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Abstract—Adaptive streaming such as DASH offers person-
alized video experience and smooth the playback by allowing
dynamically adopt the video bitrate to the variations of net-
work conditions, which is promising for future Internet video.
Especially, in many recent emerging applications such as virtual
reality, adaptive streaming plays a key roles in providing high
quality viewing experience within the limited bandwidth. To
enable this promising technology in 5G system, how to adapt
the multicast nature and edge caching of the next generation
communication technology is important. In this paper, we model
the adaptive streaming transmission problem in mobile scenario
as a multi-source multicast multi-rate problem (MMMP) whose
linear relaxation is concave. we decompose the problem in terms
of clients and propose the distributed delivery algorithm (DDA)
by considering this dual problem. Besides, the computation
complexity, convergence and time-varying adaption of DDA are
also theoretically analyzed. Moreover, to further reduce the
computation complexity, a heuristic approximation method (H-
DDA) based on the physical meaning of dual problem is proposed.
We also show how H-DDA converge to the optimal value by
numerical methods. Finally, We conduct a series of simulation
tests to validate the superiority of our proposed H-DDA over
state-of-art solutions.

Index Terms—Adaptive streaming, Multicast delivery, Rate
control, dual optimization theory.

I. INTRODUCTION

Adaptive streaming such as dynamic video streaming over
HTTP (DASH) [1] enable video delivery based on diverse
representations and dynamic content adjustment to match
bandwidth variations and different user equipment. The latest
increases in the demand for bandwidth and expectations in
terms of viewing quality make adaptive streaming necessary
for various emerging video applications. For example, virtual
reality (VR)[2], which is a type of omnidirectional video with
ultra large bandwidth requirements, heavily relies on the adap-
tive streaming technology to deliver the high definition content
within the viewer’s field-of-view (FoV) only. By not delivering
the whole image, any unnecessary bandwidth consumption
caused by the potential delivery of the rest of the image is
avoided. Most of current DASH-based solutions have been
proposed for conventional wired networks [3] and broadband
wireless networks [4], [5]. By introducing ubiquitous edge
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caching and multicast support for the wireless connections,
current cache-assisted mobile networks enable large scale low
latency video services. Given the fact that caching video
content at the edge not only reduces the delivery latency, but
also simplifies the multicast design thanks to the multicast
feature of wireless communications, integrating edge caching
into the video system facilitates multicast video delivery.
With such advantages, there is a natural interest in proposing
solutions for adaptive video streaming in such an environment
[6], [7]. Yet, achieving optimal delivery over the cache-assisted
mobile networks is non-trivial.

On one hand, adaptive streaming refers to dynamically se-
lecting the video bitrate in order to both optimize user quality-
of-experience (QoE) and maximize the utilization of band-
width resources while avoiding network congestion[2], [14],
[13]. The adaptive streaming schemes requires to frequently
rearrange the bitrate selection policy to adapt the randomness
of the wireless communications, user preferences, etc.. On
the other hand, despite the benefits brought by multicast and
ubiquitous caching[17], these features also make traditional
rate adaption methods[8], [9] impossible to use. An important
issue is that the fully distributed aspect of ubiquitous caching
triggers the requirement of optimizing overall user bitrate
by using a decentralized method based on local information.
In addition, conventional adaptive streaming serves video
clients separately and adjusts user streaming rate individually
[1], [14]. However, this one-to-one design paradigm is not
appropriate in the context of one-to-many multicast content
delivery.

In this paper, we focus on proposing a decentralized method
for adaptive multicast video streaming in a cache-assisted
mobile network environment. First, we mathematically model
the adaptive streaming problem and then propose an optimal
decentralized delivery algorithm (DDA) which enables each
video client optimize its bitrate without coordinating with
other clients. Moreover, we further propose a heuristics rate
adaption algorithm that significantly reduces the computation
load while approximating the optimal value derived by DDA.
We present a series of simulation tests which demonstrate
the close to optimal performance of the proposed algorithm,
and show how our algorithm outperforms other state-of-art
solutions. The main contribution of this paper are:
(1) Multisource multicast rate-adaptive problem: We formu-

late mathematically the optimal adaptive video streaming
in cache-assisted mobile networks as a multisource mul-
ticast multi-rate problem (MMMP). We then introduce
a linear relaxation of MMMP and prove its concavity,
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Figure 1. An illustration of cache-assisted mobile adaptive streaming

demonstrating that it has a unique optimal solution.
(2) Distributed Delivery algorithm: We further decompose

the MMMP in terms of the end users and prove the
equivalence between the original MMMP and decomposed
problems. Furthermore, we propose DDA, a decentralized
algorithm by considering the dual of the decomposed
problem, which achieves optimal rate adaption. We also
extend our algorithm to the omnidirectional video appli-
cations such as VR.

(3) Heuristic distributed delivery algorithm: By observing the
physical meaning of the dual problem, we further propose
a heuristic rate adaption algorithm (H-DDA) that achieves
a similar performance, but yet dramatically reduces the
computation load in comparison with the original DDA.

Our algorithms are implemented and involved in simula-
tions, whose results show how they approximate the theoretical
optimal and outperform state-of-art solutions.

II. BACKGROUND AND RELATED WORKS

A. Caching-assisted mobile adaptive streaming background

Fig. 1 illustrates the process of provisioning adaptive
video streaming services in cache-assisted mobile scenarios.
Video clients can retrieve the content from a nearby edge
caching node instead of the far-end media server. Each client
uses the adaptive streaming control module to determine
the appropriate representation of the desired video based on
their network conditions. This is especially important in VR
applications[23], where the image is tiled and each tile has
multiple representations. The adaptive streaming control mod-
ule selects the bitrates for each tile according to the network
conditions and user viewport as well. Adaptive streaming
supports the video provider to deliver only the users’ area

of interest rather than the whole image at high quality, saving
bandwidth without impairing the viewing experience.

