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Abstract—The 5G network technologies are intended to ac-
commodate innovative services with a large influx of data
traffic with lower energy consumption and increased quality of
service and user quality of experience levels. In order to meet
5G expectations, heterogeneous networks (HetNets) have been
introduced. They involve deployment of additional low power
nodes within the coverage area of conventional high power nodes
and their placement closer to user underlay HetNets. Due to
the increased density of small-cell networks and radio access
technologies, radio resource management (RRM) for potential
5G HetNets has emerged as a critical avenue. It plays a pivotal
role in enhancing spectrum utilization, load balancing, and
network energy efficiency. In this paper, we summarize the key
challenges i.e., cross-tier interference, co-tier interference, and
user association-resource-power allocation (UA-RA-PA) emerging
in 5G HetNets and highlight their significance. In addition,
we present a comprehensive survey of RRM schemes based
on interference management (IM), UA-RA-PA and combined
approaches (UA-RA-PA + IM). We introduce a taxonomy for
individual (IM, UA-RA-PA) and combined approaches as a
framework for systematically studying the existing schemes.
These schemes are also qualitatively analyzed and compared to
each other. Finally, challenges and opportunities for RRM in 5G
are outlined, and design guidelines along with possible solutions
for advanced mechanisms are presented.

Index Terms—HetNets, radio resource management, user as-
sociation, 5G, femtocells, QoS, QoE.

NOMENCLATURE

5G Fifth Generation
5G PPP 5G Infrastructure Public Private Partnership
AR Augmented Reality
BS Base Station
CO Combinatorial Optimization
CSI Channel State Information
DL Down-Link
DRL Deep Reinforcement Learning
EE Energy Efficiency
FBSs Femtocell Base Stations
FUEs Femto-cell User Equipments
GAT Game Theory
GRT Graph Theory
HetNets Heterogeneous Networks
IM Interference Management
IoT Internet of Things
MBSs Macrocell Base Stations
MIMO Multi-Input Multi-Output
MOS Mean-Opinion Score

MR Mixed Reality
MUEs Macro-cell User Equipments
NOMA Non-orthogonal Multiple Access
NR New Radio
OMA Orthogonal Multiple Access
PA Power Allocation
PRBs Physical Resource Blocks
PSNR Peak to Signal Noise Ratio
QoE Quality of Experience
QoS Quality of Service
RA Resource Allocation
RAAs Radio Resource Algorithms
RAN Radio Access Network
RRM Radio Resource Management
RSS Received Signal Strength
SE Spectrum Efficiency
SON Self-Organizing Network
SSIM Structural Similarity Identity Matrix
UA User Association
UL Up-Link
VMAF Visual multi-Method Assessment Fusion
VR Virtual Reality
XR Extended Reality

I. INTRODUCTION

TODAY’S world has become increasingly linked, digi-
tized, distributed, and diverse, powered by the exponen-

tial growth in technology performance. With every "thing"
possessing the power to process, store or exchange data, the
current and future systems are poised to become dramatically
more distributed and interconnected. Networked technologies
continue to be fuelled by digital enterprise. International
Data Cooperation predicts that 48.9 billion connected devices
will be in use across the world by 2023 [1], and Cisco
estimates that the average amount of data consumed across a
network will be approximately 60 GB per month per personal
computing device [2].

Fig. 1 illustrates how Cisco sees the manner the global
business and technology trends are shaping the new network
in its 2020 Networking trends report [3]. According to this
report, there will be around: 1) 1B edge-hosted containers at
the end of 2023, 2) 80% of workloads outside the enterprise
data centers by 2023, 3) 14.6B Internet of Things (IoT) devices
by 2022, 4) 42% annual growth in business mobile traffic,
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Figure 1. Global business and technology trends shape the network [3].

2017 to 2022, 5) 53% of cyber-security attacks cause over
US $500,000 in damage, 6) 12 times increase in Augmented
Reality (AR)/Virtual Reality (VR) traffic by 2022.

Business mobile users will continue to expect immediate
and high-performance connectivity anywhere, anytime, and
on any device over Wi-Fi and public 4G and 5G networks.
Increasing video usage along with the emergence of VR
and AR for improved collaboration, training, productivity,
and remote working experiences will place greater demands
on any organization’s network. By 2022, Internet video will
represent 82% of all business Internet traffic, VR/AR traffic
will increase twelvefold, and Internet video surveillance traffic
will increase sevenfold [4]. Networks will need to provide end-
to-end bandwidth, low latency communications, and dynamic
performance controls required to enable high quality of such
immersive experiences.

The 2020 Ericsson Mobility Report highlights the impor-
tance of communication in time of crisis. The first months
of 2020 saw the coronavirus (COVID-19) spread across the
world. Subsequent behavioral changes have triggered measur-
able changes in the usage of both fixed and mobile networks
because of lockdown constraints in many countries [5]. In
times of crisis, when connectivity is necessary for consumers
to exercise work-related tasks and leisure activities, hopes for
better network experiences are becoming greater. Six out of
ten smartphone users have a clear positive outlook toward 5G’s
position during the crisis, and about half of them strongly
agree that 5G should have provided both greater network
capacity and faster speeds compared to 4G. They agree that
5G could significantly improve society [5].

In this context, there is a need for the network to be updated
to encourage emerging market and technological developments
and support traffic associated with extra peak hours that occur
during the day, particularly due to workplace shifts from office
to home. When digital trends evolve (as shown in Fig. 2),
communications service providers have a vital role to play in
supporting a good quality communications ecosystem [5].

One of the most promising approaches to fulfil this role
is the consideration of Heterogeneous Network (HetNet) envi-
ronments in 5G networks. It involves enriching current cellular
networks with a number of smaller and simpler base stations
(BS) with broadly varying transmission capacities, coverage
areas, carrier frequencies, types of back-haul connections, and
communication protocols. For instance, in highly populated
areas, femtocell BSs (FBS), picocell BSs (PBS), microcell
BSs and/or relay nodes are typically deployed with macro-cell
base stations (MBS). This enables HetNets to support good

quality of service (QoS) when serving diverse users [6]. The
main objective of the HetNets is the: 1) Cell Densification for
increasing network capacity, 2) Bringing BSs close to the UEs,
3) Deployment of small-cells under-laying with the traditional
macro-cellular networks, 4) Several options for UEs to have
an association with a BS that can boost the QoS. The HetNets
brings a lot of advantages like 1) Improve coverage quality,
2) Enhance the cell-edge UEs performance, 3) Boost spectral
efficiency (SE) and energy efficiency (EE), and 4) reducing
network operational and capital expenditures, but they also
bring a lot of challenges like 1) how to select the best BS for
UEs, 2) extending the network infrastructure would compound
the power consumption usage.

A. Challenges in 5G HetNets

The introduction of small cells benefits the 5G networks in
several aspects, including the reduction of costs and energy
consumption in comparison to alternative approaches (e.g.,
deploying additional MBSs) [7]–[9], though there are several
challenges to be focused on. Fig. 3 summarizes these major
challenges and problems under two headings: interference
management (IM) and user association resource and power
allocation (UA-RA-PA). Significant efforts are being put to
address these challenges and design optimized solutions to
ensure high QoS and user quality of experience (QoE), as
well as good and fair resource utilization and user equipment
(UE) association with the network infrastructure.

1) Interference Management (IM): IM refers to the pro-
cess of interference avoidance or mitigation. In a HetNet,
the overlaid small cells1 could either produce interference or
affected by interference with an MBS or with other nearby
small cells. There are two types of interference in a two-
tier 5G HetNets cross-tier interference and co-tier interference
[10], as shown in Fig. 5. Cross-tier interference is the co-
channel interference generated between FBSs and MBSs. This
interference occurs when both the FBSs and MBSs share the
same set of physical resource blocks (PRBs). On the other
hand, co-tier interference refers to the co-channel interference
that occurs between FBSs. This appears when the FBSs are
tightly deployed within coverage areas of MBSs, allowing
the cells to overlap in terms of their coverage. The same set
of PRBs may be reused by some overlapping FBSs, causing
interference in both uplink (UL) and downlink (DL).

In 5G, each PRB has 12 frequency-domain sub-carriers,
similar to LTE. While the RB bandwidth in LTE is fixed at 180
KHz, it is variable in 5G and is dependent on the sub-carrier
spacing, as indicated in the Fig. 4.

2) User Association - Resource and Power Allocation (UA-
RA-PA): UA refers to the process of pairing between each UE
and BS, which takes place before the data transmission starts.
Once the transmissions between the BS and the UE have begun
in support of a service, RA refers to the allocation of PRBs,
and PA refers to the allocation of power for supporting that
service. UA-RA-PA solutions play a critical role in improving
networks’ load balancing, spectral performance, and energy
efficiency. The received power based UA rule is the most

1The term small cell will refer to femtocells only from this point on.
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Figure 2. The impact of lockdown limitations on fixed and mobile networks [5].

Figure 3. Major challenges in 5G HetNets.

prevalent one in existing systems [11], where a user device
can be associated with the BS, which provides the maximum
received signal strength (RSS). The aforementioned new 5G
network technologies and goals eventually make such a rudi-
mentary rule of UA-RA-PA inefficient. More sophisticated UA
algorithms are required to address the specific features of the
evolving 5G networks. The right-hand side of Fig. 5 shows
how there are multiple BSs available, so UEs have diverse
association options. The desire is that each UE should have
an association only with that BS, which can offer good channel
conditions and satisfies UE’s other performance demands e.g.,
energy-related. In order to solve the UA-RA problem, max-
RSS cannot be the only goal for solving the problem. Other
factors, such as channel station information (CSI), BS capacity,
UE demands, demand priority, should also be considered.

This paper provides a detailed review of UA, RA, PA and
IM schemes proposed recently for 5G HetNets for over the
period of 2017-2021. This survey focuses in particular on
an in-depth technical analysis of the problems and current
UA, RA, PA, IM, and combined solutions proposed for 5G
HetNets. The combined solution corresponds to the solution
or algorithms which intend to solve UA-RA-PA along with IM.
There are many survey papers for UA-RA-PA or IM schemes
in 5G HetNets, but there is no paper that surveys schemes that
jointly address UA-RA-PA and IM. This analysis, including

the way the different approaches are discussed and compared,
makes this paper original. A comprehensive qualitative assess-
ment is carried out to compare existing approaches in terms
of QoS, QoE, fairness, spectrum efficiency (SE), energy effi-
ciency (EE), and outage/coverage probability. This assessment
enables identifification of the strengths and weaknesses of
existing schemes. This assessment also ultimately leads to a
discussion of open issues and potential research directions for
future focus. The contributions of this survey are five-fold.

1) Major challenges pertaining to Radio Resource Man-
agement (RRM) for 5G HetNets (IM, UA-RA-PA) are
highlighted and discussed.

2) A comprehensive survey of recently proposed RRM
schemes in the context of IM for 5G HetNets is presented.
The surveyed schemes are classified according to their
approaches for handling cross-tier, co-tier, or cross-co-
tier interference management and how each approach’s
mechanism helps improve the different metrics for 5G
HetNets to enhance the users’ experience while saving
CAPEX for operators. The RRM schemes are qualita-
tively analyzed and compared. aspects.

3) A comprehensive survey of recently proposed RRM
schemes in the context of UA-RA-PA for 5G HetNets
is provided. Classifications and qualitative comparisons
are also made across the surveyed schemes.

4) A detailed survey of recently proposed RRM schemes
is given for 5G HetNets in the context of combined
approaches. There are also classifications, and qualitative
distinctions around the schemes studied.

5) Several potential RRM problems and possible solutions
are identified for further development and enhancement
of RRM in 5G HetNets.

B. Paper Organisation and Reading Map

The rest of the paper is organized as shown in Fig. 6. The
vision and motivation of HetNets in 5G are discussed in Sec-
tion II. Existing surveys are reviewed in Section III. Section IV
presents the taxonomy used to conduct this survey. The latest
5G HetNets RRM schemes for UA-RA are covered in detail
in Section V. Novel RRM schemes for IM in 5G HetNets are
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Figure 4. Resource Block Structure in 5G for different numerologies.

Figure 5. The various use cases made possible by the adoption of 5G HetNets. URLLC for vehicle-to-vehicle communication, eMBB for device-to-device
communication, and mMTC for massive communication. The deployment of 5G HetNets aids in the deployment of various 5G verticals, however, it is fraught
with issues such as UA-RA-PA and interference mitigation.

Figure 6. Organization of the paper.

discussed in Section VI. Section VII looks at RRM schemes
for both IM and UA-RA. Simulators and Hardware involved
in simulations or experimental setups are discussed in Section
VIII. Section IX discusses the lessons learned from the papers

surveyed. In section X, some potential future challenges and
approaches are presented. Finally, section XI concludes this
survey paper.

II. HETNETS IN 5G: VISION AND MOTIVATION

In 5G wireless communications, wireless data speeds, band-
width, coverage, and connectivity increase and a round trip
latency and energy consumption decrease. For the different 5G
releases Release 16 (Rel-16) [12] focuses on supporting Ultra-
Reliable low latency communications (URLLC) for mission-
critical services. From a business angle, Rel-16 enables appli-
cations to be ready for new vertical industries, and deployment
scenarios [13]. The study items for Release 17 (Rel-17) [14]
are 1) a New Radio (NR) up to 71 GHz 2) a NR Narrow-
Band IoT 3) Extended reality (XR) support in order to evaluate
and adopt improvements that make 5G even better suited for
AR, VR, and mixed reality (MR). As per 3GPP, all releases
are categorized in three stages [15]. Stage 1 is the "Service
requirements" level. Stage 2 is more about taking the service
requirements and deciding what kind of functionality needs
support. The solution is implemented in the network to support
its requirements in Stage 3.
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Different forms of communications will have to be enabled
by 5G networks, and diverse specifications coming from a
wide range of use cases will have to be addressed. There
have been many opinions in recent years about the ultimate
shape that 5G technology can take. In particular, two views
on what 5G wireless technology should be [16] include: 1)
Hyper Connected Vision, in which to build a world where
unrestricted connectivity enhances people’s lives, redefines
business, and ushers in a more sustainable future and 2) Radio-
Access Technology of the Next Decade, based on greater
peak data speeds in the multi-gigabit per second range, ultra-
low latency, increased dependability, huge network capacity,
increased availability, and a more consistent user experience
for a larger number of users. For a concentrated progress
to be made, it is important that a definition of the targeted
technology is to be agreed on first. In order to satisfy the
needs of both the market and the customer, all criteria within
the definition process must be met, ensuring that the final
definition matches the needs of the majority of users without
being overly demanding as in such a case no framework will
function. The following collection of 5G specifications (Fig. 7)
is gaining market recognition by accounting for the majority
of current and near future needs [17], [18]:

1) 1−10 Gbps data rates in real networks: 10x to 100x
speed improvement over 4G and 4.5G networks [19].

2) 1 millisecond (ms) latency: very low latency (the delay
between information transmission and reception. This is
down from 200 ms in 4G [19].

3) 1000x bandwidth per unit area: Large numbers of
connected devices with higher bandwidth requirements
need to be supported for longer duration in any particular
region [17].

4) Up to 100x number of devices connected per unit
area (compared with 4G LTE): In order to realize the
IoT vision, the evolving 5G networks need to provide
thousands of devices with connectivity [17].

5) 99.999% availability: 5G envisages that the network
should be practically always available [17].

6) 100% coverage: 5G networks need to provide maximum
coverage, regardless of the users’ location [17].

7) 90% reduction in network energy usage: Standard
bodies are now contemplating the advancement of green
technologies, so this along with EE becomes very impor-
tant [19].

8) Up to 10-year battery life for low power IoT devices:
Reducing IoT devices’ power usage is essential [17], [19].

Following these eight requirements, wireless and mobile
network industry players, academia and diverse research or-
ganizations have started collaborating in order to focus on
different aspects of 5G wireless systems. To address the
critical 5G requirements, the European Commission and big
European ICT industry representatives established the 5G
Infrastructure Public Private Partnership (5G PPP). The 5G
PPP will deliver solutions, architectures, technologies, and
standards for the coming decade’s ubiquitous next-generation
communication infrastructures. 5G PPP cooperates with global
5G organisations in order to further advance 5G towards social

Figure 7. Diverse needs and a wide range of use cases.

adoption and promote local use, industrial employment, and
new usage avenues to solve social problems.

A. 5G Advanced and 6G Vision

5G Advanced is the next step in the evolution of 5G
technology. It will enable a broader set of advanced use cases
for verticals and provide a new level of enhanced capabilities
beyond connectivity. It is expected to support advanced ap-
plications with increased mobility and dependability, as well
as artificial intelligence (AI) and machine learning (ML) to
improve network performance. It will also introduce additional
SE and energy saving mechanisms. Release 18 marks another
significant advancement in 5G technology, ushering the in-
dustry into the 5G-Advanced era. 5G-Advanced will bring
5G to its fullest, and richest capabilities. A truly immersive
user experience based on extended reality (XR) features will
lay the groundwork for more demanding applications and a
broader range of use cases than ever before. In addition, it
will implement AI and machine learning enhancements across
the RAN, Core, and network management layers to improve
performance, network optimization, and energy efficiency. It
is foreseen to be fully backward compatible, allowing it to
coexist with current 5G NR Releases 15-17 and serve legacy
5G devices.

5G Advanced is expected to serve as a stepping stone for
some of the use case capabilities which the industry hopes to
enable on a larger scale in the 6G era. One of the most notable
features of 6G will be its ability to sense its surroundings
(as shown in Fig. 8). The network will become a source
of situational information, collecting signals that bounced off
objects and determining their type and shape, relative location,
velocity, and possibly even material properties. This sensing
network would pave the way for a slew of new services. In
open areas, the network could detect the location, speed, and
trajectory of all vehicles and pedestrians in a specific area,
issuing warnings if any paths are about to intersect. One of
the goals of the 6G Internet is to support communications with
a latency of one microsecond. This is 1,000 times faster than
one-millisecond throughput (1/1000th the latency).
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Figure 8. HetNets in 6G

III. EXISTING SURVEYS AND TUTORIALS ON HETNETS

Several tutorials have been published, to formally introduce
5G, HetNets and their related challenges. Zahir et al. [20]
provide an overview of femtocells, advantages that this tech-
nology can provide, and related key challenges. According to
the authors, the femtocells’ main challenge is IM because of
their ad-hoc deployment. They also summarized the essential
techniques that can be used to avoid and mitigate interference
regarding femtocells. Although the paper was good, it is not
recent and it does not address emerging 5G technologies.
The survey by Lee et al. [21] mainly focuses on an in-depth
technical review of the current challenges and existing RRM
schemes proposed in recent years for LTE/LTE-A femtocell
and relay networks. Out of three primary challenges in Het-
Nets, this survey focuses on only two, i.e., cross-tier and co-
tier interferences. Moreover, this survey was also not recently
published and lacks discussions of the latest 5G technologies.

