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A B S T R A C T

By the envision of combing smooth viewing experience with high-efficiency content distribution, dynamic adap-
tive streaming (DAS) over information-centric networking (ICN) is becoming a promising trend for the future
video services. However, optimizations of DAS flow transmission control and rate adaptation need to be revisited
for better adopting the ICN with multicast, multi-rate forwarding and decentralized framework. In this paper,
we propose a decentralized asynchronous method for ICN-DAS. We first formulate the problem as a two-stage
optimization, wherein the first stage’s objective is to optimize the transmission rate within network capacity
constraints, and the second is adapting the video bitrate for the long-term viewing utility. A distributed asyn-
chronous optimization algorithm (DAOA) is then proposed for solving the two-stage problem iteratively by a
novel distributed switching mirror descent and virtual queue-based iterations. Analytic results including conver-
gence, computation complexity and time-varying adaptation are provided to validate theoretically the DAOA’s
performance. Simulation-based testing has also been conducted for evaluating DAOA’s performance and assess
its viewing experience, in comparison with state-of-the-art solutions.

1. Introduction

Following the proliferation of smart devices and increase in rich
media content demand (Xu et al., 2015a; Costa etal., 2019, Cao et
al., 2019), it is foreseen that diverse video-based applications will be
responsible for the traffic which will dominate the future Internet.
According to Cisco, over 80% of the traffic in the future Internet will
be generated by video services after 2020 (Costa et al.). This traffic
increase is caused by both growing popularity of video applications and
increasingly high bandwidth requirements of the latest evolving video
(i.e., virtual/augmented reality (Guna et al., 2019; Rashid et al., 2017))
and challenges significantly the existing network capacity. Apart from
the effects of network capacity shortage, video clients have also affected
their smooth content playback by the mismatch between the dynamic
fluctuation of the available bandwidth and constant video encoding
bitrate.

Instead of patching the current TCP/IP paradigm (Xu et al., 2015b;
Tang et al., 2019) when trying to address the network capacity issue,
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the emerging information-centric networking (ICN) employs a differ-
ent approach (Xu et al., 2017; Abdullahi et al., 2015). ICN improves
the network resource (re)usage by shifting the network design concern
from host to content and network operation focus from host manage-
ment to content distribution. In this context, ICN enables name-based
content delivery (i.e., based on sending of Interest packets (Zhang et al.,
2014)) and in-network caching (Xu et al., 2018), which inherently cre-
ate opportunities for nearby data fetching and multicast-oriented deliv-
ery (Stais et al., 2015), thereby improving network capacity.

Recently, the dynamic adaptive video streaming (DAS) (El Essaili et
al., 2015; Rainer et al., 2017), designed for heterogeneous devices and
networks, is widely used. DAS relies on different video versions (termed
representations) and on multiplexing the various video encoding bitrates.
By employing dynamic selection of video representations in a process
of flexible adaptation of the video bitrate according to network band-
width variation, DAS makes possible smooth remote video playback. In
order to support provision of improved performance of video services,
a natural emerging trend was to deploy DAS in ICN, which has gained
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important attention (Rainer et al., 2016; Samain et al., 2017). In a ICN
DAS solution, crucial for resulting service quality is how to fully utilize
the network capacity and optimally request the appropriate video rep-
resentations. Existing research avenues, including (Lederer et al., 2013;
Jmal et al., 2017), follow an end-to-end rate adaptation design princi-
ple to control the ICN DAS delivery. However, this approach does not
achieve best performance mostly due to neglecting ICN features, such
as inherent multicast and multi-rate delivery provided by in-network
caching and Interest packet aggregation.

The operation of ICN DAS has two main phases:

1) ICN clients firstly determine how fast to send out the Interest packets
(termed as the sending rate of requests) according to the network
capacity. This phase can be considered as a flow control problem
which aims to distributively maximize the overall transmission rate
within the bandwidth limits. Due to the multicast, multi-rate fea-
ture of ICN DAS, one provider may simultaneously serve multiple
clients with different requesting representations. Existing solutions
(Karami, 2015; Liu and Wei, 2016) which consider the unicast sce-
narios only would benefit if they accommodate this salient feature.
In addition, using a Lagrangian method for solving this problem as
in solution (Carofiglio et al., 2016) also becomes difficult due to the
non-differential aspect of the problem. Instead, a lightweight flow
control algorithm to avail from for multicast and multi-rate features
of ICN DAS should be considered.

2) In the second phase, the clients determine the encoding rate of the
requested video according to the Interest packet sending rate. Differ-
ent from current studies which formulate encoding bitrate adapta-
tion as a deterministic optimization problem (Rainer et al., 2016),
here the requested video bitrate varies frequently, mostly due to the
dynamic ICN characteristics. In this phase, the focus should be on
the algorithm for selection of the video representations that opti-
mizes client utility.

Addressing the above-mentioned challenges, this paper introduces
and describes DAOA, a distributed asynchronous optimization algo-
rithm for ICN DAS. DAOA includes a lightweight decentralized flow
control algorithm which optimizes the Interest sending rate of each
client. DAOA also includes an algorithm for video representation selec-
tion that maximizes the long term client utility. The major contributions
of this paper are summarized as follows:

(1) ICN DAS delivery is formulated as a two stage optimization prob-
lem. In the first stage, a generic flow control problem considering
the multi-cast and multi-rate features of ICN DAS is formulated.
The problem optimizes the transmission rate for a given net-
work capacity in each time slot. In the second stage, the video
representation selection problem is formulated as a stochastic
optimization problem, focusing on long term utility optimization
according to the feasible transmission rate.

(2) A distributed asynchronous optimization algorithm (DAOA) for
ICN DAS is proposed to solve the two stage optimization prob-
lem. As solution to the flow control problem, a Distributed
Switching Mirror Descent Algorithm (DSMDA) is introduced.
DSMDA enables each client self-determine the transmission rate
by negotiating with the on-path links. As solution to the sec-
ond stage issue, the Virtual Queue-based Iteration Algorithm
(VQIA) is proposed to determine the video representations to be
requested in each time slot so individual client utility are opti-
mized.

(3) In order to assess the performance of the proposed algorithm
from both theoretical and practical points of view, comprehen-
sive analysis on algorithms’ convergence, computation complex-
ity and time varying adaptation characteristics was performed.
Additionally, DAOA was tested via simulations with three differ-
ent topologies. Results verify the fast convergence and time vary-
ing adaptation, and also show how DAOA outperforms another

state-of-art solution in terms of throughput, playback stalling and
quality.

The rest of the paper is organized as follows: section 2 surveys
related works and section 3 describes the scenarios of focus. Section 4
provides the system model and problem formulation. Sections 5 and 6
include the detail design of the proposed DAOA for ICN DAS and present
the main theoretical results. Sections 7 and 8 present the simulation-
based evaluations and draw conclusions.

2. Related work

2.1. ICN flow control

In order to maximize communication resource utilization and over-
all throughput while avoiding network congestion, several solutions for
ICN flow control have been proposed. Among the existing attempts,
Zhang et al. (2015) proposed an explicit congestion control mechanism
for content-centric networks named Chunk-switched Hop Pull Control
Protocol (CHoPCoP). The main idea of CHoPCoP is that routers sched-
ule sending the Interest requests according to one-hop congestion esti-
mations, and end users adjust their sending rate based on the conven-
tional AIMD method. However, users adjust the sending rate according
to the marking packets of upstream routers instead of the congestion
information of the whole delivery path, which may result in ineffective
congestion control. An integrated method to improve the transmission
control is proposed by Li et al. (2017). This method employs both a
flow-aware congestion estimation scheme to predict congestion accord-
ing to historical information and a mechanism that dynamically sets the
eviction time of PIT entries according to round trip time (RTT). How-
ever, both the congestion prediction and RTT estimation may become
inaccurate in ICN scenarios due to the high dynamics of data flows
(such as flash crowd) and on-path caching.

Carofiglio et al. proposed a multipath control method (Carofiglio et
al., 2013) where RTT and window-based control info are processed at
each router in order to improve the accuracy of rate control. To fur-
ther smoothen sending window variation, a window decrease method
named remote adaptive active queue management (RAAQAM) has been
proposed. The transmission dynamic under RAAQAM has also been
modeled as a fluid-based model and the stability of RAAQAM has
also been proved. However, whether this method can achieve or not
optimum bandwidth utilization is not discussed. Besides, the proposed
fluid-based model does not consider the Interest aggregation feature of
ICN, whose performances may be impaired when delivering content
with multicast.

