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Abstract—Providing premium panoramic livecast services to
worldwide viewers considering their ultra-high data rate and
delay-sensitivity is a significant challenge in the current network
delivery environment. Therefore, it is important to design an
efficient way of improving viewer quality of experience while
conserving bandwidth resources. In this context, this paper
introduces a novel cost-efficient federated transmission frame-
work called FedLive and a set of algorithms to support it.
First a gradient-based clustering method is proposed to group
the geo-distributed viewers with similar viewing behavior into
content delivery alliances by exploiting the geometric properties
of the gradient loss. Next, a Reinforced Variational Inference
(RVI) structure-based approach is proposed to assist with the
collaborative training of the viewer field of view (FoV) prediction
model while also accelerating the tile delivery process. A novel
prediction-based asynchronous delivery algorithm is designed
in which both the high accuracy FoV prediction and efficient
live 360◦ video transmission are achieved in a decentralized
manner. FedLive was implemented for testing and an open
source code is made available. Finally, the proposed solution was
evaluated against a benchmark and three alternative state-of-
the-art solutions using a real-world dataset. The experimental
results show that our approach provides the highest prediction
accuracy, better service performance, and saves bandwidth when
compared with the other solutions.

I. INTRODUCTION

Supported by the latest evolution of wireless communication
and hardware solutions, Panoramic Livecast Services (PLS) is
a new type of immersive and interactive entertainment which
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is gaining increasing popularity. Nowadays, users can access
easily rich live 360◦ video content from commercial content
providers, such as YouTube VR1, Google VR2, NYT News3,
via various types of tethered and wireless Head-Mounted Dis-
plays (HMD). The rapid development of HMD devices offers
the public feasible opportunities to interact with the Metaverse,
seen as the next-generation Internet which supports the vision
of future human life and work [1]. However, supporting the
ultimate panoramic video viewing experience is very challeng-
ing in terms of current livecast delivery. For instance, an ultra
high definition or a 12K immersive video experience requires
more than 680 Mbps bandwidth [2], and has stringent latency
requirements (i.e. reaction within 20ms and at least 60Hz
refresh rate) to avoid motion sickness [3]. Providing premium
PLS consumes almost ten times the amount of data compared
with the current worldwide average bandwidth [4]. In addition,
multi-resolution panoramic livecast deployment requires, apart
from bandwidth, intensive computing support as well, in order
to match different configurations of networks and end devices.
Solutions are sought to reduce this dual communication and
computation resource pressure.

Since a viewer only watches a small portion of the sphere
video at any given time, viewport prediction is a promis-
ing technology for PLS [5]. Predicting viewers’ Field of
View (FoV) allows the PLS system to stream high-resolution
FoV and low-resolution background to the viewers, saving
bandwidth resources and reducing the motion-to-photon delay
[6]–[9]. However, the performance of these solutions mainly
hinges on the FoV prediction accuracy, since inaccuracy leads
to mismatch tiles fetching, which further determines waste
of bandwidth resources. To improve the accuracy, Hou et al.
in [6] designed a deep learning-based viewpoint prediction
method to facilitate adaptive 360◦ video streaming in mobile
networks. Fan et al. [7] jointly considered head movement
patterns and saliency features of the viewers in their prediction
model design, and Nguyen et al. [8] employed the inter-
dependency between the head motion and saliency features
in their solution. Wu et al. in [10] proposed a preference-

1https://vr.youtube.com
2https://arvr.google.com/vr
3http://www.nytimes.com/marketing/nytvr



aware viewport prediction network by extracting the saliency
features of 360-degree video. Other prediction paradigms such
as involving viewer observation location [9], user individual
behaviours [11], and other evaluation metrics for 360 video
streaming [12] are also considered in alternative solutions.
Although the aforementioned solutions provided satisfactory
prediction accuracy, they all follow a train-and-then-predict
approach, which requires information about the whole video
and sufficient number of user viewing records and introduces
a large model training delay. Therefore this approach cannot
be directly applied to livecast services [13], [14].

To address this issue, new online solutions are proposed in
the literature [14]–[19]. For example, Feng et al. [14] presented
a central online FoV prediction solution for live virtual reality
(VR) streaming called LiveDeep. The solution introduced
three functions including an online FoV prediction model, a
lifelong model update, and a real-time FoV inference mecha-
nism. In the quest to improve the performance, reinforcement
learning (RL)-based solutions have also been proposed [15]–
[20]. Feng et al. introduced an object semantics-based FoV
prediction approach that employs a 4-tuple (state, action, pol-
icy, reward) representation of live mobile VR video streaming
in a RL problem formulation [15]. Then, the authors designed
a RL-based algorithm to predict user region of interest (ROI)
and control tile-based content delivery. Jiang et al. [16] pro-
posed a novel deep RL framework to optimize online video
streaming in terms of viewport prediction, prefetch scheduling,
and rate adaptation. Two centralized multi-model deep RL
frameworks are provided by Pang et al. [17] and Zhang et
al. [18] to capture interactive features of live 360◦ video
and optimize QoE in terms of multiple metrics, respectively.
However, supporting premium PLS requires employment of
centralized solutions to offer online FoV prediction for each
individual, which is extremely expensive. Scalability issues
arise as the number of viewers grows. Therefore, Ban et
al. [20] designed a Multi-Agent deep RL-based framework
to improve training efficiency of their prediction model by
offloading the training tasks to large number of viewers. Some
researches [21], [22] suggested leveraging the similarity of
user viewing behaviour to overcome the scalability challenge.
Xie et al. [22] conducted an analysis of the viewer behaviour
similarity and proposed a novel cross-user learning framework
to perform online training based on a unified prediction model
for viewers with similar viewing behaviours.

However, the above-discussed solutions do not consider
the fact that the live panoramic videos are delivered over
an asynchronous networked system in which the viewers are
geographically dispersed. Viewers in different geographical
locations have diverse stream latencies and time lags between
different viewers exist. Ignoring the time lag may make
the similarity analysis and the collaborative model training
difficult in terms of deployment since the viewers are often in
different playback states and have time-varying personalized
actions. We believe that PLS should take into account of the
asynchronous nature of content distribution and find a new re-
search avenue for prediction model training and data delivery.

Yet, most of the current collaborative 360◦ video transmission
solutions are synchronous [23]–[28]. For instance, Mao et al.
[23] presented a motion-prediction-based multicast approach
to transmit cooperatively 360◦ videos to multiple viewers.
Chen et al. [24] considered a system that provides multi-users
panoramic video streaming services through a single wireless
access point and designed a wireless scheduling algorithm to
deliver tiles for multiple users based on prediction results.
In addition, some innovative video streaming technologies
such as scalable video coding [25], [26], shared coded picture
[27], caching [28] and super-resolution [29], [30] were also
designed to enhance collaborative transmission in synchronous
manner. As a synchronous design reduces the flexibility of live
360◦ video delivery in networked PLS systems, it motivates
us to design a new collaborative data transmission framework
for PLS that is online, asynchronous, and bandwidth-saving.

This paper proposes a novel asynchronous cost-efficient
federated transmission framework called FedLive for PLS.
FedLive includes two major contributions: a Gradient-based
Viewer Clustering (GVC) method in order to improve com-
munication efficiency for both model training and data deliv-
ery, and a Reinforced Variational Inference (RVI) structure-
based asynchronous delivery approach whose application is
a Prediction-based Asynchronous Delivery (PAD) algorithm
for collaborative FoV prediction model training and tile-based
data transmission. GVC groups the viewers into networked
alliances based on the similarity of their viewport and head-
motion actions. The similarity of behavior can be expressed
as the cosine similarity of the gradient loss between different
viewers based on clustered federated learning [31]. RVI tar-
gets FoV prediction, which is a typical probability inference
problem since each of video tiles has a certain probability of
being watched by the viewers. It uses probabilistic inference
algorithms to optimize model training, and follows the foot-
steps of the famous computer scientists David Silver [32] and
Sergey Levine [33], by expanding the design space of optimal
control by bridging the gap between variational inference
and RL. The RL framework offers an interactive evolutionary
learning design for probabilistic inference in problem-solving
and brings the potential for devising an online asynchronous
algorithm with inference technology. In this context, reinforced
variational inference (RVI) is a novel structure-based joint
prediction and delivery approach which optimizes the process
of distributed online learning and tile-based delivery by for-
mulating the joint optimization problem in the RVI framework
space. To the best of our knowledge, this work is the first
attempt to apply clustered federated learning and RVI on PLS.
GVC and RVI are deployed by the proposed FedLive frame-
work, which is evaluated through both numerical simulations
with the benchmark and prototype system experiments. The
experimental results show that FedLive outperforms several
state-of-the-art solutions [10], [14], [15] in terms of prediction
accuracy, bandwidth consumption and delay reduction.
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Fig. 1. Comprehensive analysis for the collecting data and the publicity available dataset [34].

