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Abstract—In the context of the latest growing popularity of
live video streaming, ensuring high video quality has become
one of the most significant challenges faced by all live streaming
platforms. Insufficient uplink bandwidth is an important factor
that influences these live video transmissions, affecting their bi-
trate and latency and consequently the associated video streaming
quality. This paper proposes a novel flexible super-resolution-
based video coding and uploading framework (FlexSRVC) that
improves the quality of live video streaming in limited uplink
network bandwidth conditions. FlexSRVC includes a flexible
video coding scheme, which compresses high-resolution key and
non-key video frames to a lower bitrate in order to reduce the
upload delay. A new flexible bitrate adaptation algorithm is also
proposed to select dynamically the number of frames to be com-
pressed and the compression ratio by jointly considering uplink
network conditions and available cloud computing resources.
Trace-driven emulations demonstrate that FlexSRVC provides
the same quality while reducing up to 25% of the required
bandwidth compared to the original encoding method (H.264).
FlexSRVC improves users’ QoE by at least 50% compared to a
super resolution-based method which employs reconstruction of
all video frames in uplink bandwidth constrained conditions.

Index Terms—video delivery, live streaming, super-resolution,
video coding

I. INTRODUCTION

Recently, crowdsourced live video streaming has experi-
enced an unprecedented global growth. A report from Cisco
predicts that live video traffic will take up 17% of Internet
video traffic by the end of 2022 [1]. This rapid increase in
crowdsourced live video streaming services is highly positive
for all stakeholders, attracting growing numbers of broadcast-
ers and active viewers alike, but is significantly challenging the
current network infrastructure, especially at network edge. In
the context of crowdsourced live video streaming, broadcasters
come from all over the world, and they distribute their video
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content to large number of viewers located worldwide. Low
latency and high throughput are the most critical requirements
for high-quality live video streaming and expected success
of such services. However, the uplink bandwidth of a live
broadcaster fundamentally constrains live video quality. The
bandwidth required to transmit a 1080P HD online video is at
least 6 Mbit/s [2], whereas the average uplink transmission
rate of commercial live streaming servers is currently less
than 1 Mbit/s [3]. In case there is insufficient uplink net-
work bandwidth, live broadcasters cannot provide high-quality
video, leading to poor video quality of the entire live streaming
service. If high-quality video is uploaded under limited uplink
bandwidth conditions, video rebuffering and loss may affect
the transmission, influencing negatively the overall user quality
of experience (QoE). Therefore, ensuring high throughput and
low latency in limited uplink bandwidth network environments
has become a significant challenge for live video streaming.

Significant efforts have been put to improve the quality of
live video streams including by proposing innovative content
delivery network (CDN) scheduling solutions [4] and adaptive
bitrate algorithms [5], [6]. However, if the uplink bandwidth is
limited during content delivery from broadcasters to the cloud,
methods that focus on downlink quality improvement cannot
help. Recently, in order to cater for situations with insufficient
network bandwidth, Super Resolution (SR) techniques have
been introduced to increase the quality of low resolution
video transmissions. For instance the Deep Neural Networks
(DNN)-based SR solution proposed in [7] achieved superior
image restoration performance compared with a traditional
up-sampling method, i.e. bicubic. The block-patching-based
image post-processing solution (BIPP) [8] employed DNN-
based SR in order to obtain high video compression ratio and
reconstruct non-key frames in the video. The live neural adap-
tive streaming scheme (LiveNAS) [7] uploaded low-resolution
videos in the cloud and used DNN-based SR to reconstruct all
video frames, improving the video quality of live streaming.
However, the SR long processing time results in high latency,
making it hard to satisfy the stringent delay requirements of
live video transmissions [9]. Therefore, there is an important
interest in finding solutions for reducing the latency caused
by limited network bandwidth during broadcaster video upload
and video processing in the cloud, while continuing to enhance
the overall experience of live streaming.

This paper proposes a flexible SR-based video coding and
uploading framework (FlexSRVC) which reduces the upload
latency from broadcasters to cloud servers and enhances
the overall live streaming quality in limited uplink network
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bandwidth conditions. FlexSRVC includes a flexible frame
video coding scheme proposed to compress the key and non-
key frames of high-resolution live streams to lower bitrates.
This efficiently reduces the amount of data to be uploaded
and consequently the associated upload delay. An innovative
aspect is provided by an adaptive selection of key and non-
key frames for compression, enabling flexible adaptation to
dynamic network changes. FlexSRCV also includes a new
flexible bitrate adaption algorithm designed to dynamically
select the compression ratio and the number of frames to be
compressed by jointly considering uplink network conditions
and availability of cloud computing resources. By employing
FlexSRVC broadcasters can offer high quality video experi-
ence by performing low bitrate live streaming in limited uplink
network bandwidth conditions, effectively breaking the classic
strong dependency between the uplink bandwidth and live
video quality.

Extensive trace-driven simulations were conducted to evalu-
ate FlexSRVC. The results show how FlexSRVC can save up to
25% of bandwidth in comparison with a classic live streaming
method, while achieving the same video quality. The proposed
flexible frame coding scheme was also compared to other
state-of-the-art SR-based coding methods. The results show
that the compression rate of our coding method is on average
10% higher than those of alternative solutions. Compared to
the method of reconstructing all frames with SR, FlexSRVC
improves user QoE by at least 50%. These results show how
FlexSRVC and its components outperform other solutions and
consistently achieve high live video streaming quality.

This paper contributions are as follows:

• A novel video SR-based coding and uploading frame-
work: FlexSRVC is proposed to reduce the upload la-
tency from broadcasters to cloud servers and enhance the
overall viewing experience of live video streaming.

• A novel flexible SR-based video coding scheme: A SR
based flexible frame compression scheme is introduced
to accommodate live streaming under dynamic network
conditions. This scheme compresses key and non-key
frames of a high resolution live stream to a lower bitrate,
which efficiently reduces the size of the video stream
and hence decreases subsequently the upload latency.
The key and non-key frames are adaptively selected
for compression, providing flexibility when adapting to
network changes.

• A flexible bitrate adaptation algorithm: A new flexible
bitrate adaption algorithm (FLBA) is designed to select
the video bitrate and frame compression ratio by consid-
ering the dynamics of the uplink bandwidth and cloud
server computing capabilities. The algorithm goal is to
further improve the quality of the live video streaming.

The next section of the paper presents background knowl-
edge and discusses major related works. Section III describes
the FlexSRVC framework design and section IV presents
the proposed solution evaluation, including simulation testing
setup, scenarios and result analysis. The final section con-
cludes the paper and presents future work directions.