Karami (2015) proposed ACCPndn, a machine learning-based con-
trol method for NDN. Specifically, ACCPndn uses a neural network
architecture to forecast the network congestion and degree of conges-
tion. A heuristic congestion avoidance method is then proposed, which
leverages a fuzzy inference system to estimate the interface load and
adjust the sending rate according to the load. However, the accuracy
of forecasting by employing neural networks highly relies on the train-
ing set and the dynamics of traffic pattern may result in inaccurate rate
forecasting, which in turn influences the control efficiency. ACCPndn
requires implementation of a central controller for congestion forecast-
ing, which has scalability issues.

Carofiglio et al. (2016) formulated an ICN flow control problem with
two objectives: throughput maximization and network cost minimiza-
tion. The problem is furthered divided into two sub-problems focused
on rate control and Interest forwarding, which are solved separately.
However, the problem formulated in Carofiglio et al. (2016) treats each
flow individually and does not consider the multicast feature of ICN,
which lead to low bandwidth utilization. Besides, the computation and
communication overhead brought by Lagrangian calculation may also
reduce the algorithm performance.
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2.2. Representation adaptation

In DAS, for example, MPEG-DASH based on scalable video coding,
the video content is encoded into a base layer and several enhance-
ment layers. Video stream can be decoded from the base layer or base
layer plus a single or multiple enhancement layers. The more enhance-
ment layers involved, the higher the video quality obtained is, but also
the higher consumption of bandwidth resources. Hence, the challenge
is to select suitable video representations that ensure smooth video
playback at high quality of experience level in given network condi-
tions. In this area, most studies concentrate on caching and forwarding
design for ICN DAS, whereas limited number of works focus on opti-
mally selecting video representations. In Lederer et al. (2014), a DASH-
enabled content-centric network (CCN) architecture was designed. The
associated representation selection is based on the end-to-end band-
width measurement, and ignores the involvement of data forwarders
during the transmission. Unfortunately, this solution may suffer from
high inaccuracy in terms of bandwidth measurement due to the mul-
ticast and flow dynamic caused by Interest aggregation and in-network
caching.

A network-assisted CCN DAS solution, based on measurement of the
available bandwidth from intermediate nodes to both server and client,
was proposed in Jmal et al. (2017). A rate adaptation algorithm is then
proposed which decides the representations to be requested based on
both estimated bandwidth and buffer level. In Liu and Wei (2016),
a hop-by-hop based rate control for ICN DAS was proposed, which
enables each ICN router shape independently the rate according to the
local traffic status. Benefiting from the hop-by-hop design, the rate of
the requested video can quickly follow bandwidth variation. However,
the associated heuristic control mechanism yields a suboptimal trans-
mission rate, which affects delivery performance.

In Rainer et al. (2016), the representation selection problem is for-
mulated as a multi-commodity flow problem in order to derive the
upper bound of throughput gains. However, due to highly dynamic net-
work conditions and preference on entire playback quality at the client
side, formulation of the rate representation problem as a deterministic
optimization is unsuitable.

Another literature (Hu et al., 2019) related with our work proposed
a framework of joint optimizing the caching, transcoding and routing
decisions for adaptive video streaming over ICN. Unlike (Hu et al.,
2019) whose objective is to minimize the access delay and maximize
the cache hit ratio, our work mainly focuses on maximize the overall
transmission rate and quality of viewing representations of each client.
In addition, we solve the transmission control problem in first stage
by proposing a novel distributed switching mirror descent algorithm.
We also consider and solve the representation adaption problem via
stochastic perspective that is able to maximize the long term viewing
quality and smooth video playback according to the available transmis-
sion rate derived from first stage problem.

3. Scenario description

The design targets primarily ICN DAS and a typical video delivery
scenario is considered. For simplicity, it is assumed that all the requests
in this scenario are made for adaptive video content.1 Let us consider
a simple ICN scenario as in Fig. 1, where a media server distributes
video content to three ICN clients A, B, C via ICN router R. An SVC
based MPEG-DASH video application is considered and video content is
encoded into one base layer L and two enhancement layers H1 and H2,
with bitrates l, h1, and h2, respectively. Thus, three possible types of
requesting data rate, l, l + h1, l + h1 + h2, can be selected by clients.
Let the B(R,A), B(R,B), B(R,C), B(S,R) denotes the access link capacities of A,

1 without loss of generality, delivering DAS in ICN can be considered generic,
and thereby the same design method can also be applied to other applications.

Table 1
Notifications used in problem formulation.

Symbol Description

 , Universe of clients and providers
 Universe of links
xij Transmission rate of client i to provider j
x Transmission rate configuration of network
g
(
xij
)

Utility for client i with rate xij
f (x) Objective of problem P1
Fj Video flows initiated by provider j
cl Capacity of link l
F (t) Universe of flows in network at t
dmin, dmax The lowest and highest bitrate of DAS
p (vi (t)) Utility with video bitrate vi (t)
pi Objective of problem P2 for client i
vi (t) Bitrate of requested video for i at time t
 Set of time slots
x∗i (𝜏) The optimal transmission rate of i at 𝜏
D Set of bitrates of selectable video representations
∥ . ∥ Cardinality of set

B, C, and server bandwidth, respectively. Let following inequality eq.
(1) hold.

l < B(R,A) < l + h1 < B(R,B)

<l + h1 + h2 < B(R,C) < 3l < B(S,R) < 3l + h1

(1)

Inequality (1) indicates that client A can only request the lowest
representation, namely, video with base layer L. Clients B and C can
make requests for the video with one and both enhancement layers,
respectively. However, the server capacity can only concurrently sup-
port three clients with the lowest representation.

Three clients request the same video at different times. It is assumed
the Least Frequently Used (LFU) caching policy is enabled at R. At t1,
requests from A and B arrive asynchronously, but within the Interest
aggregation time window. At t2, C sends its request, where t2 − t1
is less than the caching eviction time. In such cases, a conventional IP-
based DAS treats the requests from the three different clients separately,
and consequently each client will experience the lowest representation.

Thanks to the Interest aggregation and on-path caching, ICN pro-
vides better performance in such cases by inherently enabling multicast
with multi-rate delivery. The requests from A and B arriving within
aggregation time window are combined at R. In particular, only the
requests for L + H1 will be forwarded to the server. After accessing the
data associated with L + H1, R forwards the L + H1 to B and L to A,
respectively. In addition, ICN router R will also cache the content with
representation L + H1. Thus, for client C, the content of L + H1 can
be provided by R, while the server only needs to deliver the enhance-
ment layer H2 to C. Under such circumstances, all clients A, B and C
achieve the highest representations within their bandwidth limitations.
From streaming perspective, the server fully utilizes its capacity and
simultaneously serves three clients with a single video flow with rate
l + h1 + h2.

4. Problem formulation

As already mentioned, the ICN DAS transmission control is consid-
ered as a two-stage optimization problem. In the first stage, a generic
flow control problem considering the multicast, multi-rate features of
ICN is formulated. The goal is to optimize the overall transmission
rate in ICN. Based on the optimized transmission rate, a representation
adaptation problem is formulated in the second stage. This optimiza-
tion focuses on long term user viewing experience and is performed by
selecting the optimal encoding bitrate to request. Table 1 includes the
notations used in problem formulation.

3
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Fig. 1. Multicast, multi-rate delivery of ICN DAS.

4.1. First stage: ICN flow control optimization

The previous section illustrates how by using ICN can benefit DAS.
However, these multicast and multi-rate features also challenge formu-
lating the flow control problem that describe exactly DAS delivery in
ICN.

Given a ICN network denoted by  = ( ,), where  and  indicate
the network nodes and links, respectively.  consists of clients, routers
and servers. Consider the routers in ICN not only acting as data for-
warders, but also as providers thanks to the in-network caching design.
Hence, for simplification,  denotes the set of providers and routers in
the network. Given the universe of clients ,  is thereby equal to the
union set of  and , namely:

 =  ∪

Let exy ∈  denote the link between neighboring nodes x ∈  and
y ∈  . For any of consumer-provider pair (i, j) , i ∈  , j ∈  in network,
we define the path between i and j by the set of links between them:

p (i, j) ≜ {ei,s1 , es1 ,s2 , es2 ,s3 ,… , esk,j}

where sl ∈  (l = 1,2,3,… , n). Assuming the network  is fully con-
nected, namely, for any consumer-provider pair (i, j) in , there always
exists at least one path between them.

