Devoflow: Cost-effective flow management for high
performance enterprise networks,” in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010, p. 1.

[17] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” SIGCOMM Comput. Commun. Rev., vol. 41,

12

no. 4, pp. 254–265, Aug. 2011.
[18] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[19] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 1629–1637.

[20] W. Kim and P. Sharma, “Hercules: Integrated control framework for
datacenter traffic management,” in Network Operations and Manage-
ment Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 70–78.

[21] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary topologies.” in
NSDI, 2010, pp. 265–280.

[22] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble routing
for datacenter networks,” in Proceedings of the 6th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems.
ACM, 2010, p. 23.

[23] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula, “Automated and scalable QoS control for network
convergence,” Proc. INM/WREN, vol. 10, pp. 1–1, 2010.

[24] H. Long, Y. Shen, M. Guo, and F. Tang, “Laberio: Dynamic load-
balanced routing in openflow-enabled networks,” in IEEE 27th Inter-
national Conference on Advanced Information Networking and Appli-
cations (AINA), March 2013, pp. 290–297.

[25] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender:
Flow-level adaptive routing for improved latency and throughput in
datacenter networks,” in International Conference on Emerging Net-
working Experiments and Technologies (CoNEXT). ACM, December
2014, pp. 149–159.

[26] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, August 2015, pp.
465–478.

[27] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in International Conference
on Emerging Networking Experiments and Technologies (CoNEXT),
December 2015, pp. 6:1–6:13.

[28] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
Conference on Emerging Networking Experiments and Technologies.
ACM, 2011, p. 8.

[29] P. Wang and H. Xu, “Expeditus: Distributed load balancing with
global congestion information in data center networks,” in International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), December 2014, pp. 1–3.

[30] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, “Expeditus: Congestion-
aware load balancing in clos data center networks,” in ACM Symposium
on Cloud Computing (SoCC), October 2016, pp. 442–455.

[31] R. Trestian, G.-M. Muntean, and K. Katrinis, “Micetrap: Scalable traffic
engineering of datacenter mice flows using openflow,” in IM, 2013
Proceedings IEEE. IEEE, 2013.

[32] K. Lan and J. Heidemann, “On the correlation of internet flow charac-
teristics,” Technical Report ISI-TR-574, USC/ISI, Tech. Rep., 2003.

[33] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a electrical/
architecture for modular,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 339–350, 2011.

[34] N. Brownlee and K. Claffy, “Understanding streams: Dragonflies and
tortoises,” Communications Magazine, IEEE, vol. 40, no. 10, pp. 110–
117, 2002.

[35] Q. T. Nguyen-Vuong, Y. Ghamri-Doudane, and N. Agoulmine, “On
utility models for access network selection in wireless heterogeneous
networks,” in IEEE Network Operations and Management Symposium
(NOMS), April 2008, pp. 144–151.