II. PROBLEM STATEMENT AND MOTIVATION

In this section, we first introduce briefly PLS. Next, we
analyze the time-shift phenomenon and behavior similarity,
then explain how these factors motivate us to design FedLive.

A. Overview of Panoramic Livecast Services (PLS)

A scenario in which content providers, like Twitch, provide
various types of live panoramic video content such as sports,
online games, education, etc. is considered. Worldwide view-
ers can access PLS and enjoy live 360-degree videos using
HMDs. The panoramic video is generally captured in real-time
by an omnidirectional camera and contains every direction
of view surrounding the camera. As they are more than just
display terminals, HMDs also provide head- and eye-tracking
functions enabling sensing of user viewing orientation and
viewpoint in real-time. With this information, HMDs identify
the viewer region of interest (ROI) and render the correspond-
ing portion of frames on their screen. Hence, PLS inevitably
needs to provide viewers with the ability to explore freely the
world of the panoramic video to a certain extent. At the same
time, this freedom service paradigm poses a challenge in terms
of efficient data delivery in the networked PLS system. Driven
by the viewers’ differentiated preference and random behavior,
PLS is required to provide each individual with personalized
360◦ live streaming.

Video tiling is one of the most common solutions to
realize personalized PLS streaming by cropping the 360◦ video
frames into multiple multi-resolution tiles under equirectangu-
lar projection and serving the viewers with specific tiles [35].
Since the regions the viewer is interested in are limited to
about 11.6%-26.7% of the whole panoramic image [36], the
PLS providers can also conserve bandwidth by serving the
viewers with low-definition tiles for the background and high-
resolution tiles within the region of interest. In addition, video
tiling-based schemes also enable the PLS system to reuse tiles
among users with similar viewing behavior. However, there
is a need to design such a data transmission solution which
uses a predict-and-then-deliver approach to effectively identify
and distribute the multiple video tiles generated on the fly
based on user viewing characteristics in order to achieve high-
quality PLS. Providing premium PLS based on the tile-based
streaming requires support from two key technologies: 1) a
time-sensitive and high-accurate FoV prediction approach that
can forecast the demand tiles of each viewer in real-time; 2)

a tile-based efficient data transmission that can flexibly adjust
the delivery path of tiles to accommodate the time-varying
network conditions and viewing behaviour of global viewers.

B. Motivation

The previous analysis indicates that the solution design
must be performed based on the knowledge of the changing
pattern of user viewing behavior and network conditions. In
this context, we collected latency data between the content
provider and its viewers located in different regions. Then,
a trace-driven study was conducted to profile the users and
inform the FedLive design based on the collected data and
dataset [34].

Time-shift phenomenon. The PLS system is responsible
for collecting the panoramic video content and for distributing
the content to regional data centers such as content delivery
network (CDN) servers. Once the content arrives at the re-
gional server, it needs to be converted into the multi-resolution
tiles and then waits for viewer requests. From collection to
finally reaching the viewers, the content lifetime differs for
each viewer since it is susceptible to many factors including
geographical location, heterogeneous network conditions, and
workload of the servers. In other words, there is a time lag
between different viewers requesting and receiving the same
frame of the video. We call this aspect time-shift phenomenon
and the time lag between different viewers as shifted time.
To verify the time-shift phenomenon, we crawled the lifetime
variation of the content from a broadcaster to its viewers
in Twitch.tv and the results are shown in fig. 1 (a). The
viewers are equipped with different devices and are from
different geographical regions including North Asia (Tokyo),
North America (Los Angeles, Waterloo), and Asia-Pacific
(Hongkong, Singapore). This results indicate that the time-
shift phenomenon is common and that the shift time can be
even up to 4 seconds or more due to the geo-distribution. It is
estimated that the time-shift phenomenon will be more serious
for bandwidth-intensive PLS.

Similar behaviour. The analysis of similarity in viewer
viewing behaviors is based on a public dataset [34], which
contains the head movement trajectories of 48 users for 18
different videos. The corresponding viewpoint and FoV of
each viewer under equirectangular projection can be generated
by the rules provided in [37]. Starting from these time-
series records, we analyze the FoV coverage rate between



different viewers, the similarity of the viewpoint movement
and the correlation coefficient of the above two factors. Fig.
1 (b) shows the tile-based heatmap of the average collective
visibility for all videos. In Fig. 1 (b), X-axis represents the
rank order of frame tiles, and Y-axis represents the video
frames’ time slot. The more popular the tile is, the smaller
the number of the rank index. Thus the ”tile 0” represents
the tile within the FoV region with the greatest number of
viewers. Specifically, we only show the popularity of the top
72 tiles here. The legend on the right side indicates the warmer
the color (yellow) is, the more viewers, and the colder the
color, the fewer viewers. The warm colors are concentrated
on the few tiles with the highest attention on the left side,
as shown in Fig. 1 (b). As expected, we observe that the
viewer FoV is mainly focused on a small portion of all tiles.
As shown in fig. 1 (c), the cosine similarity of head movement
between two viewers with similar previous FoV (above 80%
overlap) are distributed mainly in high-value intervals. For
instance, the similarity value interval [0.8, 1] holds more than
87% population. Fig. 1 (d) shows the correlation coefficient
distribution of the viewer pairs for all videos and reveal that
the FoV coverage rate and the cosine similarity of the head
movement are positively correlated.

The PLS system is a networked system in which multiple
types of nodes are involved, including content providers, edge
servers, and viewers with diverse devices. Providing low-
latency and bandwidth-intensive PLS in such a complex net-
worked system requires the design of an online, asynchronous,
distributed, and cost-efficient solution in order to achieve high-
quality viewer QoE. The time-shift phenomenon provides an
opportunity to reuse existing FOV prediction models, and the
similar behaviour makes tile reuse possible. These aspects
have inspired us to design a new transmission framework that
allows models and tiles be jointly reused to facilitate each
other in PLS with the time-shift phenomenon. For this reason,
we select clustered federated learning as the criterion to group
viewers who are likely to reuse data and further provide a
reinforced variational inference solution to assist other viewers
in prediction model training and data transmission.

III. FEDLIVE FRAMEWORK AND SYSTEM MODEL

In this section, we first present the network model. We show
the FoV prediction for tiled PLS, including the equirectangular
projection and tile-based streaming. Finally, we introduce
FedLife, the federated transmission framework for PLS.

The scalars are represented in lowercase italic symbols.
Lowercase italics bold type and uppercase italics type indi-
cate vectors and sets, respectively. Uppercase, double-strike
bold fonts represent matrices. Table I lists all mathematical
notations used in this paper.

A. Network Model

We consider the network topology of the PLS system as
an undirected graph G(V, E) with |V| nodes and |E| links.
Let Vp,Vs,Vc ∈ V denote the set of content providers, edge
servers and the viewers, respectively. We assume that the time

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
V, E The set of nodes and links of the network topology.

Vp,Vs,Vc The set of content providers, edge servers and viewers.
T A set of the time-slotted system

ce(t) The available bandwidth resource of the link e at time t.
F The set of different pieces of 360° video content.

m,M FoV prediction of viewer v.
m∗,M∗ The ground truth FoV of viewer.

B The set of different resolutions for each tile.
D(v) The viewer’s bitrate request for a specific frame.

T i
u,v(t) The t-slot shifted time of a node pair (u,v).
M,Mi The set of local FOV records for all viewers (viewer i).
R(η) Risk function
R(s, a) Return function (total reward of all viewers)
Qπ(s, a) Action-value function under policy π
Vπ(s, a) State-value function under policy π

is slotted in PLS and denoted by T = {1, 2, ...}. Thus, the
minimum interval of stream delay between different nodes is
one slot. Since the network is subject to various cross-traffic
from other applications, we define the available bandwidth
resource of the link e = (u, v) ∈ E , u, v ∈ V at time t as a
time-varying variable ce(t). Thus, we have ce(t) ∈ [0, cmax

e ]
where cmax

e is the maximum available bandwidth of link e. It is
reasonable to assume that the content providers have sufficient
computing capability to transcode the tile-level 360° video
streaming and provide tile-based streaming with different
standard resolutions in real time. The mainstream content
providers such as YouTube, Netflix, etc., have their powerful
own data center infrastructure to provide online transcoding
for their rich video streaming content.