Maallawi et al. [22] survey comprehensively the offloading
techniques and their management in HetNets. Offloading is
one of the popular techniques adopted for interference mit-
igation. Though the authors’ work was good, it covers a
tiny section of the challenges that are being solved by this
particular technique. It also lacks the latest 5G technologies
for offloading. Peng et al. [23] present a comprehensive sur-
vey framework for interference mitigation technologies across
different layers over the air interface to improve SE and EE.
Although this survey is not closely related to our survey, it
still provides a good explanation of HetNets and the use of
interference mitigation techniques at different layers, including
employment of interference coordination and cancellation at
the PHY layer along with radio resource allocation optimiza-
tion and self-organizing network (SON) approaches at upper

layers. The survey by Agiwal et al. [24] discusses the new
architectural changes associated with the radio access network
design, including air interfaces, smart antennas, cloud, and
heterogeneous radio access networks (RAN). The authors also
present a survey on novel mmWave physical layer technolo-
gies, encompassing new channel model estimation, directional
antenna design, beam-forming algorithms, and Multi-Input-
Multi-Output (MIMO) technologies. This survey does not
explicitly talk about the challenges in 5G HetNets.

Liu et al. [25] presents a comprehensive survey on the
advances in UA algorithms designed for HetNets. The chal-
lenges imposed by the inherent nature of HetNets were also
identified. This survey’s work considers HetNets and other 5G
technologies like mmWave and massive MIMO and presents
approaches adopted for UA employing these technologies.
Thesurvey helped a lot in terms of categorization, informing
our survey work. However, it does not survey other important
challenges in HetNets like cross-tier and co-tier interference
as well as the combined approaches that are used for solving
jointly the UA and interference mitigation challenges. The
survey by Luong et al. [26] cites economic and pricing
approaches in 5G and considers resource management for
UA, spectrum allocation, interference and power management,
wireless caching, and mobile data offloading. Unfortunately,
this survey does not discuss combined approaches for resource
management and does not include any qualitative comparison
of various works related to different approaches.

Luong et al. [27] present a systematic literature review
on applications of deep reinforcement learning (DRL) in
communications and networking. Modern networks are be-
coming more decentralized and autonomous, such as the IoT
and unmanned aerial vehicle networks. In these networks,
under the network context’s complexity, network entities need
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Table I
MAJOR SURVEYS ON RRM FOR 5G HETNETS

Survey Paper Publication Year Key Problems HetNet Challenges Considered Combined
UA RA PA IM

Zahir et al. [20] 2013 presents the main concepts of femtocells and challenges
faced in its large scale deployment. x x x X x

Lee et al. [21] 2014 provide an overview of the RA challenges arising from
HetNets and highlight their importance. x X x x x

Maallawi et al. [22] 2015 presents the survey on the offload approaches at different
parts of the global network (access, core and gateway). x x x x x

Peng et al. [23] 2015 provide a survey on the RA challenges arising from HetNets
and highlight their importance.

x X x x x

Agiwal et al. [24] 2016
presents the architectural changes associated with the
radio access network (RAN) design, including air interfaces,
smart antennas, cloud and heterogeneous RAN.

x x x x x

Liu et al. [25] 2016

presents a survey on the recent advances in UA algorithms
designed for HetNets and also investigate the UA in the
context of massive MIMO, mmWave, energy harvesting
networks.

X x x x x

Luong et al. [26] 2019

presents a survey on economic and pricing approaches
proposed to address RRM issues in the 5G wireless networks
including UA, spectrum allocation, and interference and
power management.

X x X X x

Luong et al. [27] 2019 presents a comprehensive literature on applications of deep
reinforcement learning in communication and networking. x x x x X

Xu et al. [28] 2021 presents a comprehensive survey on RA in HetNets for 5G
communications. x X x X x

Manap et al. [29] 2020
presents a survey of HetNet RRM schemes that have been
studied recently, with a focus on the joint optimization of
radio resource allocation with other mechanisms.

X X X X x

This Article – presents a comprehensive survey on the latest schemes for
UA-RA-PA, IM and combined approaches. X X X X X

to make decisions locally to optimize network performance.
Reinforcement learning has been used effectively to allow net-
work entities, given their states to avail from optimal decisions
or actions. First, the authors include a DRL tutorial from basic
concepts to advanced models. Then, they study DRL methods
proposed to tackle emerging communications and networking
problems. The survey does not directly describe the challenges
in HetNets; however, DRL is an interesting avenue to address
combined approaches for solving HetNet challenges. Xu et
al. in [28] discussed network structures and RA models, as
well as resource allocation algorithms (RAA) in HetNets. This
survey includes a summary of the most recent progress on
RAAs in HetNets for IM. In addition to the basic principle
and theoretical analysis, both potential research issues and new
network scenarios were also included.

Recent RRM problems in HetNets were reviewed by Manap
et al. in [29], including mitigation of interference, allocation
of bandwidth, allocation of power, user association, complex-
ity, and future research topics. Though this paper surveyed
schemes for UA-RA-PA, the analysis lacks several aspects
such as the targeted communication link (UL, DL), control
(centralized, distributed), performance metrics, and complex-
ity. The work also lacks taxonomy, and even though it is the
latest from all the survey papers discussed, it still does not
talk about combined approaches.

A cyclic-prefix (CP) free OFDM design, which does away
with the necessity for unnecessary CPs between OFDM sig-
nals, was described by Hamamreh et al. in [194]. The design
was demonstrated to boost SE, improve power efficiency, cut
latency, boost physical layer security, and retain low receiver
complexity while maintaining low receiver complexity, making

it a good contender for fulfilling the needs of future 5G
and beyond services and applications. The impact of timing
and carrier synchronization concerns and how they should be
handled in the suggested CP-free scheme are two additional
significant features of CP-less OFDM with alignment signal
that still need to be thoroughly examined. Networks supporting
ultra-low latency (ULL) applications were well addressed in
the survey by Nasrallah et al. in [195]. Specialized network
protocol methods have been established for the network layer
in the IETF Deterministic Networking (DetNet) specifications
and for the link layer in the IEEE Time-Sensitive Networking
(TSN) set of standards in order to provide ULL support.
Wang et al. in [196], survey a variety of different client-
centric approaches in localizing Radio Access Technology
(RAT) selection and association for HetNets, and how they
may be extended to be used with next-generation wireless
technologies i.e., 5G. There are few other surveys [30]–
[35] which have small sections on HetNets. The main goal of
these surveys was not to present current research on HetNet
challenges. However, they include relevant avenues such as
Sun et al. [31] who survey the role of machine learning (ML)
in wireless communications, Tabassum et al. [32] who survey
the mobility-based schemes in HetNets and Yaqoob et al. [35]
who present a comprehensive survey on 3600 video streaming
techniques in HetNets.

Unfortunately, unlike this survey (see Table. I), the afore-
mentioned tutorials and surveys do not include a critical
assessment of each evaluated contribution based on well-
defined and well-motivated criteria. They also do not perform
an in-depth analysis of the literature. In particular, combined
approaches are not considered in any of these papers. In con-
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Figure 9. Overview of the surveyed research works classified according to the proposed classification criteria.

trast, this paper comprehensively reviews the work performed
to date in terms of approach, metrics, model, complexity,
and control. We also focus on concerns that have not been
addressed yet and both identify obstacles that exist and provide
solutions. Moreover, based on our current literature study, we
indicate lessons learned related to 5G HetNets, useful for our
readers. Furthermore, the prospects of HetNets in terms of
emerging technologies are also sketched.

IV. RRM TAXONOMY

This survey presents a taxonomy of the latest RRM schemes
for 5G networks, which could serve as a fundamental reference
point for major design aspects and analysis of proposed
algorithms, including their advantages and shortcomings. The
literature on 5G HetNets is diverse; systematically structuring
the relevant works is not a trivial task. The outline of the
proposed taxonomy, which consists of five non-overlapping
branches, is illustrated in Fig. 9. On the left side, we identify
five main categories; (1) Approach, (2) Metrics, (3) Model,
(4) Complexity, and (5) Control. A literature review from
these five perspectives is a natural choice because most
researchers in the area tackle the issues from one of these
perspectives. Within the first category, referred to as approach
for addressing challenges in 5G HetNets, three sub-categories
have been proposed: UA-RA-PA, IM (further sub-divided in
cross-tier interference and co-tier interference), and combined
approaches. Performance evaluation from the perspective of
the proposed algorithm can be defined as a formal and pro-
ductive procedure to measure the proposed algorithm results

based on their proposed working procedure. There are many
metrics that can be used to evaluate efficiencies. Some of the
important metrics that have been widely used by researchers
for performance evaluation of their proposed schemes are: En-
ergy Efficiency, Spectrum Efficiency, QoS, Outage/Coverage
Probability, Fairness, and QoE. In the second category, focused
on different evaluation metrics for the proposed schemes, six
avenues have been identified:

• Energy Efficiency: Green communications have attracted
a lot of interest from both industry and academia mostly
because of environmental concerns [42], [43]. In the
literature, many EE metrics have been used to provide
a quantitative assessment of a given algorithm’s power
saving potential. EE measurements include: the ratio of
overall data rate to total energy consumption (bits/joule)
for all users [44], [46] and the direct representation of
the power/energy savings obtained by a certain algorithm
(e.g., the difference in power/energy consumption before
and after the implementation of a particular algorithm,
the percentage of power savings) [45], [47], [48].

• Spectrum Efficiency: It refers to the highest information
rate that may be conveyed over a given communication
infrastructure in existing conditions [43].

• QoS: QoS measures the networks’ transport performance
related to a service. QoS is generally not linked to a client,
but to content delivery or network support [49]. QoS can
be quantitatively measured in terms of metrics such as
delay, throughput, jitter and packet loss ratio (PLR).

• Outage/Coverage Probability: refers to the probability
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that the transmission rate is higher than the channel capac-
ity. The outage/coverage probability is critical, as it serves
as one of the core indicators for network performance
research and optimization [25].

• Fairness: In HetNets, the fairness issue emerges not only
in regular cell scheduling, but also in the user association
decision between cells in different tiers. Jain’s fairness
index [50] has been frequently used to assess fairness,
and it is described in the context of throughput as:

W(A1, · · · , A=, · · · , A# ) =
(∑#

==1 A=)2

#
∑#
==1 A

2
=

(1)

where N is the number of users and A= is the throughput
of the =Cℎ user.

• QoE: QoE is a measure of the pleasure or frustration
associated with the experience a customer has with a
service. QoE is a strictly subjective indicator from the
point of view of the consumer [49]. QoE provision can
be qualitatively measured in terms of metrics that include
peak-to-signal-noise-ratio (PSNR) [49], structural simi-
larity identity matrix (SSIM) [49], visual multi-method
opinion score (VMAF) [51] and mean opinion score
(MoS) [49].

The third category of the proposed ontology includes dif-
ferent models adopted by various schemes to address open
challenges. Four major sub-categories have been identified:
• Combinatorial Optimization (CO): CO refers to the

technique of searching for maxima (or minima) of an
objective function, whose domain is a discrete but vast
configuration space. [25]. In most cases, the space of
viable answers is too large to be explored thoroughly by
brute force. In some circumstances, branch and bound-
like approaches can be used to solve problems precisely.
In most circumstances, however, exact algorithms are not
possible to be employed and, hence randomized search
methods must be used, such as simulated annealing (SA)
and genetic algorithm (GA).

• Game Theory (GAT): GAT is a type of mathematical
modeling that can be used to investigate the interactions
of numerous players. Equilibrium is a set of strategies
that incorporates the optimum plan for each player. In
particular, the game’s solution achieves Nash Equilibrium
if none of the players can raise their value without
diminishing the utility of the others by changing their
approaches [52].

• Graph Theory (GRT): The interference interactions can
be represented as a graph, and the resource allocation
problem can be solved using GRT [23]. A vertex can
represent a BS in a graph, whereas an edge can reflect
the level of interference [53].

• Reinforcement Learning (RL): In a RL process, an
agent can learn its optimal policy through interaction
with its environment. In particular, the agent first ob-
serves its current state, takes an action, and receives its
immediate results. Deep Reinforcement Learning (DRL)
is an advanced version of RL in which deep learning is
utilized as an effective tool to improve learning rate for
RL algorithms [26].

Future communication systems are becoming more sophisti-
cated as they must meet a growing number of user needs, such
as increased data rates, many connections, and low latencies
[28], [54]. However, apart from these, resource management
strategies should also focus on communication and computa-
tional complexity, as indicated by the fourth category.
• Communications Complexity: The amount of informa-

tion exchanged between the system and users.
• Computational Complexity: The amount of processing

required to acquire information, decide on resource allo-
cation, and relay the results back to their intended users.
It includes the difficulty of calculations involved when
executing the resource allocation algorithms.

Finally, in terms of the placement of the control scheme, three
sub-categories have been identified:
• Centralized: This approach assumes that each HetNet

has a single central entity that performs RRM functions.
The decision is taken based on data such as channel qual-
ity and resource demand collected from both macrocell
UEs (MUE) and femtocell UEs (FUE), presumably via
the serving BSs. In general, small networks can benefit
from centralized strategies.

• De-centralized: Decentralized RRM methods eliminate
the need for a central entity, allowing MBSs and FBSs to
allocate resources among related MUEs and FUEs. Be-
cause of its reduced communications and computational
complexity, this strategy is appealing, although achieving
efficient RA among the UEs is difficult. This strategy is
better suited to large-scale networks.

• Hybrid: The centralized and decentralized techniques
have both advantages and downsides, and trade-offs can
be made as part of RRM schemes which are referred to as
"hybrid," "semi-centralized," or "partially decentralized".
Certain global RRM activities, such as channel and traffic
information collection, are decentralized to MBSs and
FBSs while local RRM functions, such as packet schedul-
ing, are centralized to MBSs and FBSs. Such techniques
may be appropriate for networks of intermediate size.

Note that aspects related to security, confidentiality, and
data protection (authentication) were not focused on in this
survey. Interested readers can find related research in [36]–
[41].Critical infrastructure support requires a high level of
security from the innovative 5G network solutions. For society
wellbeing, the following are basic security requirements of
such approaches: 1) authentication, 2) integrity, 3) availability,
4) confidentiality, 5) secure trans-border data flow, 6) privacy,
and 7) appropriate traffic and infrastructure management [37].
The advantages of 5G much outweigh the risks posed by secu-
rity breaches. However, it is crucial to be aware of the potential
issues in order to take precautions before they develop into se-
rious concerns. Eavesdropping and traffic analysis, distributed
denial of service attacks, man-in-the-middle assaults, jamming,
and hacking are a few non-exhaustive security threats on 5G
HetNets [37].

V. RRM FOR UA-RA-PA IN HETNETS

This section examines the major approaches proposed to
address the UA-RA-PA issues in 5G HetNets. It discusses the
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schemes in terms of which metrics they use for evaluation,
which model they employ along with their complexity, im-
plementation and deployment aspects, in line with the entries
from Fig. 9.

A. UA-RA-PA Schemes based on Combinatorial Optimization

A general modeling technique for UA-RA-PA combinatorial
optimization in 5G HetNets is utility maximization under
resource limitations, defined as follows:

*
G
=

"∑
<=1

#∑
==1

G<=`<=, (2)

subject to
58 (G) ≤ 28 , 8 = 1, · · · , ?, (3)

where x = [G<=] is the UA matrix, in which G<= = 1 in case
user n is associated with BS < or 0 otherwise; U is the total
network utility; `<= is the utility of user = when associated
with BS < and, 58 (G) ≤ 28 represents the resource constraints,
power constraints, QoS constraints, and so on. Since normally
it is assumed that a specific user can only be associated with a
single BS at any time, i.e., G<= = {0, 1}, the resultant problem
is a combinatorial optimization problem, which is in general
NP-hard. This means that even for medium-sized networks,
completing an exhaustive search for the best solution is com-
putationally very expensive. A popular method of overcoming
this issue is to make the problem convex by relaxing the UA
matrix from G<= = {0, 1} to G<= = [0, 1].

The authors of [55] focused on RA in energy cooperation-
enabled two-tier HetNets with non-orthogonal multiple access
(NOMA), where BSs are fueled by renewable energy sources
and conventional grid. The authors suggested NOMA, a dis-
tributed approach to offer the optimal UA for the fixed transmit
power to discover the best UA and PA strategy for optimizing
the overall network’s EE under QoS limitations. For the
network under consideration, illustrated in Fig.10, simulation
results demonstrate that NOMA can achieve greater EE than
orthogonal multiple access (OMA). This study, however, only
looked at HetNets, with just pico-cell BSs and MBSs and
no FBSs. The complexity was high, as the scheme incurred
a significant overhead, making its use unrealistic in large
scale networks. On the other hand, the distribution algorithm
outperformed a conventional counterpart, but at the cost of
high computational complexity.

The authors of [56] studied two kinds of fairness criteria
(i.e., proportional fairness and max-min fairness2) for energy
efficient RA by jointly considering the UA and PA in UL
MIMO-enabled HetNets. To optimize the log utility of EE
with QoS and transmit power restrictions of UE, the pro-
portional fairness optimization problem, dual decomposition,
and Newton methods were used. In addition, the UA and
PA sub-problems were solved using the dual decomposition
and sequential convex approximation methods for the max-
min fairness optimization issue. The suggested sub-optimal

2Maximize the allocation for the most poorly treated UEs, i.e., maximize
the minimum, according to max-min fairness. On the other hand, proportional
fairness is defined as: maximizes the overall utility of rate allocations using
a logarithmic utility function.

Figure 10. A two-tier NOMA HetNet powered by solar panels and the
conventional grid as an example of energy collaboration [55].

algorithm outperformed previous schemes in terms of EE.
However, the proposed centralized allocation mechanism may
result in considerable signalling overhead, increasing commu-
nication complexity. The authors of [57] concentrated on EE
maximization for DL HetNets. Energy-efficient UA and PA in
two-tier HetNets was formulated as an optimization problem,
with maximum transmit power limits on each BS cell and min-
imum data rate for each user were considered to offer reliable
and energy-efficient DL transmission. The proposed solutions
were assessed in terms of convergence and effectiveness by
simulations and were compared with reference schemes using
fixed PA and fixed UA. The biggest disadvantage of the work
is that RA was not considered. Due to the iterative nature of
the proposed scheme, its computational complexity was high.

In [58], authors looked at energy-efficient joint RA and UA
for HetNet with multi-homed UEs. The joint UA-RA was for-
mulated initially as a long-term energy-efficient maximization
problem, which was then converted into a throughput-minus-
energy optimization problem. The associated mixed-integer
non-linear optimization issue was solved using continuity
relaxation and the Lagrange dual approach. Finally, a dynamic
energy-efficient-based approach for getting the optimum RA
was proposed. Simulation findings revealed that the proposed
approach outperforms other general algorithms in terms of EE
performance. PA, on the other hand, was not taken into account
in the suggested design, and the authors did not specify the
type of small-cells used in the considered HetNet. Overall, the
suggested approach exchanged a large number of overhead
signals, resulting in high communication complexity. The
authors of [59] formulated the challenge of EE maximization
in the context of a three-tier HetNet with macrocells and
picocells layers operating in the sub-3 GHz frequency ranges
and attocells layers operating in the visible light spectrum. A
novel iterative approach was developed to solve the UA-PA
joint problem and provide a near-global optimal solution. In
terms of throughput, power consumption, and EE, simulation
results showed that the proposed method deployed in a three-
tier HetNet outperformed a baseline UA scheme operated in
a two-tier HetNet.
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Figure 11. The macro and pico BS in the HetNet [62].