Considering network dynamics, it is assumed the time is slotted,
such that  = {1,2,… , t …}. Let xij denote the data transmission rate
of client i ∈  accessing video content from provider j ∈  . We assume
the utility function is concave and differential, such as logarithmic
forms in Huang et al. (2018) and 4.75 − 4.5e−0.77xij in Liu and Lee
(2016). Reasons for this assumption are two folded: (1) The concave
function ensures the existence and uniqueness of optimum (Boyd and
Vandenberghe, 2004), which is important for optimality analysis on
algorithm design; (2) From the practical perspective, concave func-
tion, especially with the logarithmic forms, are very suitable for cap-
turing the user experiences of various network applications (Reichl et
al., 2013) including the video streaming.

As discussed, single provider in ICN can potentially serve multiple
clients with identical requests and heterogeneous transmission rates via
a single data flow. By considering all the clients associated with one
video flow, the overall utility of the clients served via the flow fj initi-
ated from j can be denoted by

∑
i∈cfj

g
(
xij
)
, where cfj denotes the clients

requesting fj. For any link l ∈ , its corresponding capacity is denoted
by cl. At every t, the main purpose of the first stage optimization is to
maximize the overall utilities of flows in ICN as well as avoid violating
the limitations of link capacities. Let the vector x ≜ {xij}i∈,j∈ denote

the transmission rate configuration. Thus, the first stage problem can
be formulated as follows:

P1: For each slot t:

Maximize f (x) =
∑
j∈

∑
fj∈Fj

∑
i∈cfj

g
(
xij
)

(2)

Subject to
∑
fj∈sl

max
i∈cfj (l)

xij ≤ cl l ∈  (3)

x ∈
[
dmin, dmax

]|| (4)

where Fj denotes the video flows from j, sl is the set of flows using l,
cjf (l) denotes the set of clients served simultaneously by j with flow f,
while sharing link l.  (t) denotes the universe of video flows in the
network at t, and dmin and dmax are the rates of lowest and highest
representations, respectively. The objective indicated in eq. (2) is to
maximize the utility of all clients in ICN DAS. The constraint from eq.
(3) indicates that for any of the link l ∈ , the entire traffic handled by l
should not exceed its capacity. Note that due to the multicast multi-rate
feature of ICN, the sending data rate of each provider i over l is equal
to the largest receiving rate of users accessing f from i via l. Hence, con-
sidering the left term of eq. (3), the total handling traffic can be derived
by summing the maximum xij associated with each clients in cfj (l). The
constraint from eq. (4) ensures the flow configuration satisfies the view-
ing quality requirement. Accordingly, the following theorem ensures
the concavity of problem P1.

Theorem 1. Given the utility g (.) of any video client i ∈  is concave,
problem P1 can be considered as a non-smooth concave optimization prob-
lem, namely, a unique optimal flow configuration exists that maximizes eq.
(2) under the constraints from eq. (3) and eq. (4).

Proof. Since the theorem assumes each client’s utility is concave,
according to the concavity preservation of linear addition, the objec-
tive from eq. (2) is also concave. Hence, we only need to prove the
convexity of constraints from eq. (3) and eq. (4). The constraint from
eq. (3) is convex but non-smooth due to the convexity and piecewise
of the maximum function. For each i, let us have two arbitrary selected
data rates xi, yi ∈ D with xi ≤ yi. The following inequality holds:

dmin ≤ xi ≤ 𝜃xi + (1 − 𝜃) yj ≤ y ≤ dmax,∀𝜃 ∈ [0,1]

Hence, for the corresponding network flow vectors x and y, we have
𝜃x + (1 − 𝜃) y ∈

[
dmin, dmax

]||, namely
[
dmin, dmax

]|| is a convex set.
This proves the theorem.

□
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For the purpose of formulating a generic flow control problem for
ICN, the following discusses how P1 can easily adopt different ICN
delivery scenarios, after with minor modifications.

(1) Multipath Scenario: Recent studies exploiting the multipath fea-
tures of ICN for enhancing the delivery performance, which
enable ICN clients simultaneously access content from multiple
difference sources. For such scenarios, assuming client i accesses
content from multiple

[
o1, o2,… , oM

]
interfaces. Let the corre-

sponding rate of ok be xi,jok
. Hence, the total delivery rate of

user i xi =
∑M

k=1 xi,jok
. Accordingly, the QoE function of u will be

rephrased as g
(∑M

i=1 xi,jok

)
.

(2) Unicast Scenario: In this case, providers deliver the video flow
to one user only. Applying our formulation to unicast requires
setting the sum

∑
i∈l(s)

max
j∈si(u)l

xi,j in constraint from eq. (3) to
∑

s∈l(s)
xs,

where xi denotes the delivery rate of provider i.

4.2. Second stage: requesting BitRate adaptation problem

After the data transmission rate is determined, the clients will adapt
the requested representations of video content according to the avail-
able network capacity. At each time slot t, let the maximum transmis-
sion data rate x∗i (t) be derived by solving t’s P1. Due to the fact that
x∗i (t) varies mainly because of the network dynamic behavior, the sec-
ond stage mainly focuses on the long term optimization of user viewing
experience. Given the utility of client i: p (vi (t)), where vi (t) denotes the
requested video bitrate at time t, the corresponding long term average
utility is defined as in eq. (5).

pi ≜ lim
t→∞

1
t

t∑
𝜏=1

p (vi (t)) (5)

If pi is the objective, the second stage optimization can be formu-
lated as the following stochastic optimization:

P2: For each client i

Maximize pi (6)

Subject to lim
t→∞

1
t

t∑
𝜏=1

x∗i (𝜏)
vi (𝜏)

≥ 1 (7)

vi (t) ∈ D (8)

where D includes all possible video rate of all representations. Con-
straint from eq. (7) limits the average of the selected requested bitrate
to less than the maximum transmission rate. The reason for introduc-
ing eq. (7) is explained next. During each processing interval [t − 1, t],
the client consumes 1, and receives x∗i (𝜏) ∕vi (𝜏) time units of content,
respectively. When x∗i (𝜏) ∕vi (𝜏) < 1, the buffer level decreases. When
the video buffer becomes empty, the playback is stalled. In contrast,
if x∗i (𝜏) ∕vi (𝜏) > 1, the buffer level can be maintained at a non-empty
level and hence ensuring the smooth playback.

5. Distributed asynchronous optimization algorithm design

In order to solve the formulated two stage optimization problem,
a Distributed Asynchronous Optimization Algorithm (DAOA) for ICN
DAS is proposed. DAOA derives the optimum in each of the two stages
individually. For each time slot t in DAOA, the network first determines
the optimal flow control configuration by solving P1, then, each client
optimizes the requested video representation by solving problem P2.

5.1. Algorithm for P1

When analyzing eq. (2), eq. (3) and eq. (4), two major obstacles to
solving problem P1 are noted.

A) Maximum Functions: The constraint in eq. (3) contains the max-
imum function which is non-differentiable. Using traditional methods
such as the Lagrangian method (Boyd and Vandenberghe, 2004) needs
to solve the inverse of lagrangian’s gradient, hence, requiring to con-
sider all possible linear combinations of different xij in constraints. For
example, let client 3,4 simultaneously access video flows from provider
1 using link l, while client 5 receives video from 2 via l. Thus, the
capacity constraints for l can be denoted as max{x31, x41} + x52 ≤ cl
which is non-differential. Conventional methods such as Lagrangian
need to convert max{x31, x41} + x52 ≤ cl into two linear constraints:
x31 + x52 ≤ cl and x41 + x52 ≤ cl, hence, complicating the solving
of Lagrangian function.

B) Coupling of clients: Eq. (2) is a linear summation of users’ util-
ity functions, thus eq. (2) can be calculated by enabling each client
to calculate their own utility function individually. Namely, eq. (2) is
separable at xi,j. However, solving the constraints from eq. (3) requires
coordination among all the clients using link l, which means data rate
of clients are coupled by constraints. This makes the problem difficult
to solve by distributed methods.

To overcome the above challenges, we propose the distributed
switching mirror descent algorithm (DSMDA) which extends the switch-
ing mirror descent (SMD) (Beck and Teboulle, 2003) to the distributed
scenarios. The switching of SMD indicates there are two different types
of iterations, i.e., feasible/infeasible step, which perform alternatively
according to whether the decision variable is within the feasible set or
not. Each step applies the mirror descent paradigm which is a combina-
tion of a Bregman Distance and objective’s subgradient. With the above
design, SMD approaches the optimum without requiring the smoothness
of constraints, namely, the first issue of maximum function is solved.
Besides, it also avoids the complex computation of deriving the inverse
differential forms as in Lagrangian. For more details on SMD, readers
can refer to Appendix A.