II. BACKGROUND AND RELATED WORKS

A. Crowdsourced Live Streaming
In a crowdsourced live streaming service, live video streams

are being published and watched at any time, from any loca-
tion, and under any network environments. Due to the complex
environment and various network conditions, transmitting high
quality video streams with low latency is a fundamental
challenge for live video streaming services. Several efforts
have been put to design solutions to improve the quality of
live video stream delivery. Traditional real-time rate control
methods include sender-based adaptation solutions which take
into consideration various objectives such as fairness, esti-
mated quality [10], energy efficiency [11], load-balancing [12]
and user QoE levels [13] when adjusting the video delivery
in order to match network dynamic situation. More recently,
client-driven adaptive solutions including MPEG-DASH-based
approaches such as those proposed by Yaqoob et al. [14] and
Zou et al [15] were proposed. Live video streaming specific
solutions include loss-based bitrate approaches [16], delay-
based bitrate solutions [17] and model-based bitrate schemes
[18]. Zhang et al. [4] proposed a deep reinforcement learning-
based approach to deal with the resource scheduling problem
in crowdsourced live streaming. The method proposed in
Bakar et al. [19] introduced an adaptive video layer selection
scheme based on the VP9 scalable video coding over WebRTC
for low latency streaming. However, such methods that focus
on downlink improvement or balancing real-time sending rate
may not help if the uplink network bandwidth is limited during
content delivery from broadcasters to the cloud, so alternative
solutions need to be designed.

TABLE I: Comparisons between EDSR and CARN
(vimeo90k-bi dataset)

Model(upscaling) PSNR(dB) SSIM Parameters Inference time(s)
CARN(×2) 35.14 0.94 257,027 0.0194
EDSR(×2) 35.66 0.93 1,369,859 0.0194
CARN(×3) 31.55 0.86 303,427 0.0176
EDSR(×3) 32.06 0.87 1,554,499 0.0166
CARN(×4) 29.66 0.80 294,147 0.0164
EDSR(×4) 30.16 0.81 1,517,571 0.0157

B. Super-Resolution (SR)-based Solutions
SR is a computer vision approach which reconstructs high

resolution (HR) images/videos from low resolution (LR) im-
ages or videos [20], [21], [22]. Traditional SR methods, such
as bicubic interpolation [23], double cubic [24] and Lanczos
resampling [25], are very fast and simple, but are limited
by their low accuracy. In order to improve the perceptual
quality of the consecutive video frames, SR methods based
on Generative Adversarial Networks (GAN) were introduced
such as Super Resolution Generative Adversarial Networks
(SRGAN) [26] and Enhanced Super-Resolution Generative
Adversarial Networks (ESRGAN) [27]. A more comprehen-
sive task-driven Video Restoration with Enhanced Deformable
Convolutional Networks (EDVR) that consists of multiple
stages including super-resolution, deblurring, denoising and
de-blocking, was proposed in [28]. However, the video SR
schemes mentioned above need a very large number of neigh-
bor frames to be inputted together into the super-resolved
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model, which would increase the amount of uplink video
streaming traffic at the broadcaster side. In addition, the
model parameters of ESRGAN and EDVR exceed 16 million
and 20 million, respectively, putting pressure in terms of
computational complexity. Recent methods (i.e., Efficient Sub-
pixel Convolutional Neural Network (ESPCN) [29], Enhanced
Deep Super-Resolution Network (EDSR) [30], and Convolu-
tional Anchored Regression Network (CARN) [31]) use deep
neural networks (DNN) to analyze the statistical relationship
between LR and their corresponding HR counterparts from
a large number of training examples, achieving significant
improvement in terms of reconstruction quality. DNNs cannot
be applied easily to all real-world applications due to their
heavy computation requirements.

We have evaluated diverse situations when EDSR and
CARN were employed and Table 1 presents the comparative
results obtained. The models are trained and tested with the
vimeo90k-bi dataset on Nvidia GeForce 2080Ti, and results
for several scaling options (i.e. ×2, ×3 and ×4) are presented
for analysis. We found that both EDSR and CARN achieve
very similar results regarding image quality scores (i.e. in
terms of both PSNR and SSIM) and inference time. However,
the number of model parameters of CARN is much lower
than those of EDSR. This reduces much the computational
requirements in terms of cloud-based or edge-based GPU
hardware [32]. To reduce computation overhead while en-
suring good performance, CARN employs an accurate and
lightweight DNN for image SR with a cascading residual
network. Therefore, this paper adopts a CARN-based approach
in the cloud server for SR in the quest to meet the real-time
and quality requirements of live video streaming.

C. SR-based Hybrid Coding Schemes

Video compression tries to achieve the best trade-off be-
tween video quality and bitrate. Because of the limited network
bandwidth for data transmission and low storage capacity,
very good video compression is critical for the support of
low bitrate delivery applications. Many studies have focused
on developing an efficient coding method based on SR to
improve the low bitrate compression efficiency of high quality
videos [8], [33], [34]. These methods adopt a strategy that
downsamples frames before encoding and upsamples them
after decoding. Early in in Shen et al. [35], the proposed super-
resolution model was in fact the classic non-deep-learning
method, which is based on the classic Local Linear Embedding
(LLE) algorithm. A video sequence is divided into key frames
and non-key frames adaptively in BIPP [8]. BIPP proposed an
adaptive downsampling-based coding model to improve video
compression ratio while ensuring good video quality. Key
frames are encoded at high resolution at the encoder, whereas
non-key frames are downsampled at a lower resolution. A
proposed scheme in Liu et al.[36] aims to super-solve the
CTU-level residue based on the intra-frame prediction signal
generated by the HEVC encoder, which in general incurs
more blocking artifacts. A DNN-based SR is employed to
reconstruct non-key frames at the decoder. An SR-based block
up-sampling method for intra-frame coding employed in a

new convolutional neural network structure for upsampling
is described in [33]. However, the methods mentioned above
all focus on improving compression efficiency while taking a
long time to encode and decode and do not consider the delay
problem of actual deployment in a live video transmission
system. The video coding methods proposed in this paper
use a lightweight SR approach and adaptively select frames
according to network conditions, thereby achieving short video
processing time and helping reduce the transmission delay.

