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ABSTRACT Interactive 360° remote video applications have seen booming advancements due to the
proliferation of smart display devices that enable a truly immersive experience. Compared to regular
monoscopic videos, 360° videos have different requirements related to content preparation, packaging,
transmission, specialized viewing equipment, and display factors (e.g., brightness, contrast, delay, frame
rate, resolution, image quality, etc. In addition, 360° video requires substantial network and computational
resources, which are challenging to achieve with conventional transmission and rendering infrastructure.
Viewport-adaptive streaming is a common way to ensure visual quality under limited bandwidth resources.
However, identifying, extracting, and rendering the true viewport in response to drastic head rotations can
adversely affect user experience. This paper proposes two dynamic viewport selection approaches, which
adapt the streamed regions based on content complexity variations and positional information to ensure
viewport availability and smooth visual angles for VR users. They incorporate content information as well as
user head movement patterns to support tile-based prioritized 360° video streaming. Moreover, a practical,
prioritized bitrate adaptation approach, which requests selected tiles at appropriate quality levels, is also
proposed to reduce the impact of inefficient bandwidth utilization in the VR scene. Experimental evaluations
under real 4G bandwidth logs demonstrate that the proposed solutions outperform the closest state-of-the-
art algorithms across multiple performance metrics, i.e., viewport overlap, perceived quality levels, quality
fluctuations, and viewport bandwidth utilization.

INDEX TERMS 360° video streaming, viewport prediction, tiles selection, viewport adaptation.

I. INTRODUCTION

RECENTLY, next-generation immersive multimedia ap-
plications such as Virtual Reality (VR) and 360° videos

have increasingly penetrated various fields, including enter-
tainment, healthcare, education, real estate, manufacturing,
retail, transportation, sport, and other consumer-facing ser-
vices. Specifically, 360° video users can now experience a
more personalized viewing perspective by freely navigating
through the captured content on portable devices such as
the Oculus Rift/Quest, HTC Vive, Sony PlayStation VR,

Samsung Gear VR, etc. Fig. 11 illustrates a spherical video
viewing environment for 360° video. 360° videos, already
famous on popular video-sharing platforms such as YouTube
and Facebook, exhibit enormous potential for enterprises and
consumers by providing more engaging and unprecedented
interaction between viewers and the content [1]. However,
to perceive a sense of "presence there," the displayed infor-
mation must be consistent during playback, while bandwidth
consumption must be low. Therefore, efficient delivery of
ultra-high resolution panoramic content is very important.

1The equirectangular image used is sourced from GoPro VR-Tahiti Surf
video available at https://www.youtube.com/watch?v=MKWWhf8RAV8.
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FIGURE 1: 360° video viewing using a head-mounted dis-
play device. The current generation three degrees of freedom
(3DoF) viewing allows the user to freely navigate across yaw,
pitch, and roll directions.

The ever-increasing immersive real-time rendering [2]
causes tremendous bandwidth consumption since the en-
tire captured content, including the visible and non-visible
scenes, has to be downloaded in higher resolution (≥8k)
[3], [4]. Viewport-adaptive streaming is a straightforward
approach to reduce the transmission bandwidth, where the
quality of the scenes is dynamically adjusted in real-time
depending on the user’s Field-of-View (FoV) [5], [6]. Among
viewport-based solutions, tile-based adaptive streaming is
now a widely embraced solution to support transmitting
quality-variable tiles without sacrificing visual quality in
response to the user’s interaction. The core concept of tile-
based adaptive streaming is to perform spatial and temporal
adaption by considering the human viewing behavior and
network conditions.

The space (tile-level) and time (segment-level) separa-
tion of 360° videos makes it challenging to achieve higher
QoE levels compared to regular videos. Existing techniques
struggle to perform reliable viewport prediction, streaming
tiles selection, and spatial and temporal bitrate adaptations.
A straightforward technique is to predict viewpoint based
on a single prediction mechanism and then calculate the
viewing area by mapping the tiles to the horizontal and
vertical lengths of the viewport as adopted in [6]–[10]. Such
solutions work reasonably well under 1s segment duration
with an accuracy of 58∼80% [11], [12]. However, unfair
visual quality levels and frequent quality fluctuations can
be observed when tested for longer segment duration (>1s)
due to the higher viewport mismatch ratio [13], [14]. Some
solutions [15]–[17] consider prediction angles as well as
prediction errors to estimate the viewport. However, they
do not involve any neighbor region [16] or viewport ex-
tension [15], [17] to truly reflect the proactive streaming.
Moreover, including neighboring tiles surrounding viewport
in all directions [18] or sub-areas-based streaming [15] can
lead to significant bandwidth wastage. Therefore, careful
selection of neighboring tiles and dynamic extension of the
viewport is important but not simple. Similarly, tiled bitrate
adaptation without respecting the tiles’ spatial distribution
and users’ interests can generate results similar to viewport-
independent streaming based on conventional bitrate adapta-
tion algorithms [19]–[24].

This paper proposes two innovative dynamic viewport
selection (DVS) solutions for 360° adaptive video streaming,
referred to as DVS1 and DVS2. The proposed solutions
provide support for improved streaming tiles selection and
bitrate adaptation based on content complexity and user en-
gagement. Existing works [6]–[10], [15]–[17] only consider
the viewing information to perform relevant tiles selection.
Unlike these schemes, DVS solutions include content infor-
mation as well as viewing behaviors to proactively select
the streaming regions. Different from [15], [18], DVS so-
lutions do not include the neighboring regions throughout
the streaming session (evidenced by Table 5). The extended
viewport in DVS1 and DVS2 solutions is more profound than
[8], [25], [26] and can accommodate highly variable head
rotations. The main contributions of this work are as follows:

• Viewport Prediction: Unlike the existing viewport pre-
diction solutions, which use a single viewpoint predic-
tion mechanism, the DVS1 proposed prediction model
employs two low-complex prediction mechanisms to
address the accuracy gap, less studied in the research
literature. DVS2 surpasses the earlier works by jointly
employing in its mechanism prediction angles and pre-
diction errors recorded from experimental results.

• Streaming Tiles Selection: Given the viewport predic-
tion results, DVS solutions examine how to best select
the tiles to cover the actual viewing window, considering
the variations in content complexity and predicted view-
ing positions. DVS solutions perform advanced stream-
ing tiles selection in the context of three scenarios: (1)
Fixed viewport; (2) Neighbor region; and (3) Extended
viewport in order to improve the 360° video content
visualization.

• Spatial and Temporal Bitrate Adaptation: The pro-
posed client-based bitrate adaptation algorithm is de-
signed to maximize the perceived quality levels for
various indoor and outdoor recorded streams. Based on
the spatial tiles distribution, diverse quality allocation
scenarios were considered: (1) Uniform; (2) Weighted;
and (3) Non-uniform, to determine the best possible
quality levels in variable network and user viewing
conditions.

The proposed solutions are evaluated by employing three
videos scenes content from performance, sport, and action-
film categories, prepared in 4x3, 6x4, and 8x6 tiling patterns
and 1s and 2s segment duration. The behavior of the proposed
and reference approaches is examined under distinct head
movement patterns from 48 real-VR users. The effect of tiles
resolution and segment duration on algorithms’ performance
is also explored. Simulations-oriented results show that our
proposed solution outperforms existing works by achieving
higher bandwidth utilization and higher visual quality levels
while reducing the quality fluctuations within the viewport.