B. Related works
Numerous studies have focused on improving the perfor-

mance of adaptive video streaming. For example, Yuan et
al. in [15] proposed a ensemble rate adaptation framework
which aims to take the advantages of multiple rate adaptation
methods. The proposed framework mainly consists of two
modules, a method pool to store the rate adaptation policy
and a method controller to decide the policy to use. By
constructing a two layer network structure, a distributed joint
optimization algorithm for adaptive video streaming which
aims to maximize the total user demand rate is proposed
in [16]. Furthermore, a modified algorithm with a practi-
cal caching strategy is also designed in order to support
realistic implementation. Several recent studies attempts to
apply the machine learning method to deal with the high
dynamic network conditions when adaptively streaming the
video content. For example, In [18], A Q-learning model is
applied to generate the adaptive streaming schemes for 5G
multimedia services with the aims to preserve the energy
efficiency and QoE as well. TCLiVi in [19] applies the deep
reinforcement learning to control the bitrate selection for
adaptive streaming. A major difference between our work and
current reinforcement learning-based studies is that we take
the multicast into account instead of only considering the case
of end-to-end video delivery. Besides, reinforcement learning
requires pre-training of a learning model which can be time
consuming and requires a-priori knowledge of the network,
which can be practically difficult.

Most studies on cache-assisted adaptive streaming focus on
cache placement and are not focused on in this work. Zhang et
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Table I
NOTIFICATIONS USED IN PROBLEM FORMULATION

Notation Definition
N the number of nodes in the network
V,L set of the nodes and links
S the set of video providers
U the set of end users
lx,y link between x and y
G the set of videos
x the vector denotes the selected bitrate of all clients
xi,j transmission rate between i and j
cl link capacity of l
J(x) QoE value when the bitrate is x
si(u) client set using provider i
si(u)l client set using provider i via link l
l(s) set of providers using link l
θ a nonegative weight within [0, 1]
xl
k the maximum bitrate of users using link l

xi,j
∗ the optimal value of transmission rate between i and j

bmax(bmin) the bandwidth required by highest (lowest) representation
λ∗
p,υ

∗ Lagrange operators

al. [17] proposed VISCA, which integrates the edge caching
capacity to enhance the streaming performance. Moreover, a
novel Adaptive BitRate (ABR) algorithm decides the bitrate
and video chunk source by considering network conditions,
QoE objectives, and edge resource availability jointly is then
proposed. VISCA also uses the super resolution method to
enhance the low-quality data. Liu et al. [20] designed a hop-
by-hop adaptive streaming control, which sets a scheduling
window at each switch to limit the data transmission rate
according to the one-hop link capacity. Furthermore, a priority-
based data delivery scheme is proposed to enable popular and
lowest representation video content to be delivered preferen-
tially. However, this method only adapts video rate at each
node individually, and it is difficult to achieve overall clients
bitrate adaption optimization without coordinating with each
other. Eswara et al. [21] formulated the resource allocation
problem for adaptive streaming as a stochastic optimization
problem with the purpose to optimize the long term QoE
metrics. However, the formulated problem treats each flow
individually and ignores the multicast feature of the wireless
communication, decreasing the transmission performance.

In the context of the above discussion, a distributed method
that not only supports multicast, but also provides optimal
rate adaptation is required for cache-assisted scenarios and is
proposed in this paper.

III. SYSTEM MODEL AND PROBLEM FORMALIZATION

A. System Model

Table I shows the notations in this paper. We consider a
network of N nodes including cache carriers, switches content
sources and users that communicate with each other over a
given connected, undirected graph G = (V,L). V and L ⊆
V×V denote the set of nodes and network links, respectively.
Let S = {1, . . . , S} ∈ V be the set of video providers in the
network and U = {1, . . . , U} ∈ V the set of end users. We
define the path from client i to its video provider j as pj , i.e.
pj ≜ {li,s1 , ls1,s2 , ls2,s3 , . . . , lsn,j}, where lx,y indicates the
link between nodes x and y. Due to the in-network caching,
intermediate nodes can also be treated as providers, namely,
for all k = 1, 2, 3, , n, sk ∈ S.

In our adaptive model, scalable video coding (SVC) [22]
is used to encode video content into a base layer and sev-
eral enhancement layers. Video clients can either decode the
video with only the base layer or with base plus multiple
enhancement layers. The more enhancement layers decoded,
the better quality of video can be presented. Let videos in
G consist of m enhancement layers, and let b1 and hk be
the bitrate of base layer and each enhancement layer k,
respectively. Accordingly, possible requested video bitrates
are B = (b1, b1 + h1, b1 + h1 + h2, , b1 + h1 + . . .+ hm).
Denote bmin = b1 and bmax = b1 + h1 + . . . + hm. With
the layered coding property of SVC, content providers can
serve multiple request of the same video with different bitrates
by multicasting the highest requested bitrate, and the switch
forwards the layers of data to clients according to the request
of client.

In our solution, we attempt to optimize the rate adaptation
and maximize user QoE. As we select the bitrate to optimise
both network bandwidth utilisation and user QoE, we use the
QoE model proposed in [25] and introduced next:1

J(x) = 4.75− 4.5e−0.77x (1)

B. Problem Formalization

The objective of the rate adaption algorithm is to chose a
rate adaption strategy x to maximize the overall user QoE
given the network capacity constraints. Let strategy vector
x = {x1,1, ..., xi,j , ..., xS,U}, where xi,j implies the delivery
rate of client j receiving video from i. We represent the
capacity of links in L as a vector c = {c1, c2, c3, . . . , cL}.
The objective function f (x) is defined as the overall sum of
client QoE, i.e., f (x) =

∑
i∈S

∑
j∈si(u)

J (xi,j), where J (·) is

given in eq. (1). Considering the above objective function,
the rate adaptation streaming problem can be referred to
as the following multicast multi-sources multi-rate problem
(MMMP): P1.

P1:

max
∑
i∈S

∑
j∈si(u)

J (xi,j) (2)

s.t
∑
i∈l(s)

max
j∈si(u)l

xi,j ≤ cl l ∈ L (3)

xi,j ∈ B i ∈ S, j ∈ si (u) (4)

where si (u) is the clients set of providers i, l (s) denotes
the set of providers that use link l, si (u)l denotes the set
of clients using link l to access videos from i. Accordingly,
max

j∈si(u)l

xi,j indicates the maximum bitrate over link l of users

in the multicast tree rooted at i; we define this bitrate as the
provider rate of i over l. The constraints from eq. (3) ensure
that in a multicast scenario, for any link l, the total sum of
provider rates cannot exceed the capacity cl. Constraints from
eq. (4) indicate that each client selects a bitrate from B to
request. If J (xi,j) is given by eq. (1), (2) and (3) are concave
and convex[26], respectively. However, B is a discrete set,

1Note that other utility functions with properties of concavity and twice
differential bitrate can also be employed into our problem.
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making the P1 hard to be solved. Instead, we consider the
linear relaxation of the MMMP as follows:

P2:

max
x∈[bmin,bmax]U

∑
i∈S

∑
j∈s(u)

J (xs,j) (5)

s.t
∑
i∈l(s)

max
j∈si(u)l

xi,j ≤ cl l ∈ L (6)

where x ∈ [bmin, bmax]
U indicates that the rate adaption

strategy can be chosen from a continuous U -dimensional close
space, which is considered as the relaxation of constraint from
eq. (4) in P1. The closure space [bmin, bmax]

U is a convex
set because ∀x,y ∈ [bmin, bmax]

U and 0 < θ < 1, we have
θx + (1− θ)y ∈ [bmin, bmax]

U . Therefore, problem P2 is a
concave optimization [26] whose maximum value is unique.