However, original SMD is inapplicable to the distributed implemen-
tation of ICN flow control, since it requires to calculate the optimizer x
centrally. Thus, directly applying SMD for transmission control needs a
central coordinator for collecting the global status of the network and
synchronously optimizes the entire clients’ transmission rate. To accom-
modate the decentralization of ICN flow control, we propose DSMDA to
enable each client to perform the switching mirror descent individually
without coordinating with each other.

For this design purpose, we first rephrase the P1 (2)-(4) as following
convex optimization:

Maximize ℏ(x) = −
∑
j∈

∑
fj∈Fj

∑
i∈cfj

g(xij) (9)

Subject to (3)(4) (10)

We introduce the entropic distance as eq. (11)

∥ x∥e ≔

n∑
o=1

∥ xo ∥ (11)

and a proxy function in eq. (12)

de (x) = ln n +
n∑

o=1
xo ln xo (12)

where xo is the o-th component of x. Following proposition presents the
important mathematical features of de(x).

Proposition 1. For all x ∈ Q, function de (x) defined in eq. (12) is
differential and strongly convex.

Proof. See Appendix B.
□
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According to Beck and Teboulle (2003), the Bregman Distance is
defined as following:

V[(x(k))](x) ≜ de(x) − de(x(k)) − ⟨x − x(k),∇de(x(k))⟩ (13)

by substituting the (12) into (13), we have the Bregman Distance of proxy
function (12)

V [y] (x) =
n∑

o=1
(xo(ln xo − ln yo) + (xo − yo))

For the o-th component of x, we define the V [y] (x)o =
xo (ln xo − ln yo) + (xo − yo). Let e

h (y, g) ≜ arg min
x∈Q

{h⟨x, g⟩+ V[y] (x)}.

By the optimal condition (Boyd and Vandenberghe, 2004) of e
h(y, g),

we have

0 ∈ hg +∇xV[y] (x) (14)

Where ∇x is the subgradient operator for x, h is the step size. Solving
the (14), we derive

e
h(y, g)o = yoe−hgo−2 (15)

where e
h(y, g)o and go are the k-th component of e

h(y, g), g, respec-
tively.

We let fl (x) =
∑

fj∈sl maxi∈cfj (l)
xij − cl and pij denote the set of links

of the client i delivery path to j. The Lipschitz constant of the objective
ℏ(x) is denoted as M. The set Ipij

(t) = {ej ∈ pij|fj(x(t)) > h ∥ ∇fj(x(t)) ∥
}, where ∇fl(x(t)) is the subgradient for fl(x(t)). Let T = 2𝜎∕h2 is
the upper limit in terms of the number of iterations,2 where 𝜎 =
maxx∈D|C| r0(x). Then, for client i ∈  in ICN, DSDMA performs the fol-
lowing iterations:

Feasible step at t:

∙ each link l in pij returns fl (x (k)) and ∥ ∇fl (x (k)) ∥E∗ ;
∙ If k + 1 < T, Ipij (k) = ∅:

∙ xij (k) = e
h

(
x (k) , ∇ℏ(x(k))M

)
i
.

Infeasible step at t:

∙ each link l in pij returns fl (x (t)) and ∥ ∇fl (x (k)) ∥E∗ ;
∙ If i + 1 < T, Ipij (t) ≠ ∅:
∙ Let 𝜁i (x (k)) = max

j∈Ipij (k)
fj (x (k));

∙ Let3 hk,i (k) =
𝜁i(x)

∥∇𝜁k(x(k))∥2
E∗

∙ xij (k + 1) = e
hk,i

(x (k) ,∇𝜁i (x (k)))i.

Comparing with original SMD, the switching condition of feasible
step has been modified to accommodate the distributed implementa-
tion. Besides, at infeasible step, our proposed DSMDA using the Breg-
man distance based on local maximum subgraident instead of the global
maximum. Thus, calculation of eq. (15) for any client i requires only
the information of 𝜁k (x (t)) over i’s delivery path pij. Therefore, in each
iteration, for any of k ∈ , xk (t) can be individually derived by client
k instead of coordinating with other clients using links over pk. Thus,
yielding the coupled challenge of ICN flow control problem.

5.2. Algorithm for P2

Recall that P2 is a stochastic optimization problem. We propose the
Virtual Queue-based Iteration Algorithm (VQIA) based on the min-drift-
minus-plenty policy (Neely, 2010). We first introduce the virtual queue
Hi (t) for P2, which is updated at each t, as follows:

Hi (t) = ⌈Hi (t − 1) − 1 +
x∗i (t)
vi (t)

⌉+ (16)

2 The reason of setting T is explained by Theorem 1.
3 According to maximum theorem, the ∇𝜁i (x (k)) = max

j∈Ipij (k)
∇fj (x (t)).

Fig. 2. Illustrations of asynchronous iteration in DAOA.

where ⌈x⌉+ denotes max{x,0}. By summation eq. (16) for all t, the
inequality from eq. (17) holds when Hi (0) = 0.

t∑
𝜏=1

(
x∗i (𝜏)
vi (𝜏)

)
− 1 ≤ Hi (t) (17)

Thus, when Hi (t) is stable, i.e., 1∕t lim supt→∞Hi (t) = 0, (Neely, 2010),
the constraints from eq. (7) hold. The equivalency between Hi (t)’s sta-
bility and holding of constraints from eq. (7) can also be explained
from a physical perspective. By observing eq. (16), the physical mean-
ing of Hi (t) is the accumulative playback stalling time at t. Thus, stable
for Hi (t) indicates the accumulative playback stalling time is sublinear
to the t. When t approximates the infinity, the expectation of Hi (t) also
close to the constant, namely, no increasing of stalling time and thereby
confirms the smooth playback in long term of eq. (7), as discussed in
Section 4.

According to Neely (2010), the optimum of P2 can be derived by
solving the following min-drift-minus-penalty expression in each time
slot t.

Minimize − p (vi (t)) + Hi (t)
(

x∗i (t)
vi (t)

− 1

)
(18)

Subject to vi (t) ∈ D (19)

where  is the penalty parameter.
To solve the above problem, we design VQIA as follows. At each

time t, the VQIA of each client i collects x∗i (t) derived by DSMDA, and
then the following iterations are performed:

Hi (t) = ⌈Hi (t − 1) − 1 +
x∗i (t)
vi (t)

⌉+ (20)

vi (t + 1) = arg min
vi∈D

(
Hi (t)

(
x∗i (t)

vi
− 1

)
− p (vi)

)
(21)

As the representation universe D is a discrete and finite set, eq.
(21) can be easily derived by scanning D. The pseudo-code of VQIA is
shown in Algorithm 2. Based on the two algorithms, the asynchronous
optimization algorithm for ICN DAS can be illustrated as in Fig. 2. At
each time slot t, the optimization procedure is divided into two stages.
First, clients communicate with on-path links and determine x∗i (t) via
DSMDA. Then, x∗i (t) will be delivered to VQIA and used to calculate
the requested representation vi (t + 1) and virtual queue Hi (t).

6. Main theoretical results

6.1. Convergence analysis

This section discusses the main theoretical results of the proposed
algorithms. It starts with the convergence of DSMDA that solves the
ICN flow control problem. To state the theorem, first a gap function is
defined as follows:

𝜌k =
1
Sk

∑
k∈

ℏ (x (k))
M

− L (𝝀) (22)
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where M ≜∥ ∇ℏ (x (k)) ∥E∗ ,  = {k|Ipij (k) = ∅,∀i ∈ , k ∈ {0,… ,T}},

Sk =
∑

k∈

1
M , and L (𝜆) the Lagrangian of eq. (9) and eq. (10), which

is given by:

L (𝝀) = inf
x∈[dmin,dmax]|| {ℏ (x) +

∑
l∈

𝜆lfi (x)}

According to Boyd and Vandenberghe (2004), the Lagrangian can
be considered as a lowerbound of the optimum. Thereby, 𝜌k indicates
the average distance between solutions generated by DSMDA and the-
oretical optimal solution when the number of iterations reaches k. The
lower value of 𝜌k is, the higher the accuracy of DSMDA has. The fol-
lowing theorem ensures the upperbound 𝜌k generated by the proposed
DSMDA.