B. FoV Prediction in Tiled PLS

We define the PLS library as set F = {f1, f2, ..., f|F|}
which consist of |F| different pieces of 360◦ video content.
Each video is divided into small video segments for trans-
mission, and the video segment is further uniformly sampled
into n frames. We define the set of frames of video fi
as Fi = {f1i , ..., f ti , ...}. We assume that the PLS system
processes the sphere video with equirectangular projection,
and each video can be further divided into multiple rectangular
tiles. Thus, the FoV prediction of viewer v ∈ Vc can be
represented by a binary matrix M(v):

M(v) =

 m1,1 ... m1,L

... mk,l ...
mK,1 ... mK,L


where K and L denote the number of rows and columns,
respectively, with k ∈ [1,K], l ∈ [1, L] and mk,l ∈ {0, 1}.

We define M∗
v(t) as the ground truth requests of viewer v

at time t. We denote the set of different resolutions for each
tile as B = {b1, b2, ..., b|B|} where the bitrate of the highest
resolution is b1 and the lowest is bm. The viewer’s request for
a specific frame at time t can be expressed as a matrix D(v):

D(v) =

 d1,1 ... d1,L
... dk,l ...
dK,1 ... dK,L
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Fig. 2. Diagram of Federated Transmission Framework for PLS.

where dk,l ∈ B, ∀k, l. We consider that the content provider
and edge servers have all the tiles of the videos, while the
viewers only have the tiles requested by themselves. Based on
this information, the shifted time of any node pairs at a time
t can also be calculated. We define the t-slot shifted time of
a node pair (u, v) ∈ V for bi-bitrate tile as T i

u,v(t).

C. FedLive Framework for PLS

Fig. 2 presents the diagram of FedLive, the proposed
federated transmission framework for PLS. In FedLive multi-
ple types of nodes are involved, including content provider,
edge servers, and viewers with HMDs [38], [39]. FedLive
contains two major parallel processes: federated learning for
FoV prediction and content delivery, involving three blocks at
viewers side, edge servers side and content provider side.

During federated learning, viewers train a local FoV
prediction model with their local viewing records and saliency
feature of video images. Based on the predicted results pro-
viding by the model, viewer determines the resolution of each
prefetching tile for tile-based 360° video content. Note that
the FoV prediction technique is the necessary foundation and
prerequisite for the adaptive bitrate streaming (ABR) of 360-
degree video. One feasible way is to predict the viewer’s
future region of interest by the FoV prediction model and then
determine the resolution of tile streaming based on an ABR
method [6], [22], [40]–[46].

During this training process, the loss information as output
will be used for the local backward propagation and will also
be employed by the nearby edge servers as input to the user
clustering algorithm (m∗+m). Specifically, the loss matrix is
calculated by adding the predicted FoV binary matrix M to
the ground truth binary matrix M∗. Thus, the value of 2 in the
loss matrix (m∗ +m) represents True-Positive (TP, tile that is
actually viewed and is predicted to be within FoV) prediction
results, 1 indicates False-Positive (FP, tile that is not actually
viewed but is predicted to be within FoV) or False-Negative

(FN, tile that is actually viewed but is predicted to be outside
FoV), and 0 means True-Negative (TN, tile that is not actually
viewed and is predicted to be outside FoV). Once the edge
servers have collected the loss information from all viewers,
they will invoke the gradient-based user clustering algorithm
to divide the viewers into multiple viewer clusters.

At the same time, the edge servers continuously summarize
the loss values for each cluster and send them to the content
provider along with the clustering results as input for the
unified model training. With the loss information provided
by the edge servers, the content provider updates the unified
model for each cluster with the weighted average loss value.
This process extends the concept of federated learning [47]
by adding clustering. Further, the unified models will be
distributed to viewers as part of the live streaming, while the
prefecthing priority of different tiles are determined as the
predicted results of the unified models.

During the transmission process, the content provider
first provides the edge servers the specific unified models
and multi-resolution tiled 360◦ videos based on the cluster-
ing results submitted by the servers. Then, the edge servers
distribute the unified models to viewers and support the tile-
based live streaming according to viewers’ requests. After
receiving the unified model, viewers transform it into their
local model and use it to predict the FOV. The prediction
results are further used to determine the resolution of tiles in
different regions. Specifically, FedLive can adapt to segment-
based video transcoding and the system distributes the video
content in segments. In addition, service demands may exceed
the server’s capacity with the increasing of access viewers.

In order to offload the traffic, in our framework, any edge
server is allowed to redirect viewer requests to other edge
servers or to the viewers who also access the server and are
willing to offer their idle resources to support services. The
proximal viewers belong to the same cluster of the requested
viewer are preferred during redirection since they have the



potential to provide not only the tiles but also the models.
The viewers can access multiple alternative nodes, which may
reduce the delay to get the demanded video content and
prediction model while saving bandwidth for the PLS system.
Another important issue for livecast services is the online
video transcoding. According to the previous assumptions in
the network model, we consider that the content provider com-
pletes all the transcoding workload and streams the transcoded
tile-based video content to the edge servers.

As the FedLive framework is focused on the federated
learning of the FoV prediction and content delivery of 360°
video streaming based on a prediction model, this manuscript
does not include a discussion on transcoding issues and
assumes that the content provider and edge servers provides
video content at all resolutions required by viewers. In our
previous work, we also proposed two joint optimization so-
lution for data transmission and online transcoding, namely
augmented queue model [48] and augmented graph model
[49]. In the future, we will also consider the joint optimization
of federated FoV prediction, content delivery, and transcoding
task offloading in a FedLive network system.

IV. GRADIENT-BASED VIEWER CLUSTERING AND
REINFORCED VARIATIONAL INFERENCE FOR FEDERATED

TRANSMISSION OPTIMIZATION

In this section, we first provide the necessary background
about reinforced variational inference (RVI). Then, we give a
brief introduction of clustered federated learning and gradient-
based user clustering. Finally, we formulate the joint FoV
prediction and tiled transmission problem in the RVI structure.

A. Background
1) Clustered federated learning [31]. This solution as-

sumes that the data generating distributions of different users
may be similar but disagreeing. Thus, finding only one sin-
gle model that works for all users may not be an effec-
tive way in this situation. To facilitate an explanation, we
first define the set of local FoV records for all viewers
as {M1,M2, ...,M|Vc|}, which follows the data generating
distributions {ψ1, .., ψk}. We denote a parametrized function
πη : X → Y with η as the FoV prediction model and a
loss function l : Y × Y → R≥0. We define a risk function
R(η) associated with ψ to evaluate the agreement of the
parametrized function πη and ψ:

R(η) =

∫
l (πη (x) , y) dψ(x, y) (1)

The parametrized function πη is trained with viewer’s
viewing records whose distribution belongs to {ψ1, .., ψk}.
However, the data generating distributions is unknown for
us, and so we cannot separate viewers by directly calculating
the risk for each viewer. In this context, clustered federated
learning provides a top-down way to recursively bi-partition
the viewer population. Clustered federated learning defines an
empirical risk function of viewer i as sampling results:

Ei(η) =
∑
x∈Di

l (πη (xi) , yi) (2)

The separation criteria is defined in the next conditions:∥∥∥∥∥ ∑
vi∈Vc

|Di|
|D|
▽η Ei(η

∗)

∥∥∥∥∥ < ξ1 (3a)

max
vi∈Vc

∥▽ηEi (η
∗)∥ > ξ2 (3b)

where |D| =
∑

vi∈Vc
|Di|, and ξ1, ξ2 are the constants that

satisfy ξ2 > ξ1 > 0. Inequation (3a) indicates that there
is a stationary point for all distributions D, and (3b) shows
that there exits at least one viewer far from the stationary
point. Namely, the overall gradient loss cannot represent the
convergence of the local models for the individual viewers.
We should conduct grouped training for viewers when the
unified model converges but the local model still has a large
gradient loss. The design of our gradient-based user clustering
algorithm will follow the separation criteria.

2) Reinforced variational inference (RVI) [32]. The in-
ference problem considers to find the posterior p(y|x) under
a environment represented by a probability model p(y)p(x|y)
with observations x and latent variables y. Since the exact
posterior is often difficult to obtain, a common solution is to
find an approximate distribution q(y|x) that is close to the true
posterior p(y|x). In our problem, the approximate distribution
q(y|x) is represented by the parametrized function πη for the
FoV prediction, and the true posterior p(y|x) follows one of
the data generating distributions {ψ1, ..., ψk}.