In spite of adopting multi-sources and multicast features,
P2 can be easily generalized to other scenarios with minor
modifications. For example, to apply P2 in a scenario with
a single provider concurrently delivering multiple videos, we
can split the provider i with n video flows into n virtual source
nodes. Virtual node ik corresponding to video k is described
by [ik, L (ik) , sik (u)], where L (ik) is the link set that is used
by ik and sik (u) is the group of users that access k from i.
For multipath delivery scenarios, assuming client j accesses
content via m interfaces and corresponding delivery rate of
each interface fk is xi,jfk

, applying P2 only needs to rephrase

the objective function of j to J

(
M∑
i=1

xi,jfk

)
.

IV. ALGORITHM DESIGN

In this section, we first decompose MMMP in terms of
video clients and consider its dual problem. Then, we propose
a distributed rate adaption algorithm DDA which supports
individual clients to determine their optimal video bitrate.

A. Problem Decomposition

Considering P2, the objective function in eq. (5) is separable
for- the video clients yet coupled by the constraints from eq.
(6). In addition, as constraints in eq. (6) contain the maximum
value function which is not differential, directly solving this
problem is a nontrivial task. We introduce a new parameter
xl
i, and formulate the decomposed MMMP as follows:
U1: for each xi,j

max
xi,j∈[bmin,bmax]

J (xi,j) (7)

s.t
∑

k∈l(s)/i

xl
k + xi,j ≤ cl, l ∈ pj , i ∈ S, j ∈ U

(8)

xi,j ≤ xl
i, l ∈ pj , i ∈ S, j ∈ si (u) (9)

∀k ∈ S, l ∈ L, xl
k is defined as the video bitrate of i such

that xl
k ≥ xk,j for all j ∈ s (u)l. Constraint (8) indicates that

for each link l used by j, the bitrate of j should not exceed
the minimum residual link capacity, and eq. (9) says that the
bitrate xi,j cannot exceed all xl

i over its delivery path. We
introduce following theorem.

Theorem 1. For each user j ∈ U , the corresponding optimal
value x∗

i,j in P2 can be derived equally by solving problem
U1. Namely, ∀i, j, x∗

i,j of P2 and U1 are equal.

Proof. See appendix. A.

B. Distributed Optimal Rate Adaptation Algorithm

To derive the optimal x∗
i,j of U1 distributedly, we consider

the dual problem of U1. Consider the Lagrangian of U1:

Lu

(
xi,j ,λpj

,υpj

)
=J (xi,j)−

∑
l∈pj

υl
(
xi,j − xl

i

)
−
∑
l∈pj

λl

 ∑
j∈l(s)/i

xl
j + xi,j − cl


(10)

The Lagrangian dual function is thus:

Du

(
λpj ,υpj

)
= sup

xi,j∈[bmin,bmax]

Lu

(
xi,j ,λpj ,υpj

)
(11)

and the dual problem of U1 can be formulated as follows:

min
λpj

,υpj
≥0

Du

(
λpj

,υpj

)
(12)

Since the optimal values of the primal and dual problems
are equal due to the strong duality property of U1, the primal
optimal solution x∗

i,j can be recovered from a dual optimal

point
(
λ∗
pj
,υ∗

pj

)
, namely:

x∗
i,j = argmax

xi,j∈[bmin,bmax]

Lu

(
xi,j ,λ

∗
pj
,υ∗

pj

)
Let xi,j (pj) be the unique maximizer of

Lu

(
xi,j ,λpj ,υpj

)
. If the inverse of J (.) exists, according

to the Karush-Kuhn-Tucker condition of U1:A [26], xi,j (pj)
can be derived by:

xi,j (pj) = J ′−1

∑
l∈pj

(λl + υl)

 (13)

As Du

(
λpj

,υpj

)
is continuous and differential for(

λpj ,υpj

)
, the partial differentials of each λl, υl are:

∂Du

∂λl

(
λpj ,υpj

)
=−

 ∑
k∈l(s)/i

xl
k + xi,j − cl

 , l ∈ pi

(14)
∂Du

∂υl

(
λpj

,υpj

)
=−

(
xi,j − xl

i

)
, l ∈ pi (15)

Therefore, based on eq. (13)(14)(15), DDA solves the λ∗
l

and υ∗
l of dual problem U1:D by gradient projection method

[27], and updates xi,j (t) iteratively, as follows:
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xi,j (t+ 1) ≜


bmin, if λl (t) + γl (t) > J ′ (bmin)
bmax, if λl (t) + γl (t) < J ′ (bmax)

J ′−1

(∑
l∈pj

(λl (t) + υl (t))

)
, otherwise

(16)

λl (t+ 1) ≜ λl (t) + γ

 ∑
k∈l(s)/i

xl
k (t+ 1) + xi,j (t+ 1)− cl


(17)

υl (t+ 1) ≜ υl (t) + γ
(
xi,j (t+ 1)− xl

i (t+ 1)
)

(18)

The above iterations suggest treating users, routers as pro-
cessors in a distributed processing system, and the optimal
rate of each client can be derived by only communicating
with links over its delivery path, without coordination with
other clients. Specifically, at each iteration t, client j solves
xi,j (t) in eq. (16) by collecting λl (t− 1) and υl (t− 1) from
links over its delivery path pj and communicates them the
new derived xi,j (t). In parallel, client j requests video with
bitrate argmin

b∈B
∥x (t) − b∥2. Link l receives the xi,j (t) of

all users that use l and select max
j∈si(u)l

xi,j (t) as xl
i (t) for

each source s in l (s). Then, l uses all xl
k,k ∈ l (s) /i and

xi,j to compute the λl (t+ 1) and υl (t+ 1) by (17)(18).
The derived λl (t+ 1), υl (t+ 1) will be delivered to user j
for computing the new xi,j (t+ 1) in the next iteration. The
above process is repeated until the results reach the iteration
criterion, xi,j (t+ 1) = xi,j (t). xi,j (t), λl (t), υl (t) are small
enough and can be smuggled into Interest and Data packets,
hence, do not require extra communication resources. The
pseudocode of DDA is shown in Algorithm 1.