The authors of [60] focused on device-to-device (D2D)
communications in HetNets and looked at system’s EE. First,
they designed a solution for UA for HetNets-supported D2D
communications by maximizing received power to users of
MBS, FBSs, or D2D communications. Secondly, the D2D
communications used a novel RA method known as sequential
max search (SMS). SMS algorithm minimizes interference
from D2D users to cellular users and maximizes overall net-
work throughput. Simulation results show benefits in terms of
throughput and EE, but there are numerous disadvantages: 1)
only one MBS and one FBS were considered in the evaluation;
2) simulation results were not compared to other state-of-
the-art algorithms; and 3) there was a high communication
complexity due to a large number of input variables required
to be exchanged, which also increases as the number of UEs
grows. The authors of [61] proposed to use a cache-enabled
energy-cooperative HetNet made up of MBSs and PBSs, in
which each BS is equipped with a cache to store content
files. These caches are powered by both conventional grid and
renewable energy sources, with energy being shared between
BSs via the smart grid. The researchers proposed a joint
UA-PA algorithm which significantly improves both the data
rate and EE of the entire network. The suggested scheme
has a minimal computational and communications complexity.
However, the suggested method was not compared to other
state-of-the-art schemes, and the authors used a fixed number
of UEs in the simulation. The authors of [62] focused on UA
(i.e., BS selection, channel allocation, and mode selection) and
PA to maximize the UL EE of secondary users and BS com-
munication. They considered the HetNet illustrated in Fig. 11
with primary users (PUs) and secondary users (SUs). Ordinary
users are PUs whereas unlicensed users, sensors, or other IoT
devices are referred to as SUs. To improve the UL EE of
the communication between the SU and the BS, the sum-of-
ratios programming algorithm (i.e., the parametric Dinkelbach
algorithm) along with convex optimization were used to solve
the three sub-problems. However, there are several pitfalls of
the proposed system like it has a significant implementation
complexity as a large amount of network information was
necessary at the start of the suggested iteration-based method.
Besides, the three sub-problems considered were addressed
sequentially and not in parallel, resulting in a high latency.

In [63], authors achieved good QoS while improving EE
by combining loss tolerance and bandwidth growth. They

presented a distributed UL combined UA-RA technique for
UL energy bit minimization. When compared to the state-of-
the-art maximum signal received power (RSRP) and chan-
nel individual offset (CIO) systems, the suggested scheme
delivers a considerable improvement in UL energy per bit
consumption. However, the scheme had a significant overhead,
which resulted in a high level of implementation complexity.
In [64], authors provided a simple and successful strategy for
optimizing SE of two-tier HetNets. The combined optimization
of UA and PA was formulated as a mixed-integer programming
issue. To deal with the non-convexity of the optimization issue,
the Lagrange duality theory is used to divide the original prob-
lem into two sub-problems, each of which is solved in turn.
The extensive simulation results demonstrated the suggested
algorithm’s fast convergence rate (i.e., low computational com-
plexity) and considerable performance advantages. In addition,
other traditional UA techniques such as minimal path loss,
range expansion (RE), and RSRP were compared to the
suggested scheme. However, to tackle the problem at hand, a
large number of overhead signals were required, resulting in a
high level of implementation complexity. A trade-off between
SE and EE while ensuring fairness among users was proposed
by the authors of [65] by taking into account the back-haul
capacity constraint in the HetNet. First, the problem was
formulated as a multi-objective optimization (MOO) problem
maximizing the sum log-utility and simultaneously minimizing
the total power consumption. Then, MOO is transferred to the
single-objective optimization problem to get Pareto optimal
solution using the weighted Tchebycheff method. Finally, the
proposed scheme was compared with four different schemes:
1) fixed antenna where the number of antennas of MBS is pre-
defined as the number of maximum available antennas; 2) fixed
antenna and power where number of activated antennas and
transmit power are fixed as maximum values; 3) max SINR
fixed antenna and power where user chooses the BS with the
highest SINR); and 4) max SINR algorithm with optimization
of power coordination and antenna number. Nonetheless, they
only considered the back-haul capacity as a constraint; other
context factors like UEs demands, channel quality should also
be considered for a more realistic scenario.

The authors of [66] sought to achieve a trade-off between
user QoS and EE in a HetNet when dealing with mobile
UEs. To showcase this trade-off, the authors suggested a
new metric, Green Topological Potential Approach, which
combines EE and SE when selecting the target cell. The
proposed heuristic-based approach Green Heuristic User As-
sociation was compared to other two schemes based on path-
loss and received power while maintaining an acceptable SE.
Yet, the proposed scheme involves many overhead signals,
yielding high implementation complexity. The computational
complexity was $ ("# ), where M is the number of BSs and
N is the number of UEs. As the number of UEs increases,
the complexity grows exponentially. Furthermore, there were
no constraints on power and resource allocation, making it an
ineffective solution in realistic scenarios. Finally, SINR was
calculated as per Eq. 4 without considering the channel gain
between UE and its associated BS.
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To minimize the power consumption and to satisfy the
UEs QoS requirements, a low-complex distributed UA and
RA scheme was proposed by the authors of [67]. Firstly,
a non-convex joint UA and RA problem was split into two
sub-problems using a cost-based approach that estimates the
power use effectively. To reduce the computational complexity,
relaxation and decomposition techniques were applied to the
UA-RA scheduling problems. Besides, the authors introduced
a low-complex iterative algorithm for PA based on the decom-
position theory that converges quickly to the optimal solution.
Simulation results were presented in terms of QoS satisfaction
ratio, defined as the ratio of the number of UEs with their QoS
satisfied to the total number of active UEs in the network. No
other QoS metrics were examined. The proposed scheme was
evaluated in small-scale (3 MBSs, 4 SBSs and 20 UEs) and
large-scale (30 MBSs, 4 SBSs and 20 UEs) networks and was
compared with the Strongest Signal Strength First scheme.
Still, the proposed scheme was implemented in MATLAB
rather than a proper network simulator.

In [68], the author investigated the problem of optimal
UA in a HetNet with QoS flows, as shown in Fig. 12. To
assess average packet delay performance (APDP), a variety of
QoS-aware Association (QoSA) methods were used, including
QoSA via block-coordinate descent, QoSA via alternating-
direction method of multipliers, and QoSA with multi-flow
algorithm (QoSA-MF). On one hand, the suggested QoSA
algorithms can reduce APDP over the entire network while en-
suring performance. Furthermore, the QoSA-MF can optimize
best-effort throughput while ensuring QoS flow delay require-
ment. All of these unique QoSA methods, on the other hand,
have low complexity and can be distributed, which is the most
desirable aspect in HetNets with a large number of unplanned
wireless nodes. Maximum-DL-SINR and proportional fairness
(PF) were used to compare the proposed schemes. The author
demonstrated that the proposed QoSA algorithms: 1) converge
towards the global optimum; 2) significantly reduce packet
delays when compared to existing conventional association
strategies; 3) able to optimize multiple flows in a distributed
fashion; and 4) can be applied to scenarios with mobility when
the channel gains are time-varying using extensive simulations.

In [69], the impact of the dual-slope path loss model on the
performance of a DL HetNet was investigated for maximizing
the weighted total rate of joint UA-RA-PA while taking UE
QoS requirements and maximum transmission power limits
into account. The goal was to develop and study a QoS-
aware resource optimization framework using a multi-slope
path loss model in a multi-tier HetNet, in contrast to recent
works such as [70]–[73], which highlight the importance of
multi-slope model and analyze coverage probability. Results
showed that it can enhance the network sum rate and EE by
offloading UEs to the closest BSs due to minimal attenuation,
as opposed to the single-slope model. However, the proposed
effort had the following shortcomings: 1) the channel quality
was not considered; 2) there was no power constraint; and
3) there was no pseudo-code for the proposed technique. By

Figure 12. HetNet with QoS traffic, where MS denotes mobile stations and
_: denotes the rate at which QoS packets arrive for MS-: [68].

jointly optimizing transmit power and UA, the authors of
[74] proposed a resilient EE maximization technique for a
DL NOMA-based multi-cell HetNet with constrained channel
uncertainty. Due to the complexity of the investigated non-
convex problem, the authors used the worst-case approach and
Dinkelbach’s method to convert it into a deterministic and con-
vex optimization problem and then used Karush–Kuhn–Tucker
conditions along with the Lagrange dual approach to derive the
closed-form solutions of PA-UA. The suggested technique has
strong robustness and can lower macrocell users (MU) outage
probabilities, according to simulation findings. "Non-robust
NOMA" (NOMA-based EE maximization strategy under per-
fect CSI) and "Non-robust OFDMA" (orthogonal frequency
division multiple access (OFDMA) based rate maximization
algorithm under perfect CSI) were compared to the proposed
scheme. Still, only a small number of MUs (5) and SUs (2)
were simulated. As a result, the proposed system may not
appropriate for large-scale networks.

Caching has been a promising way to relieve the back-
haul bandwidth burden in the HetNets. However, PA and
UA are neglected in conventional caching strategies, result-
ing in insufficient power for users and cache waste in an
SBS. Keeping these constraints in mind, the authors of [75]
jointly optimized caching, PA and UA to maximize UEs
average QoE for video services in software defined HetNets.
A mixed-integer non-linear programming (MINLP) problem is
formulated under the constraints of caching capacity, limited
power and UA. The formulated problem is NP-hard and
the authors proposed a Joint Caching-Power-and-Association
(JCPA) algorithm to obtain the optimal global solution based
on the hidden monotonicity. A lower bound of JCPA was
obtained through a heuristic-based algorithm. The proposed
scheme was compared with the pro-active based approach,
Most Popular Video, and the reactive based approach named
least recently used. Simulation results were presented in terms
of the cache hit ratio 3 and MOS. However, the solution
has several drawbacks: 1) it was not mentioned how MOS

3A measurement of how many content requests a cache can fill successfully,
compared to how many requests it receives
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Figure 13. Network model [77].

was obtained and whether it was mapped to PSNR, SSIM
or VMAF; 2) variation among the number of UEs and BSs
was not considered in simulation; hence the proposed scheme
may only be effective in small-sized networks; and 3) high
implementation and computational complexity. The authors
of [76] went a step further and calculated QoE in CR-based
HetNets with cognitive D2D couples as SUs and cellular users
as PUs. They first defined the cross-layer optimization issue
to maximize the average QoE of D2D pairs while meeting the
QoE requirements of cellular UEs. To solve the non-convex
optimization problem, a centralized and semi-distributed RA
system based on GA and stackelberg game was presented.
Simulation results showed that the centralized GA algorithm
outperformed the semi-distributed Stackelberg Game algo-
rithm. Both achieved significant improvements over random
allocation and were very close to the optima, demonstrating
the effectiveness of the proposed algorithms. However, in both
suggested schemes, the core network was built on EPC-based
design rather than 5G service-based architecture, and like in
[75], the authors did not explain how MoS was mapped.

The authors of [77] discussed joint UA-RA backhaul
for hybrid-energy-powered HetNets (shown in Fig. 13). To
balance network-wide performance with user fairness, they
proposed an online network utility maximization problem
reflecting PF having tightly tied variables in the constraints of
resources, energy, and backhaul. The proposed problem was
solved in a distributed fashion using decomposition methods.
A primal decomposition method was used to decompose the
original problem into a lower level RA problem for each BS
and a higher level UA problem. A Lagrange dual decompo-
sition method was then deployed to solve the UA problem.
Testing results showed that the proposed approach significantly
improves network utility, load balancing, and user fairness
compared to max-SINR and RE solutions. The work in [78]
focused on solving the joint UA-PA optimization problem for
massive MIMO-enabled HetNets under proportional fairness
with load and transmit power constraints. First, the authors
derived a closed-form expression for ergodic capacity under
imperfect CSI. They then proposed an effective algorithm to
maximize spectral efficiency’s log utility. Simulation results
showed the proposed algorithm outperforming max RSRP and
min RSRP algorithms in terms of SE and load balancing.

The authors of [79] suggested a small-cell deployment
methodology for network capacity increase and high load
balancing. The framework handles the UA and bandwidth
allocation using a greedy based approach. Two greedy algo-
rithms, Greedy Small Cell First Received Signal Based and
Greedy Small Cell First Throughput Based User Association
were utilized to reduce the load on the macrocell while
increasing the load on the small cell for the UA problem.
Following selecting the best deployment architecture, a Branch
and Bound based algorithm was deployed to solve the UA in
the HetNet for capacity maximization. Data offloading from
the macrocell to the small cell is accomplished using the
Branch and Bound Throughput Based UA algorithm. Still,
there are several limitations of the proposed framework. First,
UEs demands, BS power and resource capacity were not
considered. Second, the proposed scheme was not compared
to any other baseline algorithm. Third, due to the use of
branch and bound algorithm, the proposed scheme suffers high
computational complexity. Hence, it might not be suitable for
dynamic environments and large-sized HetNets. The authors of
[80] solved the same problem as in [79] using particle swarm
optimization (PSO) to balance and control the load per BS
in 5G HetNets. The proposed approach was compared against
the conventional static biasing approach and simulation results
showed that PSO outperformed the static biasing method as
it can balance and control the load while maintaining the cell
SE. Yet, besides the low computational complexity compared
to greedy-based approaches, PSO has the same limitations as
of [79].

In [81], two statistical optimization frameworks for multi-
antenna HetNets were described. The first maximizes UA
coverage whereas the second optimizes a rate utility function
by combining UA and RA. The aim is to maximize two
major performance indicators, i.e., coverage and rate, using
a stochastic geometry technique. The results of Monte Carlo
simulations showed that the proposed coverage-maximizing
and rate-maximizing strategies outperformed the usual max-
power and small-cell RE schemes in terms of coverage and
rate. The authors of [82] used a different approach to solve
the same problem. With transmission powers, antenna tilts, and
CIOs as optimization parameters, they proposed a framework
for combining Conflicting Coverage and Capacity Optimiza-
tion (CCO) and Load Balancing (LB) SON functions. The sug-
gested CCO-LB approach outperformed existing algorithms
for all KPIs (e.g., maximum RSRP and maximum SINR user
association methods). Results also showed that the proposed
solution can yield a significant gain in throughput, spectral
efficiency, and load distribution.

Finally, we proposed a Performance-Improved Reduced
Search Space Simulated Annealing (%�'(3�) in [83], an
algorithm for solving UA-RA problems in HetNets (as shown
in Fig. 14). First, the UA-RA problem is formulated as a
multiple 0/1 knapsack problem (MKP) with constraints on the
maximum capacity of the BS along with the transport block
size index. Second, the proposed %�'(3� is used to solve
the formulated MKP. Simulation results show that %�'(3�
outperformed existing schemes in terms of variability and
QoS, including throughput, PLR, delay, and jitter. Simulation
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Figure 14. An example of a two-tier HetNet including one MBS: "1, and
10 FBSs: "2, "3, · · · , "11. The FBSs are usually located at commercial
and residential buildings that constitute hotspots for wireless traffic. The UEs
*�1,*�2, · · · ,*�# in a region G are either served by either MBS or
FBSs selected by Information Service Server (ISS) [83].

results also showed that %�'(3� generated solutions that are
very close to the optimal solution compared to the default
simulated annealing (DSA) algorithm.

Summary: This subsection reviews applications of CO for
the UA-RA-PA. The reviewed approaches are summarized
along with the references in Table. II. We observe that the
problems are mostly modeled for DL. Moreover, metrics EE
and QoS receive more attentions than the other metrics for
CO approaches. In the next sub-section, we review the GAT
for the UA-RA-PA.

B. UA-RA-PA Approaches Based on GAT

GAT is a mathematical modelling technique consisting of
studying the interactions of numerous players. For example,
equilibrium is defined as a set of strategies that include
each player’s optimum strategy [25]. In particular, the game’s
solution achieves Nash Equilibrium if none of the players
can raise their value by changing their approach without
worsening the utility of the others [25]. As a result, GAT
is a powerful instrument that can be used to solve UA-
RA-PA problems. The actors in this scenario can be the
BSs, the users, or both. GAT can be divided into two types
based on different modelling strategies: non-cooperative and
cooperative. In non-cooperative modelling [84], players seek
to maximize their utility and compete against one another
by using various strategies such as adjusting their transmit
powers or placing bids representing willingness to pay. On the
other hand, cooperative schemes simulate a bargaining game
in which players bargain with one another to achieve mutual
benefits. Despite having a low communication overhead, GAT
is deemed appropriate for building distributed algorithms with
flexible self-configuration features. However, it is worth noting
that GAT is based on the assumption of rationality, which
assumes that all players are rational individuals working in
their own best interests. Yet, in 5G networks, players — BSs
or UEs — cannot be expected to operate rationally at all time.
For example, various BSs participating in the game may have
different optimization aims; optimizing energy efficiency may
be viewed as irrational by BSs maximizing transmission rate,
and vice versa.

The authors of [84] introduced a bi-level negotiating
paradigm for distributed UA and RA. UE competition occurs

Figure 15. NOMA-based MEC network [87].

in a non-cooperative manner at the follower level game.
In the leader-level game, however, perfect coordination was
assumed among the BSs. To balance the loads on small BSs
with varying capacities, congestion factors are added. In the
proposed algorithm, BS access prices are modified based on
incomes and load circumstances in the leader-level game. In
the follower-level game, each UE picks the BS that maximizes
its payoff (or minimizes its payment) individually. As result,
the technique achieves a distributed optimization. A PSO-
based pricing technique was presented for price design to opti-
mize the BS revenue. Finally, they obtained a stable single-BS
association using a resident-oriented Gale-Shapley approach.
Still, the suggested approach does not ensure user fairness and
does not incorporate PA for IM. Also, it does not consider UE
demands for different types of traffic. The authors of [85] pre-
sented a fair UA method in HetNets based on cooperative GAT
that focuses on maximizing the utility of users. The proposed
solution was designed to simplify the coalition generation
using a novel SINR-based Coalition Generation Algorithm
called the Nash Bargaining Solution scheme (SCGA-NBS).
SCGA-NBS uses the two-band partition method to accomplish
the bargaining solution. Simulation results demonstrated that
SCGA-NBS outperformed a throughput-oriented approach in
terms of fairness, data rate, load distribution, and convergence
while ensuring a substantially faster convergence time.

In [86], the authors presented a PA allocation based on non-
cooperative GAT in a heterogeneous ultra-dense relay network
to ensure QoS requirements and throughput balance between
the access and backhaul links while predicting the number
of linked UEs. The proposed non-cooperative game was sep-
arated into the backhaul game and access game. Back-haul
game players are the leaders while access game players are
the followers. Experiment findings showed that the proposed
strategy effectively balances throughput between the two lines
and meets the specified minimum rate. A novel NOMA-based
Mobile Edge Computing (MEC) network (as shown in Fig. 15)
with multiple access points, where each access points was
equipped with a MEC server to supply computing resources,
was presented by the authors of [87]. In the proposed network,
the problem was formulated to minimize the total energy
consumption of all users by jointly considering UA-RA-
PA. The formulated optimization problem was modelled as
a many-to-one matching game with externality due to co-
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Table II
QUALITATIVE COMPARISON OF UA-RA-PA ALGORITHMS BASED ON COMBINATORIAL OPTIMIZATION FOR 5G HETNETS.