The rest of this paper is organized as follows: most recent
adaptive streaming solutions involving viewport prediction
mechanisms are discussed in Section II. The proposed view-
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(a) Fixed viewport [6].

(b) Fixed viewport [10].

FIGURE 2: Tiles arrangement and quality adaptation for
fixed viewport-based adaptive streaming solutions in an
equirectangular space.

(a) Neighbor region [18].

(b) Neighbor region [15].

FIGURE 3: Tiles arrangement and quality adaptation for
neighbor region-based adaptive streaming solutions in an
equirectangular space.

port selection and bitrate adaptation methods are presented
in Section III. Section IV describes the experimental testing
setup and performance analysis performed for different tile-
based streaming solutions. Finally, section V includes the
paper’s conclusive remarks and highlights some potential
future research avenues.

II. BACKGROUND AND RELATED WORKS
Viewport prediction, streaming tiles selection, and bitrate
adaptation are sequential procedures for adaptive 360° video.
Recently, omnidirectional multimedia researchers have fo-
cused on selecting the accurate viewport representation and
quality levels. Based on the viewport size and division of
different streaming tiles, we have classified tile-based adap-
tive streaming into three main categories: (1) Fixed viewport-
based streaming; (2) Neighbor region-based adaptive stream-

ing; (3) Extended viewport-based adaptive streaming. Next,
the most representative schemes in these categories are dis-
cussed.

A. FIXED VIEWPORT-BASED STREAMING
In fixed viewport-based adaptive streaming, a fixed-size
viewport field is employed to render the high-quality view-
port (usually 1/3 portion of the whole stream) regarding
the user’s dynamic movement patterns. The basic idea is to
map the tiles to the actual viewport coverage of the display
terminal at higher quality levels. At the same time, the
remaining portion of the sphere (2/3 or so) can be streamed at
a relatively lower quality. Hooft et al. [8] proposed to stream
360° tiles into two groups, i.e., viewport and non-viewport,
by using prediction angles from the spherical walk prediction
method. The authors introduced a uniform viewport (UVP)
quality allocation version to stream the uniform viewport and
non-viewport tiles in a receiver-centric adaptive streaming
architecture. However, this work does not consider prediction
angles for viewport selection, and the proposed solution was
tested using a single segment duration.

Chen et al. [6] introduced different priority levels within
the viewport, i.e., the highest priority for the center tile,
medium priority for the top, bottom, left, and right tiles,
and the lowest priority for the four diagonal neighbor tiles.
Different encoding versions or non-uniform quality levels are
assigned to the viewport tiles (Fig. 2a) based on their priority
levels to reduce the bandwidth and storage capacity. How-
ever, this work was evaluated in comparison to a straight-
forward non-adaptive streaming scheme under fixed network
connections only. Similarly, Hosseini et al. [10] introduced
a priority-based bitrate adaptation approach for tiles belong-
ing to three zones, i.e., Z1 (viewpoint tile), Z2 (viewpoint
surrounding tiles), and Z3 (background tiles), based on user
interest. Fig. 2b shows that the tiles in the selected viewport
are allocated with different quality versions. The viewport
tiles in Z1 and Z2 are allocated with higher bitrates (Q5 and
Q4) than the tiles in Z3 (Q1). However, the VR setup was
implemented using 2K viewing resolution. Moreover, the
videos were encoded using H.264/AVC encoder, which can
decrease the coding performance for 360° videos. Xie et al.
[9] proposed a controlled buffer-based probabilistic bitrate
adaptation for the fixed viewport tiles to improve the overall
visual quality. The performance was evaluated considering a
single low-resolution video stream only.

B. NEIGHBOR REGION-BASED STREAMING
In neighbor region-based adaptive streaming, a spatial exten-
sion is defined around the viewport to deal with possible head
movement prediction errors. The coverage of the neighbor
regions could be in horizontal or vertical directions by defin-
ing mapping on the left and right or top and bottom sides
of the viewport to manage the horizontal or vertical head
movements, respectively. Fig. 3 represents the neighboring
tiles selection for three works. Petrangeli et al. [18] pro-
posed a region-based adaptive streaming framework involv-
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TABLE 1: Viewport Selection Solutions in Tile-based Adaptive 360° Video Streaming
Prediction Angles Viewport Selection Streaming Region Experimental EvaluationsWorks Single Combined Prediction Angles Prediction Errors Fixed VP NR Extended VP Videos VR Traces Resolution Segment Duration Tiling Exp. Duration

[27] ✓ ✕ ✓ ✓ ✓ ✕ ✕ 1 2 2K 1s 24 tiles 70s
[7] ✓ ✕ ✓ ✕ ✓ ✕ ✕ 2 8 8K 2s 8, 10, 12 tiles Video Duration
[6] ✓ ✕ ✓ ✕ ✓ ✕ ✕ 5 50 2K 1s 3x3, 4x4, 5x5 20s

[8] ✓ ✕ ✓ ✕ ✓ ✕ ✓ 3 48 4K 1.067s 1x1, 2x2, 4x2, 4x4,
8x4, 8x6/8, 16x12/16 Video Duration

[9] ✓ ✕ ✓ ✕ ✓ ✕ ✕ 1 5 2K 1s 6x12 3m
[10] ✓ ✕ ✓ ✕ ✓ ✕ ✕ 5 1 720p-4K - 6 tiles Video Duration
[18] ✓ ✕ ✓ ✕ ✓ ✓ ✕ 1 10 8K 1s, 2s, 4s 6 tiles 60s
[28] ✓ ✕ ✓ ✕ ✓ ✕ ✕ 10 50 4K 2s 6x4 1m
[15] ✓ ✕ ✓ ✓ ✓ ✓ ✕ 5 7 4K 1s 8x8 59.7s
[16] ✓ ✕ ✓ ✓ ✓ ✕ ✓ 4 20 - 1s 8x4, 12x4 Video Duration

[17] ✓ ✕ ✓ ✓ ✓ ✓ ✕ 3 153 8K 1s 1024px1024p, 512px512p,
256x256 36s

[29] ✓ ✕ ✓ ✕ ✓ ✕ ✓ 1 1 4K 1s 16x8 80s
[30] ✓ ✕ ✓ ✕ ✓ ✕ ✓ - - - - - -

DVS1 ✕ ✓ ✓ ✕ ✓ ✓ ✓ 3 48 4K 1s, 2s 4x3, 6x4, 8x6 Video Duration
DVS2 ✕ ✓ ✓ ✓ ✓ ✓ ✓ 3 48 4K 1s, 2s 4x3, 6x4, 8x6 Video Duration

ing viewport prediction modules and tiles quality selection
facilitated by a network module to improve the streaming per-
formance of tiled videos in a high latency network environ-
ment. Neighbor region includes all the viewport surrounding
tiles as shown in Fig. 3a. A uniform quality streaming was
implemented for tiles belonging to the viewport, neighbor,
and background regions. The viewport traces were collected
using the Gear VR framework for one 360° video watched
by ten users. The authors considered three encoding levels
and three segment duration for tiled and non-tiled versions of
the same video. However, this work considered only 60s long
single 360° video for the performance evaluation.

Nguyen et al. [15] proposed an adaptation mechanism that
dynamically decides the viewport bitrate considering both
the prediction angles and prediction errors observed during
the previous segment. The proposed system includes some
neighboring tiles to limit the viewport quality loss events.
The neighboring tiles surrounding the viewport in all direc-
tions are divided into different sub-areas (Fig. 3b) depending
on the viewport prediction performance. The experimental
evaluations with five different motion content demonstrate an
increase in the viewport quality without excessive bandwidth
utilization for non-viewport regions. However, the experi-
ments were performed for 60s long streaming sessions only.