Convergence: assuming that initial λ (0) and υ (0) are
feasible, we have following convergence results.

Theorem 2. Given the utility function as (1), −J ′′ (xi,j) ≥
1
α̃j

, where ãj > 0, then, when step size γ satisfies 0 <

γ < 1

ÃL̃S̃
, where Ã = max

j∈U
αj , from any initial point x (0),

the (x∗,λ∗,υ∗) generated by Algorithm 1 is dual optimal,
namely, the x∗ is the optimal adaptation rate for P2.

Proof. See appendix. B.

Complexity: By observing Algorithm 1, the complexity
of DDA at link side is mainly determined by the process.
Let gradient projection iterates N times, and number of
users and providers go through link l are Ul and Sl, re-
spectively. Thus, the complexity of algorithm at the link
side is O (N (Ul + Sl)). At side of clients, the corresponding
complexity are determined by the times of iteration of (16),
which are both N .

Time-varying adaptation: In order to extend DDA to the
time-varying scenarios, the objective function P2 can be re-
formulated as f (x, t) =

∑
i∈S(t)

∑
j∈si(u,t)

J (xi,j), where s (t)

and si (u, t) are the set of providers and user set of provider i
at time t, respectively. The l (s) in constraint (6) is replaced by
l (s, t), which is the provider set that uses link l varying with

Algorithm 1: Distributed delivery algorithm (DDA)
for adaptive streaming

Input: x (0) , t = 0
Output: x∗, λ∗,υ∗

1 link l’s algorithm:
2 while λ (t)! = λ (t− 1),υ (t)! = υ (t− 1) do
3 receives the rate of xi,j (t) from all users that go

through link l;
4 foreach provider i uses link l do
5 determines the max{xi,j (t) |j ∈ s (u)l};
6 end
7 foreach user j goes through the link l do
8 computes the λl (t), υl (t) according to

(17)(18);
9 communicates the λl (t), υl (t) with user j;

10 end
11 t++;
12 end
13 λ∗ = λ (t),υ∗ = υ (t);
14 user j’s algorithm:
15 while xi,j (t)! = xi,j (t+ 1) do
16 receives the sum of λl (t) + υl (t) from links in pj ;
17 determines the next period delivery xi,j (t) by (16);
18 requests video bitrate by argmin

b∈B
∥x (t)− b∥2;

19 end
20 x∗

i,j = xi,j (t);
21 return x∗

i,j , λ∗, υ∗;
22 final ;

t. Based on above changes, each end users still executes the
same user algorithm as in Algorithm 1, except for computing
the pj (t) in the place of pj in (16). Each link executes the
same link algorithm as in Algorithm 1, only with minor
changes by replacing l (s) in (17) with l (s, t). Intuitively, if
the change in link routings and providers is relative slower
than the convergence rate, the algorithm still can converge to
the optimal rates x∗. We will further illustrate this feature by
experimental tests in Section VI.

V. HEURISTIC DISTRIBUTED RATE ADAPTATION
ALGORITHM

The proposed DDA converges to the optimal value under
any initial condition, as proved. However, the computation
complexity of DDA at link grows with the number of passing
users, which may trigger a scalability problem at the bot-
tleneck links. In this context, in this section, we propose a
lightweight heuristic distributed delivery algorithm (H-DDA).

Observe the following special case of P2:

max
x∈[bmin,bmax]U

∑
si∈S

log xi (19)

s.t
∑
i∈l(s)

xi ≤ cl l ∈ L (20)
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The above problem describes a unicast scenario where each
source serves one user only. The corresponding Lagrangian is:

L (x,λ) =
∑
si∈S

log xi −
∑
l∈L

λl

∑
i∈l(s)

xi − cl


This problem can be easily solved by considering its dual

as in [21], similar to eq. (13),

x (pi) =

∑
l∈pi

λl

−1

(21)

where pi denotes the path used by provider i. Intuitively, the
inverse of bitrate is equal to waiting delay of sending unit
number of data according to the little’s law. For instance, when
the data over link is 10Mbps, the delay of sending 1Mb data is
0.1s. Accordingly,

∑
l∈pi

λl indicates the totaly delay of sending

unit number of data using path i. Thus, the physical meaning
of λl is the waiting delay over

∑
l∈pi

λl. Obviously, λl can be

literately derived by following gradient projection method:

λl (t+ 1) = ⌈λl (t)− γ

cl −
∑
i∈l(s)

xi (t)

⌉+ (22)

Consider following problem with multicast feature:
P3:

max
x∈[bmin,bmax]U

∑
si∈S

log xi (23)

s.t
∑
i∈l(s)

max
j∈s(u)l

xi,j ≤ cl l ∈ L (24)

Similar to eq. (22), given by the sending delay of l is only
related to the load of link, we also have:

λl (t+ 1) = ⌈λl (t)− γcl −
∑
i∈l(s)

max
j∈s(u)l

xi,j (t)⌉+ (25)

for P3. Therefore, according to the physical meaning of λl,

xi,j (t) =

∑
l∈pj

λl (t)

−1

(26)

extending eq. (26) to the generalized J (.) which is strictly
concave and continuous:

xi,j (t) = J−1

∑
l∈pj

λl (t)

 (27)

Hence, at each iteration T of H-DDA, each link l in G
collects the bitrate xi,j of clients over l, and determines the
λl (t) by (25). Link l communicates the λl (t) to all users that
use l. User j receives the λl (t) of all l in pj and calculates the
xi,j (t). Links and users repeat this process until satisfy the
stopping criterion of gradient method: for each l, at iteration
T , λl (T )−λ (T − 1). The pesudocode of H-DDA is given in
Algorithm 2.