In general, the viewer i’s viewing records can be represented
as a set of sequences Mi = {Mi,1, ..,Mi,t, ...} where Mi,t

denotes the ground truth FoV of viewer i at time t. Mi,t is
what we want to predict, and represents the latent variables
y in the inference problem. Thus, observation x denotes the
input video frame f and historical viewing record Mi,t−1.
In variational inference (VI), the objective function L(q) is
introduced to minimize the Kullback-Leibler (KL) divergence
between the approximate distribution q(y|x) controlled by πη
in our problem, and the true posterior p(y|x).

L(q) =
∫
q(y|x) log p(x|y)p(y)

q(y|x)
dy (4)

where p(x|y) is constant in our problem because the video
frame is not affected by the viewer’s viewpoint. We rewrite
q(y|x) as qη(y|x) for clarity. We consider FOV’s inference
process as a Markovian model and plug the parameters d and f
into the objective function L(qη). We can get the decomposed
variational lower bound as follows:

L(qη) = E
[
log

p(M1|f)
qη(M1|f)

+ log
p(M2|M1, f)

qη(M2|M1, f)
+ ...+

log
p(MT |MT−1, f)

qη(MT |MT−1, f)

]
= E

[
T∑

t=1

−rt(Mt,Mt−1, f)

] (5)

where rt(Mt,Mt−1, f) = − log
(

p(Mt|Mt−1)
qη(Mt|Mt−1,f)

)
. Thus, we

can express VI as a 4-tuple Markov decision process where
• State S : st ≜ (Mt−1, ft). For our problem, the state st

at time t includes the viewer’s viewing record Mt−1 at
previous time-slot and the video frame ft at slot t.



• Action A : at ≜ Mt ∼ qη(Mt|Mt−1, ft). The action at
at time t represents the viewpoint records Mt at time t
based on the posterior qη , which can be regarded as the
viewpoint movement according to the frame changes.

• Transition P (M′|M, f) ≜ (M′, f) ∼ ((M, f),M′) →
[0, 1]. The transition P is a probability function from the
state (M, f) to (M′, f) when the action a = d′ is taken.

• Return R ≜
∑

v∈Vc
−L(qη). The return is the total

reward R of all viewers which is denoted as

R(s,a) =
∑
v∈Vc

∑
t∈T

E[rvt |st = s,at = a] (6)

where rvt is the instant reward of viewer v at time t.
The policy π is a mapping S × A → [0, 1] and is denoted

by the parametrized function πη in our problem.
Thus, different users’ reward functions are independent,

allowing us to design a distributed Federated learning solution
in the asynchronous network system. Based on a standard
regularity assumption, we assume that the Markov chain of
VI Markov decision process is irreducible and aperiodic [50].
The state-value function Vπ(s) and the action-value function
Qπ(s,a) can be expressed as follows:

Qπ(s,a) =
∑
v∈Vc

E [r̄t+1 −Rv(π, t)| s0, a0, π] (7a)

Vπ(s) =
∑
a∈A

π(s,a)Qπ(s,a) (7b)

where r̄t+1 = 1
|Vc|

∑
v∈Vc

rvt+1. With Bellman equations, we
can design multi-types RL algorithms, such as actor-critic
(AC) [51] or Q-learning [52], to solve the inference problems.
Since the PLS system is asynchronous, the AC algorithm is an
effective alternative solution to achieve collaborative learning
between viewers.

B. Gradient-Based Viewer Clustering (GVC)

When employing clustered federated learning in the FedLive
framework, we need to consider the workflow of the user
clustering. The PLS system start when the first viewer requests
a specific video from content provider. The request will be
captured by the nearby edge server. Next, the edge server
provides the viewer with the requested live streaming and a
unified model. The viewer will use the unified model as the
local model to predict FoV and upload the gradient loss to the
PLS system. In the meanwhile, the viewer can choose whether
to train the local model or just wait for the next unified model
produced by the content provider. As the number of access
viewers increases, the edge servers will collect the empirical
risk Ei(η) updated by the accessed viewers and calculate the
separation criteria with the unified model πη∗(x) according to
(2). If the separation criteria is met, the edge server will first
group the viewers and transmit the loss gradient to the content
provider in groups. The similarity between any two viewers
with the same unified model is represented as the cosine
similarity βi,j of their loss gradient ▽ηEi(η

∗) as follows:

βi,j (▽ηEi(η
∗),▽ηEj(η

∗)) ≜
⟨▽ηEi(η

∗)▽η Ej(η
∗)⟩

∥ ▽ηEi(η∗) ∥∥ ▽ηEj(η∗) ∥

When the content provider receives grouped gradient loss
from multiple edge servers, it trains a unified model for
each group of each server, respectively. Then, the content
provider decides whether to merge some groups by comparing
the cosine similarity of the parameters η of different unified
models. Here, we set a threshold ξ0 at which the two different
groups will be merged when the cosine similarity is greater
than ξ0. At this point, the user clustering is complete, and
the content provider delivers the tile-based video content and
unified models to the edge server based on the grouping.

C. Problem Formulation based on the RVI Structure

Our goal is to provide high-accuracy prediction model for
the viewers while optimizing data transmission. As previously
mentioned, the collaborative learning of prediction model can
be converted into a variational inference problem that aims at
minimizing the KL divergence. Therefore, here we focus on
data transmission and how to formulate the joint optimizations.

We define the received data rate of viewer i for tile j at
time t as αi

j(t). Thus, the utility of transmission for PLS
is

∑
i∈Vc

∑
j∈M U(αi

j(t)) where U(·) is the utility function
and M is the set of tiles. We can use the form employed in
[53], as the utility function. A standard way to formulate the
optimization is as follows:

∀t :U(t) = max

∑
i∈Vc

∑
j∈M

U
(
αi
j(t)

) (8a)

s. t.
∑

i∈Vc(e)

∑
j∈M

αi
j(t) ≤ ce(t), ∀e ∈ E (8b)

αi(t) ∈
[
0, b|B|

]
, ∀i ∈ Vc (8c)

where Vc(e) is the set of viewers that their video flow pass
through the link e. Eq. (8a) is the objective function that
maximizes the total utility. The constraint in eq. (8b) indicates
that the data rate cannot exceed the available link’s bandwidth
and (8c) is the boundary constraint. The optimization problem
is separable about both the viewers and the tiles, and the same
is true for the inference problem. Because the probability of
whether a region is in the FoV can be divided into a product
of the probabilities of whether the tile is in the FoV. This can
be expressed as follows:

p (M′|M) =
∏

k∈[1,K],l∈[1,L]

p
(
m′

k,l|M
)

(9)

Based on eq. (5), (8a)-(8c), and (9), we formulate the joint
optimizations of data transmission and VI as in the following
unconstrained expression:

∀t :U ′(t) = max

∑
i∈Vc

∑
j∈M

λ log
(
U
(
αi
j(t)

−ϕ (α(t)− ce(t)))− log
p(mj(t)|Mt−1(i))

qη(mj(t)|Mt−1(i), f)

} (10)

where α(t) =
∑

i∈Vc(e)

∑
j∈M αi

j(t) and ϕ, λ are the weight
factors. The objective function consists of two parts: the



previous term can be regarded as a LOG Lagrange func-
tion Gi

j(α(t)) = λ log
(
U
(
αi
j(t)

)
− ϕ (α(t)− ce(t))

)
for the

transmission optimization. The second is the instant reward at
time t of RVI. For each tile, the probability of being viewed
by the viewer i is either 0 or 1. Thus, the second term can
only be ∞ or log 1

qη(mj(t)|Mt−1(i),f)
. In other words, when

the tile is not in the viewer’s FoV, the reward is dominated by
the second term, and no matter how we increase α, we can
not get a high reward. Increasing the transmission rate of tile
outside the FoV may occupy the link bandwidth and decrease
the overall reward. Oppositely, when tiles are within the FoV,
increasing the transmission rate within the bandwidth capacity
can improve the reward. Thus, we can reformulate the joint
optimization problem in the RVI structure as the following
4-tuple Markov decision process.

• State S′ : st ≜ (Dt−1, ft, ct). U′(t−1) = G(Dt−1)Mt−1

is the utility matrix of the tiles requested at time t − 1.
ct indicates the set of available bandwidth for all links E
at time t.

• Action A′ : at ≜ Dt ∼ qη(Dt|Dt−1, ft, ct).
• Transition P ′ :
P ′(D′|D, f, ct) ≜ (D′, f, ct) ∼ ((D, f, ct),D′)→ [0, 1].