D. SR-based Video Delivery System

Recent research uses DNN-based SR to enhance quality
in video delivery systems. To reduce download latency for
video-on-demand systems, NAS [37] and SRAVS [38] employ
super-resolution on the client-side on top of an adaptive video
streaming solution, which requires strong computing power
and high energy consumption of terminal equipment. LiveNAS
[7] adopts SR in cloud servers for live video streaming,
which provides high-quality live streams, but consumes high
computational resources. Noteworthy is that the existing SR
approaches apply SR to all frames of low bitrate videos.
Reconstructing all video frames in a live transmission is time-
consuming, which results in high latency of the video stream-
ing process. This paper proposes a video coding approach that
adaptively selects the number of frames to be compressed and
upscaled in the cloud server to reduce significantly processing
time and reduce the overall live streaming delay.

III. FLEXSRVC FRAMEWORK DESIGN

A. System Overview

This paper proposes FlexSRVC, a new video coding and
uploading framework that reduces the upload latency from
broadcasters to cloud servers and improves the quality of
live video streaming in scarce uplink network bandwidth
conditions. FlexSRVC includes a flexible frame video coding
scheme which is proposed to encode video chunks flexibly
according to network conditions and availability of cloud
computing resources. FlexSRVC also employs a novel flexible
bitrate adaptation algorithm which is designed to coordinate
with the flexible frame video coding scheme as part of the
live video streaming system. Figure 1 illustrates the proposed
FlexSRVC, which consists of two components: at the live
broadcaster and at the smart cloud.

At the Broadcaster: The live broadcasters stream their
video content under various network conditions and utilize
our flexible frame video coding scheme to encode the captured
raw frames with the bitrate and frame compression ratio de-
termined by our flexible bitrate adaptation algorithm (FLBA).

At the smart cloud: The cloud servers, the proposed
Online SR video coding model is deployed to reconstruct the
downsampled frames in the uploaded live stream.

B. Flexible Frame Video Coding Scheme

The video frames in a group of pictures (GOP) are encoded
into key frames (KF) and non-key frames (NKF) sequentially.
For a conventional video coding standard, i.e., H.264, KFs
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Fig. 1: System architecture
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are encoded by an intra-frame coding method, and NKFs are
encoded by an inter-frame coding method. Figure 2 illustrates
the average size of KFs and NKFs in a GOP for three different
video types, respectively. It can be seen that the KF size
accounts for most of the GOP size. As NKFs only contain
the difference between them and the reference KF, the NKF
size is smaller than that of a KF.

In order to further reduce the transmission video bitrate, the
frames are not always transmitted at full resolution. Therefore,
we design a novel flexible frame video coding scheme based
on SR, which downsamples the frames to a desired lower
resolution to reduce GOP size. To be flexible in adapting to
network changes, the proposed video coding scheme com-
presses KFs and NKFs of a live video stream flexibly. The
proposed scheme improves the compression efficiency and
maintains high-quality video at a lower bitrate. Fig 3 and Fig
4 illustrate the stages of the proposed video coding scheme,
which consists of two components: the encoding component
- deployed at the broadcaster and the decoding component -
deployed at the smart cloud.

At the broadcaster raw frames are encoded using the
bitrate determined by our flexible bitrate adaptation algorithm
most appropriate to the current network conditions and the
state of the cloud computing resources. Figure 3 illustrates the
frame processing overview at the broadcaster side. First, when
the broadcaster acquires the original video frames, they are
encoded into GoPs using a classic video encoder (e.g. H264).
A high resolution key frame (KFH ) and high resolution non-
key frames (NKFH ) are then extracted from a GOP. Next, in
order to reduce the bandwidth consumption of the uplink, we

further compress the video frames. Specifically, the proposed
flexible bitrate adaptation algorithm dynamically selects the
number of video frames and video compression ratio based on
the current uplink network bandwidth and available computing
resources. Further, KFH and NKFHs that are selected for
further compression are downsampled to a low resolution key
frame (KFL) and low resolution non-key frames (NKFL).
Next, the downsampled video frames are merged into the
original video stream. We choose KFL as the reference frame
to encode NKFLs using inter-frame coding. Finally, the
original KFH and NKFHs are replaced with newly encoded
KFL and NKFLs. Note the proposed scheme selects some
NKFs to be downsampled to lower resolution only, whereas
the other NKFs preserve their original temporal and spatial
characteristics. This improves the video compression ratio with
good temporal and spatial information, retaining consistency,
while also maintaining good cloud computing efficiency.

At the Smart Cloud, the video stream uploaded by the
broadcaster is received. The video is composed of KFLs,
KFHs and NKFHs. The compression information (i.e.
which video frames in a GOP are compressed and the
compression ratio) is also uploaded to the cloud server as
metadata. Figure 4 shows how the compressed video stream
is reconstructed in the cloud. First the coding information
associated with the live video stream is analysed. Based on this
information, KFLs and NKFLs only are extracted and de-
coded using intra-frame and inter-frame coding, respectively.
The NKFHs of the video stream are not processed yet.
KFLs and NKFLs are upsampled to their original resolution
by employing the lightweight SR model CARN [31] with
low latency. Finally, the SR-upsampled video frames are re-
inserted into the video stream, making sure the smoothness of
video playback is retained, so that the viewer does not perceive
any coding processing. Specifically, the upsampled KFHs
are used as reference frames to encode NKFHs. As other
non-key frames are already at high resolution, NKFs are
remultiplexed with the preserved temporal and spatial details
into the encoded video stream. The entire video coding process
is such performed so that the player can decode the live video
content without any issues.



IEEE TRANSACTIONS ON MULTIMEDIA 5

Fig. 3: Flexible frame processing at the broadcaster side

Fig. 4: Flexible frame processing at the cloud side

C. Online SR Video Coding Model

The smart cloud-located Online SR video coding model
deploys the proposed SR video coding scheme. As any SR-
based solutions, it requires training for accurate functionality.
Unfortunately a single offline training session for the Online
SR video coding model cannot guarantee a good reconstruc-
tion performance for all live broadcast scenes. A better method
is to train the SR model for the live video content to ensure
high perceptual quality of the reconstructed video frames.
Due to the unique characteristics of live streaming, we cannot
obtain all the content in advance, and aspects such as scene
switching during the live streaming may occur at any time,
i.e., switching from a game scene to a game commentator.
The obvious picture difference determined following scene
switching will lead to quality degradation in the reconstruction
of the new scene using the SR model trained in the previous
scene. Instead, we conduct an online training of the SR model
with actual live content to improve the SR reconstruction
quality.

First the impact of various training methods on model
performance is studied. Consider A a set of one second high
resolution video chunks captured at the beginning of a live
video stream, and B a set of video chunks obtained after scene
switching. We compare three training methods as follows: A:
only set A is used for training; A+B: first set A is used and
after a scene change is detected, set B is added and A+aB:
similar to A+B, but set B has a greater weight a, as dataset
B reflects the current status of the live video better [7].