Algorithm 2: Heuristic distributed delivery algorithm
Input: x (0) , t = 0
Output: x∗, λ∗

1 link l’s algorithm:
2 while λ (t)! = λ (t− 1) do
3 receives the rate of xi,j (t) from all users that go

through link l;
4 foreach provider i do
5 determines the max

j∈s(u)l

x (i, j) for provider i

6 end
7 compute the λl (t) according to (25);
8 communicate the λl (t) to all users over l;
9 t++;

10 end
11 λ∗ = λ (t),υ∗ = υ (t);
12 user j’s algorithm:
13 while xi,j (t)! = xi,j (t+ 1) do
14 receives the sum of λl (t) from the links over its

path;
15 determines the next period delivery rate x (t)

according to (27);
16 communicates the xi,j (t+ 1) to links l ∈ pj ;
17 request video bitrate by argmin

b∈B
∥x (t)− b∥2;

18 end
19 x∗

j = xi,j (t);
20 return x∗,λ∗;
21 final ;

According to the pseudocode of Algorithm 2, the com-
putation complexity at link side is bounded by O (N.Sl).
Because Sl ≪ Ul + Sl in multicast scenario, Algorithm 2
can significantly reduce the computation load at links.

Unlike the optimal convergence of DDA which was proved
in Section IV, it is difficult to theoretically analyse the
optimality of H-DDA. Instead, we use the physical meaning
of λ of P3 to explain how H-DDA approximates the optimal
value. For each end user j, let x∗

i,j be the corresponding
optimal value derived by DDA, the inverse of x∗

i,j is equal
to the current waiting delay of path, say λ∗

p. And because
λ∗
p is the optimal delay of path which is equal to total sum

of λ∗
l whose corresponding link l is in pj . Therefore, because

λl (t) converges to the λ∗
l in H-DDA, hence xi,j (t) in H-DDA

converges to the x∗
i,j in DDA. We thereby prove the optimal

approximation of H-DDA.
Furthermore, we also test the optimal approximation of H-

DDA through numerical evaluation in Matlab. We consider a
tree-based network whose topology and link bandwidth are
shown in Fig. 2. In this tree topology, four leaf nodes act as
video clients continuously sending out DAS requests during
the simulation. Fig. 3 illustrates convergence of user rate of
U1-U4 derived by H-DDA to the solutions of DDA. Observing
that, both H-DDA and DDA converge to the same results, only
different in convergence rate, hence permits using H-DDA to
achieve the optimal rate adaptation.

Adoption to VR applications: Our algorithm provides an



7

l6:25Mbps

U1

s3

U2

U3

U4

s2

s1

l1:
15M

bps

l2:20M
bps

l3:10Mbps

l5:5
Mbps

l4:30Mbps

s4

s5

s6

s7

Figure 2. Tree-based topology
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Figure 3. User rate convergence comparison

adaptive streaming scheme and can be easily applied to the
omnidirectional video such as VR. In VR, each image is
splitted into multiple tiles and each tile is coded independently.
When delivering adaptive VR streaming, viewport predictions
are required to forecast the location of users interested area.
However, viewport prediction problem is beyond the scope
of this manuscript. For more details of these methods, please
refer to our previous work [23] . In our previous work[23],
we propose a viewport prediction method which can derive the
probability of a tile watched by a user. Let the probability of a
tile vi watched by a viewer be pi and the optimal transmission
rate is x∗, for each tile, the allocated bandwidth can be given
by:

x(vi) =
pi
V∑
vη

x∗ (28)

Then, vi’s bitrate bi:

bi = min
b<x(vi)

b− x(vi)

The pesudocode is shown in Algorithm 3.

Algorithm 3: Rate control for omnidirectional video
Input: x∗

Output: x∗, λ∗

1 foreach video chunk do
2 invoke the viewport prediction algorithm to derive

the viewing probability;
3 foreach tile vi do
4 calculate the allocated bandwidth:

x(vi) = pix ∗ /
V∑
vη

;

5 determine the bitrate for vi:
bi = minb<x(vi) b− x(vi);

6 end
7 deliver the tiles with bitrate (b1, b2, ..., bV );
8 end
9 final ;

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed algorithms,
we implemented DDA and H-DDA in MatLab and NS-3,
respectively. First, we present the simulation setup. Then, we
analyse the convergence of DDA and H-DDA in time-varying
condition and compare our algorithm against two state-of-art
solutions HAVS [20] and DASH-BOLA[24].

A. Simulation Setup

We select BestRoute[8] as the request routing strategy,
where routers maintain a routing table in order to discover
replicas with minimum hop counts. For caching strategy, we
employ the Leave Copy Everywhere (LCE)[8], which enables
edge servers copying all passing content to their storage The
size of the cache is randomly set to 25MB, 50MB and 100MB
per router. For test videos, we use MPEG-DASH multimedia
streaming with SVC-encoded format. The DASH video set is
from [22], each segment is two seconds long and video set
contains 8 movies with 120s of each. Each video is encoded
into one base layer and four enhancement layers. The base
layer b1 has an average bitrate of 600kbps, and enhancement
layers 1, 2, 3, 4 have 1600kps, 2600kps, 1940kps and 4440kps,
respectively. To simulate the multicast scenario, a random
number of users (from 1 to 5) will be selected to request
the same video within a very same time window. The arrival
rate of requests group follows the Poisson distribution with
λ = 0.05. Each requests group randomly select a video to
request by a Zipf distribution whose parameter is 0.8. After
determining the video to ask, end users will request chunks of
video in sequence and re-select a new video to request after
requesting all chunks of current video.

B. Experimental Results

To simulate a realistic environment, we build a forest-
based topology as in Fig. 4 which is widely used for Content
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Delivery Networks (CDN). The forest-based topology consists
of 14 nodes and 13 nodes acting as video clients. To simulate
the heterogeneous characteristics of an access network, the
leaf routers act as access points (APs) with different commu-
nication technologies. For instance, AP1 and AP5 act as edge
routers in wired networks, AP2 and AP4 are wireless access
points which use 802.11a protocol with 10 and 5Mbps shared
bandwidth, respectively. AP3 is a LTE network base station
to simulate the cellular network environment which provides
4Mbps access bandwidth to each end user.