• Return R′(s,a) ≜
∑

t∈T
∑

i∈Vc

∑
j∈MRi

j(qη) where:

R′i
j (qη) =

{
log

(
Gi

j (α) qη (dj |D (i) , f)
)

mj = 1 (11a)
0 mj = 0 (11b)

For simplicity, we let R′i
j (qη) = 0 when mj = 0 and rewrite

r̄t+1 = 1
|Vc|

∑
v∈Vc

r′vt+1 where r′vt+1 =
∑

j∈MRi
j(qη). Thus,

we have R′
v(π, t) = Ed

[∑t
τ=1 r

′v
τ (Dτ ,Dτ−1, fτ )

]
, and the

following forms of the action-value function Qπ(s,a) and the
state-value function Vπ(s).

Qπ (s,a) =
∑
v∈Vc

E
[
r̄′t+1 −R′

v (π, t) | s0, a0, π
]

(12a)

Vπ(s) =
∑
a∈A

π(s,a)Qπ(s,a) (12b)

V. ALGORITHM DESIGN

In this section, we introduce the gradient-based viewer
clustering algorithm. Then, we give the prediction-based asyn-
chronous delivery algorithm based on RVI to solve the prob-
lem (10) and describe the implementation of the algorithms.

A. GVC Algorithm

We first provide the pseudo-code (Algorithm 1) of gradient-
based viewer clustering algorithm (GVC) which is deployed
at the edge servers Vs and runs at regular intervals Ti. The
servers take the set of accessed viewers’ set VI, the collected
gradient loss {▽ηEi(η

∗)}, and the calculated cosine similarity
βVI as inputs of the algorithm. First, the algorithm sorts cosine
similarity vectors in descending order and stores the index
vector of viewer pairs in vector V [:, 2]. The algorithm then
takes the elements of V [:, 2] in sequence. Before separating
the set VI, the algorithm will first judge whether all the
viewer sets in VI meet the separation criteria. If the criteria
is met, the algorithm continues to execute, otherwise, exits

and updates data VI and {▽ηEi(η
∗)}, etc. to content provider

directly. Otherwise, the algorithm splits the VI, first splitting
the two most similar elements into a new viewer set {VT},
and iterating the process in turn. The algorithm stops and
uploads data until none of the viewer sets in VI satisfies the
separation criteria. The algorithm ends up with bipartition. If
the bipartition still satisfies the criteria, we take the bipartition
as the new input, and execute the algorithm.

Algorithm 1: Gradient-based Viewer Clustering
Input: Set of viewer’ set VI = {{i}|i ∈ Vvs

}, gradient
loss vector {▽ηEi(η

∗)}, i ∈ VI, the similarity
vector βVI

= {βi,j}C
2
VI , i, j ∈ VI, i ̸= j.

1 V [:, 2]← argsort(βVI
) ∈ (i, j)C

2
VI

2 for n = 1, 2, ...,C2
Vi

do
3 foreach v ∈ VI do
4 if v satisfies the criteria (3a),(3b) then
5 Break
6 else if v = VI[end] then
7 Return VI
8 end
9 end

10 VT ← {}
11 foreach v ∈ VI do
12 if V [n, 0] ∈ v or V [n, 1] ∈ v then
13 VI ← VI \ v; VT ← VT ∪ v
14 end
15 end
16 VI ← VI ∪ {VT}
17 end

B. Prediction-Based Asynchronous Delivery Algorithm

Algorithm 2 shows the prediction-based asynchronous de-
liver algorithm (PAD). First, we initialize policy πη0 (the
unified model) with parameter η0 at content provider and set
the non-negative stepsize γη . The content provider distributes
the unified model πη0

to the edge servers and keeps the model
synchronized during the whole period. When the viewers start
the request, the policy πη0

is periodically delivered to the
viewers along with the 360◦ video content.

The algorithm can be divided into three parts: at the viewer,
server, and provider, respectively. At the viewer side, the
viewer u downloads the unified model πηt at interval Tu to
update the local model πu

ηt
. The model integrates the experi-

ence of other preceding viewers in the asynchronous delivery
system, which improves the model’s prediction performance
under the time-shift scenario. the algorithm uses the local
policy πηu

t
to predict the viewer’s FoV aut = D′

t. Here, the
viewer is free to update the local policy πηu

t
or just upload

the information, such as Eu(η
u
t ) and ▽ηEu(st, at), to the

edge server and get the new policy πηt
provided by content

provider. According to eq. (10) and Ut=G(Dt)Mt, the loss is
the difference between the actual utility aut of viewer u and
the optimal utility D∗

t which can be calculated based on the



ground truth viewing. The gradient loss▽ηEu(st, at) can also
be calculated based on eq. (10).

The edge servers are responsible for viewer clustering. The
servers use {▽ηEu(st, at)}VI

to calculate βVI
, then employ

the GVC to get the grouping VI , and finally upload data
VI, {Eu(η

u
t )}, and {▽ηEu(st, at)} by cluster. The content

provider performs standard policy gradient updates. After
receiving the information {Eu(η

u
t )}, and {▽ηEu(st, at)}

of a cluster VI, the algorithm execute the updates by first
calculating the expectation of historical returns R′(πη, t). We
can further calculate the joint action value Qt of VI by using
R′(πη, t) minus

∑
u∈Vi

Eu/|Vi|. Since
∑

u∈Vi
Eu/|Vi| is the

average reward at time t, we consider it as the approximation
of the expected return if the policy πηt is unchanged. Our
goal is to get policy close to utility (10), thus step 17 of the
algorithm can be viewed as the score ▽η log πη (s, a) [51].
Similarly, the advantage value is the difference between the
action and state values (eq. (12b)). With the advantage value,
the policy parameters ηt+1 are updated and the algorithm
distributes the new unified policy πηt+1 to the viewers.

C. Implementation of the Algorithms

Algorithm 1 is a central synchronization algorithm which is
deployed at the edge servers. Its time complexity is O(|V|3)
and space complexity is O(|V|2) where |V| is the number
of the accessed viewers. Algorithm 2 is a distributed asyn-
chronous online algorithm that aims at enhancing the FoV
prediction and data transmission through collaborative learning
between the viewers. The asynchronism is reflected in that the
viewers can asynchronously update data at the edge server, and
likewise, the edge servers - at content provider. The model is
iteratively updated, and every node participates, so it is online
and distributed. The space complexity and time complexity
of Algorithm 2 are both O(|V|) if we leave out the server-
side’s Algorithm 1. To prove algorithms’ feasibility, we also
evaluate the signaling bandwidth overhead in Section VI.

VI. PERFORMANCE EVALUATION

In this section, we introduce the experimental settings and
dataset. We analyse the results of our proposed prediction-
based asynchronous delivery algorithm and evaluate its per-
formance by comparing it with that of three state-of-the-art
solutions: PanoSalNet [8], LiveDeep [14], and LiveObj [15].

A. Experiment Setup

We implemented the system simulation architecture for PLS
illustrated in the diagram shown in Fig. 3, by adapting Py-
Torch4 with Python 3.8. The system simulates a scenario with
one content provider, two edge servers, and 48 virtual viewers.
The content provider and two edge servers form together a
simple CDN. We deployed the system-level simulation on a
full-fledged laptop (AMD R9 5900HX, 32G, RTX 3080). The
source code used is available in a GitHub repository5. To sim-
ulate the tiled mechanism of panoramic video, we developed

4https://github.com/pytorch/pytorch
5hhttps://github.com/uglyghost/FedLive

Algorithm 2: Prediction-based Asynchronous Delivery
Input: Random η0 and initial policy πη0

at content
provider; set γη as the nonnegative stepsizes.

1 while t ∈ T do
2 foreach Viewer u ∈ Vc do
3 if (t mod Tu) == 0 then
4 obtains the policy model πηt

from the
servers as the local model πηu

t
.