Figure 5 illustrates comparatively the online learning per-
formance with an online gaming video for the three methods.
The performance is expressed in terms of the newly proposed
quantitative indicator Video Multimethod Assessment Fusion

(VMAF)[39], which estimates user perceptual video quality
levels. There was an obvious switch in the live video scene
around epoch 12500. As shown in Figure 5, as the training
time increases before the scene switching occurs, the effect
of video enhancement increases, and training gain tends to
become saturated. After the scene switching occurred, the
reconstruction quality of the video dropped rapidly. Comparing
the three curves, we see that A+aB and A+B methods obtain
significantly higher VMAF values than when employing train-
ing method A. Noteworthy is that by increasing the weight of
the new video frames added during training, A+aB achieved
the highest VMAF. Therefore, in this work, an A+aB approach
is adopted to ensure the best quality enhancement of the
proposed SR model. The cloud and broadcaster jointly assist
the online model training: the cloud server regularly checks
the video quality enhanced by the SR model, whereas the
broadcaster detects scene changes during encoding. When the
training gain tends to zero, the online training is paused and
when a scene switching is detected, the online training is
restarted.

Online incremental training provides better video enhance-
ment effects than directly using offline pre-trained general
models. However, online training and inference for each
channel is a high computing resource-consuming task. Based
on our observations, the popularity of live broadcasters is
highly heterogeneous, with the highest proportion of traffic
being generated by the few most popular live broadcasters.
Figure 6a shows the popularity of live broadcasters crawled
from Huya (one of the biggest live streaming platform in
China) on May 25, 2020. The popularity of live broadcasters is
highly skewed. Therefore, if the maximum processing power
is used on the top channels, the most benefit for viewers is
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obtained from the limited computing power available. The
difficulty in exploiting the skew lies in quickly and accurately
predicting the popularity of individual channels. We examined
the access pattern of 3 representative channels, ranking 1, 4,
and 7, respectively. As shown in Figure 6b, the streams of
the same live broadcasters have similar peak popularity for
different days. Based on the finding, the popularity of the video
streams broadcasted by the same broadcaster is predictable.
When a known live broadcaster has uploaded at least one video
stream and uploads a new video stream, the popularity of the
new video stream can be accurately predicted based on the
earlier view counts.

Due to limited computing resources, we divide live channels
into three categories according to their popularity (the number
of views): hot, normal, and cold. We adjust the criteria for as-
signing videos into different categories dynamically according
to cloud computing power availability. To meet the real-time
transmission requirement, we adopt a well-known light-weight
SR model CARN [31]. We provide discriminate computing
resources to support each category: 1) For a hot channel, the
cloud server trains the SR-based models based on the live
stream content online and uses the trained model to enhance
the video quality; 2) For a normal channel, only online quality
enhancement is provided to improve quality, without online
model training; 3) For a cold channel, no computing power is
provided for training and enhancement. Two offline-trained SR
models adopted for the normal channel are: a specific model
(SP-similar) trained by other hot channels with similar content
in the same category and an offline pre-trained general model.

D. Flexible Live Bitrate Adaptation Algorithm (FLBA)

The flexible video frame compression proposed to be used
during live streaming requires determination of a targeted
resolution for the video stream and selection of the appropriate
compression ratio to yield high quality and low transmission
latency. In this context, the flexible frame video coding scheme
provides multiple bitrate options, because it can flexibly
choose the number of compressed KFs and NKFs. In order
to best maintain high live streaming quality given limited
uplink network bandwidth and cloud computing resources, the
flexible live adaptation bitrate algorithm (FLBA) is proposed.
We integrate two parameters into the proposed FLBA algo-
rithm for QoE optimization: the encoding bitrate R, and the
optimal down-sampling scale scalen. When the broadcaster
generates a video chunk, FLBA algorithm will be called to
make a decision based on the available uplink bandwidth and
computing power in the smart cloud.

1) Problem Formulation: The performance of the proposed
FLBA algorithm is determined by both uploading and process-
ing of the live stream. Compared to the common streaming
system, our proposed flexible coding scheme introduces ad-
ditional time cost to compress and reconstruct video frames.
Next we present a model of the network constraint, latency
constraint and users’ QoE, and formulate the optimization
problem to be solved in the cloud.

Network Constraint: Let Ct denote the uplink throughput
measured at the time slot t and Cn denote the average uplink
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Fig. 5: Online learning quality improvement

throughput during the period of sending the nth video chunk.
Cn can be expressed as:

Cn =
1

tn+1 − tn

tn+1∑
t=tn

Ct, (1)

where tn is the starting time sending the nth video chunk and
tn+1 is the starting time of sending the next video chunk n+1.
Considering the uplink bandwidth of the live broadcaster, the
throughput of the current uploading video stream must be less
than the uplink bandwidth capacity. Therefore, the network
constraint can be written as:

Rn ≤ Cn, (2)

where Rn is the selected bitrate of the nth video chunk.
Latency Constraint: In this paper the delay refers to the

time spent by the broadcaster uploading a live video chunk to
the cloud server until it is distributed to the end users. This
is relevant as the focus is on improving live video delivery
quality on the video uploading side. The latency is then
composed of: 1) the transmission time of uploading a live
video chunk from the broadcaster to the cloud server and 2)
the video processing time of the nth video chunk in the cloud.
The latency Ln can be written as follows:

Ln =
Sn

Cn
+ enhancen ∗ ptn,

enhancen ∈ [0, 1].
(3)

where Sn denotes the size of the nth video chunk. The time
taken to fully upload the video chunk is Sn

Cn
. The video chunk

can be either a compressed chunk or an original high resolution
chunk. enhancen is a binary variable to indicate whether the
video chunk needs to be processed by the SR technique in the
cloud. The video processing time of the nth video chunk is
enhancen∗ptn where ptn is the estimated total SR processing
time according to frame downsample scale scalen.