1) User rate convergence analysis: Fig. 5 shows the rate
convergence of U4, U5, U6 when accessing video from AP1
and AP2. The solid lines and dash lines corresponding to the
rate adaption provided by DDA and H-DDA, respectively. As
the figure depicts, the simulation results of H-DDA converge
well to the optimal value. Besides, two algorithms also quickly
adapt the network condition variation during the simulation.
For example, when U6 begins to request video, the rate of
U6 quickly decreases to the new optimal value 5Mbps, hence,
showing the property of time-varying adaption of both DDA
and H-DDA. Fig. 6 shows the convergence analysis of users
accessing video from AP4, where all users share the access
bandwidth with 5Mbps. As we expect, the rate of users at AP2
also converges well to the theoretical results. We also observe
an interesting result in Fig. 6: both simulation and theoretical
values show that when U8 U9 concurrently access DAS (at 22s
during the simulation), the access bandwidth of WiFi is split
into 2.5Mbps for each user, respectively. When more flows
joining (At 35s and 75s), the bandwidth is further equally
spilt into fours, which reveals the fairness of our algorithm.
The above observation indicates that our proposed scheme
can accommodate dynamic network variations. Additionally,
note that a faster convergence can be achieved by relaxing the
iteration criterion, but at the cost of larger upper bound of
the convergence. This show that there is a tradeoff between
the dynamic adaptation and better theoretical performance in
DDA.

2) Average bit rate (ABR) comparison: We define the ABR
as the arithmetic mean of average bitrate of overall users.
Fig. 7 show the ABR comparison of H-DDA, HAVS and
BOLA. As figure shows the ABR of three solutions experience
a increasing trend at the beginning. After 50s, all solutions
decrease and then enter periodical vibration phase. The red line
corresponding to H-DDA achieves a 37% and 41% increment
against the HAVS and BOLA. At the beginning, the network
load is at low level and the links have enough bandwidth to
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support the requested high bitrate video. However, after the
total bitrate reaches the link capacity limits, the continuous
increase in video clients reduces the ABR. In H-DDA, the
overall bitrate tracks to the theoretical optimal bound, hence,
providing the best performance among three solutions. HAVS
adjusts the data rate at each hop locally, which fails to optimize
the user bitrate globally, and results in a relatively low bitrate
against H-DDA. Regardless of the link capacity, each client
in BOLA greedily requests higher bitrate video in order to
maximize their own video quality, which may aggravate the
network congestion when the network is already in a high load
condition. Therefore, BOLA performs the worst.

3) Average stalling time (AST) comparison: We define
the time interval between playback freeze and restart as the
stalling time. The shorter stalling time is, the smoother the
playback experienced by the client is. We measure the average
value of stalling time of using H-DDA, HAVS and BOLA
and show the results in Fig. 8. We observe that the red curve
corresponding to the H-DDA reduces the AST by 10% and
30% after 300s when comparing with HAVS and BOLA. As
mentioned, H-DDA uses a distributed rate adaptive method to
take full use of link bandwidth while avoiding the network
congestion by limiting the total delivery rate to the link
capacity, achieving a smoother playback. HAVS also limits
the data rate to the link capacity at each hop, hence avoiding
the network congestion and smooth playback at some level.
However, the hop-level transmission control results in a sub-
optimal rate control. BOLA uses a greedy method to request
video content, which leads to higher risk of playback freeze
and hence, it performs the worst among the three solutions.

VII. CONCLUSION

In this paper, we propose a distributed optimal rate con-
figuration algorithm for dynamic adaptive streaming. We first
formulate the rate adaption problem as MMMP, whose linear
relaxation is concave. We then decomposed MMMP in terms
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of video clients. Furthermore, by considering the dual aspect
of the decomposed problem, we propose DDA which enables
users communicate with links over their delivery path to derive
the optimal rate configuration. Furthermore, we also propose a
heuristic method named H-DDA which reduces the computa-
tion complexity comparing with DDA, while maintaining the
optimal approximation. Simulation results shows convergence
of algorithm and illustrate how H-DDA outperforms the state-
of-art solutions.

Although the theoretical proofs and simulations test validate
the performance of our proposed algorithms, several open
issues remain. First, our work focuses on wireless commu-
nications and it is necessary to consider the mobility of
the nodes. Future work will study how to model the user
mobility behavior and embed this into the design of our
algorithm. Secondly, for live streaming services, transcoding
the video content into multiple representations consumes large
computation resources. Future research will jointly optimize
the transmission and transcoding which are both critical to
the high performance of 360 degree live streaming. Thirdly,
future work will consider deploying the proposed algorithm in
a real life environment and testing it.
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APPENDIX A
PROOF OF THE THEOREM 1

Proof. Given by the definition of xl
i, the problem P2 can be

rephrased as follows:
P2:A

max
x∈[bmin,bmax]U

∑
i∈S

∑
j∈s(u)

J (xi,j) (29)

s.t
∑
i∈l(s)

xl
i ≤ cl l ∈ L (30)

xi,j ≤ xl
i, i ∈ S, j ∈ si (u) , l ∈ pj , (31)

We aggregate U1 across all users and obtain:
U1:A

max
xi,j∈[bmin,bmax]

∑
i∈S

∑
j∈si(u)

J (xi,j) (32)

s.t
∑

k∈l(s)/i

xl
k + xi,j ≤ cl, l ∈ pj , i ∈ S, j ∈ s (u)

(33)

xi,j ≤ xl
i, l ∈ pj , i ∈ S, j ∈ si (u) (34)

Assuming that x∗ and x′∗ are the optimal solutions of P2:A
and U1:A, respectively, Theorem 1 holds only when x∗ =
x′∗. Next, we show how to prove that x∗ = x′∗.

Let the Lagrangian of P2:A and U1:A be as in eq. (16) and
(17). The dual optimal values of eq. (16) and (17) are defined

as
(
x∗,λ∗

p,υ
∗) and

(
x′∗,λ′

p
∗
,υ′∗), respectively. According

to the slackness complementarity condition [26], we have:

{
υijl

∗ > 0, x∗
i,j = xl

i
∗

υijl
∗ = 0, x∗

i,j < xl
i
∗ ,

{
υijl

′∗ > 0, x′
i,j

∗
= xl

i
′∗

υijl
′∗ = 0, x′

i,j
∗
< xl

i
′∗ ,

(18)
Using x∗ to replace the x′∗, we have:∑

i∈S

∑
j∈si(u)

∑
l∈pj

υ′
ijl

∗
(
x∗
i,j − xl

i

∗)
= 0

For the case of
∑

k∈l(s)/i

xl
k

∗
+ x∗

i,j < cl, the corresponding

λ′
ijl

∗
= 0. This can be proved by contradiction. If there exists a

λ′
ijl

∗
> 0, xl

k

∗
+x∗

i,j < cl, λ′
ijl

∗

( ∑
k∈l(s)/j

xl
k

∗
+ x∗

i,j − cl

)
>

0, this means it exists a x̂∗ such that∑
i∈S

∑
j∈si(u)