C. EXTENDED VIEWPORT-BASED STREAMING
The main idea of extended viewport-based streaming is to
virtually extend the original viewport coverage to include
a larger viewing region to balance the actual and predicted
tiles’ overlap and visual quality. Instead of adding neighbor-
ing tiles, the viewport coverage is extended by 10%-30% or
so, depending on the different decision factors, i.e., viewport
errors, network conditions, etc. Only the higher-quality view-
port tiles or higher-quality viewport and remaining tiles can
be rendered remotely in such a scenario. Fig. 4 shows the
tiles classification for extended viewport case. From 1° to 30°
viewport extension is considered by Hu et al. [25] based on
observed network conditions (Fig. 4a). In another study [16],
the authors considered both predicted coordinates and predic-
tion errors to dynamically adapt the area of viewing scenes.
The viewport prediction was performed using the weighted
linear regression (WLR) model [31]. A throughput-based

(a) Extended viewport [25].

(b) Extended viewport [8].

FIGURE 4: Tiles arrangement and quality adaptation for
extended viewport-based adaptive streaming solutions in an
equirectangular space.

bitrate adaptation was carried out to maximize the visual
quality levels and bandwidth utilization. The authors employ
the open-source dataset [32] to verify the effectiveness of
the proposed solution. However, the experiments were not
performed for all 48 VR users in the dataset.

Hooft et al. [8] proposed the center tile first (CTF) scheme,
which mainly focuses on the quality improvements starting
from the center tile similar to [6], [10]. CTF includes all the
tiles as the potential viewport tiles set for each adaptation
interval as represented in Fig. 4b. He et al. [30] performed a
network response-based joint adaptation of the viewport cov-
erage and bitrate under dynamic and congested network con-
ditions. The proposed algorithm firstly measures the round
trip time (RTT) and then computes the FoV size and allocates
the necessary bitrate based on the delay measurements. NS-
3 based simulation outcomes confirm that adaptable viewport
coverage offers improved quality streaming instead of relying
on predicted points and bandwidth for quality adjustments.
However, the proposed solution adapts in response to prede-
fined delay settings only, and its performance still needs to be
investigated under complex network conditions. In addition,
this work does not provide any information about content
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characteristics adopted for experimental evaluations.
Despite the extensive research and benefit of those tech-

niques, there is still potential for further enhancing the
viewport-based streaming in response to the variable watch-
ing behavior of the user. The proposed solutions can im-
prove the personalized viewing experience by dynamically
deciding the best-fit viewport versions. Table 1 highlights
the significant differences between the proposed and existing
viewport selection solutions. Most of the existing works have
limitations in terms of performance evaluations, such as the
number of videos, segment duration, tiling patterns, etc. We
compare the proposed solutions against the UVP, CTF [8],
HOS [10], and PET [18] methods using three different mo-
tion videos prepared in different tiling patterns and segment
lengths, which were shown to outperform others.

III. PROPOSED ARCHITECTURE AND ALGORITHMS
A. SYSTEM ARCHITECTURE

The proposed solutions focus on improving the streaming
performance of 360° VR video by requesting more than
necessary tiles at the best possible resolutions. Fig. 5 presents
the 360° client-server architecture for the DVS client. It
includes a server that stores processed tiled video segments,
a network that transmits the requested segments and a client
which controls the viewport selection and bitrate adaptation
processes. The spherical scene is projected into 2D planer
format, i.e., equirectangular format [33]. The transformed
video content is divided into several segments, i.e., S =
{S(1),S(2), ...,S(i), ...,S(I)}. The segmented videos are
further divided into a number of rectangular grids/tiles, i.e.,
T = {T 1(i), T 2(i), ..., T k(i), ..., T K(i)}. The tiled seg-
ments are then prepared into multiple quality representations,
i.e., L = {Lk

1(i),Lk
2(i), ...,Lk

j (i), ...,Lk
J(i)}. Let Lk

j (i) be
the jth bitrate for kth tile in (i)th segment.

The viewport prediction module estimates the future view-
ing coordinates based on two sophisticated prediction mech-
anisms. The viewport selection module performs suitable
tiles selection based on estimated viewport positions and
content information. In this way, tiles belonging to different
priority regions, i.e., viewport (T v(i)), neighboring (T n(i)),
and background (T b(i)), are selected for each segment.
Subsequently, the bitrate adaptation module performs the
bitrate choice for tiles based on their distribution and the
available network bandwidth. The server transmits the HEVC
bitstreams to the VR client, which then decodes and renders
the requested tiles to project the 360° content.

B. VIEWPORT PREDICTION AND TILES SELECTION

This section presents streaming tiles selection based on two
mechanisms: (i) prediction angles-based tiles selection; (ii)
prediction error and prediction angles-based tiles selection.
Next, these innovative tiles selection approaches are dis-
cussed in details.

1) Prediction Angles-based Tiles Selection
Accurate viewport prediction plays a significant role in view-
port selection, leading to improved streaming performance.
Tile-based streaming solutions should be able to select the
best-fit tiles in response to the variable head motions of the
consumer. The existing prediction models based on a sin-
gle prediction mechanism, for instance, position-based (i.e.,
LR, speed-based, machine learning-based, etc.) and complex
content-based (i.e., saliency maps, motion maps, etc.), could
undergo lower long-term prediction accuracy. Interestingly,
the last known prediction model that simply outputs the cur-
rent viewing position for the future segments performs better
than the state-of-the-art viewport prediction models [34]. In
360° viewing, the head rotations of the user can be recorded
and represented by the Euler angles (Φ(i),Θ(i),Ψ(i)). Bao
et al. [35] showed that these three angles have negligible
cross-correlations and strong auto-correlations. Therefore,
these angles can be predicted independently.

Due to the limited prediction accuracy of existing solutions
and the extremely unpredictable viewing nature of the user,
the basic idea is to utilize two prediction mechanisms to
refine the tiles selection to cover the actual viewing area.
For each video segment, DVS clients classify a 360◦ video
frame into the viewport, neighbor, and background regions.
Following this, we consider Fixed viewport, Neighbor region,
and Extended viewport cases for tiles selections in DVS1
and DVS2 solutions. The proposed prediction angles-based
tiles selection solution (DVS1) performs tiles selection by
considering two viewpoint/viewport prediction mechanisms
without involving any prediction errors. Different prediction
mechanisms can generate different prediction results. Using
a combination of these prediction mechanisms can some-
how increase the streaming performance. The last known
prediction mechanism, which outputs the previously actual
viewpoint as the future predicted viewpoint, is employed as
the primary predicted mechanism. A spherical walk approach
proposed in [8] is used as the secondary prediction mecha-
nism that considers the user’s motion as a walk on a sphere
and predicts the future position based on the spherical move-
ment from one point to another point. The prediction angles
for primary and secondary prediction mechanisms for (i)th
segment are represented as Φp(i),Θp(i) and Φs(i),Θs(i),
respectively.