Ref. Algorithm Direction Control SE EE QoS QoE Fairness Coverage Prob. Complexity
Comput. Comms.

[55] UA-RA-PA DL De-centralized x X X () ) x x x High High
[56] UA-RA-PA UL Centralized x X x x X x Low High
[57] UA-PA DL Centralized X X x x x x High Low
[58] UA-RA DL De-centralized x X x x x x High High
[59] UA-PA DL De-centralized x X X () ) x x x Low Low
[60] UA-RA DL De-centralized x X X () ) x x x Low High
[61] UA-PA DL De-centralized X X x x x x Low Low
[62] UA-PA UL Centralized x X x x x x High High
[63] UA-RA UL De-centralized x X x x x x Low High
[64] UA-PA DL De-centralized X x X () ) x x x Low High
[65] UA-RA-PA DL De-centralized X X x x X x Low Low
[66] UA DL De-centralized X X x x x x High High
[67] UA-RA-PA DL De-centralized x x X () ) x x x Low Low
[68] UA-RA DL De-centralized x x X () , �) x x x Low Low
[69] UA-RA-PA DL De-centralized X X x x x x High High
[74] UA-PA DL De-centralized x X x x x X Low High
[75] UA-PA DL Centralized x x x X (M) x x High High
[76] UA-RA-PA DL Centralized and Hybrid x x x X (M) x x Low Low
[77] UA-RA DL De-centralized x X x x X x Low Low
[78] UA-RA-PA DL De-centralized X x x x X x Low High
[79] UA DL Centralized x x X () ) x X x High High
[80] UA DL De-centralized x x X () ) x X x Low Low
[81] UA-RA DL De-centralized x x X () ) x X X Low High
[82] UA-RA DL De-centralized X x X () ) x X x Low High
[83] UA-RA DL De-centralized x x X () ) x x x Low Low

channel interference along with resource competition among
users occupying the same sub-channel. The authors employed
the Gale-Shapley algorithm to solve the UA problem and
used a heuristics algorithm to solve RA. The PA problem
was solved by the convex optimization method. Simulation
results show that the proposed approach can achieve lower
energy consumption of the system within fewer iterations than
other simplified schemes. However, it is unclear whether the
proposed scheme offloads the tasks to MEC servers or execute
them locally.

The same NOMA network was considered by the authors
in [88] but with integrated D2D rather than MEC. They set
a target of accomplishing the joint RA of uplink NOMA-
based D2D groups and cellular users (CUs). A two-stage
game approach was put forward to deal with the joint PA and
RA problem. Computations were performed in D2D groups
and CUs separately, where the available energy of UEs is
considered during the game. An approximation method was
introduced to formulate the first stage as a non-cooperative
game instead of a coalitional game with high computational
overhead. With this approach, the computational complexity
and signalling overhead was significantly reduced.

The weighted majority cooperative game (WMCG) was
proposed in [89] for 5G massive MIMO HetNets to provide
services to FBS users and MIMO users. The proposed WMCG
allocated antennas to FBSs users based on user loads. In order
to reduce power consumption, the proposed scheme monitored
the state of FBSs. If an FBS was in a sleep mode, the MIMO
antennas allocated to that FBS were allocated to MIMO users
or other FBSs. The authors of [89] proposed another approach,
E2beam, based on the cooperative game in [90]. E2beam
assigns the beam cooperatively in a way that the interference

Figure 16. Scenario: A HetNet powered by hybrid energy sources [91].

was minimized. A utility function was proposed to select the
minimum power consumption for connecting UEs to BS.

The authors of [91] investigated a distributed GAT-based
mechanism for controlling the user-BS association process in a
HetNets powered by renewable energy (as depicted in Fig. 16)
to lower grid demand and increase EE. The proposed technique
was based on a population-like game with atomicity and non-
anonymity properties. Three alternatives to the proposed game-
theory-based scheme are presented and compared. Simulation
results showed that the suggested game-theory-based tech-
nique increases the EE of HetNets powered by hybrid energy
sources in real-world settings compared to the benchmarks.
Yet, the proposed scheme has three major flaws. First, RA
was not considered to improve transmission rate. Second, there
is no provision for continuous green energy, which can be
achieved through storage systems or by using more stable
renewable sources. Finally, while the computational time of
the proposed scheme was lower than some benchmarks (e.g.,
greedy algorithm and discrete optimization), but it was high
in comparison to best-signal-level-policy. In [92], a spectrum-
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Figure 17. Hierarchical game structure [92].

sharing-based HetNet was proposed, in which an FBS can
combine multiple macro-cell operators (MCO) sub-bands and
allocate the aggregated sub-bands to allow high-speed wide-
band data transmission for each unlicensed user (UU). The
main goals of this project were to solve the following issues:

1) Power control problem: how MCO manages interference
by constantly modifying the interference pricing to pro-
tect licensed users.

2) Sub-band allocation problem: how UUs choose which
sub-bands to access based on channel information, in-
terference pricing, and other UUs’ actions.

3) Overlapping coalition formation problem: how UUs form
overlapping alliances to increase their data rate.

To jointly consider the solutions to these three challenges,
a hierarchical game framework was developed (as shown in
Fig. 17). Simulation results showed that the proposed approach
always converges to the hierarchical game’s SE. At the same
time, the resulting transmit power and sub-band allocation
were stable and no player could increase their reward further
by acting alone and unilaterally deviating from the plan.

The authors of [93] investigated the EE performance of
users in a DL NOMA-based HetNet. To decrease the complex-
ity of MUE and FUE, they formulated the EE maximization
problem as a non-cooperative game. Furthermore, they pro-
vided a centralized approach for realizing the energy-efficient
power control algorithm (EPCA), which reduces information
exchange for each game iteration and ultimately obtains the
unique Nash equilibrium. Simulation findings suggested that
EPCA can converge to equilibrium with higher system-level
EE and SE compared to the benchmark. However, EPCA suf-
fers high overhead, i.e., amount of data transferred, resulting
in significant implementation complexity. The authors of [94]
developed a GAT framework based on fuzzy logic for EE
improvements in HetNets. Multiple user context parameters
such as velocity, SINR, throughput, and BS load were consid-
ered for the handover decision. Simulation results showed that
the proposed framework improved energy usage dramatically,
especially for small active users, when high user velocities are
combined with managing ping-pong handovers and cell loads.
However, the proposed schemes have several significant flaws:
1) it was not compared to any other state-of-the-art schemes;
and 2) it was only evaluated for 20 UEs. Hence, it might not
be suitable for large-scale HetNets.

The researchers in [95] suggested an effective multi-flow
carrier aggregation (MCA) control solution to maximize sys-
tem throughput while taking into account the utility of each
mobile device (MD). The proposed approach was built as a

two-level game model to achieve an optimum performance
balance between network operators and mobile users. A
multiple-leaders multiple-followers Stackelberg game model
was used for the upper-level game, in which COs are leaders
and MDs are followers. The lower-level game is modelled as
a negotiating game in which each MD and traffic flow are
game players. The authors demonstrated the superiority of the
two-level game method in terms of user payoff, MCA system
performance, and CO fairness via numerical analysis. Further
improvements could consider: 1) congestion while making
traffic aggregation decisions; 2) control issues, including con-
vergence time, service latency, and system-level EE; and 3)
MD mobility.

The authors of [96] studied the dynamics of radio access
technology (RAT) selection games by clients in HetNets.
They investigated the convergence properties of these games
and introduced a hysteresis that can guarantee convergence.
Measurement-driven simulations showed that RAT selection
games converge to Nash equilibria in few switches. The pitfall
of the proposed scheme is that it was not compared with any
other state-of-the art scheme and it is not clear how promising
is the proposed solution to prospective operators. In the context
of 5G multi-tier HetNets, the authors of [97] addressed the
problem of cognitive users admission and channel distribution
over cognitive base stations. The users’ admission challenge
was specifically modelled using a college admission matching.
Each small-cell BSs uses a modified English auction following
the matching game to request the principal channels to serve
its connected users. Results showed that the applied matching
method for user admission is simple and that the channels
allocation problem has a Walrasian equilibrium point. Still,
the proposed approach has the same shortcomings as in [96].

The research reported in [98] looked at how matching theory
can be used for UA in mmWave-enabled cellular HetNets.
First, they introduced early acceptance (EA), an efficient dis-
tributed matching technique suited for UA in 5G HetNets. The
suggested EA uses a centralized worst connection swapping
(WCS) algorithm and a deferred acceptance (DA) matching
algorithm. Simulation results showed that EA delivered net-
work throughput close to the centralized WCS technique while
substantially reducing complexity and overheads due to its
distributed nature. Furthermore, EA was more power-efficient
and resulted in a significantly faster association process than
the well-known DA algorithm. However, this work does not
consider RA-PA.

The authors of [99] presented an elastic cellular network
structure capable of adapting to individual UE QoE require-
ments. Virtual interference-free service zones centred around
planned UEs provide QoE flexibility. To simulate acceptable
service-zone formations surrounding UEs, a distributed utility
reduction problem was presented. They conducted a complete
comparative analysis employing evolutionary and auction-
based game implementations at a centralized control BS to
evaluate the optimization of S-Zone allotment to UEs. The
game strategy demonstrates superior performance for network
efficiency, with fluctuations in data BS density and priority
allocation between a fair UE throughput network and a service
necessity-driven throughput network. This study could be



17

Table III
QUALITATIVE COMPARISONS OF UA-RA-PA ALGORITHMS BASED ON GAME THEORY FOR 5G HETNETS

Ref. Algorithm Direction Control SE EE QoS QoE Fairness Coverage Prob. Complexity
Computational Communication

[84] UA-RA DL De-centralized X x x x x x Low Low
[85] UA-RA DL De-centralized x x X () ) x X x Low Low
[86] UA-RA-PA DL De-centralized X x X () ) x x x Low Low
[87] UA-RA-PA DL De-centralized X X x x x x High High
[88] RA UL De-centralized x X x x x x Low Low
[89] RA DL De-centralized X x x x x x Low Low
[90] RA DL De-centralized X x x x x x Low Low
[91] UA DL De-centralized x X X () ) x x x High Low
[92] RA UL De-centralized X x x x x x Low Low
[93] RA-PA DL Centralized X X x x x x Low High
[94] UA DL De-centralized X X x x x x High High
[95] RA DL De-centralized x x X () ) x X x High High
[96] UA DL Centralized x x x x x x High High
[97] UA-PA DL Centralized x x x x x x Low High
[98] UA DL De-centralized X x X () , �) x x x Low Low
[99] UA DL Centralized x X X () ) x x x Low High

expanded by evaluating the suggested model at mmWave
frequencies and incorporating the corresponding signalling
costs into the optimization framework.

Summary: This subsection reviews applications of GRT for
the UA-RA-PA. The reviewed approaches are summarized
along with the references in Table. III. Tables IV and V indi-
cate the novel contributions of this survey paper. The tables for
each scheme detail which game was utilized, who the players
were, what strategy was used, what payoffs were examined,
and how many resources were impacted. We observe that the
problems are mostly modelled for DL. Moreover, metrics EE,
SE, and QoS receive more attention than the other metrics. No
considered approaches have presented results in terms of QoE
and coverage probability. In the next sub-section, we review
the GRT for the UA-RA-PA.

C. UA-RA-PA Approaches Based on GRT

Considering a scenario where many small cells are deployed
randomly and located in a 5G network, the UA-RA-PA be-
comes very complicated. Therefore, it is essential to efficiently
handle these complex issues between small cells for optimal
UA-RA-PA. In such circumstances, a graph can represent the
relationships between UEs and BSs, and the optimal UA-RA-
PA can be solved using GRT. GRT aims to create a directed
graph G = (V, E) with nodes V and edges E. The nodes
here refer to various UEs or BSs. The edge set E, on the
other hand, corresponds to the set of node mobility linkages.
In general, GRT is primarily concerned with the analysis
of relationships. GRT is a valuable tool for quantifying and
reducing the many aspects of dynamic systems given a set of
nodes and connections that can abstract anything from city
plans to computer data. When considering graphs, the type of
graph employed is most relevant. Undirected graphs have no
directions associated with the edges between nodes whereas
directed graphs have orientations for all edges. Weighted
graphs assign a weight (e.g., importance, cost) to each edge.

To tackle the optimization problem, broken into two sub-
problems, the authors in [100] developed a joint RA approach

using UA and PA. The first sub-problem was addressed by
combining GRT and a Hungarian method to fix the PA, UA,
and RA. The authors used the difference convex function
approximation method to solve the PA and fix the UA and RA
in the second sub-problem. Compared to the belief propagation
algorithm, statistical channel state information, iterative water-
filling, and static complete spectral reuse, results showed that
this technique could significantly improve the overall system
throughput. This method, on the other hand, provided no
services to UEs with poor channel conditions. The authors
of [101] presented a combined RA and PA in a HetNet with a
macrocell and a picocell that used spectrum sharing in the
underlay transmission mode by employing the QoE utility
function. They used a weighted bipartite network and an
advanced Kuhn-Munkres algorithm to perfectly match the sub-
carrier allocation technique. The first-order derivative of the
network utility function was used to solve the optimal power
problem for PA. Results showed that the proposed scheme
outperformed the average PA and PF algorithms. However, RA
was only considered at the pico cell, and as cell size increased,
the QoE performance deteriorated.

The researchers in [102] suggested a graph and matrix
theory-based network selection technique for overlapping
wireless networks that include WiFi, WiMAX, and LTE
technologies. The data rate, service cost, delay, and power
consumption aspects have all been considered. The above
factors and their relative importance for a particular application
create a graph and related matrix. The permanence of the
matrix is then computed to determine a "network satisfaction
value", used to choose the best access point. The suggested
graph-based selection mechanism outperformed traditionally
RSSI-based approaches. Results also showed that the proposed
scheme can select the most appropriate network, based on user
preferences, while reducing the number of handoffs compared
to TOPSIS (techniques for order preference by similarity to
ideal solution). As a result. the scheme can be applied to
the next generation of wireless networks, where deployment
is extremely dense and numerous networks having various
characteristics are to be considered.
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Table IV
MAPPING BETWEEN GAME COMPONENTS AND NETWORK ENVIRONMENT

Ref. Game Type Game Parameter Network Environment

[84] Multi-leader Multi-follower
Stackelberg Game

Players BSs are the first mover and regarded as market leaders. UEs are regarded as the followers
in the market.

Strategy How to frame a bi-level bargaining framework to obtain a "win-win" solution?

Payoffs The motivation is to maximize the UE utility function and apply flexible functions to BSs
and UEs to design a load-balancing algorithm.

Resources Resources are access prices of BSs and Payment by UEs.

[85] Nash Bargaining

Players MBSs and PBSs are the players in the game.
Strategy How to provide fair utility distribution among BSs?
Payoffs The motivation is to ensure the Fairness and Load distribution among BSs and UEs.
Resources Resources are the BSs to ensure minimum service requirements and QoS for users.

[86] Non Cooperative Game

Players The game is divided in two sub-games. In the backhaul game (BG) the BSs and
RNs are the players. In the Access Game (AG) BS/RNs and UEs are players.

Strategy How to estimate the possible optimal PA Strategy of its followers?

Payoffs The motivation is to guarantee QoS requirements and throughput balance between
the access and backhaul links while estimating the number of associated UEs.

Resources Resource is the PA.

[87] Coalition Game

Players The UEs are the game players.
Strategy How to design a well-defined order to compared two coalitions?

Payoffs The motivation is to ensure fairness and reduces the complexity
while maintaining an approximate performance.

Resources Resource is the PA.

[88] Non-Cooperative Game

Players The D2D groups and CUs are players.
Strategy How to depict the relationship between the paired D2D group and CU.

Payoffs The motivation is to solve the unilateral EE maximization problem
of each D2D group and CU in a distributed manner.

Resources Resource is the spectrum allocation.

[89] Cooperative Game

Players The FBSs are the players in the game.
Strategy How to allocate antennas to FBSs based on available loads?
Payoffs The motivation is to reduce the power consumption using utility function.
Resources Resources are the antennas to transmit the data.

[90] Cooperative Game

Players The SBSs are the players in the game.
Strategy How to assign the beam cooperatively?
Payoffs Allocate minimum power generate beam using utility function.
Resources Beams.

[91] Population like Game

Players The UEs are the players in the game.
Strategy How a game-theoretical approach performing as a learning algorithm seeks Nash Equilbrium?
Payoffs Guarantee of appropriate quality-of-service levels according to renewable energy availability.
Resources User Association.

[92] Stackelberg Game

Players The Macro-cell operator (MCO) and femtocell BS are the players.
Strategy The pricing of the MCO ?
Payoffs Joint optimization of transmit power and sub-band allocation of unlicensed users (UU).
Resources Resource Allocation.

[93] Non-Cooperative Game

Players UEs are the players.
Strategy How to reach Nash Equilibrium (NE)?
Payoffs High system level EE and SE.
Resources Resource and Power Allocation.

[94] Non-Cooperative Game

Players BSs are the players.
Strategy How to reach Nash Equilibrium (NE)?
Payoffs Improving the energy consumption .
Resources Handover Decision and BS selection.

[95] Multi-leader Multi-follower
Stackelberg Game

Players In the upper-level game Cell Operator(CO) and mobile devices(MD) are the players.
Strategy In upper level game the strategy is How to adjust the spectrum price.

In the lower level gain strategy is how to bargain.
Payoffs A fair efficient spectrum allocation solution.
Resources Spectrum.

The authors of [103] have considered a user-centric
network-level coordination architecture for 5G Heterogeneous
Radio Access Networks (RANs), based on RAN softwariza-
tion and a centralized coordination framework. They con-
structed the network graph to abstract the RA and cell offload-
ing problem with the network function seeking an optimal
solution. Simulations were run in a HetNet scenario using
the Tabu Search Algorithm, and results were expressed in
SE. Using cluster-based GRT, the authors of [104] suggested
a quick sub-band allocation technique to minimize interfer-
ence in an ultra dense dynamic HetNet. When the network
interference state meets specific circumstances, a new sub-

band allocation technique, called The fast sub-band allocation
scheme (FAS), proposed in this study allows static UEs to
keep their allotted sub-bands. Compared to existing frequency
reuse methods, FAS is more efficient, provides a higher SE,
and has an advantage in terms of sub-band hand-off rate and
latency with a suitable trade-off in terms of UE throughput.

The research in [105] introduced a network selection strat-
egy based on bipartite graph matching, i.e., the BGMNS
algorithm, to address the challenge of multi-service network
selection in 5G ultra-dense HetNets systems. BGMNS com-
bines the Analytic Hierarchy Process and Grey Relation Anal-
ysis to efficiently satisfy individualized service requirements
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Table V
MAPPING BETWEEN GAME COMPONENTS AND NETWORK ENVIRONMENT

Reference Game Type Game Parameter Network Environment

[96] Non Cooperative Game

Players UEs are the players in the game.
Strategy Strategy corresponds to the selection of radio access technologies.
Payoffs Convergence, Efficiency, and Practicality.
Resources The best Radio Access Technologies (RATs).