Theorem 2. Given that de (x) is bounded and Be
h (y, g) has the formula

described in eq. (15), when k > 2𝜎∕h2, DSMDA yields a 𝜌k such that

𝜌k ≤ Θh

where 𝜎 = max
x∈D|C| r0 (x), and Θ = max

t∈,l∈
∥ ∇fl (x (t)) ∥∗E . Hence, x (k) gen-

erated by DSMDA converges to the optimal value.

Proof. See Appendix C.
□

The above theorem reveals that the optimal convergence is highly
related to the step h; the lower the h value is, the smaller gap to the
optimum is. However, according to the stop criterion in Theorem 2,
smaller gap also yields a high number of iterations. Thus, a trade-off
between number of iterations and gap to the optimum should also be
considered.

Unlike P1 deriving the optimum in each time slot, P2 focuses on the
long term optimal rate adaption. Thus, to measure the performance of
VQIA, we define the following gap function:

Gapt =
t∑

𝜏=1

(
p
(

v∗i
)
− p (vi (t))

)
where v∗i is the optimal solution of P1.4 Gapt indicates the distance
between the solution derived by VQIA and the optimum. The following
theorem bounds the Gapt yielded by VQIA.

Theorem 3. Given p (.) is concave, iterations from eq. (20) and eq. (21)
yield a Gapt which satisfies the following inequality:

Gapt ≤
Bit


where Bi is a constant satisfying Bi ≥
(

x∗i (t) ∕vi (t)
)2

+ 1, ∀t.

Proof. See Appendix D.
□

Therefore, according to the above discussion, the proposed DAOA
converges to the optimum in both stages.

6.2. Complexity analysis

According to the description of Algorithm 1, the complexity of first
stage optimization (DSMDA algorithm) depends on that of its main two
components: links and clients, respectively. The processing complexity
of the links component is determined by computation of the subgradi-
ent, which depends on the cardinality of set sl. Hence, the complexity of
link processing is O (|sl|), which is linear and ensures high flexibility of
our algorithm. The client processing complexity is mainly determined
by the products between number of links in the path and complexity

4 Assume optimal solution is derived by an oracle that knows network dynam-
ics at all t.

of max
j∈Ipk (t)

fj (x (t)), namely, O
(|pk|2). Normally, the length of the deliv-

ery path is relatively small, hence the processing load at clients is also
light. This enables our algorithm run even on small devices (e.g. mobile
phone, sensors). In the second stage, the client only needs to calculate
Hi (t) and vi (t + 1), where vi (t + 1) requires traversing the discrete set
D. Hence, the complexity is bounded by O (|D|).

Therefore, it can be concluded that DAOA is simple and scalable and
can be used in a wide range of ICN scenarios.

6.3. Time varying adaptation

As in the second stage the stochastic optimization already accom-
modates the randomness of network variation, the time varying adapt-
ability of DAOA is mainly determined by the first stage optimization.
When formulating the flow control problem in eq. (2), eq. (3)and eq.
(4), we assume that the objective function, video providers and routes
are given and constant during every t. Yet, our algorithm can be eas-
ily extended to an environment with time variable features such as
dynamic caching and routing, and a time-dependent objective function.
Namely, our algorithm still can converge to the optimal solution under
dynamic network conditions.

To cope with the time varying scenarios, the objective function of
P1 can be re-formulated as in eq. (23) by replacing the static  , Fj and
cfj with their time dependent form.

f (x, t) =
∑

i∈ (t)

∑
fj∈Fj(t)

∑
i∈cfj (t)

g
(
xi,j (t)

)
(23)

l (s) in constraint from eq. (3) is replaced by l (s, t), which is the time
variant provider set that uses link l. Based on these changes, each end
user still executes the same client algorithm as described in Algorithm 1,
except for replacing the 𝜁k (x (k)) by 𝜁k (x (k) , t), which is time varying
with the link capacity and number of clients. Intuitively, if the change
in link routings and providers is relative slower than the convergence
rate of algorithm 2𝜎∕h2 (see Proof of Theorem 2), the algorithm still
can converge to the optimal rates x∗. This aspect is further illustrated
in the experimental tests presented in Section 7.

7. Performance evaluation

In order to evaluate the performance of ICN DAS using the proposed
DAOA, we model our algorithm by using ndnSIM 2.0 (ndnsim in ns-3),
an ICN simulation tool based on Network Simulator 3 (NS-3). First, we
present the simulation setup. Then, we consider three scenarios with
different network topologies: Forest-based, Content Delivery Network
(CDN)-oriented, and Backbone network. In the first two topologies, we
perform comparison between experimental and theoretical results of
our proposed DAOA. In the third scenario, we test the delivery rate,
playback stalling and viewing quality of DAOA over large scale scenar-
ios by comparing with a state-of-art solution: ACCPndn (Karami, 2015).

7.1. Parameter settings

To implement our algorithm in ndnSIM, we add a new func-
tion named Link-Subgradient to Net-Device-Face class, which
enables the links calculate ∇fl (x) by collecting the delivery rate of the
clients. We also create a new DSMDA-Module at each client to enable
them deploy DAOA. To test video delivery quality, we install a DASH
video application at each client in order to access the MPEG-DASH mul-
timedia streaming with SVC-encoded format (Liu and Lee, 2016). Each
of video segments contain a base layer with basic information for video
decoding and several enhancement layers for improved representation.
Therefore, the video can be adaptively delivered with a single base layer
or with the base and one or more enhancement layers, according to the
network conditions.

7



M. Wang et al. Journal of Network and Computer Applications 157 (2020) 102574

Algorithm 1 DAOA for ICN DAS.

The utility functions in both P1 and P2 are set to 10logx. The step
size h is set to 10−3, the penalty parameter V to 150, and the time inter-
val between any t and t + 1 is 2s, which is consistent with the length
of a video segment. The link channel delay is fixed to 10 ms during
the simulation. For the general error model randomly corrupting the
packets, we use the BurstErrorModel in (ndnsim in ns-3), determining
which burst of packets will be dropped according to an underlying dis-
tribution.

The testing video segment has one base layer and three enhance-
ment layers. The base layer B has a bitrate of 2200 kbps, and enhance-
ment layers L1, L2 and L3 have 1700, 1400 and 2700 kbps, respectively.
Furthermore, to benefit data delivery from the ICN multicast feature, we
also redesign the naming scheme that names the layers separately and
hence the requests for identical layers of any given segment are aggre-
gated. For example, assuming one client requests B and L1 and another
requests B, L1 and L2, by separately naming each layer, the provider
can serve these two flows simultaneously by delivering B, L1 and L2.
The length of each video segment is 2s. 8 videos exist in the network
and each of them is 240s long.

7.2. Experimental results

7.2.1. Forest-based topology
To evaluate the performance in terms of convergence at link side

and time varying adaptation, we implement the proposed DAOA over a
forest-based topology, which consists of 14 ICN routers and 13 clients.
The link state and bandwidth of the forest-based topology are shown
in Fig. 3. To simulate the network heterogeneous characteristics, the
leaf ICN routers act as access points (AP) with different communication
technologies. For instance, AP1 and AP5 act as edge routers in wired
networks, where four different access bandwidth types are provided:
1 Mbps, 3 Mbps, 5 Mbps and 10 Mbps; AP2 and AP4 are wireless access
points using the IEEE 802.11a protocol with 5 Mbps shared bandwidth.
AP3 is a LTE network base station to simulate the cellular network
environment which provides 4 Mbps access bandwidth to each end user.
In this topology, the client generates video requesting flows following
two different patterns:

(1) Multicast access, where the clients simultaneously access videos
1, 2 and 3 from S1 at 0s, 200s and 400s, respectively, while
requesting videos 4, 5, and 6 at 100s, 300s and 500s from S2,

8
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Fig. 3. Testing scenario with the forest-based topology.

respectively.
(2) Random access, where the clients randomly issue requests for

videos during the simulation.

Multicast Access: Fig. 5 illustrates the transmission rates of flows at
AP 1, 2, 3. Thanks to the multicast access of content, the server capac-
ity during the simulation is fully utilized. Fig. 4(a)(b) shows a com-
parison between theoretical optimum and experimental data of several
links. As the figures show, all curves corresponding to the experimental
results converge well to those of theoretical computations, supporting
the optimality of DSMDA. In addition, the figures also reveal that when
theoretical optimum varies, the experimental results still converge fast
to the updated optimum, hence, verifying the time adaptability of the
algorithm at link sides.