Spatial Information (SI) and Temporal Information (TI),
defined by ITU-T P.910 [36], have been extensively used
to approximate video scene complexity. SI is based on the
Sobel filter, while TI is based upon the difference between
successive frames. The research community employs these
spatial and temporal complexity measurements to select
content for subjective experiments, quality approximation
as well as estimating compression levels and bandwidth
requirements for a diverse range of streaming applications.
More spatially and temporally rich 360° videos result in
more drastic viewing patterns. Following this, the proposed
solution combines viewing patterns and content complexity
measurements to dynamically select the viewing region for
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FIGURE 5: Overview of the user-centric DVS framework, enabling tile-based adaptive 360° video. The entire video is spatially
and temporally divided into a number of tiles and segments at the server side. The user viewing patterns are leverage at the
client side to select suitable tiles for each segment/adaptation interval.

360° video. DVS measures SI and TI values on a frame-
by-frame basis for each 360° video. These values are then
averaged across each segment. To establish the best spatial
and temporal correlation, DVS employs the product of the
averaged SI and TI values for each segment. Let S(i) and
T (i) be the spatial and temporal scores, respectively, for
the (i)th segment. The standard deviation reflects how much
dispersion occurs over a while. The variation for the (i)th
segment is given as:

ST (i) = std(S(i) ∗ T (i) : S(i− 1) ∗ T (i− 1)) (1)

The content complexity for (i)th segment is approximated as
follows:

CC(i) = ST (i)

max{ST (i)|∀i ∈ [1 : S]}
(2)

Algorithm 1 is based on the difference between two predic-
tion mechanisms and content complexity variations to adapt
better to the high dynamics head movements. Algorithm
1 starts by calculating the primary (T p(i)) and secondary
viewport (T s(i)) tiles sets considering the predicted coor-
dinates and viewport size (VS). Each viewport contains the
tiles whose centers are not located more than half of the
viewport size from the center tile. The prediction difference
between two prediction mechanisms is adjusted according
to the content complexity variations computed in Eq. 2.
Let AD(i) represent the adjusted distance of two prediction
mechanisms with respect to the content information. We
choose different thresholds to calculate the tiles for different
streaming regions. Let Ω1 and Ω2 represents the thresholds
of great circular distance between two predicted viewpoints,
such as Ω1 <Ω2 and Ω1, Ω2 ϵ [0,VS]. If the adjusted distance
between two predicted viewpoints is less than Ω1 for the (i)th
segment. This refers to Fixed viewport scenario, where the
viewport tiles set containing all the tiles of the anticipated
primary viewport and the background tiles are selected for
streaming to the client. The neighboring tiles set is empty and
does not contain any tile. If the adjusted prediction difference
is in between Ω1 and Ω2, we refer to this case as the Neighbor
region scenario, where the goal is to include the neighboring

tiles to deal with possible head movement prediction errors.
The primary viewport tiles set is considered as the potential
viewport set for the (i)th segment. The non-identical tiles of
the secondary viewport are considered as the neighboring
tiles. The rest of the tiles are added to the background
tiles set. Suppose the primary and secondary mechanisms’
predicted viewpoints are farther than Ω2. This represents
the Extended viewport scenario, where the viewport size is
extended by adding the actual arc distance between primary
and secondary predicted viewpoints to the default viewport
size. The primary viewport tiles set is recalculated with the
updated viewport size. In this scenario, the primary viewport
tiles set is labeled as viewport and streamed with the back-
ground tiles sets for the (i)th segment.

2) Prediction Angles and Errors-based Tiles Selection

360◦ videos require high-resolution for the achievement of
better-perceived quality. The proposed tiles selection solution
performs tiles selection based on prediction angles and errors
as well as content complexity variations to bound the discrep-
ancy between actual and predicted tiles sets. DVS2 selects
the tiles for different streaming regions based on a single
viewport prediction mechanism. Algorithm 1 mainly consid-
ers the adjusted prediction distance between two prediction
mechanisms, while Algorithm 2 employs adjusted prediction
difference between actual and predicted viewpoints for dy-
namic viewport selection. Algorithm 2 starts by finding the
potential viewpoint angles for the next segments by averaging
the predicted points of the primary (last known) and sec-
ondary (spherical walk) prediction mechanisms. Algorithm
2 adjusts the prediction difference measured during the pre-
vious segment according to the content complexity variations
in order to best select the tiles for the next segment. Let Ω′

1

and Ω′
2 represents the thresholds of great circular distance

between original and predicted viewpoints, such as Ω′
1 < Ω′

2

and Ω′
1, Ω′

2 ϵ [0,VS]. Suppose the adjusted distance between
predicted and actual viewpoints during (i − 1)th segment
is not greater than the Ω′

1. This refers to Fixed viewport
scenario, where only the viewport and background tiles sets
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Algorithm 1: Viewport Selection Algorithm-DVS1
Input :
T (i)← Sorted tile set for the streaming session; Φp(i),Θp(i),Φs(i),Θs(i)← Predicted angles; D(i)← Arc distance
between two predicted viewpoints; VS← Size of the viewport in radians; V̂S = 0← Updated size of the viewport
initialized to 0; CC(i)← Content complexity variations; AD(i)← Adjusted distance; Ω1,Ω2← Distance thresholds
Result :
T v(i), T n(i), T b(i)← Estimated viewport, neighbor, and background tiles sets for the (i)th segment

1 Calculate T p(i) and T s(i) with tiles having distance to viewpoints ((Φp(i),Θp(i))) (Φs(i),Θs(i)) in range [0:VS/2]
2 D(i) = ArcDistance(Φp(i),Θp(i),Φs(i),Θs(i))
3 AD(i) = D(i) +D(i) ∗ CC(i)
4 if AD(i) ≥ 0&&AD(i) <= Ω1) then
5 T v(i) = T p(i)
6 T b(i) = T (i)− T v(i)
7 end
8 else if (AD(i) > Ω1&&AD(i) <= Ω2) then
9 T v(i) = T p(i)

10 T n(i) = T s(i)− T p(i)
11 T b(i) = T (i)− (T v(i) ∪ T n(i))
12 end
13 else
14 V̂S = VS +D(i)
15 Recalculate T p(i) with tiles having distance to viewpoint (Φp(i),Θp(i)) in range [0:V̂S/2]
16 T v(i) = T p(i)
17 T b(i) = T (i)− T v(i)
18 end

Algorithm 2: Viewport Selection Algorithm-DVS2
Input :
T (i)← Sorted tile set for the streaming session; Φp(i),Θp(i),Φs(i),Θs(i)← Predicted angles;
Φa(i),Θa(i),Φv(i),Θv(i)← Actual and Predicted angles; D(i− 1)← Arc distance between actual and predicted
viewpoints; VS← Size of the viewport in radians; V̂S = 0← Updated size of the viewport initialized to 0; CC(i)←
Content complexity variations; AD(i)← Adjusted distance; Ω′

1,Ω
′
2← Distance thresholds

Result :
T v(i), T n(i), T b(i)← Estimated viewport, neighbor, and background tiles sets for the (i)th segment

1 Φv(i),Θv(i) = (Φp(i) + Φs(i))/2, (Θp(i) + Θs(i))/2
2 AD(i) = D(i− 1) +D(i− 1) ∗ CC(i)
3 if (AD(i) ≥ 0&&AD(i) <= Ω′

1) then
4 Calculate T v(i) with tiles having distance to viewpoint (Φv(i),Θv(i)) in range [0:VS/2]
5 T b(i) = T (i)− T v(i)
6 end
7 else if (AD(i) > Ω′