5 end
6 selects the action aut ← πηu

t
(st, ·);

7 obtains the next state st+1 ← (Dt, fτ , ct+1);
8 gets the loss Eu(η

u
t )← aut −D∗

t and train πηu
t

;
9 calculates ▽ηEu(st, at) and upload;

10 end
11 foreach edge server v ∈ Vs do
12 calculates βVI

with {▽ηEu(st, at)}VI
;

13 VI ← GVC(VI, {▽ηEu(st, at)}, βVI
);

14 uploads VI, {Eu(η
u
t )}, and {▽ηEu(st, at)};

15 end
16 /* Content provider */
17 foreach Vi ∈ {VI}Vs do
18 R′(πη, t)← t−1

t R′(πη, t− 1) + 1
t

∑
u∈Vi

Eu

|Vi| ;

19 Qt ← E
[∑

u∈Vi
Eu

|Vi| −R′(πη, t)
]
;

20 ϕt ← 1
|Vi|

∑
u∈Vi

▽η logEu;
21 At ← Qt −

∑
a∈A πη(s, a) · [Eu −R′(πη, t)];

22 ηt+1 ← ηt + γη ·At · ϕt and distribute πηt+1 ;
23 end
24 end

a visual playground for FoV prediction based on the OpenAI-
Gym6 library, which converts 360◦ videos into tile-based (5
tiles × 5 tiles) streaming with equirectangular projection.
According to a HUAWEI white paper [2], the 360° video full-
view resolution for good quality of experienceis at least 8K
(7680*4320). Since each full-view frame is partitioned into
25 tile regions, we consider splitting the panoramic video
into 25 tile-based video streams, where each video stream
corresponds to a region. The HEVC tiling toolkit7 is employed
for tiled video data preparation and the real-time messaging
protocol (RTMP) over the User Datagram Protocol (UDP)-
multicast8 is used to transfer 25 live tiled video streams. The
tile streaming contains six standard resolutions, and we set up
the bandwidth requirement for different resolutions, as shown
in Table II. Table II results are measured with an Amazon
Web Services instance and Twitch’s official tool according to
[54]. We initialized the parameters η0 ∈ (0, 1)N with uniform
distribution, ξ0 = ξ2 = 0.5, ξ1 = 0.1, ϕ = 10, λ = 1, and
γη = 3×10−4. We set the interval of local model updates for
all viewers Tu, ∀u ∈ Vc to 30s. We employed the Boltzmann
exploration and set the policy function πη as follows:

6http://gym.openai.com/
7https://github.com/ultravideo/kvazaar
8https://openwrt.org/de/docs/guide-user/network/wan/udp multicast
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Fig. 3. The topology diagram of the system-level simulation.

TABLE II
BANDWIDTH REQUIREMENTS PER TILE FOR DIFFERENT

RESOLUTIONS

resolution 1080p
60fps 1080p 720p

60fps 720p 480p 360p

bandwidth
(Mbps) 5.86 4.45 2.75 1.93 1.10 0.52

πη(a|s) =
exp (Qη(s, a))∑

a′∈A exp (Qη(s, a′))
(13)

where Qη is a function in the form of eq. (10) with parameter-
ized function qη . The state s provides ct and Dt−1 as inputs,
p(m|M) is based on the sampling results, and qη ≜ ω⊤η where
ω⊤ is the feature vector for a specific action.

Various reinforcement learning techniques, such as actor-
critic (AC) [51] or Q-learning [52], can be applied to
our framework. To meet the real-time requirements of live-
cast services, we design the reinforced variational inference
model based on the classical actor-advantage-critic method.
The model consists of four neural network architectures:
actor-network, critic-network, value-network, and target value-
network, and each of the networks uses the multilayer per-
ceptron (MLP) structure with two hidden layers. We set
the sampling interval of video frames to 8 and each video
segments (2 seconds with 30fps) can be extracted into 8
frames. Each video frame is divided into 5 × 5 regions,
represented by the matrix M. For actor-network and critic-
network, we set the size of the input layer to 400, where the
input vector contains the information of both saliency features
and the user’s viewing records for 8 consecutive sampled
frames. The output layer contains 200 neurons which represent
the predicted user’s viewpoint M for the next 2 seconds of the
future video segment.

Furthermore, we discuss some essential details of the dataset
and show how it contributes to our experiments. Spheri-
cal Head Tacking Dataset [34]: This dataset provides the
head trajectories of 48 users (24 males and 24 females) as
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Fig. 4. Overall performance of four
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with high resolution for four solutions.

they watched 18 different panoramic videos from different
categories including speeches, sports, and competitions. The
dataset includes users’ head movement in each session, im-
pressive targets of each user in the panoramic video, and users’
head orientations in terms of the unit quaternion (X, Y, Z,
W) and HMD position (x, y, z) in the panoramic video. We
transformed the dataset’s records to a corresponding saliency
map and viewport following the rules provided in [37].

B. Simulation Workflow

In this section, we describe our simulation workflow based
on the topology diagram shown in Fig. 3. We set three
content servers in the system-level simulation, including one
content provider and two edge servers. We consider that the
content provider is responsible for online video transcoding,
and distributing the processed 360-degree video to the edge
servers via 500Mbps wire link. The edge server directly
responds to the viewers’ requests and communicate with each
viewer through 50Mbps wire link. As indicated, we used
UDP-multicast-based RTMP to implement tile-level live 360°
video streaming among the content provider, edge servers, and
viewers in a real-world application.

We also deployed the unified model on the servers and keep
them synchronized during the whole period of the experiment.
The simulation is driven by having viewers request the video
content in sequence. In the initial phase, the edge servers
service the viewers with low definition tile-level live 360°
video streaming and the unified model. The first requested



viewer experiences a slow start process and upgrades the
downloaded unified model as the local model. Then, the viewer
prefetches the high-resolution tiles based on the prediction
results of the model. The viewer trains the local model based
on the gap between the predicted FoV and the ground truth
FoV and uploads the loss information to the servers. The
content provider updates the unified model with the loss
information and streams the updated unified model to the
edge servers. Then, the edge servers respond to the subsequent
viewers with the updated model. We achieved the time-shift
phenomenon by configuring the viewers to start playing from
the beginning of the video while they have various startup
times. Thus, the predicted model was trained with the viewing
records of the foregoing viewers, and was directly applied for
the FoV prediction of the subsequent viewers. When the edge
servers collect loss information from multiple viewers, they
invoke the gradient-based user clustering algorithm to divide
viewers into multiple viewer clusters. The system maintains
one unified model for each cluster, and the loss of each viewer
in the cluster is used for model training.

C. Evaluation of Results

We consider the centralized synchronous RVI-structure al-
gorithm as the Benchmark. In this case, the PLS system
contains only content provider and viewers without the shifted
time, and the algorithm is deployed at the content provider
side with global information. First, we evaluated the prediction
performance of our solution in terms of accuracy, precision,
and recall and we compared it with that of three state-of-
the-art solutions: PanoSalNet [8], LiveDeep [14], and LiveObj
[15] in an asynchronous PLS system. Further, we compared
the proposed solution’s service performance and resource
efficiency with the other three solutions.

• PanoSalNet is an offline solution that predicts the FoV
with 360 feature extraction and multi-modal learning. The
authors first design an attention-based viewport prediction
framework based on the extracted saliency features. Then,
a mixture density network-based viewport predictor and
a matching spherical loss are proposed to accelerate the
training.

• LiveDeep is a online training solution which deploys the
prediction model at the server side. The viewers need
to upload the loss to the server. LiveDeep uses a CNN
to capture the image features and an LSTM to analyze
viewers’ viewing trajectory. It predicts viewer’s viewport
based on these two results.

• LiveObj is similar to LiveDeep in terms of the deploy-
ment. It formulates the FoV prediction problem in a RL
structure, where the state is represented by the coverage
of the object and viewport in the tiled image, and the
action is select a tiled FoV as prediction result.

We evaluated the predicted performance of our solution in
terms of FOV prediction accuracy, precision, recall and band-
width consumption (the number of prefetch tiles). Specifically,
accuracy represents the proportion of all 360-degree video
tiles that are correctly predicted which can be represented

as equation accuracy = TP+TN
TP+TN+FN+FP . Precision represents

the ratio of tiles viewed and correctly predicted to all tiles
actually viewed by viewers (precision = TP

TP+FP ). Recall
represents the ratio of tiles viewed and correctly predicted to
all predicted tiles (recall = TP

TP+FN ). Fig. 4 demonstrates the
overall predicted performance of four solutions with a central
benchmark for 9 different videos and 48 different viewers.
For accuracy, FedLive and Benchmark provide optimal average
performance when compared to the other three solutions and
improve the performance by almost 1 percent when com-
pared to PanoSalNet. However, PanoSalNet outperforms all
other solutions, including FedLive, in terms of precision with
about 1 percent. Furthermore, our approach has advantages
over both LiveDeep and LiveObj in accuracy, precision, and
recall. One significant reason why FedLive is superior to
LiveDeep in asynchronous PLS system is that our solution
can improve the prediction performance by utilizing multiple
viewers to train the prediction model cooperatively. Recall that
our solution provides the best performance, higher than that
of PanoSalNet by about 5%. Although PanoSalNet achieves
comparable predicted performance compared to our proposed
solution, PanoSalNet requires an offline training process and
is difficult to be applied to panoramic livecast services. Fig.
5 illustrates the average number of selected tiles for the four
solutions under 3 different types of videos. Since both Fedlive
and PanoSalNet achieve excellent predicted results, these two
solutions save bandwidth resources by prefetching fewer high-
resolution tiles to viewers. Livedeep has the worst performance
because it takes the largest number of high-definition tiles,
many out of the viewing area as selected tiles.