At the beginning of simulation, all flows at three APs achieve the
maximum transmission rate of 8 Mbps as shown in Fig. 5. This is also
verified by the fact that transmission rates of (S1,R1), (R1,R4), (R1,R5),
(R5,AP3) and (R4,AP1) are 8 Mbps in Fig. 4(a)(b). After 100s, new
flows have been added to the network, fact which reduces the average
transmission rate to 5 Mbps. However, the total transmission rate at
(S1,R1) increases to 10 Mbps, since (S1,R1) currently delivers two dif-
ferent video flows (video 1 and 4) to end users. Therefore, each video
flows has 5 Mbps. Due to the fact that the downstream link capac-
ity is 5 Mbps, the transmission rate of (S2,R3) is limited to 5 Mbps.
With increasing number of flows in network, the average flow trans-
mission rate decreases, but links are kept fully utilized, as shown in
Fig. 4(a)(b). This verifies the optimal performance of the DSMDA flow
control.

Fig. 6 illustrates the buffer level of flows during simulation. As

Fig. 5. Transmission rate of flows under multicast access.

shown in the figure, due to the multicast feature, the variations of buffer
levels at different APs have similar variation trends. Additionally, the
buffer level remains stable at a relative high level during the simulation.
These verify that the algorithm proposed in the second stage ensures
smooth playback at the video clients.

Random Access: In this case, we increase the (S1,R1) link capacity
to 15 Mbps. Fig. 7 shows that the total transmission rate of flows at AP1,
AP2 and AP3 equals the (S1,R1) link capacity (i.e. S1 serves the flows
from AP1, AP2 and AP3). The average transmission rate in random
access case is lower than that in the multicast case, especially when
the flow increases after 100s. Additionally, according to Fig. 4(c)(d),
the link capacity utilization is lower than that of multicast access cases.
This can be explained by the fact that the transmission rate in uni-
cast relies heavily on the bottleneck link. Thus, when the number of
flows over the bottleneck links increases, the average transmission rate
decreases, which in turn reduces the utilization of other links. Follow-
ing the comparison of the two different cases, a routing policy in ICN
which aggregates as many Interests requests as possible is suggested for
improving the network capacity.

Fig. 8 illustrates the buffer level of flows in the simulation. Accord-
ing to the figure, although the transmission rate is lower than that of the
multicast cases, the buffer levels of all flows are maintained at high lev-
els. This demonstrates that our algorithm can ensure smooth playback
even in highly loaded bandwidth scenarios.

7.2.2. CDN-based topology
In the CDN-based topology, three servers deliver content to four

nodes acting as ICN clients clusters. Each client accesses the content by
a pre-set forwarding path in FIB. The corresponding topology is shown
in Fig. 9. The main purpose of this topology is to test the performance
of algorithm convergence at client side and bitrate adaptation. We con-
sider two different types of content access pattern:

Fig. 4. Theoretical and experimental link loads in Forest-based topology.
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Fig. 6. Transmission rate of flows under multicast access.

Fig. 7. Transmission rate of flows under multicast access.

(1) Multicast access, where client 1 and client 2 access simultane-
ously video 1 and client 3 and client 4 transfer simultaneously
video 2 during the simulation. The identical requests will be
aggregated at routers to provide multicast-oriented delivery.

2) Random access, where each client randomly requests a video dur-
ing the simulation. In this case, multicast still exists when iden-

tical Interest of content arrive within a small time window, yet
as most requests arrive asynchronously, they are responded to
individually.

Performance of Multicast Access: Client 1 and client 2 reveal simi-
lar trends since they are concurrently served via R10. Client 3 and client
4 have also similar behavior as they are concurrently served via R11.
By observing Fig. 10, all clients’ requested bitrates converge well to the
transmission rate. Especially, at the 300s, a large data flow has been
added to link (R5,R8), which results in a quick decrease of the trans-
mission rates of client 1 and client 2. The requested bitrates of client 1
and client 2 also fast follow the decrease in the transmission rate, hence,
proving the time-varying adaptation of proposed algorithm. Addition-
ally, the buffer levels corresponding to the blue curves in figures are
maintained at good values (at 10s on average) and ensure smooth play-
back. Especially, when the requested bitrate switches, the buffer level
first decreases and then fast recovers. This confirms that the proposed
algorithm supports smooth video playback.

Performance of Random access: Similar to the multicast case, the
requested client bitrate in unicast, shown in Fig. 11, also converges
to the transmission rate. Each client is served individually due to the
random access, hence, their transmission rates are diverse. Although,
the average requested bitrate is lower than that of multicast access,
the buffer levels at each client still ensure smooth playback at clients.

Fig. 8. Buffer level of flows under unicast case.

Fig. 9. Topology of CDN-based scenario.
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Fig. 10. Transmission rate, Video Bitrate, Buffer Level vs Simulation Time(Multicast Case).

Fig. 11. Transmission rate, Video Bitrate, Buffer Level vs Simulation Time(Unicast Case).

Table 2
Large scale topology parameters.

Parameter Value

Number of Clients 3000
Number of ICN Routers 500
Number of DAS content server 10
Network Link Bandwidth Range [5,10] Mbps
Server Link Capacity 100 Mbps
Video Request Pattern Poisson (𝜆 = 0.1)
Link Degree Distribution Power Law

Therefore, the results illustrated in Figs. 10 and 11 confirm that our
proposed algorithm not only achieves optimal bitrate adaptation, but
also ensures smooth playback.

7.2.3. Backbone network topology
To further evaluate the performance in a large scale scenario with

heavy load traffic, we build a backbone network topology for imple-
menting DAOA and two learning-based schemes: ACCPndn (Karami,
2015) and ACCP (Liu et al., 2019) with buffer-based bitrate adaptation.
Table 2 shows the topology settings. The arrival rate of video requests
at each edge router follows the Poisson distribution with parameter
0.1. ACCPndn employs a time-lagged feedforward network (TLFN) to
predict the network congestion degree, and a non-linear fuzzy logic-
based control system to regulate the transmission rate at each router.
Similarly, ACCP also consists of congestion forecasting and transmis-
sion control. The difference is that ACCP forecasts the congestion via a
deep learning framework and regulates the sending rate by estimating
the average queue length of Interest. To investigate the performance
effect of routing, we further consider two different routing policies

Fig. 12. Averge bitrate vs. simulation time.
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Fig. 13. Averge stalling time vs. simulation time.

(ndnsim in ns-3): BestRoute and Multicast. BestRoute tries to discover
the shortest path to the source for each requested flow, whereas the
Multicast routing tries to aggregate as many identical requests as possi-
ble. We measure two video quality-related delivery parameters during
this simulation: Average bitrate and Accumulative playback stalling
time.

Average BitRate (ABR): We define ABR at time T as the arithmetic
mean of video bitrate average for all flows. Fig. 12(a) and (b) show
the ABR of three solutions under BestRoute and Multicast, respectively.
From the figures we observe that after the 20s, all curves experience
a decreasing trend because of the increasing number of users, and are
stabilized after 300s (because the rate of arrival is averagely equal to
that of departure).

As expected, both solutions under the BestRoute outperform the
Multicast, given a high bandwidth utilization achieved by the multi-
cast delivery. The curves corresponding to ACCPndn decrease sharply
and maintained at a relatively low level. Two solutions of ACCP per-
form better than that of ACCPndn, respectively. DAOA under Multi-

cast/BestRoute both experience a slight decrease and enter the stable
phase in the latter half of the simulation. In the stable phase, DAOA
achieves about 20% (13%) and 22% (10%) increase of ABR in compar-
ison with ACCPndn (ACCP) in Multicast and BestRoute, respectively.

The accuracy of the congestion prediction determines the perfor-
mance of two learning-based solutions. ACCP applies deep learning to
provide more accurate congestion forecasting and thereby results in
a higher ABR than that of ACCPndn. However, both of them rely on
heuristic rate control methods, whose rate configuration are subopti-
mality. ABR in DAOA is optimized distributively by the proposed two-
stage optimization which tends to the theoretical optimal bound, hence,
providing the best performance.

Accumulative playback stalling time (APST): In DAS, the viewing
process stalls when the buffer is empty and restarts when enough con-
tent is buffered. The time interval between playback stalling and restart-
ing is defined as the playback stalling time. The longer APST is, the
worse the video quality of experience perceives. We define the APST

Fig. 14. The number of clients at each representation of retrieved segments during the simulation.
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as the sum of playback stalling times during the simulation. As Fig. 13
shows, all curves experience a fast increasing trend because of the incre-
ment of stalling frequency. In both routing cases, DAOA achieve better
CPST than ACCPndn and ACCP. Particularly, DAOA of BestRoute per-
forms better than that of Multicast, as BestRoute’s priority is to shorten
the transmission delay.