1&&AD(i) <= Ω′
2) then

8 Calculate T v(i) with tiles having distance to viewpoint (Φv(i),Θv(i)) in range [0:VS/2]
9 Calculate T n(i) with tiles having distance to viewpoint (Φv(i),Θv(i)) in range (VS/2:VS/2+D(i− 1)]

10 T b(i) = T (i)− (T v(i) ∪ T n(i))
11 end
12 else
13 V̂S = VS +D(i− 1)

14 Calculate T v(i) with tiles having distance to viewpoint (Φv(i),Θv(i)) in range [0:V̂S/2]
15 T b(i) = T (i)− T v(i)
16 end
17 D(i) = ArcDistance(Φa(i),Θa(i),Φv(i),Θv(i))
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Algorithm 3: Prioritized Bitrate Adaptation Algorithm
Input :
L← Video bitrates set of 360° segments; T v(i), T n(i), T b(i)← Selected tiles sets for streaming; |T v(i)|, |T n(i)|←
Cardinality of tiles sets;B̂(i)← Available bandwidth for the (i)th segment; V̂S← Updated size of the viewport;
Result :
wT v

(i), wT n

(i)← Weights of tiles sets; Bv(i), Bn(i), Bb(i)← Bandwidth for the viewport, neighboring, and
background tiles; LT v

(i),LT n

(i),LT b

(i)← Video bitrates selected for different tiles sets
1 if (B̂(i) ≤

∑
k∈T (i) Lk

1(i)) then
2 LT (i) = Lk

1(i), forallk ∈ T (i)
3 end
4 else if (B̂(i) ≥

∑
k∈T (i) Lk

J(i)) then
5 LT (i) = Lk

J(i), forallk ∈ T (i)
6 end
7 else
8 LT (i) = Lk

1(i), forallk ∈ T (i)
9 B(i) = B̂(i)−

∑
k∈T (i) Lk

1(i)

10 if (T n(i) == ∅) then
11 if (V̂S ≠ 0) then
12 LT (i) = max

j
{Lk

j (i)|Lk
j (i) ≤ B(i)−

∑
k∈T (i)

∑
j∈[2:J] Lk

j (i)}
13 end
14 else
15 Bv(i) = B(i)
16 LT v

(i) = max
j
{Lk

j (i)|
∑

k∈T v(i) Lk
j (i) ≤ Bv(i)}

17 Bb(i) = B(i)− (
∑

k∈T v
p (i) Lk

p,j(i))

18 LT b

(i) = max
j
{Lk

j (i)|
∑

k∈T b(i) Lk
j (i) ≤ Bb(i)}

19 end
20 end
21 else
22 wT n

(i) = (|T n(i)|/(2 ∗ |T v(i)|+ |T n(i)|))
23 wT v

(i) = 1− wT n

(i)
24 Bv(i) = B(i) ∗ wT v

(i)
25 Bn(i) = B(i) ∗ wT n

(i)
26 LT v

(i) = max
j
{Lk

j (i)|
∑

k∈T v(i) Lk
j (i) ≤ Bv(i)}

27 LT n

(i) = max
j
{Lk

j (i)|
∑

k∈T n(i) Lk
j (i) ≤ Bn(i)}

28 Bb(i) = B(i)− (
∑

k∈{T v(i),T n(i)} Lk
j (i))

29 LT b

(i) = max
j
{Lk

j (i)|
∑

k∈T b(i) Lk
j (i) ≤ Bb(i)}

30 end
31 end

(a) Scenario 1: DVS (b) Scenario 2: DVS1 (c) Scenario 2: DVS2 (d) Scenario 3: DVS

FIGURE 6: Viewport selection and bitrate adaptation scenarios in DVS solutions.
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are calculated by considering the predicted angles and the
actual viewport size. For the Neighbor region scenario, the
viewport and neighboring tiles are added with tiles having
distance to viewpoint centre in range of [0 : VS/2] and
(VS/2 : VS/2 + D(i − 1)], respectively. The prediction
performance could be worse under quick head turns for
different motion scenes, and the adjusted distance could be
even larger than Ω′

2. In this case, an Extended viewport
streaming approach is adopted by increasing the viewport
size with added background tiles to lower the impact of
viewport mismatch.

C. PRIORITIZED BITRATE ADAPTATION
In an adaptive streaming environment, the client mainly
focuses on using the network resources efficiently to promote
the desirable end-user streaming experience [37], [38]. Algo-
rithm 3 determines the appropriate bitrate selection for the
tiles belonging to different priority regions. After completely
downloading the previous segment, the playback adaptation
is performed for each segment. Algorithm 3 requests the
whole segment in the lowest quality if the available band-
width is insufficient. This can prevent viewport deviation but
can lead to significant playback interruptions. If the available
bandwidth is higher than the largest available quality level,
the highest representation for the entire 360° segment is
requested to ensure significant visual enhancements.

In all other cases, first, the minimum quality level is
assigned to all the tiles, and next, the available bandwidth
budget is updated. Supposing there are no neighboring tiles,
then for the Extended viewport scenario of both Algorithm
1 and Algorithm 2, Algorithm 3 performs a Non-Uniform or
per-tile quality adaptation by increasing the quality from the
viewpoint to the last tile in the frame due to the extended
viewport size. A Uniform or per-region quality selection is
performed in the Fixed viewport scenarios of both DVS1
and DVS2 methods. Algorithm 3 selects the same highest
possible quality level for viewport tiles to ensure visual
quality improvements. Following this step, the background
bandwidth budget is updated, and the quality of the back-
ground tiles is increased uniformly.

If the neighboring region is non-empty, a Weighted quality
selection is carried out for viewport and neighboring tiles.
The weights association depends on the distribution of the
tiles in these regions. Since it is expected that a VR user
wants to watch the viewport content at a higher quality than
the neighboring tiles, higher priority weights are allocated to
the viewport tiles. The viewport and neighboring tiles’ band-
width are computed based on priority-related weights. Next,
the quality allocation for the viewport and the neighboring
tiles is performed, such as the maximum bitrates possible
while not exceeding the bandwidth limit for each region are
selected for streaming. The bandwidth for the background
tiles is calculated by subtracting the allocated budget to
the viewport and neighbor tiles from the updated overall
bandwidth budget. Finally, the background tiles’ quality is
increased as well, respecting the available bandwidth budget.

TABLE 2: Characteristics of the Content Employed in the
Experiments

Videos Category Duration Resolution FPS
Conan Performance 2′44′′ 3840x2160 29

Spotlight Film 4′53′′ 3840x2160 30
Surfing Sport 3′25′′ 3840x1920 29

TABLE 3: Average Data Sizes [Mbps] per-Segment for the
Conan, Spotlight, and Surfing Videos

1s 2s
Video QPs 4x3 6x4 8x6 4x3 6x4 8x6

Conan

22 10.60 10.68 10.88 21.22 21.37 21.77
27 5.05 5.12 5.30 10.10 10.25 10.63
32 2.43 2.51 2.68 4.87 5.02 5.39
37 1.24 1.32 1.50 2.49 2.66 3.03
42 0.72 0.80 0.98 1.44 1.62 1.99

Spotlight

22 13.63 13.93 14.31 27.18 27.77 28.55
27 7.21 7.44 7.77 14.37 14.84 15.50
32 4.06 4.24 4.50 8.11 8.47 9.01
37 2.36 2.49 2.72 4.70 4.98 5.44
42 1.35 1.46 1.66 2.69 2.93 3.35