To support the above results, we provided more detailed
experimental results in the following analysis. Fig. 6 gives
more details of the four solutions on the accuracy performance.
The results show that the asynchronous FedLive can approxi-
mate the accuracy performance of the synchronous Benchmark
with an acceptable degradation. The accuracy of FedLive
remains above 90% for all the videos being more stable when
compared to other solutions. In addition, PanoSalNet also
achieves no less than 90% accuracy for all the videos while
LiveDeep and LiveObj have 78%-90% and 81%-90% accuracy,
respectively. Fig. 7 presents the average precision performance
of the four solutions. FedLive and PanoSalNet achieve around
90% precision for all the videos, and our solution has the
best performance in War, Cooking, and Football. In addition,
the precisions of LiveDeep and LiveObj are between 63%-
88% and 65%-91%, respectively. Fig. 8 shows the average
recall of the four solutions. Since LiveDeep and LiveObj over-
prefetch involving a higher number of high-definition tiles
outside the field of view, their performance of recall decreased
significantly. Our approach significantly outperforms all other
solutions on recall performance for most of the videos except
Football for which PanoSalNet has the highest recall. In
conclusion, our solution not only outperforms other solutions
in terms of accuracy precision, and recall, but also has a more
stable performance for different types of videos.

Fig. 9 gives details about the predicted results with our



Fig. 6. The average accuracy of different videos for four solutions.

Fig. 7. The average precision of different videos for four solutions.

Fig. 8. The average recall of different videos for four solutions.

Fig. 9. Overall performance (accuracy, precision, recall, and the number of selected tiles) of different viewers for Conan 1 with FedLive.
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Fig. 10. The value variation of utility
vs. time slot for different users.
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Fig. 11. The value variation of utility
vs. time slot for different users.

solution for 10 different viewers (users 6-15 in the dataset [34])
for the video Conan 1. As Fig. 9 shows, there are small gaps in
the prediction performance for different users when employing
our solution, indicating that the prediction performance of
FedLive is stable between different viewers. The above results

show that our method can provide no less than 90% accuracy,
around 90% precision, and about 80% recall for each viewer.
Fig. 10 and Fig. 11 provide the value variation of utility for
the 10 different viewers over time. The value of the utility
function is calculated based on our objective function (10).
The figures reveal that the utility varies between −1800 and
−4000 in the exploration phase for users indexed 1 and 3-7.
After the exploration phase, the viewers enter the exploitation
phase, where the utility value remains above −1800 most of
the time for all viewers. It is worth noting that some users do
not go through the exploration phase since they, as subsequent
viewers (users indexed 2 and 8-10), can directly download the
FoV prediction model trained by previous viewers’ clusters.

To verify the feasibility of our solution, we also test the
processing time of the model training and FoV prediction



TABLE III
AVERAGE PROCESSING TIME(IN SECONDS) OF THE MODEL TRAINING AND

FOV PREDICTION

Video Name Conan Skiing Alien War Rhinos
Average
Training

Time
(Epoch)

100 1.488 1.432 1.309 1.267 1.401
200 2.942 2.843 2.598 2.501 2.798
500 7.350 7.032 6.512 6.255 6.978
1000 14.199 13.953 12.990 12.067 13.545

Prediction Time 0.258 0.247 0.235 0.230 0.246

modules in FedLive. The processing time of our model trained
in different epochs for different videos is shown in Table III.
As we can see, the training time increases with the epoch,
and our solution can complete more than 100 iterations in 2
seconds. This indicates that each preceding viewer can train
the model more than 100 iterations in advance and then gives
the trained model to subsequent viewers who are behind a
video segment (2s). The processing time of FoV prediction is
short for all five videos, only about 0.2s, indicating that the
model can be used for the FoV prediction of live 360-degree
video streaming services.

To compare the service performance of the four solutions,
we evaluated our solution in terms of four metrics:

• Average resolution of FoV Tiles [Mbps]: the average
bitrate of tile within the viewer’s FoV.

• Bandwidth Saving [Mbps]: in our system, the band-
width is reduced by transmitting the tiles within FoV at a
high bitrate and those outside FoV at a low bitrate. Thus,
this metric is calculated as the bandwidth occupied by
all tiles transmitting at high bitrates minus the bandwidth
occupied by tiles within FoV transmitting at high bitrates
and outside FoV transmitting at low bitrates.

• Bitrate Change Ratio (BCR) [%]: we define a video
segment that has a different bitrate than the previous
segment as a bitrate change. Then the BCR is the ratio
of the number of video segments with a bitrate change
to the total number of video segments.

• Average Buffer Size [s]: average duration of video
content in the client’s buffer.

Fig. 12 compares the solutions in terms of the four metrics.
FedLive maintains the highest average resolution of selected
tiles and the lowest bitrate change ratio, and is competitive
on the performance of bandwidth saving and averaged buffer
size compared with the other three solutions. Our approach
outperforms LiveDeep and LiveObj in terms of service perfor-
mance and has comparable performance compared with the
offline solution PanoSalNet. To prove the feasibility of our
solution, we compared the signalling cost of FedLive with
LiveDeep, LiveObj and PanoSalNet as shown in Fig. 13. In
order to facilitate the analysis, we assumed that the prediction
models of the four solutions have equal sizes. Although,
FedLive requires a higher number of message exchanges than
other solutions, the two-layer delivery structure of the method
restricts the signaling costs, which increases linearly with the
number of viewers and is therefore scalable.

Fig. 12. The results of service perfor-
mance and bandwidth efficiency
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Fig. 13. Signalling overhead of con-
trol message for four solutions.

VII. CONCLUSIONS

This paper proposed FedLive, a novel federated transmis-
sion framework for PLS, which jointly optimizes the FoV
prediction and content delivery. First, we designed a gradient-
based viewer clustering method to integrate resources of
the viewers with similar viewing behavior that also enables
cooperative learning for the prediction model. We converted
the FoV prediction to an online inference problem and for-
mulated it in the RVI framework. Then, we transformed the
inference problem into a joint optimization of prediction and
delivery by reformulating the object function and redefining
the 4-tuple Markov decision process. With the inspiration of
clustered federated learning, a clustered federated updating
is designed to facilitate training of the RVI-structure-based
model asynchronously. In addition, we devised two practical
algorithms, GVC and PAD, to achieve viewer clustering and
joint optimization of delivery and learning, respectively. Based
on the public dataset [37], we carried out a series of data-
driven experiments and compared the performance of our
solution with a synchronized benchmark and three state-of-the-
art solutions [10], [14], [15]. The results show that our solution
outperforms the alternative solutions in terms of prediction
accuracy, bandwidth saving, and latency. In future work, more
reinforcement learning algorithms, such as soft actor-critic
[55], will be studied in our federated transmission framework
to make the solution more comprehensive.
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“Scalable video coding for backward-compatible 360° video delivery
over broadcast networks,” IEEE Transactions on Broadcasting, vol. 66,
no. 2, pp. 322–332, 2020.

[27] R. Ghaznavi-Youvalari, A. Zare, A. Aminlou, M. M. Hannuksela, and
M. Gabbouj, “Shared coded picture technique for tile-based viewport-
adaptive streaming of omnidirectional video,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 29, no. 10, pp. 3106–
3120, 2019.

[28] P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360° videos in heterogeneous networks,” IEEE Trans-
actions on Multimedia, vol. 22, no. 9, pp. 2382–2395, 2020.

[29] M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian,
and S. R. Das, “Streaming 360-degree videos using super-resolution,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations, ser. INFOCOM ’20, 2020, pp. 1977–1986.

[30] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proceed-
ings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’20, 2020,
p. 107–125.

[31] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–13, 2020.

[32] T. Weber, N. Heess, A. Eslami, J. Schulman, D. Wingate, and D. Silver,
“Reinforced variational inference,” in Advances in Neural Information
Processing Systems (NIPS) Workshops, 2015.

[33] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[34] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring user
behaviors in vr spherical video streaming,” in Proceedings of the 8th
ACM on Multimedia Systems Conference, ser. MMSys’17, 2017, p.
193–198.

[35] A. Yaqoob, T. Bi, and G.-M. Muntean, “A survey on adaptive 360° video
streaming: Solutions, challenges and opportunities,” IEEE Communica-
tions Surveys Tutorials, vol. 22, no. 4, pp. 2801–2838, 2020.

[36] G. He, J. Hu, H. Jiang, and Y. Li, “Scalable video coding based on user’s
view for real-time virtual reality applications,” IEEE Communications
Letters, vol. 22, no. 1, pp. 25–28, 2018.