J
(
x̂∗
i,j

)
>
∑
i∈S

∑
j∈si(u)

J
(
x′
i,j

∗)
which contradicts the assumption that x′

i,j
∗ is the maximum

value.
For case of

∑
k∈l(s)/i

xl
k

∗
+ x∗

i,j = cl, we have
∑

l(s)/i

xl
k

∗
=∑

k∈l(s)/i

xl
k

′∗ and x∗
i,j = x′

i,j
∗. Combining the above two cases,

we have

∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ′
ijl

∗

 ∑
k∈l(s)/i

xl
k

∗
+ x∗

i,j − cl


=
∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ′
ijl

∗

 ∑
k∈l(s)/i

xl
k

′∗
+ x′

i,j
∗ − cl

 (19)

Let gijl
(
x′∗) = ∑

k∈l(s)/i

xl
k

′∗
+x′

i,j
∗− cl, given by eq. (19)

and strong duality property of U1:A and P2:A, we have:∑
i∈S

∑
i∈s(u)

J
(
x∗
i,j

)
=
∑
i∈S

∑
i∈s(u)

J
(
x∗
i,j

)
−
∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ′
ijl

∗
gijl (x

∗)

≥
∑
i∈S

∑
i∈s(u)

J
(
x′
i,j

∗)
−
∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ′
ijl

∗
gijl

(
x′∗)

=
∑
i∈S

∑
i∈s(u)

J
(
x′
i,j

∗)
(20)

Similarly, we also have

∑
l∈L

λ∗
l

 ∑
x∈l(s)

xl
i

∗ − cl

 =
∑
l∈L

λ∗
l

 ∑
x∈l(s)

xl
i

′∗ − cl


and

∑
i∈S

∑
i∈s(u)

J
(
x∗
i,j

)
≤

∑
i∈S

∑
i∈s(u)

J
(
x′
i,j

∗). Hence,∑
i∈S

∑
i∈s(u)

J
(
x∗
i,j

)
=
∑
i∈S

∑
i∈s(u)

J
(
x′
i,j

∗). Since the optimal



10

Lp (x,λp,υ) =
∑
i∈S

∑
j∈si(u)

J (xi,j)−
∑
l∈L

λl

 ∑
x∈l(s)

xl
i − cl

−
∑
i∈S

∑
j∈si(u)

∑
l∈pj

υijl
(
xi,j − xl

i

)
(16)

Lu (x,λu,υ) =
∑
i∈S

∑
j∈si(u)

J (xi,j)−
∑
i∈S

∑
j∈si(u)

∑
l∈pj

λijl

 ∑
k∈l(s)/i

xl
k + xi,j − cl

−
∑
i∈S

∑
j∈si(u)

∑
l∈pj

υijl
(
xi,j − xl

i

)
(17)

solution is unique given by the concave propriety of P2:A,
x∗ = x′∗, therefore Theorem 1 holds.

APPENDIX B
PROOF OF THE THEOREM 2

Proof. Because Algorithm 1 generates the λ (t),υ (t) by
the gradient projection method, hence, according to [27],
λ (t),υ (t) converges to λ∗ and υ∗ only when ∇Du is
Lipschitz. Let β (j) = 1

−J′′(xi,j(pj))
and

Aj =

[
B (j) 0
0 B (j)

]
= diag (β (j))2L×2L (21)

where each B (j) is L × L matrix with diagonal elements
β (j). According to eq. (13), we have:

J ′′ (xi,j (pl))
∂xi,j (pi,l)

∂pi,l
= 1, pi,l =

{
λl, i = 1, l ∈ pj
υl, i = 2, l ∈ pj

(22)
Hence, ∂xi,j(pi,l)

∂pi,l
can be represented as:

∂xi,j (pi,l)

∂pi,l
=

Rlj

J ′′ (xi, j (pl))

where Rlj ∈ {0, 1}, Rlj = 1 indicates the user j go through
link l and 0 otherwise. Using (22), we have vector

[
∂xi,j (pi,l)

∂pi,l
]2L = −AjC

T

where CT =[R,R]T , and R = (Rlj).
According to eq. (14) and eq. (15), we have:

∇2Du (λ,υ) = −C[
∂xi,j (pi,l)

∂pi,l
]2L

and hence we have ∇2Du (λ,υ) = CAjC
T .

According to the mean value theorem, ∀m,n, we have

∇Du (m)−∇Du (n) = ∇2Du (ξ) (m− n)

= CAj (ξ)C
T (m− n)

(23)

Given the Schwartz inequality property of 2-norm ∥.∥,

∥∇Du (m)−∇Du (n)∥ ≤ ∥CAj (ξ)C
T ∥.∥m− n∥

according to [27] (pp. 635).

∥CAj (ξ)C
T ∥2 ≤ ∥CAj (ξ)C

T ∥∞.∥CAj (ξ)C
T ∥1

In particular, ∥
(
CAj (ξ)C

T
)′ ∥∞ = ∥CAj (ξ)C

T ∥1
and because CAj (ξ)C

T is symmetric, we further have
∥CAj (ξ)C

T ∥∞ = ∥CAj (ξ)C
T ∥1.

Therefore,

∥CAj (ξ)C
T ∥2 ≤ ∥CAj (ξ)C

T ∥∞
= max

i

∑
j

∑
k

βk (w)RikRkj

= 2|pj |max
i

∑
k

βk (w)Rik

≤ 2ÃL̃S̃

(24)

Therefore, ∇Du is Lipschitz with

∥∇Du (m)−∇Du (n)∥ ≤ 2ÃL̃S̃.∥m− n∥

Because the J (.) is continuous and one-to-one mapping,
xi,j (pj) is continuous and therefore, lim

t→∞
xi,j (t) = x∗

ij ,
hence, the theorem is proved.

REFERENCES

[1] G. Zhang and J. Y. B. Lee, “Ensemble Adaptive Streaming, A New
Paradigm to Generate Streaming Algorithms via Specializations,” in IEEE
Transactions on Mobile Computing, vol. 19, no. 6, pp. 1346-1358

[2] A. Yaqoob and G. -M. Muntean, ”A Combined Field-of-View Prediction-
Assisted Viewport Adaptive Delivery Scheme for 360 Videos,” in IEEE
Transactions on Broadcasting, vol. 67, no. 3, pp. 746-760, Sept. 2021.