Surfing

22 22.76 23.07 23.58 45.30 45.93 46.96
27 12.84 13.07 13.48 25.55 26.03 26.86
32 7.23 7.41 7.73 14.40 14.76 15.42
37 4.00 4.15 4.42 7.98 8.27 8.82
42 2.13 2.26 2.49 4.25 4.51 4.99

TABLE 4: Experimental Settings

Parameter Configuration
Tiling patterns 4x3, 6x4, 8x6

Encoding versions (QPs) 22, 27, 32, 37, 42
VS 110°

Ω1, Ω′
1 VS/3

Ω2, Ω′
2 VS/2

Segment length (s) 1s, 2s
Buffer levels 2s, 4s

Simulation length Video duration

In conclusion, the proposed bitrate adaptation implements
a Uniform, Weighted, and Non-Uniform bitrate adjustments
for DVS1 and DVS2 methods. Noteworthy is that for dif-
ferent streaming scenarios of Algorithm 1 and Algorithm
2, Algorithm 3 improves the corresponding bitrate choice
for each tile that the network can support. Fig. 6 presents
the pictorial illustrations of different viewport selection and
bitrate adaptation scenarios for DVS1 and DVS2 methods.

IV. PERFORMANCE EVALUATION
This section assesses the streaming performance of the DVS
and popular tile-based adaptive streaming solutions using
trace-driven experiments.

A. EXPERIMENTAL SETTINGS
We consider a headless Python-based VR player [8] involv-
ing recorded head movement patterns to perform the experi-
ments on Ubuntu 16.04 machine with a 64-bit Intel Core i7-
6600U CPU 2.60 GHz and 16 GB memory. A Python-based
HTTP server transmits the requested tiles to the VR player.
The VR client is equipped with a playout buffer; however,
the proposed bitrate adaptation solution performs adaptation
decisions based on throughput and viewing measurements.
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(a) Conan (b) Spotlight (c) Surfing

FIGURE 7: The per-frame SI.TI values for Conan, Surfing, and Spotlight videos.

(a) Conan-1s (b) Spotlight-1s (c) Surfing-1s

(d) Conan-2s (e) Spotlight-2s (f) Surfing-3s

FIGURE 8: Content complexity variations for Conan, Spotlight, and Surfing Videos with 1s and 2s.

The head movement patterns from 48 users are employed
from a VR dataset [32]. The dataset contains the viewing
traces for 18 VR videos recorded in two experiments using
an HTC VIVE headset with a viewport size of 110◦.

Three different motion 360° videos with at least 4K
resolution were sourced from YouTube: (1) Conan360°-
Sandwich2; (2) Google Spotlight-HELP3; (3) GoPro VR-
Tahiti Surf4. Throughout this paper, these videos are referred
to as Conan, Spotlight, and Surfing. These videos belong to
three different categories: Performance (Conan), Action Film
(Spotlight), and Sport (Surfing). Fig. 7 illustrates the SI.TI
values for each video, computed using code from [39]. The
content complexity variations computed for each video using
Eq. 1 and Eq. 2 are shown in Fig. 8. The content-related
features, i.e., category, duration, resolution, and frames per
second (FPS), are described in Table 2. The employed video
clips are prepared into 4x3 (12), 6x4 (24), and 8x6 (48) tiling
patterns using Kvazaar encoder [40]. The tiled clips are en-
coded with five different quantization parameter (QP) values
(i.e., 22, 27, 32, 37, 42). Afterward, the 1s and 2s DASH

2https://www.youtube.com/watch?v=FiClYLgxJ5s
3https://www.youtube.com/watch?v=G-XZhKqQAHU
4https://www.youtube.com/watch?v=MKWWhf8RAV8

FIGURE 9: 4G bandwidth logs recorded in Bus [41].

video segments are produced using GPAC MP4Box5. Table
3 presents the obtained data sizes in Mbps for three different
video contents prepared in 1s and 2s segment durations.

In practice, for 360° video streaming, the buffer should be
as small as possible to accommodate the new video chunks
in response to the user movements within the immersive
video. The buffer level is set to the two video segments for
each experiment. The length of each experiment was adjusted
following the duration of the employed video. A bandwidth

5https://gpac.wp.imt.fr/mp4box/
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trace from the 4G bandwidth dataset provided by [41] was
employed. The bandwidth logs recorded in the Bus are
used for the evaluations. The normalized trace to verify the
streaming performance under restricted connection speeds is
given in Fig. 9. Simulations were performed using different
values of Ω1, Ω2, Ω′

1, and Ω′
2. The reported experimental

results are obtained by setting Ω1, Ω′
1 = VS/3 and Ω2, Ω′

2

= VS/2. Table 4 exhibits the experimental settings in terms
of tiling pattern, encoding versions, segment length, viewport
size, and buffer levels.

The proposed solutions were compared with four tile-
based adaptive schemes discussed in the related works: (1)
UVP [8], a viewport prediction-based scheme, which uni-
formly distributes the bandwidth budget for tiles belonging to
the viewport and background regions based on the spherical
walk prediction method; (2) CTF [8], an extended version of
the UVP scheme, where the tiles are sorted based on the dis-
tance from the viewpoint and the whole frame is transmitted
in per-tile quality increment fashion; (3) HOS [10], a viewing
probability-based scheme, which considers different quality
versions for the center and surrounding tiles; (4) PET [18],
a scheme which considers equal neighboring tiles around the
viewport in all directions and assigns different priorities to
the selected regions.

The following metrics are considered for performance
evaluation: (1) Average Viewport Overlap: indicating the
overlap between actual and predicted viewport tiles; (2)
Average Perceived Quality: the quality of the visible tiles
based on the ground truth head movement traces averaged
across all segments and VR users; (3) Average Quality
Fluctuations: the weighted summation of spatial and tem-
poral quality fluctuations within the viewport region; and (4)
Viewport Bandwidth Utilization: measured as the ratio of
the video bitrates of the viewport and the bitrates of the whole
360° segment.

B. EXPERIMENTAL RESULTS
This subsection presents each solution’s experimental results
and analysis under different settings.

1) Streaming Tiles Selection
Table 5 presents the streaming behavior of DVS1 and DVS2
clients during 360° video streaming. It includes the percent-
age results of tiles selection cases for each video in these
solutions. DVS1 mostly selects Fixed Viewport, while the
DVS2 employs Neighbor Region and Extended Viewport
selection more than DVS1. DVS1 employs Fixed Viewport
for about 83.07% of the streaming session compared to 7%
of Neighbor Region. DVS2 observes the highest average
percentage of 18.73% for the Extended Viewport scenario
compared to 9.92% of DVS1.