[97] Auction Game

Players Two different set of players: the SBSs and secondary users (SUs) set.

Strategy
SUs and SBSs want to maximize utility
SUs want to attach to the most preferred SBSs,
whereas SBSs to choose their most preferred SBSs.

Payoffs High Throughput and Low power consumption.
Resources Channel Allocation.

[98] Matching Game

Players Two different set of players: the UEs and the BSs set.

Strategy Each player builds it own preference list and ranks the players
of the other set based on its preference list.

Payoffs High Throughput.
Resources User Association.

[99] Evolutionary
and Auction Game

Players In both the games UEs are the players.

Strategy
The evolutionary game requires UEs to adapt their action strategies iteratively,
whereas the auction game requires UEs to offer their genuine valuation in order to win
the auction and get virtual Service-Zones for DL scheduling.

Payoffs High Throughput.
Resources Virtual Service-Zones for DL scheduling.

Figure 18. The system architecture model for group-based collaborative D2D
caching scheme over edge-computing networks [106].

and obtain the QoE of edge users seeking various services
across several networks. Simultaneously, to assure system
fairness, BGMNS efficiently determines the fairness index by
considering both service priority and user QoE and skilfully
models the matching degree as the weight of a bipartite graph
edge between user and network. On this foundation, BGMNS
maximizes the total QoE of edge users while maintaining
system fairness. This results in a vastly improved user ex-
perience and a more efficient allocation of network resources
in the system. Simulation results showed that BGMNS can not
only ensure stable access and user QoE when network status
varies, but also effectively meet the requirements of requested
services, significantly reduce user blocking probability and
total PLR, and significantly improve average EE.

The authors of [106] presented collaborative D2D caching
systems over edge-computing mobile networks using het-
erogeneous statistical delay-bounded QoS provisioning, as
depicted in Fig. 18. They designed and solved QoS-driven

effective-capacity optimization issues for collaborative D2D
caching schemes. They also created centralized and decen-
tralized D2D-caching matching algorithms that use a bipartite
graph to solve challenges like effective-capacity optimization.
Simulation results showed that the proposed collaborative
D2D caching techniques outperformed existing schemes un-
der heterogeneous statistical delay-bounded QoS constraints
on edge-computing mobile networks. The authors of [107]
suggested a new network selection technique based on GRT.
Using Dijkstra’s algorithm and a novel cost function for
each edge, the proposed system allows users to choose the
optimum path. The proposed mechanism for selecting the
best path provides higher throughput, exhibits low packet
loss, decreases the delay, and the jitter better than handover
based RSS, handover based bandwidth, and handover based
cost function, according to experiments conducted on a test-
bed using the mininet emulator. Additionally, the handover-
based cost function outperformed the standard algorithms in
terms of QoS. Furthermore, the authors proved the effect of
using numerous criteria to estimate each edge’s cost. Finally,
network selection based on a single parameter, such as RSS
or bandwidth, is ineffective in determining the best path for
network selection.

In [108], a pragmatic solution for a network selection
scheme in wireless HetNets using GRT was proposed. The
interdependence of network properties was used to create
a network appropriateness index. Comparing the suggested
scheme to earlier selection schemes demonstrated that the
proposed system adequately captures the user’s individual
preferences in determining the optimum network, making it
suitable to next-generation wireless networks with ultra-dense
deployment. The authors of [109] focused on embedding
multi-domain virtual networks in a 5G HetNet infrastructure,
as illustrated in Fig. 19. They provided a mathematical model
for this problem, a unique heuristic technique for virtual 5G
network embedding based on the layered-substrate-resource
auxiliary graph, and a compelling 5G demand categoriza-
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Figure 19. A heterogeneous multi-domain 5G infrastructure [109].

tion method. Compared to the benchmark, simulation results
showed that the proposed Layered V-FiNE Algorithm could
achieve a lower average blocking rate, less average latency,
and higher substrate resource efficiency.

Summary: This subsection reviews applications of GAT for
the UA-RA-PA. The surveyed approaches are summarized
along with their references in Table. VI. Table VII summarizes
the type of graphs in existing approaches along with the values
associated with vertices and edges in case of weighted graphs.
Most approaches are only modelled for DL and focus on QoS
metrics. In the next sub-section, we review DRL approaches
for the UA-RA-PA.

D. UA-RA-PA Approaches Based On Deep Reinforcement
Learning (DRL)

RL, a subset of ML, is a useful method for dealing with
Markov Decision Processes (MDPs) [27]. An agent can learn
its best strategy by interaction with its environment in an RL
process. In particular, as depicted in Fig. 20(a), the agent first
observes its present condition, then takes action, and finally
receives an immediate reward along with its new state. The
agent’s policy is adjusted based on the observed information
and this process continues until the agent’s policy approaches
the ideal policy. In Table. XIII, we have provided a comparison
among RL, DL and DRL for a better understanding of each
branch.

A tuple (S,A,p,r) defines an MDP, where S is a finite set of
states, A is a finite set of actions, p is a transition probability
from state s to state B

′
after an action is performed, and r is the

immediate reward obtained after an action is performed. We
denote policy c as a "policy" which is mapping from a state to
an action. The goal of an MDP is to find an optimal policy to
maximize the reward function. An MDP can be finite or infi-
nite time horizon. For the finite time horizon MDP, an optimal
policy c∗ to maximize the expected total reward is defined by
maxc[

∑)
C=0 AC (BCc(BC ))], where 0C=c(BC ). For the infinite time

horizon MDP, the objective can be to maximize the expected
discounted total reward or to maximize the average reward.
The former is defined by maxc[

∑)
C=0 WAC (BCc(BC ))], while the

latter is expressed by lim) −→infmaxc[
∑)
C=0 AC (BCc(BC ))], where

W ∈ [0, 1] is the discount factor that determines the relative
relevance of future rewards to the current reward. If W = 0,
the agent is "myopic," meaning it solely examines how to

maximize its immediate benefit. If W approaches one, the agent
will seek a longer-term larger reward.

1) Q-Learning Algorithms: In an MDP, we aim to find an
optimal policy c∗:S−→ A for the agent to maximize the ex-
pected long-term reward function for the system. Accordingly,
we first define a value function + c : ( −→ � that represents
the expected value obtained by following policy c from each
state s ∈ S. Through an infinite horizon and discounted MDP,
the value function V for policy c measures the goodness of
the policy as follows:

+ c (B) = �c [
inf∑
C=0

WAC (BC , 0C ) |B0 = B]

= �c [AC (BC , 0C ) + W+ c (BC+1) |B0 = B] .
(5)

Since we aim to find the optimal policy c∗, an optimal action
at each state can be found through the optimal value function
expressed by +∗ (B) = <0G

0C
�c [AC (BC , 0C ) + W ∗+ c (BC+1)].

If we denote &∗ (B, 0) ,rC (BC , 0C ) + W�c [+ c (BC+1)] as the
optimal Q-function for all state-action pairs, then the optimal
value function can be written by +∗ (B) = <0G

0
&∗ (B, 0). Now,

the problem is reduced to find optimal values of Q-function,
i.e., &∗ (B, 0) for all state-action pairs, and this can be done
through iterative processes. In particular, the Q-function is
updated according to the following rule:

&C+1 (B, 0) = &C (B, 0) +UC [AC (B, 0) +W<0G
0
′
&C (B, 0′) −&C (B, 0)]

(6)

The core idea behind this update is to find the tempo-
ral difference between the predicted Q-value,i.e., AC (B, 0) +
W<0G

0
′
&C (B, 0

′) and its current value, i.e., &C (B, 0). In (6),

the learning rate UC is used to determine the impact of new
information to the existing Q-value. The learning rate can be
chosen to be a constant, or it can be adjusted dynamically
during the learning process.

2) Deep Learning: Deep learning (DL) [111] is a collection
of methods and approaches aimed at identifying important
features in data and modeling their high-level abstractions. The
major purpose of DL is to avoid having to manually describe a
data structure (such as handwritten features) by automatically
learning from the data. It refers to any neural network with
two or more hidden layers, which is commonly referred to as a
Deep Neural Network (DNN). Although they can also include
propositional formulations or latent variables structured layer-
wise in deep generative models such as the nodes in Deep
Belief Networks and Deep Boltzmann Machines, most deep
learning models are built on an Artificial Neural Network
(ANN). An ANN is a computational nonlinear model based
on the neural structure of the brain that is able to learn
to perform tasks such as classification, prediction, decision-
making, and visualization. As shown in Fig. 20 (b), an ANN
is made up of artificial neurons that are structured into three
interconnected layers: input, hidden, and output. Input neurons
in the input layer transfer information to the buried layer. The
output layer receives data from the hidden layer. Weighted
inputs, an activation function, and one output are all present
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Table VI
QUALITATIVE COMPARISON OF UA-RA-PA ALGORITHMS BASED ON GRAPH THEORY FOR 5G HETNETS

Ref. Algorithm Direction Control SE EE QoS QoE Fairness Coverage Prob. Complexity
Computational Communication

[100] UA-RA-PA DL De-centralized x x X () ) x x x Low Low
[101] RA-PA DL De-centralized x x x X x x Low Low
[102] UA DL De-centralized x x X () , �) x x x Low Low
[103] RA DL Centralized X x x x x x High High
[104] RA DL De-centralized X x X () ) x x x Low Low
[105] RA DL De-centralized x X X (%) X X X High High
[106] RA DL De-centralized X x x x x x High High
[107] RA DL Centralized x x X () , %, �) x x x Low High
[108] RA DL De-centralized x X X () , �) x x x High High
[109] RA DL Centralized x x X (�) x x x Low Low

Table VII
MAPPING BETWEEN GRAPH COMPONENTS AND NETWORK ENVIRONMENT

Reference Vertices Edges Graph Type

[100] BSs and UEs are the two set of vertices Edge corresponds to connection between
UE and BS

Weighted Bipartite Graph (WBG)
in which weight is the data rate

[101] PUEs and reused sub-carriers are two
non-empty subsets representing V

E is the edge set between PUEs and
reused sub-carriers

WBG in which weight is the
transmission rate of PUE on sub-carrier.

[102] A vertices corresponds to the network
selection parameter Edge denotes the priority among parameters. Directed Graph

[103] The vertex represents the vector states Edge represents the interaction between entities Weighted Graph

[104] The vertices represents all the FBSs
and all the MUEs.

The edges represents the interference relationship
between different vertex Weighted Graph

[105] The vertices represents the union of
users and networks sets.

The edges represents a connection between
user and network node. Bipartite Weighted Graph

[106] The vertices represents the union of
D2D senders and receivers sets. An edge exists when SINR is no less than a theshold. Bipartite Weighted Graph

[107] The vertices represents the mobile device
or connected objects.

An edge represents the set of mobility links
between nodes.

Weighted Graph (weight measured as
Distance, RSS, Bandwidth) .

[108] The vertices represents the network
selection parameters.

An edge represents the priority among
parameters. Weighted Graph.

[109] The vertices represents the BS, DC
and MS.

An edge represents a bi-directional fiber
link with a given length in kilometers. Weighted Graph.

Table VIII
COMPARISON AMONG DIFFERENT RL TECHNIQUES

Techniques Problem Solving
Reinforcement Learning This is a branch of ML used to help an agent learn the optimal policy when

the agent has no information about the surrounding environment.
Deep Learning This is a branch of ML used to help an agent to learn the optimal policy when

the agent has some information about the surrounding environment in advance.
Deep Reinforcement Learning This is an advanced model of reinforcement learning technique in which

deep learning is utilized as an effective tool to improve the learning rate for
reinforcement learning algorithms.

Figure 20. (a) Reinforcement Learning, (b) Artificial neural network, (c) Deep Q-learning [27].

in every neuron. The modifiable parameters that turn a neural
network into a parameterized system are called synapses. The
activation function of a node determines the node’s outputs
based on its inputs.

Backpropagation is a powerful learning method that ANNs
employ during the training phase to swiftly compute a gradient
descent with respect to the weights. Automatic differentiation
is a specific case of backpropagation. The gradient descent

optimization approach frequently employs backpropagation in
the context of learning to modify the weights of neurons by
determining the gradient of the loss function. Due to the fact
that the error is calculated at the output and sent back across
the network layers, this technique is occasionally referred to
as backward propagation of mistakes.

An ANN with numerous hidden layers is referred to as
a DNN. Feedforward Neural Network (FNN) and Recurrent
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Neural Network are the two common DNN models (RNN).
There are no cycles or loops in the FNN since information only
flows in one direction, from the input nodes to the output nodes
via the hidden nodes. Convolutional Neural Networks (CNN)
are the most popular model in FNNs and have a wide range of
uses, particularly in speech and picture recognition. The CNN
uses a variant of the multilayer perceptrons outlined above
and includes one or more convolutional layers, either pooling
or fully connected. A convolution operation is applied to the
input by convolutional layers, which then send the output to
the following layer. This operation allows the network to be
deeper with much fewer parameters.

3) Deep Q-Learning (DQL): When the state space and
action space are small, the Q-learning technique can efficiently
find an optimal policy. In practice, however, with complex
system models, these spaces are frequently quite big. As a
result, it is possible that the Q-learning algorithm won’t be
able to determine the best policy. To address this problem,
the DQL technique was developed. As shown in Fig. 20 (c),
DQL uses a Deep Q-Network (DQN) instead of a Q-table to
calculate an estimated value of &∗ (B, 0).

When a nonlinear function approximator is utilized, the
average reward obtained by reinforcement learning algorithms
may not be stable or even diverge. This is due to the fact that
a little change in the Q-values can have a significant impact
on the policy. Thus, the data distribution and the correlations
between the Q-values and the target values R+W<0G

0
′
&(B′0′)

are varied. Two approaches, namely experience replay and
target Q-network, can be applied to solve this problem.

The surveyed approaches are summarized along with their
references in Table. IX. In Table. X, we present the considered
state space, action space and reward. We also mention which
entity is acting as an agent in the considered problem from
the standpoint of UA-RA-PA in HetNets.

In [111], the authors proposed a distributed DRL archi-
tecture for obtaining the best UA-RA strategy in HetNets.
The optimization problem was created to obtain the highest
long-term return while maintaining UE QoS standards. A
Multi-agent Reinforcement Learning (MARL) technique was
suggested by jointly associating UEs to BSs and allocating
channels to UEs considering the non-convex and combinatorial
properties of this joint optimization problem. A Double DQN
was proposed to efficiently offer a near-optimal solution with
minimal iterations using the double-Q method. Simulation
results demonstrated the high convergence and superior perfor-
mance of the proposed solution compared to other reinforce-
ment learning methods such as Q-Learning and DQN. MARL
was also considered by the authors of [112] to handle the UA-
PA problem in HetNets. The proposed work investigates the
joint optimization of UA-PA in OFDMA-based HetNets. The
UA-PA problem was modelled as the maximum long-term UL
EE of all UEs under the limits of maximum transmit power
and UE QoS criteria. Furthermore, the convergence of the
multi-agent DQN method was investigated, and results showed
that the multi-agent DQN has a faster convergence speed than
the conventional Q-learning technique. Results also showed
that the multi-agent DQN outperformed the benchmarks as

it can successfully increase EE of all UEs. In [113], the
authors investigated the joint problem of UA-PA in the DL
of a two-tier HetNet without knowledge of the environment
transition probability using a parameterized deep Q-network
(P-DQN). The authors constructed the reward function based
on EE with a QoS constraint per user and a backhaul capacity
limitation, taking into account realistic scenarios. When the
limitation was broken, a penalty mechanism was triggered.
Simulation results showed that P-DQN outperformed other
traditional methods in terms of overall EE while meeting QoS
requirements and backhaul constraints. Yet, P-DQN may not
work well in situations with large action space.

In [114], a DRL approach was used to tackle the joint
optimization problem for UA-RA-PA in HetNets. The hetero-
geneous network-deep-Q-network framework (HetDQN) was
proposed to solve the problem. It consists of 6-layer deep
neural networks based on maximum SE. Results showed that
HetDQN can attain a greater SE when compared to the
present solutions and has a better convergence. The authors
of [115] considered a HetNet in which users must connect
to the best BS to get the most out of the network. The
proposed DRL-based association architecture uses continuous
channel state information as an input. An efficient online
DRL-based approach was proposed to address the NP-hard
utility maximization problem. The system was computation-
ally efficient and does not require any external labelled data
as a training data set. It may quantize the output of DNNs
as UA solutions. These association solutions are saved in a
shared memory structure then used to train all DNNs using a
sub-gradient method. The authors showed that the suggested
approach outperformed the maximum signal-to-interference-
plus-noise-ratio (max-SINR) UA scheme numerically. The
authors of [116] looked at the handover and PA problem
in a HetNet system with numerous UEs. They identified the
ideal policy between UE actions and local observations (e.g.,
signal measurement report, current connection, and public
information) to improve overall throughput while reducing
handover. They considered inter-dependencies across UEs and
represented the problem as a fully cooperative multi-agent job.
The ideal cooperative policy for each UE was then learned
using a MARL technique. They also introduced a centralized
training with a decentralized execution framework to propose a
multi-agent proximal policy optimization (MAPPO) algorithm
for the multiple UEs system. The global data was used to
teach policies for each UE. Once the training was completed,
each UE received a decentralized policy that made decisions
based on the UE’s local observations. MAPPO outperformed
the benchmarks in terms of high throughput, the suggested
technique can obtain higher results.

The authors of [117] introduced MBS as a new type agent
in HetNets to perform PA with FBS for all users, and used
DQN to optimize PA in wireless dense HetNets. The joint
PA based on multi-type agents outperformed a single-type
agent in substantial interference circumstances. The neural
network also improved the system’s ability to process massive
volumes of agent state information. In comparison to Q-
learning and Q-learning averaged allocation, simulation results
showed that the suggested strategy enhanced system capacity
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and improved energy efficiency. Still, to reduce complex-
ity, different incentive functions and techniques of sharing
knowledge among agents should be examined. In [118], the
authors looked at the joint UA-RA problem for virtualized
small cell (VSC) aided HetNets using UE mobility prediction.
The user mobility prediction model was exhibited, and the
VSC was assessed using the user mobility prediction model.
Since the problem is non-convex, decoupling and coupling
solutions based on Multi-Agent Q-Learning were proposed.
Simulation results showed that the introduction of VSC can
significantly improve system capacity and SE. However, there
is a tradeoff between performance and algorithm complexity.
In addition, other performance measures such as delay and
energy cost were not examined. A DQN with padding for
optimal PA in HetNets was proposed in [119] where padding
was employed to maximize the system’s sum rate when the
number of users changed dynamically. To estimate the Q-
function and discover the best PA method, a Convolutional
Neural Network was used. Simulation results revealed that
DQN outperformed the Weighted Minimum Mean Square
Error algorithm in system capacity and adequately manageed
active and idle users. However, under the suggested framework
with inadequate CSI, dynamic user changes, without knowing
the maximum number of users in the cell, should be addressed.