[3] B. Wei, H. Song, S. Wang and J. Katto, “Performance Analysis of Adap-
tive Bitrate Algorithms for Multi-user DASH Video Streaming,” 2021
IEEE Wireless Communications and Networking Conference (WCNC),
2021, pp. 1-6,

[4] C. Zhan, H. Hu, Z. Wang, R. Fan and D. Niyato, ”Unmanned Aircraft Sys-
tem Aided Adaptive Video Streaming: A Joint Optimization Approach,”
in IEEE Transactions on Multimedia, vol. 22, no. 3, pp. 795-807, March
2020.

[5] X. Ma et al., ”QAVA: QoE-Aware Adaptive Video Bitrate Aggregation
for HTTP Live Streaming Based on Smart Edge Computing,”in IEEE
Transactions on Broadcasting, vol. 68, no. 3, pp. 661-676, Sept. 2022.

[6] M. Yang, H. Liang and F. Yang, ”Real-Time Adaptive Switching Mech-
anism Towards Viewport-Adaptive Omnidirectional Video Streaming,”
2021 IEEE International Conference on Multimedia & Expo Workshops
(ICMEW), 2021, pp. 1-6.

[7] M. Kim and K. Chung, ”Edge Computing Assisted Adaptive Streaming
Scheme for Mobile Networks,” in IEEE Access, vol. 9, pp. 2142-2152,
2021.

[8] P. Dai, F. Song, K. Liu, Y. Dai, P. Zhou and S. Guo, ”Edge Intelligence for
Adaptive Multimedia Streaming in Heterogeneous Internet of Vehicles,”
in IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp. 1-1, 2022.

[9] T. Feng, Q. Qi, J. Wang, J. Liao and J. Liu, “Timely and Accurate
Bitrate Switching in HTTP Adaptive Streaming with Date-Driven I-frame
Prediction,” in IEEE Transactions on Multimedia, vol. PP, no. 99, pp. 1-1,
2022.

[10] A. Paul,S. Mitra, “Deep reinforcement learning based cooperative
control of traffic signal for multi-intersection network in intelligent
transportation system using edge computing,” Transactions on Emerging
Telecommunications Technologies, vol. 33, no. 11, pp. 1-8, 2022.

[11] N. Kan, J. Zou, C. Li, W. Dai and H. Xiong, ”RAPT360: Reinforcement
Learning-Based Rate Adaptation for 360-Degree Video Streaming With
Adaptive Prediction and Tiling,” in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 32, no. 3, pp. 1607-1623, March
2022.



11

[12] Bany Salameh, H. Al-Obiedollah, H. Arabiat, T. Al-ajlouni, A. Jararweh,
Y. “Joint bandwidth and power resource allocation technique in multi-
carrier non-orthogonal multiple access-based cognitive Internet of Things
networks,” Trans Emerging Tel Tech. vol. 33, no. 11, pp. 1-6, 2022.

[13] Shirmohamadi, M. Bakhshi, H, D. Moghadam, “M. Optimizing re-
sources allocation in a heterogeneous cloud radio access network using
machine learning,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 33, no. 9, pp. 1-10, 2022.

[14] H. T. T. Tran, D. V. Nguyen, N. P. Ngoc and T. C. Thang, ”Overall
Quality Prediction for HTTP Adaptive Streaming Using LSTM Network,”
in IEEE Transactions on Circuits and Systems for Video Technology, vol.
31, no. 8, pp. 3212-3226, Aug. 2021.

[15] H. Yuan, X. Hu, J. Hou, X. Wei and S. Kwong, ”An Ensemble Rate
Adaptation Framework for Dynamic Adaptive Streaming Over HTTP,”
in IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 251-263, June
2020.

[16] P. Lebreton and K. Yamagishi, ”Predicting User Quitting Ratio in
Adaptive Bitrate Video Streaming,” in IEEE Transactions on Multimedia,
vol. 23, pp. 4526-4540, 2021.

[17] A. Zhang et al., ”Video Super-Resolution and Caching?An Edge-
Assisted Adaptive Video Streaming Solution,” in IEEE Transactions on
Broadcasting, vol. 67, no. 4, pp. 799-812, Dec. 2021.

[18] L. Zhong, X. Ji, Z. Wang, J. Qin and G. -M. Muntean, ”A Q-Learning
Driven Energy-Aware Multipath Transmission Solution for 5G Media
Services,” in IEEE Transactions on Broadcasting, vol. 68, no. 2, pp. 559-
571, June 2022.

[19] L. Cui, D. Su, S. Yang, Z. Wang and Z. Ming, ”TCLiVi: Transmission

Control in Live Video Streaming Based on Deep Reinforcement Learn-
ing,” in IEEE Transactions on Multimedia, vol. 23, pp. 651-663, 2021.

[20] Liu, and Y. Wei, “Hop-by-hop adaptive video streaming in content
centric network,” in Proc.IEEE Conf. Commun (ICC), pp. 1-7, 2018.

[21] N. Eswara, S. Chakraborty, H. P. Sethuram, K. Kuchi, A. Kumar and
S. S. Channappayya, “Perceptual QoE-Optimal Resource Allocation for
Adaptive Video Streaming,”in IEEE Transactions on Broadcasting, vol.
66, no. 2, pp. 346-358, June 2020.

[22] C. Kreuzberger, D. Posch, and H. Hellwagner,“A Scalable Video Coding
Dataset and Toolchain for Dynamic Adaptive Streaming over HTTP,” In
Proc. ACM MMSys ’15, pp. 213-218, Portland, Oregon, 2015.

[23] M. Wang, S. Peng, X. Chen, Y. Zhao, M. Xu and C. Xu, ”CoLive: An
Edge-Assisted Online Learning Framework for Viewport Prediction in
360 Live Streaming,” 2022 IEEE International Conference on Multimedia
and Expo (ICME), 2022, pp. 1-6

[24] K. Spiteri, R. Urgaonkar and R. K. Sitaraman, ”BOLA: Near-Optimal
Bitrate Adaptation for Online Videos,” in IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1698-1711, Aug. 2020, doi:
10.1109/TNET.2020.2996964.

[25] Y. Liu and J.Y.B. Lee, “A unified framework for automatic quality-of-
experience optimization in mobile video streaming,” Proc. IEEE Conf.
Comp. Commun.(INFOCOM), pp. 1-7, April. 2016.

[26] S. Boyd, and L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, ISBN:0521833787, 2004

[27] D.P. Betsekas, and J.N. Tsitsiklis, “Parallel and Distributed Compua-
tion,” Englewood Cliffs, NJ: Prentice-Hall, 1989.