QoE Model: The ultimate goal of the live bitrate adaptation
algorithm is to improve QoE in order to achieve long-term
user satisfaction. Recent studies show that user perceived video
quality features play a vital role in evaluating the performance
of adaptive bitrate streaming services [40]. Motivated by these
previous perceptual quality-based studies, we mainly refer to
the QoE model defined in [40]. In particular, the QoE of each
live stream considered in this paper consists of three aspects
as follows:

• Cumulative video quality QN : q(.) denotes a non-
decreasing function that maps the bitrate of a video
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chunk Rn to the quality q(Rn) perceived by the user. We
use VMAF[39] to measure the perceptual video quality
q(Rn). The cumulative video quality of a live video can
be written as:

QN =

N∑
n=1

q(Rn). (4)

• Cumulative video latency Ln: Since we focus on the
upload latency from live broadcasters to cloud servers,
we only consider the upload latency Ln including the
upload time of the nth chunk from broadcasters to cloud
servers and the video processing time by using the super-
resolution technique. The cumulative video latency of a
live video can be expressed as:

LN =

N∑
n=1

Ln. (5)

• Cumulative video quality switching WN : From a viewer’s
perspective, switching the video quality from a low bitrate
to a high bitrate affects positively the viewing experience,
while switching the quality from a high bitrate to a low
bitrate decreases experienced viewing quality. Therefore,
the QoE model should consider the benefits of switching
from a low bitrate to a high bitrate and penalise switching
from a high bitrate to a low bitrate. The positive video
smoothness WPP , switching from a low bitrate to a high
bitrate, is defined as follows:

WPP =

N−1∑
n=1

[q(Rn+1 − q(Rn))]+. (6)

The negative video smoothness WPN , associated with
switching from a high to a low bitrate, is written as:

WPN =

N−1∑
n=1

[q(Rn+1 − q(Rn))]−. (7)

However, frequent video quality switches are not desir-
able for end viewers. To avoid frequent switching, even
from a low bitrate to a high bitrate, we set the weight of
positive video smoothness to a small value.

Finally, the overall QoE for a live video is the weighted
sum of the above three aspects, namely:

QoE = αQN + βLN + λWPP − σWPN , (8)

Algorithm 1 Flexible bitrate adaptation algorithm.

Input: C[t1,tn], trainn, enhancen
1: Initialize
2: Target = QoE(vn) + γ · trainn ·Mgain(vn)
3: for n = 1 to N do
4: Ĉ[tn,tn+K ] = ThroughputPred(C[t1,tn])
5: if enhancen = 0
6: Availset = R
7: 1, Rn = fmpc(Ĉ[tn,tn+K ], Rn−1, Availset)
8: encode nth chunk with bitrate Rn

9: elif enhancen = 1
10: Availset = R

⋃
Rcompressed

11: scalen, Rn = fmpc(Ĉ[tn,tn+K ], Rn−1, Availset)
12: encode nth chunk with bitrate Rn, and downsample

the key and/or non-key frames with scalen
13: endif
14: end for

where α, β, λ and σ are non-negative weighting parameters
corresponding to video quality, delay, positive quality smooth-
ness and negative quality smoothness, respectively.

Additionally, we also need to consider the demand for high
resolution frames to train the SR video coding model. Thus,
our optimization goal is to maximize the overall QoE and
the future quality improvement from online SR video coding
model training:

argmax
scalen,Rn

QoE(vn) + γ · trainn ·Mgain(vn)

subject to Eq. (1) - (8),
trainn ∈ [0, 1].

(9)

The first term QoE(vn) is the user QoE of the nth chunk,
and the second term Mgain(vn) is the gradient of the online
training quality gain curve, which is provided by the cloud
server through periodic feedback. γ is a discount factor of
the expected quality gain if the online training model is used
for a particular channel. trainn is a binary variable that
indicates whether the cloud server provides incremental SR
model training, given the capacity of the uplink bandwidth
Cn. This optimization generates the following as outputs: 1)
encoding bitrate decision Rn, and 2) frame downsample scale
scalen.

2) FLBA algorithm: As mentioned, the flexible video frame
compression offers a greater number of bitrate options than
the traditional coding methods since we can flexibly compress
key frames and non-key frames. Bitrate adaptation can be
considered a stochastic optimal control problem. The Model
Predictive Control (MPC) algorithm [41] is one of the most
well-known control algorithms for optimizing control prob-
lems since MPC optimizes complex control targets online
by using predictions in dynamic systems under constrained
conditions. The proposed FLBA extends the optimization goal
and constraints of MPC to respond to the requirements and
constraints of the flexible frame video encoding.

Algorithm 1 presents the proposed FLBA algorithm. The
algorithm chooses the bitrate Rn for the nth chunk and the
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Fig. 7: Compress rate for proposed encoding scheme
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Fig. 8: Self-measured bandwidth

downsample scale scalen by looking ahead at K future chunks
and solves our QoE maximization problem with throughput
predictions Ĉ[tn,tn+K ]. For the nth chunk, the broadcaster side
maintains a moving horizon from chunk n to n+K − 1 (i.e.
K = 3 during testing).

The algorithm performs the following main updates: line 2
is the objective function based on whether the cloud server
will train the specific SR model of the current channel online
trainn. Line 4 estimates the available throughput Ĉ[tn,tn+K ]

for the next K chunks at time t based on history throughput
using a common throughput predictor based on 1D-CNN.
According to whether the cloud server has allocated computing
power for video stream enhancement enhancen, we decide the
available bitrate set Availset that the broadcaster can encode.
If the cloud server provides a certain amount of computing
resources to perform the task of recovering compressed KFs
and NKFs (enhancen = 1), the broadcaster can adopt the SR-
based video coding method to compress the video stream to
Rn ∈ R

⋃
Rcompressed, where R is the set of bitrates for

the original coding and Rcompressed represents the bitrate set
after flexible frame compression. If there are no computing
resources available (enhancen = 0), the nth video chunk can
only be encoded to Rn ∈ R. Then the encoding bitrate and
flexible frame compression ratio is selected according to the
estimated uplink bandwidth with the MPC algorithm.

IV. FLEXSRVC FRAMEWORK EVALUATION

A. Evaluation Setup

Implementation. At the broadcaster side, we implement our
flexible frame video coding scheme by modifying remuxing.c,
decode video.c, encode video.c and transcoding video.c in
FFmpeg [42]. Our proposed flexible live bitrate adaptation
algorithm is implemented by the Pytorch framework. At the
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cloud server side, we implement the Smart Cloud by employ-
ing Nginx [43], uWSGI [44], and Django [45]. The online
training process and the inference process are implemented
by the Pytorch framework in a separate process. We use two
GeForce RTX 2080Ti GPUs on the smart cloud, one for
inference and the other one for the training process. We use
the lightweight model from CARN [31] for video SR and use
the benchmark DIV2K dataset [46] for training offline the pre-
trained general model. The weights of the compression ratio,
frame SR quality, and SR processing time are set to 0.5, 0.5
and 0.01, respectively.

Videos. We select three different stream categories (live
news, live chat, and online gaming) from YouTube. Each
video is split into one-second video chunks (GOP size=24).
The high-resolution chunk is encoded at a bitrate of {2560,
4800} Kps by H.264 codec, which corresponds to the video
resolution {720P, 1080P}. Key and non-key frames can be
downsampled from 1080P to 360P/540P and from 720P to
360P, respectively.