Fig. 14(a) and (b) show the number of clients that retrieve certain
quality of each segment within the three solutions under BestRoute and
Multicast. The deeper the color is, the higher the number of clients
access the video with this representation. Clearly, in both ACCPndn
and ACCP cases, most users are requesting the video with two bot-
tom layers. Besides, the large bright area in these two also implies the
unsmooth playback of clients using ACCP and ACCPndn, which con-
firms the result of high CPST for ACCP and ACCPndn illustrated in
Fig. 13. In two solutions of DAOA, more users can retrieve the video
content with higher bitrate given the deeper color in the space for
B + L1+L2 and B + L1+L2+L3.

The reason that DAOA outperforms the ACCPndn and ACCP in terms
of the number of clients at each representation are as follows: ACCP-
ndn and ACCP predict the network congestion via machine learning-
based methods whose accuracy is not guaranteed. Inaccurate forecast-
ing may either result in frequent playback freeze (more bright area in
the figure) or unsatisfied viewing experience (fewer requests for higher
bitrate), which are both undesirable to the ICN DAS. ACCPndn and
ACCP also underutilize the link capacity since their heuristic control
algorithm yields a suboptimal of rate configuration. Instead, DAOA the-
oretically ensures the optimality of transmission control and thereby
delivers video with a higher data rate. Besides, the proposed stochas-
tic optimization based rate adaption timely selects the optimal bitrate
of the video while ensuring the smooth playback in the long-term per-
spective. Hence, comparing with other two solutions, DAOA not only
smoothen the viewing process but also enables clients to access higher
representations.

8. Conclusion

In this paper, we focus on a joint optimization of flow control and
bitrate adaptation in ICN DAS. The target problem is formulated as a

two stage optimization problem. The ICN flow control with multicast
multi-rate features is formulated as a non-smooth concave optimization
in the first stage. While the playback representation adaption is for-
mulated as a stochastic optimization, which aims to provide long term
optimization for user viewing experience over a random dynamic net-
work status. To solve the first stage, the proposed DSMDA enables the
DAS clients individually optimize transmission rate at each time slot.
Benefiting from the mirror descent and divided feasible/infeasible iter-
ations, DSMDA provides a lightweight implementation with relatively
low computation and communication overhead. The VQIA is further
employed at second stage, which dynamically adapts the requesting
representations with long term utility optimization while also stabiliz-
ing the increment of playback stalling time.

Main theoretical results, including the convergence Proof, compu-
tation complexity and time varying adaption, are provided. We also
conduct a series of simulation tests under different network scenarios.
The results not only validate the optimal convergence of DAOA in both
flow control and bitrate adaption, but also illustrate how DAOA out-
perform state-of-art solutions in terms of quality of viewing experience.
Future work will include joint consideration of routing optimization
and mobility adaptation.
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Appendix A. Principle of Switching Mirror Descent Method

The proposed DSMDA extends SMD (Beck and Teboulle, 2003), which considered a combination between the mirror descent (Nesterov, 2009)
and switching subgradient methods, designed to perform functional optimization. SMD’s basic design principles are described next. Bregman Distance
is firstly introduced: V[(x (k))] (x):

V[(x (k))] (x) ≜ 𝜑 (x) −𝜑 (x (k)) − ⟨x − x (k) ,∇𝝋 (x (k))⟩
where 𝜑 (x) is the proxy function with continuous and strongly convex, and ∇ is the sub-gradient operator. The mirror decent expression is then
derived by:

hk,i
(x (k) , g) ≜ arg min

x∈Q
{hk,i⟨x, g⟩ + V[(x (k))] (x)}

hk,i is considered as the stepsize. Given the following functional constraints optimization:

min f0 (x) , s.t F ≤ 0

where F ≜ {f1 (x) , f2 (x) ,… , fn (x)}, SMD for the above problem performs the following iterations:

1. feasible step: Given h, if ∀fi (x) ∈ F, fi (x (t + 1)) < h ∥ ∇fi (x (t)) ∥E∗ ,

x (k) = h (x,∇f0 (x (t)) ∕ ∥ ∇f0 (x (k)) ∥E∗ )

2. infeasible step: else,

x (k) = hk,i
(x,∇fi (x (k)))

where hk,i is equal to fi (x (k)) ∕ ∥ ∇fi (x (k)) ∥E∗ .

13
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Appendix B. Proof of Proposition 1

Proof. As de is a sum of xi ln xi, i = 1,… , n, which are all differential, de is also differential.
For all i, the corresponding first partial derivative is:

∇ide (x) = ln xi + 1

and the second partial derivative for all i, j is:

∇ijde (x) =
⎧⎪⎨⎪⎩

1
xi
, i = j

0, otherwise

The Hessian matrix Hd of de is a diagonal matrix with diagonal elements 1
xi
, i = 1,… , n. Because xi > 0, we have yTHdy > 0 for all y ∈ n,

namely, matrix Hd is positive definite. Therefore, according to Boyd and Vandenberghe (2004), de is strongly convex.
□

Appendix C. Proof of the Theorem 2

We first introduce the following lemma.

Lemma 1. Recall that de (x) = ln n+∑
i∈xi ln xi, given the Be

h (y, g), positive constant h and gi subgradient of f (xi), for all xi, yi ∈ D the i -th component
of x, y, respectively. Let x∗i = Be

h(y, g)i, then,(
hgi +∇ide

(
x∗

i

)
−∇ide (x)

)(
yi − x∗i

)
> 0

where ∇ide (.) is the i -th components of subgradient ∇de (.).

Proof. Let 𝓁 (yi) = hf (xi) yi +∇ide (y) − de (x) yi, then the derivatives ∇i𝓁 (yi) = hgi +∇ide (y) − ∇ide (x). Then the lemma holds when
∇i𝓁

(
x∗i

)(
yi − x∗i

)
> 0. We proof the lemma by contraction, namely, assume that ∇i𝓁

(
x∗i

)(
yi − x∗i

)
< 0, Let 𝜑i (𝛼) = 𝓁

(
x∗i + 𝛼

(
yi − x∗i

))
, we

have 𝜑i (0) = 𝓁
(

x∗i
)

, and 𝜑′
i (𝛼) = ∇i𝓁

(
x∗i + 𝛼

(
yi − x∗i

))(
yi − x∗i

)
. Therefore, according to the assumption, we have 𝜑′

i (0) < 0, namely, 𝜑′
i (𝛼) is

monotonically decreasing around 0. Thus, there exists a 𝛽, such that

𝜑i (𝛼) < 𝜑i (0) = 𝓁
(

x∗i
)

When the distance is entropy distance, we have Be
h(y, g)i = arg min∗xi∈D𝓁 (xi). Thus x∗i yields minxi∈D𝓁 (xi), which duces the contradiction.

□

Now we can Proof Theorem 2.

Proof. Defining  = {k|Ipij (k) = ∅,∀i ∈ , k ∈ {0,… ,T}} we let  be the set {k|k ∈ {0,… ,T}}. Then

 =  ∪ {k|k ∈ {0,… ,T},∃i ∈ , Ipij (k) ≠ ∅}

=  ∪ {k|k ∈ 0,… ,T,∃m, n ∈ , Ipmj (k) ≠ ∅, Ipnj (k) = ∅}

∪ {k|k ∈ 0,… ,T,∀i ∈ , Ipij (k) ≠ ∅}

(C.1)

We define the gap function

𝜌k =
1
Sk

∑
k∈

ℏ (x (k))
M

− L (𝝀) (C.2)

where Sk =
∑

k∈

1
M , and L (𝜆) the Lagrangian of (9) (10), which is given by

L (𝝀) = inf
x∈|| {ℏ (x) +

∑
l∈

𝜆lfl (x)}

Let

𝜆
(0)
k = hSk = h

∑
k∈

1
M

(C.3)

𝜆l =
1
𝜆
(0)
k

∑
k∈Cl

hk,i (C.4)
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where Cl = {k|k ∈ {0,… ,T},∃i, fl = max
e∈pij

fe (x (k))}.