It is interesting to note from Table 5 that with an increase in
segment duration the percentage of Fixed viewport selection
drops and an increase in Neighbor Region or Extended View-
port is noted. For instance, increasing the segment duration
from 1s to 2s for DVS1 client results in 13.01%, 11.97%,

TABLE 5: Streaming Regions Selection [%] by DVS1 and
DVS2 Clients for Conan (Co), Spotlight (Sp), and Surfing
(Su) videos Prepared in 4x3, 6x4, and 8x6 Tiling Patterns
and 1s and 2s Segment Duration. The Results are Averaged
Across the 48 VR Users

Video Tiles DVS1 DVS2
FVP NR EVP FVP NR EVP

Co-1s
8x6 92.48 3.90 3.63 83.36 7.21 9.44
6x4 91.47 4.57 3.96 82.49 7.81 9.71
4x3 90.58 5.02 4.40 80.88 7.92 11.20

Co-2s
8x6 79.83 6.99 13.19 71.67 8.60 19.73
6x4 78.60 7.16 14.24 70.96 9.22 19.83
4x3 77.06 7.57 15.37 71.13 8.87 20.00

Sp-1s
8x6 91.71 4.11 4.18 80.87 7.50 11.63
6x4 91.14 4.43 4.43 80.47 7.36 12.17
4x3 90.76 4.69 4.55 80.08 7.55 12.37

Sp-2s
8x6 80.02 7.41 12.57 68.11 10.10 21.78
6x4 79.12 7.81 13.07 67.06 10.40 22.53
4x3 78.54 8.04 13.42 66.87 10.63 22.51

Su-1s
8x6 89.16 6.04 4.81 73.39 10.98 15.63
6x4 88.13 6.53 5.34 72.46 11.20 16.34
4x3 87.41 7.00 5.59 71.48 11.11 17.41

Su-2s
8x6 71.04 11.04 17.92 56.96 11.87 31.17
6x4 71.10 11.02 17.88 56.07 12.10 31.84
4x3 67.21 12.66 20.13 55.50 11.69 32.81

and 28.45% decrease in Fixed Viewport scenario for Conan,
Spotlight, and Surfing videos, respectively. Similarly, for the
DVS2 client, an increase of 9.73%, 10.21%, and 15.48%
in Extended Viewport scenario is observed for three videos
with the increase in segment duration. This is because with
the increase in segment duration the viewport overlap drops
which results in switching from Fixed Viewport to Neighbor
Region or Extended Viewport scenarios. The next subsections
describe how employing different tiles selection scenarios in
proposed solutions result in improved streaming performance
measured in terms of tiles overlap, QoE, and bandwidth
utilization in comparison to other algorithms.

2) Average Viewport Overlap

We measure the average viewport overlap values (per video,
across 48 viewport traces) for DVS1, DVS2, and spherical
walk streaming methods. DVS1 considers a combination of
two prediction mechanisms, i.e., last known and spherical
walk while DVS2 employs the average of these two pre-
diction mechanisms. The spherical walk method is used for
UVP, CTF, HOS, and PET methods; therefore, the viewport
overlap results for UVP are mentioned here. Fig. 10 shows
that users have relatively the same head movements for all
three videos. Notably, DVS1 and DVS2 achieve significantly
higher viewport overlap for all three videos. For all 48 VR
users, DVS1 experiences an average tiles overlap of 86.23%
and 81.94% (Conan), 86.74% and 81.42% (Spotlight), and
82.62% and 76.98% (Surfing) for 1s (Fig. 10a) and 2s (Fig.
10b) segment lengths, respectively. The reason is that the
region-based tiling pattern selection mechanism adapts better
to the diverse spatial and temporal information of different
motion scenes. As seen, the average gain achieved by DVS1
and DVS2 over spherical walk method for all videos are
7.88% and 7.35% for next 1s (Fig. 10a), and 13.97% and
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(a) Segment duration: 1s

(b) Segment duration: 2s

FIGURE 10: Average viewport overlap achieved by DVS1,
DVS2, and UVP streaming methods for Conan, Spotlight,
and Surfing videos.

14.45% for 2s prediction horizons (Fig. 10b). At the same
time, the spherical walk method for UVP observes the lowest
average viewport overlap than the proposed methods. The
viewport overlap for the DVS1 is reduced by 4.28% (Conan),
by 5.31% (Spotlight), and by 5.64% (Surfing) when segment
duration is increased from 1s to 2s, while for the DVS2 and
UVP methods, it is reduced by 3.53% and 9.41% (Conan),
by 4.89% and 10.65% (Spotlight), and by 3.73% and 13.42%
(Surfing), respectively. Consequently, it can be noted that the
advanced viewport selection in the proposed solutions leads
to better overlap between actual and predicted viewport than
the traditional streaming method.

3) Perceived Quality Levels
The average perceived quality results are shown in Fig. 11
for the Conan, Spotlight, and Surfing videos, prepared in
three different tiling patterns. The Conan video’s most petite,
average segment sizes result in overall higher quality values.
The drastic viewing directions due to the multiple moving
objects and higher data size for the Surfing video result in rel-
atively lower quality results even under 1s segment duration.
As can be seen, from Fig. 11a, the actual viewport quality
levels of the DVS methods are more significant than the
others because the interactive tiles selection cases effectively
support the visual quality enhancements. Mainly, DVS1 and

(a) Segment duration: 1s

(b) Segment duration: 2s

FIGURE 11: Average perceived quality achieved by DVS1,
DVS2, UVP, CTF, HOS, and PET streaming methods for
Conan, Spotlight, and Surfing videos.

DVS2 improve the visual quality by up to 2.98% and 1.5%
compared to the UVP, up to 5.23% and 3.75% compared to
the CTF, up to 10.53% and 9.05% compared to the HOS, and
up to 12.17% and 10.69% compared to the PET methods for
the entire test datasets. This is because, instead of entirely
relying on the positional information for different motion
content, the joint content complexity and prediction results
can improve the visual quality levels along with a lower
discrepancy between actual and predicted viewports (as re-
ported in Fig. 10). In Fig. 11a, the DVS methods attain the
most noticeable results for Surfing video with all three tiling
patterns, where DVS1 and DVS2 achieve average quality
improvements of about 2.02%-4.10% and 14.88%-12.80%
compared to the UVP and PET methods, respectively. For the
Spotlight video with a 6x4 tiling pattern, DVS1 can improve
the average quality by up to 4.21% and by up to 12.51%
compared to the CTF and HOS methods, respectively.

The average quality values of the DVS and reference
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methods for 2s segment duration are shown in Fig. 11b.
Similar to 1s segment length results, DVS solutions per-
form better than alternative approaches in terms of achiev-
ing high viewport quality for 2s segment duration. Notably,
DVS1 and DVS2 improve the average visual quality levels
by 7.91% and 6.31%, respectively, compared to all other
methods during the entire streaming sessions. DVS1 and
DVS2 achieve about 74.24% and 73.18% average quality
levels compared to 71.43%, 67.54%, 53.37%, and 57.83%
of comparative algorithms, respectively, for the Conan video
with a 6x4 tiling setting. For the Spotlight video, DVS1 and
DVS2 methods achieve an average quality improvement of
about 3.86% and 1.64% compared to UVP, 7.4% and 5.18%
compared to CTF, 10.89% and 8.67% compared to HOS, and
11.67% and 9.45% compared to PET methods. Similarly, the
DVS1 method achieves an average quality value of 46.13%,
compared to CTF and PET algorithms, which nearly touch
41.54% and 38.72%, respectively, for the Surfing video.
UVP receives higher performance than the other comparative
approaches because it uniformly increases the quality levels.
The HOS and CTF algorithms tend to focus more on the
center tile leading to lower quality levels under inaccurate
prediction results. The degraded performance of the PET
method even under stable head movements is due to the fact
that it unnecessarily increases the quality of the adjacent tiles.
Comparatively, our proposed solutions implements Uniform,
Weighted, and Non-Uniform quality allocations to support
higher perceived visual quality levels.