Network Traces. We use two types of bandwidth traces: an
open dataset (100 4G network uplink traces [47]) and a self-
collected dataset. We collected real uplink network bandwidth
information in different environments (such as airport, canteen,
train and pedestrian) by using the Mobile Intelligent network
measurement tool1. We recorded uplink throughput every 5000
milliseconds. This measurement effort is ongoing, and we are
constantly adding additional traces to our uplink dataset for
future research. To simulate the dynamic changes between
broadcasters and the smart cloud in a realistic network, we
use the Linux Traffic Control tool [48] to control the sending
rate on the broadcaster side. In particular, we select network
traces with an average uplink bandwidth of less than 2.5Mbps
to simulate a bandwidth-constrained environment. We also use
our measured network uplink traces for evaluation.

QoE Parameters. In our experiments, the weights of video
quality, and quality variations defined in Eq. 8 in this QoE
criterion are set to α = 0.8, β = 5, λ = 0.2 and σ = 1.06,
respectively. The impact of video quality reduction on user
viewing is much greater than that of video quality improve-
ment, so we set λ < σ when setting hyperparameters. The
evaluation index of VMAF [39] used to measure the video
is [0, 100], the overall distribution of the rebuffering time
will be smaller than the value of VMAF. To balance the
relationship between rebuffering and video quality, we set the
video rebuffering penalty to a large value. In Eq. 9, γ is a
discount coefficient less than 1, and its purpose is to balance

1MobileIntelligent [Online] https://appsonwindows.com/apk/8486138
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TABLE II: Broadcaster Processing Time per GOP (i.e. 1s)

Compression combination KF + 4NKF (ms) KF+8NKF (ms)
360P - 720P 180 ± 38.48 201 ± 28.95
360P - 1080P 298 ± 50.08 334 ± 57.58
540P - 1080P 324 ± 38.62 366 ± 48.77

the super-resolution computing power allocated to the current
video chunk and the computing power used for online training
of the model. The smaller the γ value is, the less important
is the model training and vice-versa. Hence, the weight of the
training gain γ is is recommended to be set to 0.8.

Baselines. We evaluate the performance of the proposed
FlexSRVC in terms of various aspects by comparing it with
three methods:

• The original method: broadcasters upload live video
encoded using H.264 based on the uplink available band-
width, and the cloud server does not perform any video
enhancement process.

• LiveNAS: broadcasters send low-resolution video
streams, and the cloud server super-resolves all frames
of the low-resolution streams used in [7].

• NEMO-uplink: NEMO-uplink: it is a modified version
of NEMO [49] to support the uplink streaming scenario
in which broadcasters only apply the DNN training to
a subset of selected frames and afterwards send the
processed frames and models to the cloud-side. The cloud
server super-resolves only selected frames based on the
received models and upscales separately the remaining
frames from the cache.

B. Compression Ratio Choice

In order to identify the most appropriate compression ratio
to be used in the proposed SR-based coding scheme, real
uplink network bandwidth information is collected in different
environments. Figure 11a indicates the original GOP size for
each resolution. As shown in Figure 11a, the size of high-
resolution GOPs is almost double the collected average uplink
bandwidth. It is difficult for a live broadcaster to upload high-
resolution GOPs under limited uplink bandwidth. Suppose a
live broadcaster chooses the low-resolution GOP to upload.
Even though the transmission time can be shorter, the quality
of the live video content degrades and affects users’ QoE.
Compared with traditional image quality metrics, such as Peak
Signal-to-Noise Ratio (PSNR) [50] and Structural Similarity
(SSIM) [50], VMAF is the closest in terms of the subjective
perception of the human eye. A VMAF score ranges from 0 to
100, with a score of 0-20 indicating an unacceptable quality,
20-40 mapping to bad quality, 40-60 to reasonable, 60-80 to
decent, and 80-100 showing an outstanding quality level [39].
In addition, the quality of the corresponding different types of
videos in different sizes are presented in Figure 12a in terms
of their associated VMAF scores, indicating how the quality
of videos is positively correlated with the video sizes.

The possible choices for compression include 180P-720P,
360P-720P, 270P-1080P, 360P-1080P and 540P-1080P. For ex-
ample, the combination 180P-720P indicates that broadcaster-
side downsamples several frames of an online video to 180P,

TABLE III: Cloud Processing Time per GOP (i.e. 1s)

Compression combination KF + 4NKF (ms) KF+8NKF (ms)
360P - 720P 233 ± 72.81 269 ± 66.34
360P - 1080P 316 ± 29.96 359 ± 34.37
540P - 1080P 369 ± 105.95 447 ± 95.59

and the cloud-side upsamples the received video to 720P.
We set the GOP size to 24 frames in our experiment. Since
there are a variety of compression frame combinations to
choose from, we only show the GOP size obtained by possible
compression choices in Figure 11b. As we can see from figure
11b, the bandwidth consumption for the compressed GOPs
obtained by our proposed video coding module is below the
average uplink bandwidth and is at least 20% smaller than that
of the required bandwidth when delivering a 1080HD online
stream. Figure 12b illustrates the quality of compressed GOPs
using SR in terms of VMAF scores. For all the different types
of videos in Figure 12b, it can be seen that the compression
choices 360P-720P and 360P-1080P achieve better quality on
average than 180P-720P and 270P-1080P with the similar
compressed chunk size shown in Figure 11b, respectively.
The compression option 540P-1080P also achieves good video
quality for three types of videos. Therefore, we select the
following compression options: 360P-720P, 360P-1080P and
540P-1080P when aiming at bandwidth saving while also
ensuring high-quality video.

In our considered upload video system, since we can
choose to compress different numbers of video frames and
can downsample them by multiple compression scales, the
FLBA algorithm has a significant number of bitrate options.
Assuming that each resolution corresponds to a bitrate in the
initial encoding, D is the number of different resolutions, each
encoded GOP includes M frames and the number of selectable
downsampling scales is A, there are D×M ×A optional bi-
trates. However, we can not include all possible bitrate choices
when performing bitrate selection for each video chunk since
this would be associated with a high computational cost. Thus,
it is significant to refine the bitrate choices before performing
the FLBA algorithm. Figure 14 shows the compression ratio of
different frame compression for online gaming videos. It can
be seen from Figure 14 that the more frames to be compressed
are, the greater the compression rate is. When the number of
frames is one, only the key frame is compressed for a GOP.
We can achieve a compression rate of 30%-48% when KF and
NKFs are compressed. When compressing NKFs, the increase
in compression rate becomes smaller than that of compressing
KFs. In order to reduce the computational cost, in the case of
a relatively fixed scene, the number of optionally compressed
frames is set to a fixed interval greater than one.