The study in [120] examined traffic offloading and the PA
problem in green HetNets to increase long-term EE by com-
bining decentralized and centralized techniques. The problem
was treated as a Markov game using MARL for decentralized
optimization while in centralized optimization, a DNN was
employed for value estimation with DQL due to its large
state space. Simulation results revealed that the DQL-based
approach outperformed MARL and greedy algorithms, with
MARL incurring the lowest communication overhead. In high
mobility 5G HetNet, the authors of [121] investigated using
DRL to adaptively assign TDD UL/DL resources. DNN was
used to extract features from complex network information
in the suggested approach, and a dynamic Q-value iteration
based RL with experience replay memory mechanism was
proposed to adjust TDD UL/DL ratio by evaluated rewards.
The suggested algorithm was compared to various methods
such as the conventional technique and the Q-learning based
method in terms of throughput and PLR. In [122], a DRL-
based general optimization framework was presented as a
unified solution for the UA-PA problem that can adapt to
OMA-enabled and NOMA-enabled HetNet scenarios with
minor alterations. A hybrid UA-PA algorithm based on the
Deep Deterministic Policy Gradient Algorithm (DDPG) was
proposed that achieves load balancing and improves EE by
interacting with the environment. In terms of aggregate rate
and EE, the suggested strategy outperformed SA, Max-SINR,
DDPG with fixed power, and DDPG with max-SINR. Yet, the
proposed framework is not general enough to suit all networks.

To address the challenge of DL sum-rate maximization in
multi-RAT multi-connectivity HetNets, the authors of [123]
suggested a hierarchical multi-agent DRL-based system called
Deep Radio Access Technologies (DeepRAT) which gets the
RAT-Edge Devices (EDs) assignment and PA to maximize
HetNet’s constrained sum rate. To study system dynamics and

solve the problem, DeepRAT incorporates DQN and DDPG
models. DeepRAT solves it hierarchically by breaking it into
a multi-RAT assignment stage and a PA stage. The DQN
method is used in the first step to learning the best RAT
assignment policy for EDs. The second stage uses the DDPG
method to solve the PA problem for the RATs’ allocated
EDs. Yet, DeepRAT does not handle the multi-RAT Het-
Net’s joint optimization of both PA and RA. To maximize
SE and EE, the authors of [124] presented a distributed
multi-agent deep reinforcement learning (MADRL) for joint
RA. The suggested distributed MADRL-Multi Optimization
Problem (MOP) framework can deliver an optimal solution
in few iterations. Furthermore, this centralized training and
distributed execution approach can choose a policy strategy
to achieve distinct optimal objectives for different agents
thanks to rewarding functions. Simulation results showed that
the suggested approach could effectively deal with RA and
outperform the benchmarks. In [125], the authors suggested a
Mobility-aware Centralized Reinforcement Learning (MCRL)
strategy for UA-RA in HetNets. The action space is dimen-
sionally reduced using an existing method that approaches the
upper boundaries, ensuring that MCRL can solve the joint op-
timization issue. Additionally, the state-of-the-art Actor-Critic
technique was used in the RL agent’s training. Simulation
results showed that MCRL is both feasible and effective and
can converge quickly during the training phase, considerably
improving throughput and user fairness.

The authors of [126] developed a conventional DQN ap-
proach to address the RA problem in HetNet to optimize the
EE. The algorithm encourages the usage of green energy to
power BSs as much as possible, reducing their reliance on
the power grid and maximizing EE. Simulation results showed
that this method is capable of efficient learning, can effectively
enhance the network’s EE, and can achieve excellent resource
management. In [127], the authors examined a UA and RA
scheme for HetNets with hybrid energy supply to exploit
the harvested energy across small-cells. The EE criterion was
defined as the ratio of total information rate to the conventional
power grid energy, and the objective was to maximize the
EE of the overall network. The model-free RL framework,
similar to trial-and-error learning, was used to design the
sequential decision making problem in HetNets. The RL agent
learns from its interactions with the environment and develops
its policy. A policy-gradient-based actor-critic RL algorithm
is suggested to find the best policy for a problem with
continuous-valued state and action variables. When estimating
the policy gradient, the actor portion typically has a high vari-
ance. In contrast, the critic part assists the actor in estimating
the gradient, and the advantage function is utilized to minimise
the policy gradient’s variance further. Results showed that the
suggested algorithm can increase the network EE when more
renewable energy was gathered.

The research in [128] reported an intelligent model selection
technique in D2D aided 5G HetNets to increase VR broad-
casting performance. Three transmission modes were used to
serve VR users: macro cell broadcasting, mmWave small cell
unicasting, and D2D multicasting. The authors employed RL
to find the best selection among the three transmission modes
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for each user. To begin, the multi-agent learning theoretic
framework was used to represent this creative mode selection
problem as a general-sum stochastic game to maximize total
throughput for VR broadband service. Then, keeping the
network scale in mind, two RL policies, Nash-Q-learning and
Wolf-PHC, were presented. Simulation results demonstrated
that the suggested method outperforms the benchmarks in
terms of convergence and VR broadcasting throughput gain.
Still, this approach does only suit VR applications. A more
generic approach should be proposed.

The authors of [129] sought to maximize the overall network
EE where many FBSs are dispersed randomly and densely
in the MBS coverage. They began by creating an EE model
and formulating the optimization problem and suggested DQN
technique in DRL to solve it using power discretization.
Simulation results showed that the proposed Nature DQN
outperformed Q-learning and water-filling schemes in terms
of EE with accelerated convergence. The optimal UA-RA
algorithm for D2D pairs in UDNs was designed in [130].
To optimize the sum data rate, they collaboratively devised
UA, subcarrier assignment, and PA of D2D pairs located in
the overlapping area between adjacent cells. They proposed
a DRL-based approach for solving the joint optimization
problem. Extensive tests showed that the suggested method
achieved near-optimal performance and outperformed com-
peting systems such as random policy, only optimize power,
and only optimize association. To maximize joint bandwidth
slicing ratios and BS-UA, a two-step DRL-based technique
was suggested in [131]. First, a distributed agent was de-
ployed at each BS for the slice resource ratio in a single
BS level. Meanwhile, to ensure the service level agreement
(SLA) of slices, a centralized agent was in charge of RA and
UA among heterogeneous BSs. Simulation results of eMBB
and URLCC slices having different QoS requirements (e.g.,
minimum throughput, maximum transmission error probability
and maximum transmission delay) showed that near-optimal
performance in terms of SLA satisfaction and spectrum mul-
tiplexing was achieved using the suggested slicing method.

Summary: This subsection reviews applications of DRL for
the UA-RA-PA. The reviewed approaches are summarized
along with their references in Table. IX and X while Table. XI
and XI represents the mapping of DRL components to
network environment.

The many UA-RA-PA techniques based on CO, GAT, GRT,
and DRL have been shown to have good performance in simu-
lations. However, there have been concerns with the proposed
schemes’ complexity and control in several deployment trials.
To better illustrate all the studied schemes, we have compared
them using different metrics and in several tables, something
that has never been presented in previous relevant survey
publications. We have also enriched our survey by providing
table. XIII which includes a comparison between the RRM
schemes and IM schemes used at the Radio Frequency (RF)
transceivers.

VI. RRM FOR CROSS-CO-TIER INTERFERENCE
MITIGATION IN 5G HETNETS

In 5G HetNets, the overlaying small cells could cause
interference with the MBS or FBSs of other small cells located
nearby. There are two types of interference in a two-tier FBSs:
cross-tier interference and co-tier interference. The co-channel
interference between FBSs and MBSs is known as cross-tier
interference and appears when both FBSs and MBSs use the
same set of RBs. Co-tier interference refers to the co-channel
interference between different FBSs. This occurs when FBSs
are densely deployed, causing coverage overlaps. In such a
situation, some closely-located FBSs may use the same set of
RBs, resulting in UL and DL interference [21].

To increase QoS and inter-user RA fairness, the authors
of this work designed a new RA algorithm for IM based on
graph coloring techniques [132]. The proposed Weighted Edge
Weighted Vertex Interference Mitigation (WEWVIM) algo-
rithm assigns a weight to each directed edge corresponding
to the interference strength from nearby BSs and a weight to
each vertex, indicating the color with the least interference
or the highest transmission rate. To find the interfering BSs,
a region of interest was created. According to simulation
data, WEWVIM outperforms existing systems in terms of
fairness and QoS, including throughput, PLR, latency, and
jitter. The authors of [133] investigated the interference for
D2D applications in 5G mobile networks. Different methods
were introduced in the paper to reduce the effects of various
interference types (i.e. cross-tier interference, co-tier interfer-
ence) such as the New Hybrid Frequency Reuse (NHFR) with
Almost Blank Sub-frame (ABS) method, the closed mode
D2D method and the combined method which is a hybrid
of the previous two methods. System performance for all
three methods considered was assessed based on a SINR-
based expression. A detailed comparison between the three
considered methods is performed in TABLE. XIV.

A novel IM technique called Reverse Frequency Alloca-
tion (RFA) was proposed in [134]. RFA achieves intercell
orthogonality by partitioning the cell into spatial regions and
allocating frequency resources optimally. By removing cross-
tier interference from MBS, RFA improves the data DL speeds
of the femto users. To further limit the impact of interference
to nearby cells, the scientists extended RFA to a multi-
cellular network. They also created a hybrid RFA scheme that
combines the advantages of other RFA systems in terms of
broad bandwidth and low interference to obtain better data
rates. Simulation studies showed how the hybrid RFA scheme
outperform the traditional RFA schemes in terms of user fair-
ness and increased overall network capacity. However, when
designing this scheme improving the hand-off process when
users travel from one location to another and introducing sec-
tors inside the cell to reduce the density of interferences were
not taken into account. To address the multi-tier interference
issue, the authors of [135] suggested a prioritized radio-access
system based on a frequency hopping (FH) technique. The
radio-access priorities are endowed to users at different levels
using a new FH pattern (FH sequence set) with multi-level
Hamming correlations. In a multi-tier HetNets UL, a low peak-
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Table IX
QUALITATIVE COMPARISON OF UA-RA-PA ALGORITHMS BASED ON DEEP REINFORCEMENT LEARNING FOR 5G HETNETS

Ref. Algorithm Direction Control SE EE QoS QoE Fairness Coverage Prob. Complexity
Computational Communication

[111] UA-RA DL Centralized x x X () ) x x x High Low
[112] UA-PA UL Centralized x X x x x x High Low
[113] UA-PA DL Centralized x X x x x x High Low
[114] RA DL Centralized X x x x x x High Low
[115] UA DL Centralized x x X () ) x x x High Low
[116] PA DL Centralized x x X () ) x x x High Low
[117] PA DL Centralized X X x x x x High Low
[118] UA-RA DL Centralized x x X () ) x x x High Low
[119] PA DL Centralized x x X () ) x x x High Low
[120] PA DL De-Centralized x x X () ) x x x Low Low
[121] RA DL Centralized x x X () , �) x x x Low Low
[122] UA-PA DL Centralized x X X () ) x x x High Low

Table X
QUALITATIVE COMPARISON OF UA-RA-PA ALGORITHMS BASED ON DEEP REINFORCEMENT LEARNING FOR 5G HETNETS

Ref. Algorithm Direction Control SE EE QoS QoE Fairness Coverage Prob. Complexity
Computational Implementation

[123] PA DL Centralized x x X () ) x x x High Low
[124] RA DL De-centralized X X x x x x High Low
[125] UA-RA DL Centralized x x X () ) x X x High Low
[126] RA DL Centralized x X x x X x High Low
[127] UA-RA DL Centralized x X x x x x High Low
[128] UA DL Centralized X x X () ) x x x Low Low
[129] UA DL Centralized X X x x x x Low Low
[130] UA-RA DL Centralized x x X () ) x x x Low Low
[131] UA-RA DL Centralized/D x x X () ) x x x Low Low

Table XI
MAPPING BETWEEN THE REINFORCEMENT LEARNING COMPONENTS AND NETWORK ENVIRONMENT

Ref. States Actions Reward Agents

[111] State Space corresponds to degree
of satisfaction of all UEs QoS .

Action space corresponds to
the selection of the
BS and channel allocation.

The reward function ensures
that the HetNet’s minimal QoS is met while
also maximizing UE utility.

UEs

[112] State Space corresponds to the transmit
power.

Action space corresponds to
the sub channel allocation.

The reward function ensures
the sum efficiency of all UEs. UEs

[113] State Space corresponds to the user data
rate in the time slot.

Action space corresponds to
the UA and PA.

The reward function ensures the maximum
EE for each UE and satisfying the backhaul
link capacity constraint for each SBS.

UEs

[114] State Space corresponds to the user
correlation matrix and channel gain matrix.

Action space corresponds to
power adjustment of BSs.

The reward function ensures the optimal
resource allocation. BSs

[115] State Space corresponds to the channel
state information.

Action space corresponds to
association between UEs
and BSs.

The reward function ensures the
fairness among all UEs. UEs

[116]
State Space corresponds to the BS connection
signal measurement and the
number of UEs served by each BS.

Action space corresponds to
BS selection
and power requirements.

The reward function ensures the
trade-off between overall throughput
and HO frequency.

UEs

[117] State Space corresponds to the proximity of
MBS to the MUE.

Action space corresponds to
MBS optimal power selection.

The reward function ensures the
learning objective of the whole system. BSs

[118] State Space corresponds to the Load Ratio (LR). Action space corresponds to
association with BSs.

The reward function ensures that each user
will prefer to select the BS with low
LR and high channel gain.

UEs

[119] State Space corresponds to the interference
received by users, channel gain and PA.

Action space corresponds to
multiple discrete power levels.

The reward function corresponds to
the UEs sum rate. BSs

[120]
State Space corresponds to the transmitting
power of MBS, set of users that are in coverage
area of the MBS, received signal power.

Action space corresponds to
adjusted power levels and
offloading.

The reward function indicates the
instantaneous payoff of each agent. BSs

[121] State Space corresponds to the UL/DL buffer
occupancy.

Action space corresponds to
configurations of TDD
sub-frame allocation.

The reward function aims to maximize
the data transmission rate which was
related to the channel occupancy.

BSs

[121]
State Space corresponds to data rate,
data packet transmission time the and
DL transmission power of each UE.

Action space corresponds to
UA and PA.

The reward function aims to maximize
the sum rate and EE at same time. BSs
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Table XII
MAPPING BETWEEN THE REINFORCEMENT LEARNING COMPONENTS AND NETWORK ENVIRONMENT

Ref. States Actions Reward Agents

[123]
State Space is comprised of four elements
i.e., discrete, output action of edge server,
EDs and RAT related parameters .

Action space corresponds to the
selection of DL transmit power
level.

The reward function ensures that
the DDPG agent is continuous and
governed by its achieved constrained
sum-rate.

BSs

[124] State Space corresponds to locally observed
network environment states.

Action space corresponds to transmit
power and sub-carriers allocation.

The reward function was defined on
the basis of data rate and EE targets BSs

[125] State Space corresponds to channel
gain between all UEs and BSs.

Action space corresponds to the
selection of sub-carriers SINR threshold.

The reward function corresponds to
the maximization of the data rate. BSs

[126] - Action space corresponds to the
power adjustment of the BSs.

The reward function corresponds to
maximize the utilization of green
energy.

BSs

[127]
State space was determined by both SINR
and battery energy level of
each SBS.

Action space corresponds to the
sub-channel and power allocation.

The reward function corresponds to
EE. BSs

[128]
State space corresponds to association
relationship between UE
and the three network sets.

Action space corresponds to the
user selection action
in the TX mode.

The reward function corresponds to
total throughput of the VR broadcast. UEs

[129]

State space corresponds to UEs
communication with BS, number of UEs
with BS, power of the FBSs, and
level of interference from MBS.

Action space corresponds to the
selection of sub-carriers and power level.

The reward function corresponds to
EE of BS. FBSs

[130] State space corresponds to channel gain,
SINR received, transmit power.

Action space corresponds to the
UA-RA.

The reward function corresponds to
sum data rate.

Central
Controller

[131]

State space for the D-Agent corresponds to
number of arrived packets, bandwidth,
QoS satisfaction ratio, and resource
slicing ratio. For C-Agent State space
corresponds to QoS satisfaction
and resource utilization ratio.

D-agent action space corresponds to
resource slicing and the action of
C-agent is hyper-parameters.

The reward function of C-Agent
corresponds to QoS satisfaction and for
D-agent corresponds to Resource reuse
factor.

BSs

Table XIII
COMPARISON BETWEEN RRM SCHEMES AND IM SCHEMES AT RF TRANSCEIVERS

RRM Scheme Convergence time Flexibility Reliability IM Scheme at RF transceivers [180] Convergence Time Flexibility Reliability
CO Medium High High Cross-talk prevention IM - Low High
GAT Medium Low Low Analog IM Medium Low High
GRT Low Low Low Digital IIM Medium High Low
DRL Fast High High Mixed-Signal IM Fast Medium High

Table XIV
COMPARISON BETWEEN THREE DIFFERENT METHODS PROPOSED IN [133].

Method Interference Definition Advantage Disadvantage
Cross-tier Co-tier

Closed Mode
D2D Method X x

D2D communication is operated
in closed mode that consists of
authorized Device Users (DU)
only. This method includes
two different phases:
1) Discovery, 2) Communication.

This method can be applied in
4G mobile networks which are
similar to 5G HetNets but replacing
the interference from the
5G applications with interference
from low power nodes.

This method does not
investigate the co-tier
interference between different
DUs when applied in
different mobile networks.

NHFR with
ABS method x X

The allocated spectrum
is distributed between macro
users, DUs, and 5G applications
in a 5G network
with D2D applications.

Using this frequency distribution
of NHFR with ABS technique,
the cross-tier interference between
DUs and Cellular Users (CUs)
is reduced and the co-tier
interference among DUs is also reduced.

The disadvantage of this method
is the existence of cross-tier
interference between
DUs and some other 5G
applications in the outer
and inner regions of some cells.

Combined
Method X X

Closed Mode and NHFR is
combined with ABS methods.
It can eliminate the cross-co-tier
interference by
sending a pre-defined code.

All types of cross-tier interference were
mitigated and the problem of co-tier
interference that exists in the closed
method will disappear by using NHFR
with ABS that allows the D2D pairs
to use different frequencies.

Using this combined method
makes the system more complex
but on the other hand, it improves
the overall system performance
compared to other methods.
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to-average-power-ratio (PAPR) FH-based OFDM system using
the proposed FH sequence set was considered. The numerical
and simulation findings showed that the proposed FH sequence
set may decrease multi-tier interference in HetNet ULs while
still supporting high transmission quality and SE for multi-tier
UEs, even at the cell-edge of HetNets. The proposed approach
investigated FH with two-level access priorities applied to
HetNet ULs, but a general case of flexible multi-level was not
examined. To alleviate the impact of both cross-tier and co-tier
interference, the authors of [136] developed an Edge-Aware
RRH-Cooperation (EARC) method for Cell Edge Devices
(CED) and Non-cell Edge Devices (NED). These two device
classes, CEDs and NEDs, are operated in dual-association and
single-association modes, respectively. On one hand, NEDs
associate with the Remote Radio Head that gives the best-
received signal in single association mode. On the other hand,
in a dual association mode, CEDs associate with the two
strongest RRHs, which may or may not be from the same
tier. The researchers quantify the performance improvements
of the proposed EARC method in terms of outage probability
and ergodic rate using stochastic geometry tools. The proposed
method was compared to four other schemes developed in the
literature to demonstrate its efficacy.