[37] A. Nguyen and Z. Yan, “A saliency dataset for 360-degree videos,”
in Proceedings of the 10th ACM Multimedia Systems Conference, ser.
MMSys ’19, 2019, p. 279–284.

[38] E. Cui, D. Yang, H. Wang, and W. Zhang, “Learning-based deep
neural network inference task offloading in multi-device and multi-server
collaborative edge computing,” Transactions on Emerging Telecommu-
nications Technologies, vol. 33, 2022.

[39] R. Verma and S. Chandra, “Fogbus3: A scalable and reliable frame-
work for integrated iot and fog computing scenario,” Transactions on
Emerging Telecommunications Technologies, vol. 33, 2022.

[40] A. Yaqoob, T. Bi, and G. M. Muntean, “A survey on adaptive 360° video
streaming: Solutions, challenges and opportunities,” IEEE Communica-
tions Surveys Tutorials, vol. 22, no. 4, pp. 2801–2838, 2020.

[41] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving
qoe of 360 video streaming using tile-based http adaptive streaming,” in
Proceedings of the 25th ACM International Conference on Multimedia,
New York, NY, USA, 2017, p. 315–323.

[42] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash, “Adaptive
360-degree video streaming using scalable video coding,” in Proceedings
of the 25th ACM International Conference on Multimedia, New York,
NY, USA, 2017, p. 1689–1697.

[43] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving
qoe of 360 video streaming using tile-based http adaptive streaming,” in
Proceedings of the 25th ACM International Conference on Multimedia,
New York, NY, USA, 2017, p. 315–323.

[44] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive adaptive
streaming to enable mobile 360-degree and vr experiences,” IEEE
Transactions on Multimedia, vol. 23, pp. 716–731, 2021.

[45] Y. Mao, L. Sun, Y. Liu, and Y. Wang, “Low-latency fov-adaptive coding
and streaming for interactive 360° video streaming,” New York, NY,
USA, 2020, p. 3696–3704.

[46] L. Zhong, X. Chen, C. Xu, Y. Ma, M. Wang, Y. Zhao, and G.-M.
Muntean, “A multi-user cost-efficient crowd-assisted vr content delivery
solution in 5g-and-beyond heterogeneous networks,” IEEE Transactions
on Mobile Computing, pp. 1–1, 2022.

[47] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

[48] X. Chen, C. Xu, M. Wang, Z. Wu, S. Yang, L. Zhong, and G.-M.
Muntean, “A universal transcoding and transmission method for livecast



with networked multi-agent reinforcement learning,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10.

[49] X. Chen, C. Xu, M. Wang, Z. Wu, L. Zhong, and L. A. Grieco,
“Augmented queue-based transmission and transcoding optimization
for livecast services based on cloud-edge-crowd integration,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 11, pp. 4470–4484, 2021.

[50] K. Zhang, Z. Yang, and T. Basar, “Networked multi-agent reinforcement
learning in continuous spaces,” in 2018 IEEE Conference on Decision
and Control (CDC), 2018, pp. 2771–2776.

[51] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[52] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[53] M. Wang, C. Xu, X. Chen, H. Hao, L. Zhong, and D. O. Wu, “Design

of multipath transmission control for information-centric internet of
things: A distributed stochastic optimization framework,” IEEE Internet
of Things Journal, vol. 6, no. 6, pp. 9475–9488, 2019.

[54] H. Pang, C. Zhang, F. Wang, H. Hu, Z. Wang, J. Liu, and L. Sun,
“Optimizing personalized interaction experience in crowd-interactive
livecast: A cloud-edge approach,” in Proceedings of the 26th ACM
International Conference on Multimedia, ser. MM ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1217–1225.
[Online]. Available: https://doi.org/10.1145/3240508.3240642

[55] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

Xingyan Chen received the Ph. D degree in com-
puter technology from Beijing University of Posts
and Telecommunications (BUPT), in 2021. He is
currently a lecturer with the School of Economic
Information Engineering, Southwestern University
of Finance and Economics, Chengdu. He has pub-
lished papers in well-archived international journals
and proceedings, such as the IEEE TRANSACTIONS
ON MOBILE COMPUTING, IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECH-
NOLOGY, IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, and IEEE INFOCOM etc. His research interests include Mul-
timedia Communications, Multi-agent Reinforcement Learning and Stochastic
Optimization.

Mu Wang received his M.S. and Ph.D. degrees
in computer technology from Beijing University of
Posts and Telecommunications (BUPT) in 2015 and
2020. He was a Joint Ph.D. student at the School
of Electrical, Computer, and Energy Engineering
(ECEE), Arizona State University. He is currently a
postdoctoral research associate with the Department
of Computer Science and Technology & BNRist,
Tsinghua University. His research interests include
information-centric networking, wireless communi-
cations, and multimedia delivery in wireless net-

works.

Changqiao Xu [SM’15] received the Ph.D. degree
from the Institute of Software, Chinese Academy of
Sciences (ISCAS) in Jan. 2009. He was an Assis-
tant Research Fellow and R&D Project Manager in
ISCAS from 2002 to 2007. He was a researcher
at Athlone Institute of Technology and joint train-
ing PhD at Dublin City University, Ireland during
2007-2009. He joined Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in Dec. 2009. Currently, he is a Professor with the
State Key Laboratory of Networking and Switching

Technology, and Director of the Network Architecture Research Center at
BUPT. His research interests include Future Internet Technology, Mobile Net-
working, Multimedia Communications, and Network Security. He has edited
two books and published over 200 papers in prestigious international journals
and conferences, including IEEE/ACM ToN, IEEE TMC, IEEE INFOCOM,
ACM Multimedia etc. He has served a number of international conferences
and workshops as a Co-Chair and TPC member. He is currently serving as the
Editor-in-Chief of TRANSACTIONS ON EMERGING TELECOMMUNICATIONS
TECHNOLOGIES (WILEY). He is a Senior member of IEEE.

Yu Zhao received the B.S. degree from Southwest
Jiaotong University in 2006, and the M.S. and Ph.D.
degrees from the Beijing University of Posts and
Telecommunications in 2011 and 2017, respectively.
He is currently an Associate Professor at South-
western University of Finance and Economics. His
current research interests include natural language
processing, knowledge graph, machine learning, and
recommendation system.

Ke Jiang received the B.S. degree from Beijing Uni-
versity of Posts and Telecommunications in 2022.
She is currently a master student at Beijing Univer-
sity of Posts and Telecommunications. Her current
research interests include multimedia communica-
tion and reinforcement learning.

Yang Shujie received the Ph.D. degree from Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 2017. He is an Lecture with Beijing
University of Posts and Telecommunications. His
current research interests include the areas of VR
networks, content delivery network, and wireless
networking.

Qing Li received his PhD degree from Kumoh Na-
tional Institute of Technology in February of 2005,
Korea, and his M.S. and B.S. degrees from Harbin
Engineering University, China. He is a postdoctoral
researcher at Arizona State University and the In-
formation & Communications University of Korea.
He is a professor at Southwestern University of Fi-
nance and Economics, China. His research interests
include natural language processing, FinTech. He
has published more than 70 papers in the prestigious
refereed conferences and journals, such as IEEE

TKDE, ACM TOIS, AAAI, SIGIR, ACL, WWW, etc.



Lujie Zhong received the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2013. She is currently
an Associate Professor with the Information Engi-
neering College, Capital Normal University, Beijing,
China. She has published papers in prestigious inter-
national journals and conferences, including IEEE
COMMUNICATION MAGAZINE, IEEE TRANSAC-
TIONS ON MOBILE COMPUTING, IEEE TRANSAC-
TIONS ON MULTIMEDIA, IEEE INTERNET THINGS
JOURNAL, IEEE INFOCOM and ACM MULTIME-

DIA, etc. Her research interests include communication networks, computer
system and architecture, and mobile Internet technology.

Gabriel-Miro Muntean [F 22] is a Professor with
the School of Electronic Engineering, Dublin City
University (DCU), Ireland, and co-Director of DCU
Performance Engineering Laboratory. He has pub-
lished 4 books and over 450 papers in top in-
ternational journals and conferences. His research
interests include rich media delivery quality, per-
formance, and energy-related issues, technology en-
hanced learning, and other data communications in
heterogeneous networks. He is an Associate Editor
of the IEEE TRANSACTIONS ON BROADCASTING,

the Multimedia Communications Area Editor of the IEEE COMMUNICA-
TIONS SURVEYS AND TUTORIALS, and reviewer for important international
journals, conferences, and funding agencies. He coordinated the EU project
NEWTON and leads the DCU team in the EU project TRACTION.