C. Performance of the Flexible Frame Video Coding Method

1) Video compression efficiency: In order to further study
our flexible frame video coding scheme, we implement our
video coding module on three different video types. Figure
8 shows two sample traces for our bandwidth collection
process under Airport and Canteen environments. The range
of the uplink bandwidth is from 0.8Mbps to 8.39Mbps. The
average uplink bandwidth is 3.7Mbps. Figure 7a shows the
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compression rate of different video types using our flexible
frame video coding method to downsample 1080P to 360P.
KF indicates that we only compress the key frame of a video
stream. KF+4NKF and KF+8NKF indicate that we compress
four non-key frames and key frame, and eight non-key frames
and key frame, respectively.

As we can see in Figure 7a, the more compressed frames
are, the higher the video compression is. The overall median
video compression ratio is between 22% and 48%. The median
video compression ratio for KF+4NKF is on average 5%
higher than KF and the median video compression ratio for
KF+8NKF is 12% higher than KF+4NKF. The increase in
compression ratio from KF to KF+8NF is getting smaller
since the size of a key frame is greater than the size of
a non-key frame due to its intra-frame coding. Figure 7b
shows the average compression rate of different resolution
combinations over different video types. 360P-720P means
we compress 720P key frame to 360P on the broadcaster
side. As shown in Figure 7b, the compression combination
of 360P-1080P achieves the highest compression ratio among
all the compression choices since 360P-1080P uses the largest
downsample scale.

2) Processing time: Compared with the traditional encod-
ing method, the new encoding method introduces an additional
processing time, including 1) time for selectively downsam-
pling and re-encoding the video frames at the broadcaster side.
2) time to enhance the downsampled low-resolution video
frames and then re-encode the reconstructed high-resolution
framed, at the cloud server-side. The new encoding method is
transparent to the viewer, and the viewer can decode and play
high-definition video normally without modifying its decoding
process.

Although our coding module adds a stage to the traditional
video encoding process in live streaming, the resulting process
latency is incredibly low. Table III and Table II show the aver-
age additional time consumption of the proposed flexible video
coding module for a one-second video chunk which contains
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one GOP (GOP size = 24) at the broadcaster and smart cloud
side, respectively. The column index KF+4NKF means that
the key frame and first four non-key frames are compressed,
and the column index KF+8NKF indicates that the key frame
and first eight non-key frames are compressed. The row index
360P-720P indicates that the broadcaster compresses 720P key
frames to 360P and the smart cloud super-resolved 360P key
frames to the original 720P. The definition is repeated in the
next two rows.

We employed a regular PC with one CPU (Intel Core i7) for
video frames compression at the broadcaster side and a 2080Ti
GPU for super-resolution at the smart cloud server. As we
can see from Table II and Table III, the average additional
processing times and one standard deviation of the mean
processing time at the broadcaster and at the cloud side for
all the compression combination, i.e., compressing five 720P
frames to 360P (360P -720P) is 180 millisecond with 38.38
millisecond standard deviation. The higher the input resolution
is, the greater the compression time is, too. 540P-1080P has
the greatest processing time on both the broadcaster and the
cloud sides. As the delay associated with our video coding
module is extremely low, this module is appropriate for live
video streaming.

D. Performance of the online SR video coding model

1) Online learning performance: Figure 15 shows the
original high-resolution 1080P video on the left, and different
snapshots of the marked area after enhancement from 360P to
1080P on the right. The bottom right corner of each snapshot
is the VMAF score. Compared with the bicubic upsampling
method, using a general model can significantly improve the
video quality. Although the video enhancement quality of the
SP-similar model trained on other channels is lower than that
of the specific model, its performance is still better than that
of the offline pre-trained model due to the similarity of the
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scene. If there is no SR-similar model, the offline pre-trained
model is used.

2) SR inference quality: Figure 9 indicates the quality im-
provement of super-resolution using our proposed framework
FlexSRVC. We use 360P and 540P as the super-resolution
inputs from three video categories. The super-resolution model
upgrades 360P to 720P and 1080P and reconstructs 540P to
1080P. We compress the key frame and four non-key frames
(4NKF) and the key frame and eight non-key frames (8NKF)
in H.264 using the fastest option in FFmpeg. It can be seen
from Figure 9 how FlexSRVC improves the quality of the
original low-resolution streaming by between 10% and 50%
for both schemes. The overall quality improvement of 4NKF
is greater than that of 8NKF.

3) SR inference efficiency: Non-key frame compression
requires longer super-resolution processing time and more
computing resource consumption compared to key frame com-
pression. We observe that a single super-resolution task cannot
fully utilize the GPU processing power. Therefore, we conduct
several experiments using a GeForce RTX 2080 Ti GPU to
discover the maximum processing capacity of a single GPU.
We use a different number of threads to run a single super-
resolution task through a single GPU.

Figure 10 shows the super-resolution inference time for
a GOP of 24 frames by reconstructing low-resolution 360P
frames to 720P and 1080P and 540P frames to 1080P. As
the number of threads increases, GPU utilization increases,
but excessive parallelization affects the overall system effi-
ciency. As we can see from Figure 10, super-resolution with
2 threads achieves the shortest processing time. With more
than 2 threads, although more parallelization is employed, the
super-resolution processing is longer than that for 2 threads.
Therefore, we adopt multi-thread super-resolution to optimize
the overall GPU utilization efficiency (but keep the number of
threads low) and reduce video processing latency.

E. Comparison of Video Coding Methods

This subsection evaluates our proposed flexible frame video
coding scheme in comparison with BIPP [8] that compresses
the non-key frames only in the video. In our experiments,
we compress non-key frames by a downsampling factor of
2 corresponding to a 720P high-resolution chunk (720-360-
nonkey), and by a downsampling factor of 2 and 3 correspond-
ing to a 1080P high-resolution chunk (1080-360-nonkey and

TABLE IV: Comparison of compression methods

Method Compression Time (sec) Quality
720-360-nonkey 29% 1.63 74.3
1080-360-nonkey 53% 2.20 80.0
1080-540-nonkey 28% 3.64 94.6
720-360-key 40% 0.03 79.1
1080-360-key 44% 0.03 80.4
1080-540-key 41% 0.19 92.8

1080-540-nonkey). Compared to non-key frame compression,
key frame compression is associated with the highest cost-
benefit ratio, as it can achieve a high compression ratio with
minimal computational resource consumption. Therefore, we
only compress the key frames of a live video to evaluate the
superiority of our flexible video coding module.