4) Quality Fluctuations
In 360° video, the users can only view the tiles within the
viewport; therefore, we measure the quality fluctuations as
the weighted summation of spatial (quality variations within
the viewport) and temporal (average perceived quality dif-
ference between two consecutive viewports) by setting the
weights to 0.5 for each variation. Fig. 12 summarizes the
performance of each scheme in terms of average quality
oscillations for three different motion videos under dynamic
network conditions. As seen, in terms of average quality
oscillations, DVS1 experiences 8.16%, 10.65%, and 17.52%
average quality fluctuations compared to 10.90%, 16.25%,
and 26.51% of CTF and 10.9%, 21.49%, and 26.51% of
HOS methods, for Conan, Spotlight, and Surfing videos,
respectively (Fig. 12a). This is because CTF and HOS im-
plement Non-Uniform quality allocations for each adaptation
interval. A similar phenomenon can also be observed when
the segment duration is increased from 1s to 2s (Fig. 12b).
The HOS method undergoes 33.81% quality fluctuations for
6x4 Conan video, while the proposed methods experience
up to 45.39% fewer quality fluctuations. It is interesting to
note that compared to Fig. 12a, Fig. 12b results in higher
quality fluctuations for Conan and Spotlight videos because
the increased segment duration results in the lower pre-
diction performance, which leads to more quality versions
inside the viewport. However, this difference is decreased
for Surfing video due to the larger average segment sizes.

(a) Segment duration: 1s

(b) Segment duration: 2s

FIGURE 12: Average temporal quality oscillations achieved
by DVS1, DVS2, UVP, CTF, HOS, and PET streaming
methods for Conan, Spotlight, and Surfing videos.

DVS1 and DVS2 methods observe slightly higher quality
fluctuations than UVP and PET methods for Spotlight video;
this is because UVP and PET algorithms mostly stick to the
lower quality levels, and not many quality fluctuations are
observed. However, our proposed methods observe the high-
est average perceived quality levels and acceptable quality
fluctuations with this video. On the other hand, UVP allo-
cates bitrate for tiles belonging to the same classification to
reduce the computational complexity based on the estimated
bandwidth. However, it is highly limited by the viewport
prediction errors observed during segments playback. As a
result, we can conclude that DVS better assesses the network
conditions and time-varying positional information to boost
the playback smoothness objectives.

5) Bandwidth Utilization
The results for bandwidth utilization for the viewport region
are discussed in this section. The bandwidth utilization for
the (i)th segment is measured as the ratio of the video

VOLUME 4, 2021 13



Yaqoob et al.: Dynamic Viewport Selection-based Prioritized Bitrate Adaptation for Tile-based 360◦ Video Streaming

(a) Segment duration: 1s

(b) Segment duration: 2s

FIGURE 13: Average bandwidth utilization achieved by
DVS1, DVS2, UVP, CTF, HOS, and PET streaming methods
for Conan, Spotlight, and Surfing videos.

bitrates of the viewport and the bitrates of the whole 360°
segment. Fig. 13 shows the average bandwidth utilization
for the viewport region. The depicted results are achieved by
six streaming clients for three videos watched using 48 VR
users in two different segment lengths. Fig. 13a shows the
average bandwidth utilization results for 1s segment duration.
It can be noted that the DVS1 solution significantly achieves
higher viewport bandwidth utilization in comparison to other
streaming solutions. At the same time, the lowest average
bandwidth utilization is observed for the PET streaming
client. Interestingly, PET solution occupies about 31.89%
bandwidth for the viewport region and 68.11% for the non-
visible region. This is unacceptable for 360° video stream-
ing. Among proposed solutions, DVS1 achieves on average
6.21%, 1.15%, 12.81%, and 17.87% higher bandwidth uti-
lization for all three videos compared to UVP, CTF, HOS,
and PET streaming solutions. Notably, the CTF solution has
slightly higher bandwidth utilization compared to DVS2.

This is because it allocates higher bitrates to the viewport
tiles compared to the background tiles. Fig. 13b shows the
average bandwidth utilization when the segment duration is
set to 2s. For Conan video, DVS1 solution exceeds in per-
formance compared to UVP by 6.46%, CTF by 1.72%, HOS
by 17.02%, and PET by 23.94%. DVS1 solution achieves up
to 7.44% (UVP), 3.77% (CTF), 12.14% (HOS), and 17.48%
(PET) higher bandwidth utilization for Spotlight video with a
2s segment duration (Fig. 13b). This is because the proposed
framework streams non-viewport tiles in a lower quality to
improve the bandwidth utilization for viewport streaming.
While other methods unnecessarily increase the bitrate for
the non-viewing region due to lower prediction performance.

C. DISCUSSION
The key observations and findings following the design of the
novel solutions and simulation-based experiments performed
can be summarized as follows:

• It is difficult to achieve higher perceived quality levels
for the content with higher data rates and uncertain
viewing motions (i.e., Surfing) in comparison to rel-
atively stable motion content (i.e., Conan) with lower
segment sizes under the same bandwidth conditions.

• With the increase in the segment duration, the average
perceived quality values decrease since the user head
movements become more challenging to predict over
longer prediction horizons.

• The PET method performs worse than all the tiles-based
solutions. The average perceived quality levels and the
bandwidth utilization for the viewport tiles are observed
lowest with this solution.

• Employing neighbor region tiles in all directions as in
PET can lead to inefficient bandwidth utilization and
thus lower perceived quality levels. Instead, dynami-
cally defining the neighbor region assisted by content
information and viewing differences significantly im-
proves streaming performance for content with different
motion characteristics.

• DVS1 solution achieves slightly higher visual quality
levels and bandwidth utilization than DVS2. However,
DVS2 achieves the highest viewport overlap compared
to DVS1. The reason is that the DVS2 solution performs
a higher Extended viewport tiles selection scenario un-
der defined thresholds than DVS1.

• Dynamically performing Uniform and Non-Uniform
quality allocations along with prediction angles-
based (DVS1) and prediction angles and prediction
differences-based (DVS2) tiles selection scenarios can
facilitate achieving improved quality scores compared
to the methods focusing on constantly increasing the
quality (UVP and PET) and methods improving the
quality starting from the center tile (CTF and HOS).
The quality improvements were observed for all tiling
patterns and across all segment durations.

• The weighted quality increment in the neighbor re-
gion scenario provides a cushion and absorbs the quick
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quality transitions from viewport to background image
regions, thereby lowering spatial oscillations under both
medium or medium-to-high prediction performance due
to the equal-quality differentiated streaming regions.

In summary, incorporating content information and viewing
preferences for tiles selection in proposed solutions assisted
by the priority-oriented bitrate adaptation method signifi-
cantly improves the performance during 360° video deliv-
ery; they support streaming high-quality visible tiles along
with higher bandwidth utilization while maintaining visual
smoothness.

V. CONCLUSIONS
This work focuses on enabling dynamic viewport selection
based on content information and different watching behav-
iors of the users. It proposes two dynamic viewport selection
solutions (DVS1 and DVS2) for 360° omnidirectional videos
by employing content and positional information to achieve
a balance between visual quality and viewport smoothness.
The proposed approach extracts the content complexity vari-
ations and adjusts the difference between estimated predic-
tion angles and actual and estimated angles to transmit high-
quality tiled videos. When tested for different motion clips,
DVS1, and DVS2 significantly improve the perceived quality
levels. Experimental evaluations using a publicly available
dataset show that DVS1 and DVS2 achieve substantially
higher streaming performance than when employing other
state-of-the-art methods. Improved streaming performance
has been observed in terms of perceived quality levels, qual-
ity variations, and bandwidth utilization within the viewport
averaged across all the VR users.
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