In [137], a Modified Region Splitting based Resource
Partitioning (MRRP) method was presented to reduce cross-
tier interference in two-tier HetNets. This scheme divides
the entire macrocell coverage area into three regions: inner,
middle, and outside. The complete accessible spectrum was
divided into four sub-bands. Both the inner and outer areas
share the first three sub-bands. The fourth sub-band was
further subdivided into three sub-bands, each used by the
centre region. In the MRRP scheme, the unused sub-bands
of each macrocell were assigned to femtocells in one of three
ways: static, order, or random. The effects of these methods
on femtocell overall throughput, average per-user throughput,
and total system throughput were studied. Furthermore, Monte
Carlo simulations were used to optimize the suggested MRRP
system. Finally, the proposed scheme may be extended to
(1) investigate the frequency reuse planning technique used
to the femtocell to improve the cell’s total throughput, (2)
The cellular environment’s irregular geometry. For downlink
NOMA HetNets, [138] investigated a cross-tier IM framework
based on interference alignment and coordinated beamform-
ing (IA-CB). The suggested technique, dubbed cross-tier IA-
CB (CrIA-CB), minimizes cross-tier interference between the
macro cell and other small cells in HetNets. The proposed
CrIA-CB makes use of the massive MIMO technology’s de-
grees of freedom to construct transmit and receive beamform-
ing vectors that eliminate cross-tier interference at the user
side while lowering the need for sharing CSI between small
cells and macrocells. Simulation data shows how the proposed
technique outperforms other current strategies in terms of
system aggregate rate. To minimize interference in femtocell
networks, an increased fractional frequency reuse technique
was proposed in [139]. The technique involves segmenting the
service area and frequency into three regions and three sets,
each with its own frequency set. After the femtocell location
is determined, a frequency is assigned according to its region.

The proposed method reduces interference, increases SINR,
and improves throughput. However, the proposed scheme was
only tested with a small number of users, and no localization
procedures were utilized to test system performance when
localization problems occur.

The authors of [140] proposed a joint strategy for hybrid-
access small cells that combined the Walsh–Hadamard trans-
form with NOMA and interference rejection combining con-
cept to achieve high-performance gains and mitigate inter-
cell interference. The Walsh–Hadamard transform was used
as an orthogonal variable spreading factor to achieve variety
in communication networks. It ensures superior performance
increases than traditional NOMA when used in conjunction
with it. In addition, it lowers the bit error rate and improves
the system’s throughput performance. At the receiver end,
interference rejection combining was employed to manage
cross-tier interference created by MUEs that could not connect
to the SBS for hybrid access. The research looks at both ideal
and non-ideal NOMA consecutive interference cancellation
circumstances. However, several aspects could be further con-
sidered: (1) include interference cancellation techniques such
as iterative successive interference cancellation and parallel
interference cancellation, (2) consider scalability in a multiuser
context, and (3) use various transmit and receive diversity
strategies, such as MIMO NOMA. The authors of [141] pre-
sented three innovative hybrid RFA versions to limit the impact
of interference while balancing network load in non-uniform
HetNets. They employ load balancing and IM, which are
critical for improving network performance, while also max-
imize network resources in a multi-tier network. Simulation
results showed how the hybrid RFA solutions outperformed
conventional frequency allocation in non-uniform HetNets, in
terms of several performance indicators, including network
coverage, coverage per tier, and rate coverage.

Summary: This section reviews RRM schemes for cross-
co-tier IM in 5G HetNets. The reviewed approaches are
summarized along with the references in Table. XV. We
observe that the problems are mostly modelled to solve cross-
tier interference. Moreover, most of the approaches considered
have a high communication and computational complexity.
Additionally, none of the approaches proposed present results
in terms of user QoE.

VII. COMBINED APPROACHES FOR RRM IN 5G HETNETS

Combined solutions in this survey paper refer to approaches
or algorithms that jointly address IM and a subset or all of UA-
RA-PA challenges in 5G HetNets. This section complements
the discussions in previous sections.

The authors of [142] developed a unique real-time dynamic
UA method for multi-tier cooperative systems called Real-
Time Load Balance (RTLB). RTLB focused on UE mobility
and traffic dynamics while considering both overall network
load and received SINR. Even though the proposed UA
algorithm does not rely on an IM algorithm to improve
its performance, the authors designed a location-based IM
algorithm, the Modified Dummy Interesting Circle, to miti-
gate cross-co-tier interferences in the worst-case scenario of
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Table XV
QUALITATIVE COMPARISON OF INTERFERENCE MITIGATION ALGORITHMS FOR 5G HETNETS

Approach Scheme Link
Direction Interference SE EE QoS QoE Fairness Coverage

Probability Complexity

Cross-tier Co-tier Computational Communication
Graph Theory [132] DL X X x x X () ) x X x Low Low
CO [133] DL X X x x x x x x High High
CO [134] DL X x x x X () ) x x X High High
CO [135] UL X x X x x x x X High High
CO [136] DL X X x x x x x X High High
CO [137] DL X x x x X () ) x x x High High
CO [138] DL X x X x x x x X High High
CO [139] DL x X x x X () ) x x x High High
CO [140] DL X x x x X () ) x x x High High
CO [141] DL X x x x x x x X High High

spectrum sharing among various tier BSs in order to overcome
some of the shortcomings of spectrum partitioning algorithms.
The proposed approaches were compared to state-of-the-art
algorithms such as cell range extension, Rate Biased, Greedy,
Best Response Algorithm and Max SINR [65]. In [143], a
novel IM and PA technique for DL NOMA using MIMO tech-
nology in HetNets was proposed. The PA-based interference
alignment and coordinated beamforming (PA-IA-CB), the two-
stage technique proposed by the authors. The first stage used
two IA-CB steps: one for cancelling inter-cluster and co-tier
interference among small cells and the other for the inter-
cluster interference inside macrocells. Cross-tier interference
was addressed in the second stage by adequately managing
the allocated power to the MBS and SBSs. Finally, the PA
problem was modelled as a non-cooperative game between
MBS and SBS to improve the total system rate. Simulations
results showed that the new PA-IA-CB approach outperformed
traditional MIMO-OMA and MIMO-NOMA based HetNets in
terms of outage probability and system overall rate. Addition-
ally, as small cells and macrocells share CSI, PA-IA-CB has
an important advantage of lowering signalling overhead.

In [144], a new Q-Learning adaptive RA strategy for small
cell-based ultra-dense HetNets was presented and assessed.
This Q-Learning technique provided optimal power to the
SBS for MUEs and SUEs to support QoS provisioning at
the necessary level. When compared to previous studies, this
Q-Learning scheme demonstrated a significant improvement
of the capabilities of MUEs and SUEs in high interference
scenarios. Furthermore, when state-of-the-art methods failed
to maintain the MUE’s minimum necessary capacity due to
significant co-tier and cross-tier interference, the suggested
technique provided a minimum MUE capacity of 2 b/s/Hz,
which is double the minimum required QoS threshold. In
[145], the authors looked into energy-efficient UA and IM
in 5G HetNets. They considered SINR, power usage, and
user distance at the same time for UA and proposed a new
algorithm which associated UEs with BSs based on their cost
values. The algorithm improved EE and IM while eliminating
repetitive switching between users and SBSs. According to
the simulation results, the proposed method can improve
network performance in HetNets. However, the solution only
maximizes EE in DL, not in UL.

A group of researchers in [146] focused on UL coverage in
multi-tier HetNets in the presence of inter-cell interference and

Figure 21. A two-tier HetNet with wideband jammers and reverse frequency
allocation. The MBS, SBSs, users, and wideband jammers follow independent
homogeneous Poisson point processes [146].

jammer interference (as shown in Fig. 21). MBSs, SBSs, users,
and wideband jammers were uniformly deployed utilizing
independent homogeneous Different network factors such as
wideband jammer transmit power, wideband jammer density,
SIR threshold, and wideband jammer distribution area, with
and without RFA, were evaluated. Due to superior inter-
cell interference and jammer interference avoidance, RFA
leads to higher UL coverage when compared to a no-reverse
frequency allocation scenario. Furthermore, due to superior
IM, RFA employment resulted in a 5% increase in UL
coverage compared to soft frequency reuse. On the other
hand, wideband jammers have a consistent transmit power.
Therefore, wideband jammers with variable transmit strengths
should be utilized to minimize coverage probability.

In [147], the authors described an improved ML strategy
for energy-efficient RA in a 5G heterogeneous cloud radio
access network. MBSs and Remote Radio Heads were used
in the network model, which served two groups of users,
one with high QoS requirements and the other with low QoS
requirements. The Q-learning methodology used low-power
Remote Radio Heads for IM between the macro and remote
radio head tiers while supporting cellular users’ QoS needs
and maximizing EE. This centralized online learning approach
achieved significant performance benefits in EE, SE, and data
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rates. However, the drawback of this approach is that if the
central controller goes down, the entire network goes down
and stops working. The creators of [148] have expanded on
their previous work in [147] by incorporating decentralized
RA into the network. Because they know all channel state
information and path losses from the users and remote radio
heads operating under their coverage, MBSs allocate resources
to remote radio heads and cellular users in decentralized RA.
The learning is dispersed among all MBS, with each learning
a common approach Π for allocating RBs and power levels to
users in order to maximize system EE, while still maintaining
QoS requirements. Numerical and practical findings showed
very good results in terms of system’s EE and SE, higher
data rates and reduced Bit Error Rates. RA and IM were
examined for HetNets in which the lowest tier comprises of
(D2D) cells in [149]. They first explore DL/UL decoupling UA
and estimate its capability on IM and network-wide D2D per-
formance increase to address the dead-zone problem. Second,
they present a UL fractional frequency reuse strategy in which
subband (SB) bandwidths are adaptively selected depending on
the following factors: 1) UE density, 2) MBS density, and 3)
small cell on/off switching frequency. According to the find-
ings, the adaptive strategy dramatically minimizes the number
of people affected by outages. Third, a novel concatenated bi-
partite matching (CBM) method was presented for combined
SB and RA of cellular UEs. Numerical findings reveal that
the CBM performs similarly to a complete solution while
taking significantly less time to operate. The CBM is then
enhanced for D2D cells to include centralized mode selection,
SB allocation, and RA. Alternatively, a D2D-cell can reuse
white-list RBs that are not filled by the nearby small cells in an
offline and online semi-distributed way. As a result, D2D-cell
members are unaware of intra-cell and inter-cell interference in
the former and uniformly distribute their maximum allowable
power to v in the latter. Finally, they used the proximity
advantage of D2D UEs to convert D2D sum-rate maximization
into a convex form in the latter. Following a cross-layer design
and based on GAT, the authors of [150] investigated energy-
efficient RA and IM for DL communication in HetNets. First,
they designed a hybrid physical and MAC layer optimization
strategy using a pricing mechanism based on GAT to maximize
network efficiency. Then the researchers considered a two-
stage Stackelberg game, in which the macrocell chooses the
transmission policy in the MAC layer first, and then the
small cells perform energy-efficient PA in the physical layer.
Simulation test results showed that the suggested approach was
more effective than alternative solutions such as channel-aware
Aloha and classic Aloha.

An interference graph-based dynamics small cells clustering
strategy to reduce interference among small cells was proposed
in [151]. The strategy relies on clustering the small cells into
various clusters based on the intensity of their interference.
The authors formulated the problem of designing precoding
weights at MBS and clustered small cells to maximize the
downlink sum-rate of small-cell UEs while keeping per-
SBS power constraints in mind. Precoding weights at MBS
are intended to eliminate multi-MUEs and inter-tier inter-
ference, and precoding weights at clustered small cells are

intended to cancel intra-cluster interference while mitigating
intercluster interference. To obtain a suboptimal solution, a
non-cooperative game-based distributed method was proposed.
According to simulation results, the proposed approaches
effectively increase the downlink sum-rate of small-cell UEs
in comparison to conventional zero forcing pre-coding. The
authors of [152] used a Markov approximation and game-
theoretic approach to address the problem of traffic offload
from MBSs to SBSs. The maximization of sum rate with
price has constructed three joint sub-problems for UA, RA,
and IM. First, they created a problem-specific Markov chain
with adequate transition probabilities that ensure convergence
to a close-to-optimal solution in most cases. They developed
a Markov chain guided algorithm (MIDA) that allows the
network to self-organize to offload traffic from MBSs to SBSs
after reducing the assumptions provided in the Markov ap-
proximation framework. Furthermore, they turned the problem
into a non-cooperative game and devised a payoff-based log-
linear learning technique (POLA) to solve it. After examining
the designs of the MIDA and the POLA, they discovered that
randomness could improve the mixing characteristics of the
underlying Markov chain, leading to the development of a
highly randomized self-organizing algorithm (ROSA) that can
converge to a pure-strategy mixed strategy. The MIDA and the
POLA converge probability. According to simulation results,
the ROSA converges in real-time, and traffic is offloaded
from MBSs to SBSs. The findings of simulations also show
that more randomized algorithms outperform deterministic
algorithms.

Joint UA and inter-cell IM in HetNets in the presence
of an accurate global CSI were investigated in [153]. The
performance improvement problem was approached using a
contract theoretic perspective model. The suggested model
viewed the network as a labour market, with MBSs acting
as employers providing UEs with contracts. A scenario was
considered in which wireless channels were classified into
distinct categories based on their link gains and power con-
sumption costs. The MBSs build the optimal contract given
by a set of contract items in the presence of asymmetric
knowledge and passes them to the users, who subsequently
select the best contract items based on their channel types.
The suggested contracts with complete and asymmetric infor-
mation were compared to the performance of three previously
proposed RA approaches in a Rayleigh fading environment:
joint UA-RA, overlapping coalition-based (which uses exact
CSI estimation), and contract-based interference coordination
(which is based on statistical CSI). The suggested contract-
based methods outperforms the existing solutions in terms of
average service rate, SINR for UEs and total service rate. A
recent paper [154] proposes a combined frequency allocation
and power control optimization approach to increase user com-
munication quality. First, a multiple area frequency allocation
technique was proposed for non-uniform user distribution to
reduce user interference and allot spectrum resources evenly
to dense users. The problem was modelled as a maximum
sum-rate sub-region partition issue that can disperse densely
distributed consumers to separate sub-bands for transmission.
Secondly, a convergent power control method was proposed



30

to increase each user’s transmission performance. Simulation
results showed how the proposed combined scheme achieves
higher system throughput and better user performance than
existing frequency allocation or power control schemes such
as region frequency allocation and universal frequency reuse.
However, the proposed research does not consider bandwidth
allocation problem and does not examine multi-cell scenarios.
The authors of [155] proposed a viable technique to maximize
UA and coordinate inter-cell interference among several cells
in HetNets based on a potential game configuration. The
proposed algorithm can deliver optimal individual offsets and
power savings over frequency and temporal resources for
each cell to enhance network utility. The suggested algorithm
surpassed the frequency reuse-1 technique, achieving a 50%
increase in cell-edge throughput and significant improvements
in average throughput and energy efficiency. Furthermore,
according to simulations, the approach converged to a Nash
equilibrium point and only required a modest number of
iterations. However, the proposed solution ignored UEs’ traffic
profiles and did not assess QoS and QoE.

In [156], an effective interference mitigation strategy was
presented to support high throughput, as required in 5G and
future HetNets. This paper describes novel coordinate multi-
point-based transmission and reception algorithms for effective
RA and IM in HetNets. Simulation-based results showed
that the SE and cell throughput of a coordinate multi-point
based network rise as the number of UEs increases because
inter-cell interference is significantly decreased compared to
a non-coordinate multi-point network. The authors of the
research reported in [157] proposed a distributed multi-agent
learning-based spectrum allocation strategy in which D2D
users learn about the wireless environment and autonomously
select spectrum resources to maximize their throughput and
SE while causing minimal disturbance to cellular users. To
validate the performance of the proposed approach, the re-
searchers used distributed learning in a stochastic geometry-
based realistic multi-tier HetNet (as shown in Fig. 22). Com-
pared to distance-based resource criterion, joint-RA, and link
adaptation schemes, the proposed scheme allowed D2D users
to achieve higher throughput and SE, higher SINR and lower
outage ratio for cellular users, and better computational time
efficiency. It also performed well in dense multi-tier HetNets
without affecting network coverage. To reduce the impact of
interference, the developers of [158] looked at a frequency
allocation technique that allocates complementary sub-bands
to different portions of a macrocell. The effectiveness of
several reverse frequency allocation (RFA) techniques has
been evaluated. Simultaneously, they designed a hybrid M-
4-RFA scheme that combines the best features of several
RFA schemes. As a result, coverage and throughput have
significantly improved. Two strategies are employed to create
approximate closed-form formulas for coverage probability
and rate coverage. The network’s performance is evaluated
using several parameters, indicating that the suggested M-
4-RFA scheme delivers considerable performance benefits
despite being slightly more complex than the baseline 2-
RFA and single frequency reuse methods. The authors of
[159] discussed a practical approach for handling the problems

Figure 22. Infrastructure of HetNets [157].

of admission control, cell association, PA, and throughput
maximization in MBS alone coupled and decoupled HetNet.
An outer approximation approach was used to find a near-
optimal solution to the formulated MINLP problem. In terms
of users associated, minimizing interference, addressing traffic
imbalances, and sum-rate maximization, simulation results
reveal that the proposed unique decoupled cell association
method outperforms the standard coupled cell association
scheme.

Summary: This section reviews combined approaches for
RRM schemes in 5G HetNets which are summarized in
Table. XVI. We observe that the problems are mostly modelled
to solve UA or RA along with cross-co-tier interference and
do not focus on addressing user QoE or fairness.