For our video coding module, we use the same combination
of the super-resolution based hybrid coding method (720-
360-key, 1080-360-key, 1080-540-key) already described. We
evaluate the compression rate of both coding methods and
the inference time of downsampled frames using the super-
resolution model and compare the quality of outputs. Table
IV shows that both methods achieve similar video quality for
each combination. Even though the number of non-key frames
in a video chunk is greater than the number of key frames,
the compression rate of our key frame coding module is on
average 10% higher than that of BIPP since the size of a
key frame is greater than the size of a non-key frame. The
inference time of our coding module is at least 20 times less
than that of BIPP, which indicates that our solution is more
efficient than BIPP.

F. Comparison of Live Video Uploading Methods

1) Comparison with the original method: Our proposed
video uploading framework, FlexSRVC, can provide higher
video quality than the original method in limited uplink
bandwidth conditions since our model reduces the influence
of the uplink bandwidth capacity on the live streaming quality.
In order to verify the bandwidth consumption reduced by
FlexSRVC, we evaluate the bandwidth usage of FlexSRVC
normalized to the bandwidth usage for the original live stream-
ing when delivering the same quality video with 1080P under
fixed network traces. The uplink bandwidth in the network
traces is {0.5, 1.0, 1.5, 2.0, 2.5}Mbps. As shown in Figure
13a, FlexSRVC achieves similar quality levels as the original
method using only 74% - 85% of the required bandwidth
for different network conditions. Figure 13b indicates the
transmission time using FlexSRVC and the super-resolution
processing time normalized to the transmission time for the
original live streaming when delivering 1080P video. As it
can be seen, FlexSRVC reduces the transmission time by on
average 20% of the time to upload the original high-resolution
video. Noteworthy is that only 2% -5% of the transmission
time of the original live streaming is used for the SR inference.

2) Evaluation in the open 4G traces: We evaluate compar-
atively the performance of FlexSRVC, LiveNAS and NEMO-
uplink with our proposed bitrate adaptation algorithm for video
bitrate upgrades from 0.5Mbps to 2Mbps when a live video
is encoded in H.264 using the fastest option in FFmpeg.
Figure 16 shows the comparative performance of FlexSRVC,
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Fig. 16: Comparative performance assessment when using the open 4G traces.
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Fig. 17: Comparative performance assessment when using the self-measured traces.

LiveNAS and NEMO-uplink using our adaptation algorithm.
Figures 16a, 16b and 16c illustrate the average latency, quality
and QoE of different uplink bandwidth ranges. Figure 16a
indicates the average upload latency from broadcasters to
cloud servers, including the video upload time and video
processing time in the cloud, for different uplink bandwidth
intervals. FlexSRVC outperforms LiveNAS and NEMO-uplink
since FlexSRVC compresses key frames and non-key frames
flexibly according to current network conditions. Even in
extremely low uplink bandwidth, FlexSRVC still achieves the
lowest upload latency while ensuring the highest video quality
and QoE. As the uplink bandwidth increases, the latency of
FlexSRVC reduces significantly, while the latency of LiveNAS
is maintained at a relatively high level. NEMO-uplink incurs
a much higher delay as it has to train the DNN model at the
broadcaster side and cannot adapt to the network conditions.
Since both LiveNAS and NEMO-uplink need to reconstruct all
low-resolution frames in the cloud, when the uplink bandwidth
increases, the transmission time becomes shorter, but the video
processing time by SR is very time-consuming. Figure 16b
and 16c show that with the assistance of our flexible bitrate
adaptation algorithm, FlexSRVC achieves higher video quality
for all network traces, even under a poor uplink bandwidth
environment. Finally, FlexSRVC also achieves the highest
users’ QoE for all network traces. Compared with LiveNAS
and NEMO-uplink, the QoE obtained by FlexSRVC in dif-
ferent network conditions has increased by 61% on average,
demonstrating that FlexSRVC can adapt very well to network
situation and supports high service quality.

3) Evaluation with the self-acquired traces: To further
confirm the superiority of our proposed framework, FlexS-
RVC, we conduct experiments with the self-acquired traces in

different environments. Figure 17 presents the performance
of FlexSRVC, LiveNAS and NEMO-uplink with our pro-
posed bitrate adaptation algorithm for each network trace. As
shown in Figure 17a, FlexSRVC has better performance than
LiveNAS and NEMO-uplink, achieving high video quality
under various uplink bandwidth conditions. Under extreme
low uplink bandwidth, the upload latency for FlexSRVC is
low since FlexSRVC can flexibly compress key frames and
non-key frames and hence adapt better to the poor uplink
bandwidth environment. As the uplink bandwidth increases,
the upload latency of LiveNAS and NEMO-uplink are main-
tained at a relatively high level due to the SR processing
of all low-resolution frames in the cloud. Compared with
LiveNAS and NEMO-uplink, FlexSRVC reduces on average
the upload latency by 54.8% and 64.2%, and improves users’
QoE by 81.4% and 94.2%, respectively. Noteworthy is that the
proposed framework, FlexSRVC outperforms LiveNAS and
NEMO-uplink for all the network traces, providing better live
streaming services under different network conditions.

V. CONCLUSIONS AND FUTURE WORK

Video quality when employing traditional live video deliv-
ery strategies is strongly related to the available bandwidth.
In this paper, we introduce FlexSRVC, a novel live video
stream delivery framework based on SR, which improves the
video quality for live streaming at low bitrates with short cloud
processing time. Specifically, FlexSRVC integrates a flexible
frame video coding scheme design for improving compression
efficiency. Unlike the previous SR-based hybrid coding algo-
rithms, which further compress the non-key frames, our coding
scheme downsamples the key frames and non-key frames flex-
ibly at the broadcaster side. This new coding method increases
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compression efficiency and reduces the computation load as
it processes the key frames only. FlexSRVC also introduces a
novel bitrate adaptation algorithm (FLBA) to adjust content
delivery dynamically to the uplink network bandwidth and
cloud server computing resources. Testing shows how FlexS-
RVC achieves 10%-50% video quality improvement when
compared to traditional live streaming approaches and obtains
similar video quality while reducing with up to 25% the
associated bandwidth requirements. Compared to the method
of reconstructing all frames with SR during live streaming, it
improves users’ QoE by up to 85%, and ensures low latency
during live video streaming.

Future work will consider using a more complex QoE model
to address other relevant QoE influencing factors such as
upscaling effects, time the highest quality is employed, and
temporal pooling. Additionally, as the network bandwidth is
limited, proposing an edge-assisted video delivery framework
for live streaming will also be considered.
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