Recall that 𝜆(0)k = hSk, therefore,

𝜆
(0)
k 𝜌k = hSk.𝜌t

= hSk sup
x(k)∈D||

{
1
Sk

∑
k∈

ℏ (x (k))
M

− ℏ (x) −
∑
l∈

𝜆lfl (x)
}

= sup
x(k)∈D||

⎧⎪⎨⎪⎩h
∑
k∈

ℏ (x (k))
M

− 𝜆
(0)
k ℏ (x) −

∑
l∈

⎛⎜⎜⎝
∑
k∈Cl

hk,i

⎞⎟⎟⎠ fl (x)
⎫⎪⎬⎪⎭

= sup
x∈D||

{
h
∑
k∈

ℏ (x (k)) − ℏ (x)
M

−
∑
k∉

hk,lfl (x)
}

(C.5)

where hk,l = hk,i, k ∈ Cl, i ∈ {i|fl = max
e∈pij

fe (x (k))}, Then according to the convexity of ℏ (x) and fl (x) , l ∈ , we further have equalities,

𝜆
(0)
k 𝜌k ≤ sup

{
h
∑
k∈

⟨∇ℏ (x (k)) ,x (k) − x⟩
M

+
∑
k∉

hk,l (⟨∇fl (x (k)) ,x (k) − x⟩− fl (x (k)))
}

(C.6)

According to the constitution of , we consider three different cases:
Case I: when k ∈  let rk (x) = V

[
x (k)

]
(x) =

∑
i∈

xi (ln xi − ln xi (k)), then

rk+1 (x) − rk (x)

= de (x) − de (x (k)) − ⟨∇de (x (k)) ,x − x (k + 1)⟩
−
[
de (x) − de (x (k + 1)) − ⟨∇de (x (k)) ,x − x (k)⟩]

= ⟨∇de (x (k)) ,x − x (k + 1)⟩− de (x (k + 1))

−
[
−de (x (k)) − ⟨∇de (x (k)) ,x (k + 1) − x (k)⟩]

(C.7)

According to the strongly convex of de (e)(By Proposition 1), we further have,

rk+1 (x) − rk (x)

≤⟨∇de (x (k)) − ∇de (x (k + 1)) ,x − x (k + 1)⟩
− 𝛼

2
∥ x (k + 1) − x (k) ∥2

E

(C.8)

Noted when k ∈  that for each i ∈ , xi (k + 1) = e
h

(
xi (k) ,

∇ℏ(x(k))
M

)
i
. Because e

h is separable, and hence, we have x (k + 1) =

e
h

(
xi (k) ,

∇ℏ(x(k))
M

)
. In the view of optimality condition of e

h,

h
M

⟨∇ℏ (x (k + 1)) ,x (k + 1) − x⟩
≤⟨∇de (x (k + 1)) − ∇de (x (k)) ,x − x (k + 1)⟩ (C.9)

In this case, we have

rk+1 (x) − rk (x)

≤− h
M

⟨∇ℏ (x (k + 1)) ,x (k + 1) − x⟩
− 1

2
∥ x (k + 1) − x (k) ∥2

E

(C.10)

By the Cauchy inequality,

rk+1 (x) − rk (x)

≤− h
M

⟨∇ℏ (x (k)) ,x (k + 1) − x⟩+ 1
2

h2
(C.11)

Thus,

h
M

⟨∇ℏ (x (k)) ,x (k + 1) − x⟩ ≤ rk (x) − rk+1 (x) +
1
2

h2 (C.12)
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Case II: when k ∈ {k|k ∈ {0,… ,T},∀i ∈ , Ipij (k) ≠ ∅} Similar as Case I, according to Lemma 1, we have

hk,i∇ifl (x (k)) (xi (k) − x)

≤ (∇ide (x (k + 1)) − ∇ide (x (k + 1))) (xi − xi (k + 1))
(C.13)

Given the e
h is with the form of (15), we have∑

i∈
hk,i (t)∇k𝜁k (x (t)) (x (t) − xk (t + 1))

≤⟨∇de (x (k + 1)) − ∇de (x) ,x − x (k + 1)⟩ (C.14)

Hence,

rk+1 (x) − rk (x)

≤
∑
i∈

− hk,i∇i𝜁i (x (k)) (xi (k + 1) − xi) −

1
2
∥ x − x (k + 1) ∥2

E

≤
∑
i∈

− hk,i∇i𝜁i (x (k)) (xi (k) − xi) +
1
2

H(k)2 ∥ ∇𝜁 (x) ∥∗2
E

(C.15)

where H (k) = max
i∈

hk,i, ∥ 𝜁 (x) ∥∗2
E = max

k∈
∥ 𝜁k (x (k)) ∥∗2

E

Case III: when k ∈ {k|k ∈ {0,… ,T},∃i, j ∈ , Ipi (k) ≠ ∅, Ipi (k) = ∅}. According to Lemma 1, for each client i we have (C.13),

h∇ifl (x (k)) (xi (k + 1) − xi)

≤ (∇ide (x (k + 1)) − ∇ide (x (k + 1))) (xi − xi (k + 1))
(C.16)

According to the algorithm, for Ipij (k) = ∅, ∇ifl (x (k)) ≤ 𝜖 → 0, we have (C.17).

rk+1 (x) − rk (x)

≤−
(∑

i∈
h∇iℏ (x (k)) (xi (k + 1) − xi) +

∑
k∉

hk,i∇ifl (x (k)) (xi (k + 1) − xi)
)
+ 1

2
hi(k)2 ∥ ∇𝜁 (x) ∥2

E

≤−
∑
i∉

hi (k)∇ifl (x (k)) (xi (k + 1) − xi) +
1
2

h2
k,i ∥ ∇𝜁 (x) ∥2

E

→−
∑
i∈

hk,i∇ifl (x) (xi (k + 1) − xi) +
1
2

h2
k,i ∥ ∇𝜁 (x) ∥2

E

(C.17)

Therefore, by (C.17),∑
i∈

hk,i∇ifl (x) (xi (k + 1) − xi)

≤rk (x) − rk+1 (x) +
1
2

H(k)2 ∥ ∇𝜁 (x (k)) ∥2
E

(C.18)

by Cauchy inequality, we have,∑
l∈

hk,l (⟨∇fl (x (k)) ,x (k) − x⟩− fl (x (k)))

=
∑
i∈

hk,i (∇ifl (x (k)) (x (k + 1) − x (k)) − fl (x (k)))

≤rk (x) − rk+1 (x) +
∇𝜁 (x (k))

2 ∥ ∇𝜁 (x (k)) ∥∗2
E

≤rk (x) − rk+1 (x) +
1
2

h2

(C.19)

Summing up all inequalities (C.12, C.15, C.19) of k ∈ ,

𝜆0
k𝜌k ≤ r0 (k) +

1
2
| |h2 − 1

2
|∕ |h2 (C.20)

when k ≥ 2
h2 𝜎, 𝜌k ≤ Θh, where 𝜎 = max

x∈D|C| r0 (x), and Θ = max
k∈,l∈

∥ ∇fl (x (k)) ∥∗E . Hence, we prove the convergence of DSMDA.

□
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Appendix D. Proof of Theorem 3

Proof. Recall that

Hi (t) = ⌈Hi (t − 1) − 1 +
x∗i (t)
vi (t)

⌉+
by squaring the above virtual queue update, we further have,

H2
i (t)

≤H2
i (t − 1)2 + 2Hi (t − 1)

(
x∗i (t)
vi (t)

− 1

)
+
⎛⎜⎜⎝
(

x∗i (t)
vi (t)

)2

− 1
⎞⎟⎟⎠

(D.1)

Hence, by neglecting the negative terms in right side of (D.1),

Hi (t) − Hi (t − 1)
2

≤ B + Hi (t − 1)
(

x∗i (t)
vi (t)

− 1

)
(D.2)

Let ΔH ≜ (Hi (t) − Hi (t − 1)) ∕2, by adding p (vi (t)) at both sides of (D.2), we thereby,

ΔH + p (vi (t)) ≤ B + p (vi (t)) + Hi (t − 1)
(

x∗i (t)
vi (t)

− 1

)
(D.3)

Since at each time slot t, according to (21), we have

p (vi (t)) + Hi (t − 1)
(

x∗i (t)
vi (t)

− 1

)

≤p
(

v∗i
)
+ Hi (t − 1)

(
x∗i (t)

v∗i
− 1

) (D.4)

Due to the fact that
x∗i (t)
v∗i

− 1 ≤ 0, by (D.3) (D.4), we then have

ΔH + p (vi (t)) ≤ B + p
(

v∗i
)

(D.5)

Thus, similar to Theorem 4.2 from Neely (2010), summation of all the (D.5) and neglecting the zero terms, we thereby prove the theorem.
□
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