VIII. SIMULATORS AND HARDWARE FOR 5G HETNETS

The expansion of 5G HetNets research necessitates efficient
algorithm implementation and analysis. Because of UE mo-
bility, variable channel conditions, dynamic traffic needs, and
frequent network disconnections, 5G HetNets implementation
and analysis are difficult. There are a number of open-
source and proprietary simulators available to examine the
performance of 5G HetNets. The majority of them include
a user-friendly interface and a lot of features. NS2 [160], NS3
[161], OPNET [162], and OMNET++ [163] are some of the
open-source simulators. In 2011, NS2 ceased development and
maintenance (the most recent version NS-2.35 was released
on November 4, 2011). As a result, NS3 has become widely
used. OPNET and OMNET++ are also very popular and both
include device and protocol models. NETsim is a proprietary
simulator with a lot of features and an appealing and user-
friendly interface. Given the large user base, open-source
simulators (i.e. OMNET++, NS3) provide several extensions to
meet the needs and requirements of the research community.
Note that NS3 has a faster development rate than the other
alternative simulators.
Software Defined Radios (SDR) and Software Defined Net-
working (SDN) are at the heart of the hardware utilized in
5G HetNets. SDRs, such as Universal Serial Radio Peripheral
(USRP), provide flexibility at the baseband level. The control
and processing software, which runs on either the Field
Programmable Gate Arrays (FPGAs) or the host computer,
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Table XVI
QUALITATIVE COMPARISON OF COMBINED APPROACHES ALGORITHMS FOR 5G HETNETS

Scheme Approach Direction UA-RA-PA Interference SE EE QoS QoE Fairness Coverage
Prob. Complexity

cross-tier co-tier Comput. Implement.
[142] CO DL UA X X x x X () ) x x x High High
[143] GAT DL PA X X x x X () ) x x X Low Low
[144] Q-learning DL PA X X X x x x x x Low High
[145] CO DL UA x X x X x x x x High High
[146] CO UL RA X x x x x x x X High High
[147] Q-learning DL RA X X X X X () ) x x x Low High
[148] Q-learning DL RA X X X X X () ) x x x Low High
[149] CO-GRT DL/UL UA-RA-PA x X x x X () ) x x X Low Low
[150] GAT DL RA-PA X X x X x x x x Low High
[151] GAT DL RA X X X x x x x x Low High
[152] CO and GAT DL UA-RA X x x x X () ) x x x Low Low
[153] GAT DL UA X x x x X () ) x x x Low High
[154] CO DL/UL RA x X x x X () ) x x x High High
[155] GAT DL UA X x x x X () ) x x x Low High
[156] CO DL RA X x X x X () ) x x x High High
[157] DRL DL RA X X X x X () ) x X X Low High
[158] CO DL RA X x x x X () ) x x X High High
[159] CO DL/UL UA X x x x X () ) x x x Low High

Figure 23. Ratios of related works focusing on different approaches.

Figure 24. Ratios of related works focusing on different metrics.

enables the testbed’s physical infrastructure to be reconfigured.

IX. LESSONS LEARNED

A. Avenues and Approaches

Various solutions that address RRM concerns in terms of
UA, RA, PA, and IM were discussed in this survey. These
solutions have mostly employed CO, DRL, GAT, and GRT-
based methodologies in order to fulfill RRM requirements
of the emerging 5G HetNets. The comparative ratios of the
different methodologies employed by the related works studies
are shown in Fig. 23. Most of the schemes are based on CO,
and only a few deployed GRT. Fig. 24, on the other hand,
depicts the ratios of various metrics used by the surveyed
approaches. The majority of them present findings in terms of
throughput, whereas just a handful presented the performance
in terms of QoE. Other very popular metrics employed include
EE, SE, and fairness.

B. Risks and Pitfalls

When designing RRM for UA-RA-PA, there is a risk that
the proposed scheme has a high implementation complexity
or requires a large amount of network information to be
harvested to achieve an optimal solution. Other risks include
addressing potential sub-problems sequentially and not in
parallel, resulting in high latency. Finally, the amount of data
stored and exchanged by different solution components can
easily increase to such a level that the solution itself affects
the performance of the system it is meant to support.

On the other hand, in designing RRM for IM, apart from the
risks already mentioned, there is also a risk that the proposed
scheme does not consider a planned network which presents a
high chance for inter-cell interference, as the users commonly
install the nodes. For the combined approaches, along with the
general aspects previously discussed, there is a high risk of the
slow convergence time of the proposed scheme as the majority
of the proposed solutions are offline based, which does not
help, especially in the context of self-organizing networks.
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X. FUTURE CHALLENGES AND OPPORTUNITIES

This section discusses existing challenges, open issues, and
new research directions relevant to this survey.

A. Challenges

QoS Prediction in Highly Mobile Environments: In regu-
lated settings, the 5G New Radio QoS framework, together
with capabilities like URLLC, is successful in offering a
minimum guaranteed performance. Highly mobile UEs, on the
other hand, frequently face time-varying network performance,
partly because actual QoS frequently surpasses the minimal
or guaranteed level, and partly because the system is occa-
sionally unable to meet QoS requirements. Surprisingly, in
many circumstances, such as specific vehicle driving assistance
systems or telematics applications, performance fluctuations
are not a concern if they can be forecast ahead of time. For
instance, the automotive sector is very interested in having
real-time QoS predictions. It would allow service providers,
mobile network users, and automotive apps to dynamically
adapt their behaviours to the current or imminent QoS level.

Massive Number of Connected Devices: Existing 4G net-
works have been widely employed in IoT applications, and
they are constantly evolving to meet the needs of future IoT
applications. The 5G networks are predicted to significantly
expand today’s IoT support, boosting cellular operations, IoT
security, and network difficulties, as well as moving the
Internet’s future to the edge. However, existing IoT solutions
are up against several obstacles, including node connections,
security, and new standards. In addition, massive connection
networks are required for IoT mMTC applications in smart
cities, healthcare systems, and other areas, creating significant
heterogeneity of IoT and many implementation issues.

Mobility Management for RRM in 5G HetNets: HetNets,
created by combining macrocells and a large number of
densely deployed small cells, are an essential solution for
meeting the increasing network capacity demands and provid-
ing high coverage to wireless users in 5G networks. Mobility
management in 5G architecture faces many challenges due to
the increasing complexity of network topology in 5G HetNets
with the integration of many different base station types.
Intense deployment of small cells, while providing many
benefits, introduces significant mobility management issues
such as frequent handover (HO), HO failure, HO delays, ping-
pong HO, and high energy consumption, resulting in a poor
user experience and heavy signal loads [164].

1) Use of mm-Wave Bands: With the increased demand for
mobile traffic, mmWave offers a significant opportunity
to resolve the conflict between capacity requirements and
spectrum scarcity. mmWave does, however, come with
a number of disadvantages, for example, precipitation
can cause radio waves to be absorbed, scattered, and
diffracted, increasing transmission losses and signal lev-
els. This may have a significant impact on mmWave
signal propagation and result in considerable signal at-
tenuation along the propagation path [165]–[168].

2) Load Balancing: Because of the random positioning
of cells and the mobility of the UEs in highly dense

HetNets, there is a load imbalance between the cells.
Load imbalance within the network accelerates HOF and
reduces network performance efficiency [169]–[172].

3) HO Problems: The extensive deployment of small cells
in the network also brings new challenges that negatively
impact QoS, such as interference, frequent and unneces-
sary HO, HO Failure, and Ping Pong HO. As a result, the
signalling load increases, causing the network’s resources
to be used inefficiently and consumes energy for a faulty
procedure [173]–[176].

4) Security:Malevolent users use mutual authentication be-
tween UEs and BS to protect themselves from network
effects such as Man-in-the-Middle attacks, Denial of
Service attacks, impersonation attacks, and repeat attacks.
Secure transport authentication is required to protect
against these attacks and to provide reliable communi-
cation when moving between networks [177]–[179].

B. Open Issues

5G and AR/VR: Raising the Bar for Immersive Expe-
rience: Not only is the new 5G cellular standard changing
mobile internet use with tablets, smartphones, and other mo-
bile devices, but it is also setting new standards in VR/AR.
This is as with these technologies, it is critical to have a large
amount of data available in a short period. 5G provides the
ideal foundation for this because of its reduced latency. Data
can be delivered swiftly and in real-time because the time
difference is only a few milliseconds. Information can be sent
in milliseconds using the 5G mobile communications standard;
therefore, the two technologies are becoming more widely
used in the workplace. In addition, the low latency of 5G
enables a set of novel innovative AR and VR avenues, making
many tasks more efficient and straightforward. Application
scenarios for AR/VR include:

1) VR/AR in Medicine: The 5G mobile radio standard
expands medical options, including surgical interventions
for instance. Difficult operations can be trained for easily
by using VR/AR. Haptic-visual learning is possible with
VR glasses. Surgeons see, feel, and practice on the
patient’s digital twin - as many times as they need to,
without putting the patient at risk.

2) VR/AR in Architecture and Constructions: Construction
machines may be controlled remotely using the latest 5G
cellular standards. The devices can be managed remotely
from thousands of kilometres away and the network needs
to support high quality real-time video streaming at all
times.

3) AR for Device Maintenance: If an issue arises during
repairs, a technician can use a voice command to contact
a colleague for assistance. Through the camera embedded
in data glasses, the colleague called in sees the same thing
as the technician on the job. The answer can then be
worked out together. Device maintenance as a service
is made more accessible and more efficient using 5G-
enabled AR/VR.

Distributed DRL Framework in Wireless Networks: The
DRL framework requires considerable training for DNNs. This
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might be accomplished at a centralized network controller with
adequate computational power and data collection capabilities.
However, designing a distributed implementation for the DRL
framework that decomposes resource-demanding basic func-
tionalities, such as information collection, sharing, and DNN
training, from RL algorithms at individual devices becomes
a meaningful task for massive end-users with limited capa-
bilities. The network controller can be used to integrate the
fundamental functions. The network infrastructure architecture
that supports these common functionalities for distributed DRL
is still a work in progress.

Network Architecture for Time-critical Communications:
Time-critical communications is a new 5G concept for sup-
porting services with low latency needs, such as XR (a term
that encompasses immersive technologies such as VR, MR,
AR). The goal is to ensure data transmission within specified
latency boundaries (X ms) while maintaining the desired
level of reliability (Y percent). X can range from tens of
milliseconds to one millisecond delay, and Y can range from
99 percent to 99.999 percent reliability, depending on the
user’s needs. The end-to-end dependability and latency are
aided by the 5G RAN, 5G Core (5GC), and transport network,
as well as the device.

RRM with IM techniques used at the Radio Frequency
transceivers: Self-interference cancellation debunks the long-
held concept in wireless network architecture that radios can
only communicate in half-duplex mode on the same channel.
Self-interference cancellation simplifies things immensely, in
addition to providing real in-band full-duplex, which prac-
tically doubles SE. Self-interference cancellation [181] has
the potential to complement and sustain the evolution of 5G
technologies toward denser HetNets, and it can be used in
wireless communication systems in a variety of ways, such as
increased link capacity, spectrum virtualization, any-division
duplexing (ADD), novel relay solutions, and improved inter-
ference coordination. Self-interference cancellation simplifies
the RF front-end for applications like carrier aggregation
and allows for smaller, lighter, and more efficient filters in
radios. Because cancellation is frequency agnostic, a single
cancellation circuit can be dynamically tweaked to isolate dif-
ferent ranges of frequencies, effectively serving as a software-
configured duplexer, software-defined radio’s "Holy Grail."
Not only would such a solution allow handset manufacturers
to save money by replacing multiple chipsets with a single
integrated solution, but it would also enable global roaming
and allow consumers to switch network operators more easily,
potentially leading to improved service quality as a result of
increased competition between service providers [180].

C. Future Research Directions

Some very interesting potential avenues for future research
are discussed next.

Open-RAN: Virtualized and disaggregated RANs are pro-
moted by Open-RAN, in which disaggregated components are
connected via open interfaces and optimized by intelligent
controllers ((as demonstrated in Fig. 25)). Subsequently, a
new RAN design, deployment, and operating paradigm has

emerged. Using a centralized abstraction layer and data-driven
closed-loop control, Open-RAN networks can be constructed
by multiple vendors, using interoperable components that
can be programmatically optimized. Therefore, knowing O-
RAN, its architecture, interfaces, and workflows is critical for
wireless researchers and practitioners.
The Distributed Unit and Centralized Unit concepts were
introduced by the 3GPP as part of the evolution path towards
disaggregated RAN. The introduction of mid-haul allows for
more transport possibilities. The Open-RAN Alliance [182]
defines the RAN Intelligent Controller (RIC) as a logical
function in the RAN that controls and delivers intelligence
to optimize radio RA, implement handovers, manage interfer-
ence, and balance load between cells. RIC consists of a non-
real-time (RT) controller for tasks that require > 1 second
of latency and a near-real-time (RT) controller for tasks that
require 1 second of latency. The management and automation
capabilities of a network are under the watchful eye of
closed-loop automation. Closed-loop automation monitors and
analyzes network occurrences like failures and congestion
using data and analytics, and then takes appropriate action to
resolve any issues. The phrase "loop" refers to the feedback
loop of communication between the network’s performance
being tracked, identified, adjusted, and optimized to allow for
self-optimization. In essence, it is the answer that opens the
door for self-driving networks. Mobile operators can use RIC
(near-RT and non-RT) to install and manage their Open-RAN
with: 1) interoperability and vendor variety, 2) predictive and
intelligence resource management, and 3) subscriber QoS. The
Open-RAN Alliance has proposed a logical function called
Near RT RIC to help intelligently control and organize the
RAN. Handover management, real-time traffic and radio con-
ditions monitoring, RAN slicing, QoS control, enhanced Radio
Resource Administration, per UE controlled load balancing,
radio database management, and interference detection and
mitigation are some of the important functions of near RT RIC.
The management and automation capabilities of a network are
under the watchful eye of closed-loop automation. Closed-
loop automation monitors and analyzes network aspects like
failures and congestion using data analytics, and then takes
appropriate action to resolve any issues. The phrase "loop"
refers to the feedback loop of communication between the
network’s performance being tracked, identified, adjusted, and
optimized to allow for self-optimization. In essence, it is the
answer that opens the door for self-driving networks.

Graphical Processing Units (GPU) are the default standard
for model training and inference in 5G and 6G systems where
big data meets wireless and AI/ML is employed to improve
network performance. Training, inference, and signal process-
ing can all be supported by a GPU-based hardware platform. It
isn’t only about GPU hardware, though. Software for program-
ming GPUs, as well as Software Defined Kits and libraries
for application development, are also important. CUDA, the
world’s only commercially viable C/C++–based parallel pro-
gramming framework, is used to program GPUs. One of the
services that the Service Management Orchestration/Non-RT
RIC uses to update and fine-tune inference models running
under the Near-RT RIC might be the data analytics pipeline.
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Figure 25. Architecture for RT-RIC and Non-RT RIC with different loops.

5G Core Network: In order to support the innovative
5G technologies and accommodate emerging services in 5G
HetNets, the 3GPP has proposed the 5G Reference Point
System Architecture (RPSA) [183]. In RPSA, the 5G control
plane operations and common data repositories are offered by
a collection of interconnected NFs, each having permissions
to access one another’s services. In RPSA, the Policy Control
Function (PCF) plays a critical role, as through it operators can
manage the network behaviour. PCF provides transparency and
control over the utilisation of network resources, especially
important during real-time service delivery. Although PCF
supports QoS control along with traffic steering/routing, it
lacks the dynamic network selection based on the status of
network resources or based on the level of the service to be
delivered. As a result, there is an evident need to enhance the
PCF functionality to focus on transmission performance, while
also supporting power efficiency.

DRL for Cryptocurrency Management in Wireless Net-
works: Wireless networks have been associated with diverse
pricing and economic models [184], [185]. Wireless con-
sumers, for example, pay to access radio resources or mobile
services. Users can also receive money if they contribute to
the networks by acting as a relay or cache. Using real money
and cash in such circumstances, on the other hand, raises
a slew of accounting, security, and privacy concerns. The
notion of cryptocurrency based on blockchain technology has
recently been proposed and deployed in wireless networks,
such as [186], and has shown to be a secure and effective
solution. However, the value of cryptocurrencies, whether in a
token or a coin, can be highly volatile, depending on various
market conditions. The tokens can be kept or spent by wireless
customers, for example, for radio resource access and service
usage, or they can be exchanged for actual money. DRL can
be used to achieve the maximum long-term value of bitcoin
management for wireless users in a random cryptocurrency
market setting, as shown in [187].

Data-driven RRM in 6G: 6G will benefit from speedier
and real-time RRM solutions without explicit mathematical
models, thanks to the use of ML techniques and enormous
amounts of data [188]. Indeed, data-driven RRM with artificial
intelligence (AI) has the potential to dynamically allocate
resources based on requirements. This will enable operators
to make real-time informed decisions on how to provide
resources to various users and services based on the knowledge
extracted through big data algorithms. Finally, 6G performance
metrics such as latency, jitter, reliability, EE, SE, connectivity,
mobility, and AI performance metrics such as prediction
accuracy and convergence should be studied combined.

D. Ongoing 5G Projects

Among many 5G network-related ongoing projects world-
wide, some interesting ones with large research potential are
presented next.

5G Brasil4: is an independent private project under the
umbrella of Telebrasil. 5G Brasil’s key objective is to facilitate
the growth of the 5G ecosystem in Brazil by promoting
and establishing cooperation between the Information and
Communication Technology (ICT) sector and all areas of the
Brazilian government and regulatory agencies; seek financial
support for the promotion and usage of 5G technology; repre-
sent members’ common interests in national and international
5G forums.

5GMF5: The 5th Generation Mobile Promotion Forum
(5GMF) was set up to further advance 5G social adoption,
encouragelocal and industrial use, and identify new usecases
to solve social problems. It supports research and development
related to 5G and standardization, as well as collaboration with
related organizations, collection of information, organisation
of dissemination activities, etc.

4https://5gbrasil.telebrasil.org.br/
5https://5gmf.jp/en/

https://5gbrasil.telebrasil.org.br/
https://5gmf.jp/en/
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5G Forum Korea6: was established by the Korean
Ministry of Research, ICT and Future Planning, and Mobile
Industries to help develop 5G networks and 5G services and
contribute to their globalization. These include social network-
ing services, 3D mobile imaging, AI, high-speed services and
ultra- and high-definition resolution and holographic media
technologies.

5G Americas7: is an industry trade association consisting
of leading distributors and suppliers of 5G telecommunications
services. The organization’s mission is to support and encour-
age the growth of LTE wireless technology and its evolution
beyond 5G across the networks, facilities, applications, and
wirelessly connected devices of the Americas’ ecosystem.

5G IA’s8: key objective is to encourage and support
European leadership in 5G, its growth, implementation, and
evolution and to ensure a strong European 5G voice world-
wide. In strategic areas, 5G IA carries out a broad range of
activities, including standardization, R&D initiatives, technical
skills improvement activities, international cooperation, etc.

XI. CONCLUSIONS

The upcoming 5G networks will support various devices
and a wide range of innovative applications, adding other
aspects to the original requirements of increased data rates
and near-zero latency. Among others, 5G is also expected
to support Internet of Things (IoT) and Industrial Internet of
Things (IIoT), Internet of Vehicles (IoV), and smart electricity
grids. Radio resource allocations must be done efficiently and
effectively to provide excellent support. This study surveyed a
wide range of radio resource management techniques based on
CO, DRL GAT, GRT in 5G HetNets, proposed between 2017-
2021. The survey started with an overview of 5G HetNets,
their importance in the context of COVID-19. Next, a thorough
discussion was carried out about the challenges that persist in
5G HetNets, with focus on UA, RA, PA and IM. A highly
relevant taxonomy was then introduced useful for interested re-
searchers. According to this taxonomy, existing RRM schemes
were reviewed and classified. The discussion used six classic
metrics, namely coverage probability, fairness, QoE, QoS, EE
and SE. The paper was concluded with a discussion of current
challenges, open issues and potential novel research directions,
as well as a sample of very important worldwide 5G projects.
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